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Abstract

In the study of molecular features like epigenetic marks, it is appealing to ascribe observed
patterns to the action of natural selection. However, this conclusion requires a test for selection
based on a well-defined notion of neutrality. Here, focusing on epigenetic marks at gene loci,
we formalize what it means for an epigenetic mark to be neutral, and develop a test for selec-
tion. Our test respects the foundational aspect of epigenetics: trans-regulation by transcription
factors and chromatin modifiers. It also enables adjustment for confounders. We establish that
promoter DNA methylation, promoter H3K4me3 and exonic H3K36me3 are all under selection,
and that this is unlikely to be a passive consequence of selection on gene expression. The ef-
fect of these epigenetic marks on fitness is arguably partly explained by a causal involvement
in gene regulation. However, we also investigate the complementary explanation that DNA
methylation and H3K36me3 are under selection in part because they modify the mutation rate
of important genomic regions. We show that this explanation is consistent with empirical obser-
vations as well as population genetics theory, because of the trans-regulation. Exemplifying the
protection of important regions from high mutability, we demonstrate that in humans the more
intolerant to loss-of-function mutations a gene is, the lower its coding mutation rate is. Our
framework for selection inference is simple but general, and we speculate that its core ideas
will be useful for additional molecular features beyond epigenetic marks.

Introduction

Natural selection is one of the fundamental forces shaping the evolution of living organisms (Fisher,
2015; Crow, Kimura, 2009). As a result, detecting the action of selection is one of the major goals of
evolutionary biology. At the molecular level, the focus thus far has been on identifying signatures
of selection within the DNA sequence (Bamshad, Wooding, 2003; Nielsen, 2005; Nielsen et al., 2007).
Major insights into the action of selection have been attained by comparative genomic analyses, as
well as analyses of population-level genetic variation (see Nielsen et al. (2005), Sabeti et al. (2006),
Blekhman et al. (2008), Lek et al. (2016), and Cassa et al. (2017) for examples of results in humans).

However, natural selection acts on phenotypes; footprints of selection in the DNA sequence only
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reflect the extent to which the DNA causally determines these phenotypes. In turn, the causal
effect of the DNA sequence on phenotypes is mediated via its effect on intermediate functional
molecular features. There is a wide range of features potentially acting as such mediators: from
epigenetic marks to the structure and activity of gene regulatory networks and signaling pathways.
Therefore, it is of interest to move beyond the DNA sequence, and identify selective pressures on
specific molecular features. This is akin to the major objective of ”evolutionary cell biology” (Lynch
et al., 2014; Lynch, Trickovic, 2020).

In theory, one way to detect selection on a given molecular feature would be to identify the parts
of the DNA sequence which determine that feature, and then test for selection on these sequence
parts with established methods. However, this approach can be difficult to apply in practice. For
example, the genome-wide landscape of epigenetic marks is determined by networks of upstream
regulatory factors (transcription factors and chromatin modifiers; Stadler et al. (2011), Krebs et al.
(2014), Boulard et al. (2015), and Lappalainen, Greally (2017)); at most genomic locations, the
identities of the relevant factors and the logic governing their interactions are not fully understood.
Additionally, even if the causally relevant sequence parts are known for a given feature, interpret-
ing signatures of selection on them can be complicated by issues such as pleiotropy (e.g. a given
protein may participate in more than one gene regulatory network or signaling pathway, each of
them serving a different function).

An alternative approach which overcomes these issues is to directly infer selection on the inter-
mediate feature of interest. The major barrier to achieving this is the lack of a suitable concept
of neutrality. For instance, it may be tempting to attribute the distribution of a certain epigenetic
mark across the genome to the action of selection. But how would that same mark be distributed
if it were neutral? Without a neutrality concept, there is no null hypothesis against which the
alternative of selection can be tested (Lynch, 2007; Lynch, Trickovic, 2020; Eres, Gilad, 2021).

Hereafter, we restrict our focus to epigenetic marks. We propose that recently derived estimates of
selection coefficients of coding loss-of-function alleles allow for a natural definition of the fitness
effect of epigenetic marks associated with genes, and we show that this definition can be used to
derive a test for selection from first principles. We then apply this test to several marks and explore
the biological basis and implications of the results.

Results

An approach for inferring selection on epigenetic marks

In what follows, we refer to epigenetic marks with different possible ”epigenetic states”. For
instance, the mark can be DNA methylation at proximal promoters, and in that case each promoter
can have either the methylated or the hypomethylated state (details for why this binary labeling is
appropriate provided in next section). Our general goal for any given mark is to infer whether a
particular state is favored, or acted against, by natural selection.

A key aspect of the biology of epigenetic marks, as mentioned above, is that their presence is con-
trolled simultaneously at multiple locations, via the action of trans-acting regulators: transcription
factors and chromatin modifiers. Experimental evidence suggests that different genomic locations
are under the control of different combinations of trans-acting factors, which can interact in differ-
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ent ways (Stadler et al., 2011; Krebs et al., 2014; Boulard et al., 2015). To capture this, we associate
each epigenetic mark with its ”trans-regulatory groups”. Each trans-regulatory group is a set of
locations which are all regulated by the same factors, with the same regulatory logic defining how
these factors interact. Therefore, all locations in a trans-regulatory group have the same state of
the epigenetic mark. Figure 1a depicts a simple hypothetical example with a binary epigenetic
mark and two regulatory groups, resulting in 4 possible states (see also Supplemental Figure S1
for examples of different potential regulatory logics). Naturally, between-individual variation in
the expression and activity of the upstream factors controlling a trans-regulatory group can result
in between-individual variation in the epigenetic state of that group (Figure 1a). Hereafter, we
restrict our attention to locations associated with genes (e.g. promoters).

Each trans-regulatory group has an associated fitness wG, which is the fitness of individuals with
the epigenetic state of interest at that group. This fitness represents the aggregation of the fitness
effects of that state at each individual gene belonging to the group; the state does not need to
have the same fitness effect at each of these genes. Our key modeling step is to assume that the
group-level fitness wG is a function of the individual shet coefficients of the genes in the group
(Methods), where shet,g is the selection coefficient of a heterozygous coding loss-of-function allele
at a given gene g. In other words, we assume that the mark would have a different fitness effect at
the group if the corresponding shet coefficients were different. For illustration purposes, we show
how wG and the genic shet’s are related under the additional assumption of a multiplicative fitness
landscape (Methods), though we note that our inference procedure makes no such assumption.
Because each trans-regulatory group has its own wG, the epigenetic mark can be under selection at
some groups but not under selection at others. We say the epigenetic mark is under selection if it
is under selection at one or more group(s).

To perform inference about selection, the major practical challenge is that the trans-regulatory
groups are not well-characterized. The reason is that it is not known precisely which transcription
factors and chromatin modifiers control the epigenetic state at most locations in the genome, and
precisely how this control is achieved; recent work on how Polycomb Repressive Complex 2 affects
promoter DNA methylation is illustrative of this complexity (Methods; Boulard et al. (2015)).
Despite this unknown regulatory structure, we show (Methods) that it is possible to derive a
statistical test that can distinguish between different evolutionary scenarios with regards to the
fitness effect of an epigenetic mark: neutrality, negative selection, and positive selection. Our test
relies on the assumption that differences in the fitness effect of a given epigenetic mark at two
different trans-regulatory groups is associated with differences in the shet distributions of the genes
in the two groups (Figure 1b; Supplemental Figure S2), and is based on a quantity we term dM. This
quantity captures the relationship between the fixation probability of an epigenetic mark and genic
shet’s across the genome (Methods). Under neutrality, dM = 0, meaning that the epigenetic mark
has the same fixation probability independently of shet, and thus is equally likely to be observed
across genes (Figure 1c). By contrast, under negative selection, the epigenetic mark is less likely
to be fixed at genes with high shet, yielding dM < 0 and a (stochastically) monotonic relationship
between the presence of the mark and shet across the genome (Figure 1c); the opposite is true under
positive selection (Methods).
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Figure 1. Intuition behind our test for selection on epigenetic marks. We consider a
hypothetical example with an epigenetic mark that has two possible states (U, M). (a) Two
trans-regulatory groups controlled by two different sets of upstream factors. When the set of
upstream factors are active, each promoter in the corresponding group has the U state. (b) An
illustration of the assumption of a relationship between the distribution of selection
coefficients against heterozygous loss-of-function alleles (quantified by LOEUF; a proxy for
shet) of the genes in each trans-regulatory group, and the associated fitness of individuals with
different epigenetic states when the mark is under selection (see Methods for details). (c)
Under assumption (b), we prove (Methods) that different evolutionary regimes give rise to a
different kind of relationship between the fixation probability of a given epigenetic state and
individual LOEUFs, even when the trans-regulatory groups are unknown. This manifests as a
relationship between the probability of observing the epigenetic state at a given gene and its
LOEUF, and can be visualized across groups of genes, when genes are ranked based on
LOUEF (e.g. deciles).
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It is worth noting that our approach leverages the fact that a given epigenetic mark occurs multiple
times throughout the genome (e.g. DNA methylation or H3K4me3 are encountered at many
promoters). Because of this, the test can be applied using only a single genome; it does not require
population-scale data or data across species. Implicitly, this is based on the assumption that
selection acts in the same direction (positive or negative) at each gene where it is present (Methods).
Later in the text, we provide specific examples which argue that gene-specific optimization of
epigenetic states via negative selection at some genes, and positive selection at others, is unlikely.

Finally, while we have framed the approach using shet coefficients, in practice any metric that re-
flects the selective effects of heterozygous coding loss-of-function alleles can be used. Several such
metrics have been developed recently, from large-scale analyses of exome sequences (Petrovski
et al., 2013; Lek et al., 2016; Cassa et al., 2017; Karczewski et al., 2020). For our analyses here we
use LOEUF from gnomAD (Karczewski et al., 2020), with smaller LOEUF values indicating greater
selective pressure (Karczewski et al., 2020). We verified that there is strong concordance between
LOEUF and shet estimates (Supplementary Figure S3b; Spearman’s ρ = −0.85), which ensures that
the results are robust to this choice.

Testing for selection on different epigenetic marks

We applied our test to investigate the selective pressure on different epigenetic marks. To illustrate
the generality of our approach, we considered 3 different marks (DNA methylation, H3K4me3,
H3K36me3) and a broad range of genomic compartments (promoters, gene bodies, transcriptional
end regions).

Proximal promoter DNA methylation in the male germline is under negative selection

We first focused on promoter DNA methylation in the male germline. We started by exploring the
pattern of methylation variation across promoters, using whole-genome bisulfite sequencing data
from human sperm (Methods). We observed that proximal promoters (defined here as +/- 500bp
from the TSS), are either completely methylated or completely hypomethylated (Supplemental
Figure S4a). Therefore, we treated proximal promoter methylation as a binary mark.

We investigated the distribution of proximal promoter methylation with respect to downstream
gene loss-of-function intolerance, and found a strong relationship: greater loss-of-function intoler-
ance is strongly associated with a smaller probability of proximal promoter methylation (Figure 2a).
At the most loss-of-function-intolerant genes (bottom 10% LOEUF), methylation is almost univer-
sally absent, with only 0.8% of proximal promoters being methylated. Our test yields a statistically
significant dM value of −0.07 (p = 9.9 · 10−5, Figure 2b), indicating negative selection against
proximal promoter methylation.

The width of the hypomethylated region around hypomethylated proximal promoters in the
male germline is under directional selection

While each proximal promoter is either completely methylated or hypomethylated, the width
of the hypomethylated region around hypomethylated proximal promoters exhibits continuous
variation along the genome (Supplemental Figure S4b; Methods). Thus far, such variation has not
been shown to have a functional role, unlike the binary methylation state of proximal promoters
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which has been linked to gene expression regulation. Our approach for selection inference extends
to epigenetic marks whose possible states range within a continuous spectrum (Methods), enabling
us to examine whether the width of these hypomethylated regions has a functional role without a
prespecified hypothesis about what that role may be. We discovered clear evidence for selection
in favor of a larger hypomethylated region (dM = 604.15). The average hypomethylated region
width is 4403 for the top 10% loss-of-function intolerant gene promoters, in contrast to 2897 for the
bottom 10%, with a gradual shift in betweeen (Figure 2b; p = 9.9 · 10−5).

DNA methylation at the transcriptional end region in the male germline is not under selection

DNA methylation at proximal promoters has been studied extensively, because of its associa-
tion with gene expression. Much less attention has been paid to methylation at transcriptional
end regions, even though it has been recognized that the 3’ ends of some genes can also be hy-
pomethylated (Gardiner-Garden, Frommer, 1987; Yu et al., 2013). The functionality of variation
in transcriptional end region methylation remains unknown, prompting us to ask if selection is
at play (Methods). We treated transcriptional end region methylation as a binary epigenetic mark
(Supplemental Figure S4c; Methods), and did not find any evidence for selection (dM = 0.0004).
The percentage of methylated transcriptional stop sites was essentially constant across LOEUF
deciles, with minor fluctuations that did not deviate from what would be expected by random
chance alone (Figure 2c; p = 0.45), in concordance with what our test predicts under neutrality.

The presence of H3K36me3 at coding regions in the male germline is under positive selection

We next shifted our focus to a histone modification: gene-body H3K36me3. Using ChIP-seq data
from human sperm, we called peaks genome-wide and subsequently restricted to peaks that
overlap coding regions (Methods). With those peaks, we treated H3K36me3 as a binary mark that
is either present or absent in the coding region. We found that greater loss-of-function intolerance
is associated with a higher probability of an H3K36me3 peak in the coding sequence (Figure 2d;
dM = 0.09; p = 9.9 · 10−5), showing that gene-body H3K36me3 is under positive selection in the
male germline.

The presence of H3K4me3 and the intensity of the H3K4me3 signal at proximal promoters in
embryonic stem cells are under positive and directional selection, respectively

Finally, we examined proximal promoter H3K4me3, using ChIP-seq data from human H1 embry-
onic stem cells (Methods). We first tested for selection on the presence of at least one H3K4me3 peak
at the proximal promoter. We found clear evidence for positive selection (Figure 2e; dM = 0.12;
p = 9.9 · 10−5). This is not unexpected, as having an H3K4me3 peak at the promoter has been
strongly linked to gene regulation. However, it is not clear whether, across promoters which harbor
such a peak, differences in the intensity of the ChIP-seq signal (Supplemental Figure S4d) reflect
underlying biology or technical noise (Landt et al., 2012; Marinov, Kundaje, 2018). Applying our
test to H3K4me3 signal intensity can provide an unbiased answer to this question, as a result in-
dicative of selection would imply that the intensity of this signal reflects biologically meaningful
regulatory activity. Indeed, our test revealed the action of directional selection favoring a higher
intensity, with a dM value of 4.48 (Figure 2f; p = 9.9 · 10−5). We emphasize that the signal intensity
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Figure 2. Testing for selection on different epigenetic marks. Each panel consists of two
plots. The left plot is a visual depiction of the relationship between the state of the mark and
genic loss-of-function intolerance (quantified by LOEUF). The right plot is the observed value
of dM together with a null distribution (see Methods). (a) DNA methylation at the proximal
promoter (+/- 500bp around the transcriptional start site; TSS) in the male germline (sperm).
(b) The width of the hypomethylated region around the TSS at genes with a hypomethylated
proximal promoter in the male germline. (c) DNA methylation at the transcriptional end
region (+/- 500bp) in the male germline. (d) Presence of H3K36me3 at the coding sequence in
the male germline (sperm). (e) Presence of H3K4me3 at the proximal promoter in human H1
embryonic stem cells. (f) The ChIP-seq signal intensity of H3K4me3 at genes with H3K4me3
presence at the proximal promoter in H1 embryonic stem cells.
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here is merely a read-out; selection acts on the biological process which produces this signal, likely
the kinetics of H3K4me3 deposition/removal.

Gene-specific optimization of DNA methylation and H3K4me3 at proximal promoters
is unlikely

For many epigenetic marks, we observe different states throughout the genome. For example, some
proximal promoters are methylated while others are hypomethylated. Under our model, where
each trans-regulatory group has its own fitness and the mark is under the same kind of selection
(positive or negative) at all groups, different states can still arise if selection is not strong enough to
overcome drift at some groups. In this case, a different state than the one favored by selection may
reach fixation via random drift. An alternative possibility, however, is that different states arise
because the mark is under negative selection at some groups but under positive selection at other
groups; in other words, there is location-specific ”optimization” of the epigenetic state. We sought
to investigate this possibility. From the epigenetic marks we tested above, we focused on the two
that are arguably the most well-understood: the presence of DNA methylation and H3K4me3 at
proximal promoters.

Given the known relationship between proximal promoter DNA methylation and gene repression
(XS Liu et al., 2016; Korthauer, Irizarry, 2018), we reasoned that if DNA methylation at the proxi-
mal promoter has been favored by selection at some groups of genes, then these would be genes
where a reduction in expression was beneficial. Therefore, these genes now should not tolerate
an increase in their expression levels (assuming that the selective pressure on their expression
level is conserved). To examine if this is the case, we first used recent estimates of ”triplosensi-
tivity” (Collins et al., 2021). These estimates capture the extent to which genes tolerate increased
expression. We found that the genes whose proximal promoters have DNA methylation are not
triplosensitive (Supplemental Figure S5; median probability of triplosensitivity = 0.19). In fact,
the genes whose proximal promoters are devoid of DNA methylation are the ones with high
triplosensitivity estimates (Supplemental Figure S5a); this is consistent with the positive correla-
tion between triplosensitivity and shet estimates (Collins et al., 2021). The same reasoning applies
to the absence of H3K4me3 at proximal promoters, which is also associated with low expression.
Genes whose proximal promoters are devoid of H3K4me3 are not triplosensitive (Supplemental
Figure S5b; median probability of triplosensitivity = 0.17), whereas those that do harbor H3K4me3
are (as expected given the association between promoter hypomethylation and H3K4me3; Ooi et al.
(2007))).

To corroborate these results with an orthogonal approach, we investigated expression quantitative
trait loci (eQTLs) in early human development (induced pluripotent stem cells; DeBoever et al.
(2017); Methods) and male germline (testis; GTEx Consortium (2020); Methods). We found that,
out of the mapped eQTLs which increase expression levels, the eQTLs corresponding to genes
with methylated proximal promoters confer higher increases (Supplemental Figure S5c, d). This is
the opposite of what would be expected if these genes were intolerant to expression level elevation.
For H3K4me3, there exists no difference between the increase in expression conferred by eQTLs of
genes harboring H3K4me3 peaks at their proximal promoter, and the increase conferred by eQTLs
of genes without H3K4me3 (Supplemental Figure S5e); this is again inconsistent with the existence
of greater selective pressure against expression level elevation at genes without H3K4me3.
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Taken together, these data suggest that the presence of DNA methylation and the absence of
H3K4me3 at proximal promoters are unlikely to have resulted from positive selection.

The selective pressure on the epigenetic marks tested is not purely a passive conse-
quence of selection on gene expression

Since the early days of the epigenetics field, there has been intense debate about whether epigenetic
marks actively dictate cellular functions, or whether their observed patterns along the genome are
purely a passive byproduct of gene expression regulation by other means, such as transcription
factors (Cooper, 1983; AP Bird, 1984; Ptashne, 2007; Murray et al., 2019; Z Wang et al., 2022). This
is a specific instance of a more general problem: unlike the DNA sequence, intermediate molecular
features such as epigenetic marks can be affected by other features, such as gene expression levels.
Therefore, one has to consider whether the inferred selective pressure on a certain feature is an
artifact of selection on another feature. Our framework allows us to evaluate this for a priori chosen
features, by recognizing and leveraging the connection between our setup for selection inference
and causal mediation analysis (Figure 3a; Methods) (Pearl, 2014; VanderWeele, 2016).

We thus set out to test if the selection signal on the epigenetic marks we investigated is a passive
consequence of selection on gene expression. We discovered that this is not true. First, for the
germline marks, we computed the adjusted dM after taking the effect of germline gene expression
into account. In all cases, the observed adjusted dM values remain statistically significant (Fig-
ure 3b, d, f). Following mediation analysis (Methods), this is evidence for a direct effect of the
mark on fitness, provided the noise in expression measurements is not too high. We then investi-
gated the possibility that these germline epigenetic patterns are established as a consequence of
expression patterns not in germ cells, but in subsequent developmental stages post-fertilization,
and are merely inherited unaltered by primordial and subsequently mature germ cells. As repre-
sentative of early pre-implantation development preceding primordial germ cell specification, we
examined embryonic stem cells (bulk RNA-seq; Methods). For completeness, we also looked at
subsequent fetal development (172 fetal cell types identified using single-cell RNA-seq; Methods),
in case some of these transcriptional profiles correlate better with the primordial germ cell profile.
In all cases, the adjusted dM values were still consistent with selection (Figure 3b; Supplemental
Figure S6). The same is true for H3K4me3 presence and intensity, after adjusting for expression
either in embryonic stem cells, or in fetal cell types (Figure 3b; Supplemental Figure S6).

However, a causal role of epigenetic marks in gene expression regulation may not
entirely explain their selective pressure

The results in the previous section are incompatible with the notion that the selection signal on the
epigenetic marks is entirely explained as a passive consequence of selection on gene expression. A
straightforward alternative explanation is that these marks contribute actively to normal cellular
physiology and ultimately organismal fitness, by exerting a causal influence on gene expression
regulation. Such a causal influence is supported by experimental evidence, primarily from targeted
epigenome editing (XS Liu et al., 2016; Bintu et al., 2016; Korthauer, Irizarry, 2018; XS Liu et al., 2018;
Mendoza et al., 2022). However, this interpretation raises the question: is expression regulation
the only reason for selection on epigenetic marks?

To investigate this, we focused on germline promoter DNA methylation and its relationship with
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Figure 3. The selective pressure on the epigenetic marks is not fully explained as a passive
consequence of selection on gene expression. (a) Hypothetical causal graph depicting the
relationship between shet, the fixation of a specific gene expression state, and the fixation of
the epigenetic state. We wish to test if the fixation of the epigenetic state is purely a passive
consequence of selection on gene expression, i.e. whether or not there exists a controlled direct
effect from shet to the fixation of the epigenetic state. (b) For different marks, the observed
values for the dM test statistic (red dots) and the corresponding null distributions (blue boxes),
after adjusting for gene expression in the germline or human H1 embryonic stem cells. The
unadjusted dM values from Figure 2 are included for comparison.
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expression. First, we observed that the correlation between gene expression and the width of the
hypomethylated region around hypomethylated proximal promoters is extremely weak, both in
the germline and in embryonic stem cells. Hypomethylated region width in the germline is not
significantly associated with germline gene expression (p = 0.7), whereas it only accounts for a
negligible 0.1% of the variance in expression in embryonic stem cells (Supplemental Figure S7a, b).
This suggests that expression regulation is unlikely to be the reason that selection acts on the the
width of the hypomethylated region. Second, we identified 36 genes whose proximal promoters
are methylated in the germline and become hypomethylated in embryonic stem cells (Methods).
As a group, these genes are less intolerant to loss-of-function variation than genes with proximal
promoters hypomethylated in both germline and embryonic stem cells (Supplemental Figure S8a),
but they are expressed at similar levels (Supplemental Figure S8b). Although this is a very small set
of genes, their existence illustrates that – even at proximal promoters – germline hypomethylation
is preferentially targeted away from loss-of-function intolerant genes in the germline, without this
being an absolute requirement for high expression in early embryonic stages. This is consistent
with recent results from Mendoza et al. (2022), showing that forcible promoter hypermethylation
is not necessarily accompanied by gene repression; there are genes whose expression is unchanged,
and even some whose expression increases.

Finally, a general argument applicable to all epigenetic marks is that they do not exercise their
effect on gene regulation alone. Rather, that effect is mediated by other components of the cellular
epigenetic machinery, such as methyl-CpG binding proteins and histone modification readers
(Jørgensen, A Bird, 2002; Musselman et al., 2012; Boukas et al., 2019). It is unlikely that this
multi-component system evolved at once. One plausible scenario is that the marks appeared first,
were retained by selection unrelated to gene expression (as well as by drift), and then the protein
components appeared, creating a functional gene regulatory system.

Can the effect of DNA methylation and H3K36me3 on regional mutation rates partly
explain their selective pressure?

Motivated by the above observations, we searched for explanations of selection on epigenetic marks
unrelated to expression. An intriguing hypothesis pertaining to DNA methylation and exonic
H3K36me3 is that these marks are under selection partly because they affect regional mutation
rates. We set out to test the basic premises of this hypothesis, and investigate if such secondary
selection can overcome random genetic drift in a finite population.

The basic premises of the hypothesis are that: a) these marks indeed cause changes in mutation
rates, and b) the resulting mutations are deleterious. It is well-established that DNA methylation
increases the mutation rate of CpGs in the germline by ∼3-4 fold (Coulondre et al., 1978; RY Wang
et al., 1982; Cooper, Youssoufian, 1988; Zhou et al., 2020). However, while we have previously
observed a strong link between CpG density at promoters and genic intolerance to loss-of-function
mutations (Boukas et al., 2020a), it is unclear if the loss of CpGs at promoters has fitness conse-
quences, as previous studies have reached conflicting conclusions (Cohen et al., 2011; Panchin et al.,
2016). For exonic H3K36me3, on the other hand, it is well-accepted that the resulting mutations are
deleterious on average, since they are coding. But, while H3K36me3 has been found to promote
mismatch repair and homologous recombination repair in somatic cells (Li et al., 2013; Pfister et al.,
2014; Z Sun et al., 2020), it is unknown whether its presence is associated with a reduced exonic
mutation rate in the germline. A previous study found no such association, in contrast to the
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Figure 4. Higher loss-of-function intolerance is linked to lower de novo coding mutation
rate, partly explained by coding H3K36me3 patterns. (a) The distribution of the number of
synonymous de novo mutations per coding sequence base pair, stratified based on
downstream gene loss-of-function intolerance. (b) The distribution of the difference between
the number of synonymous de novo mutations per coding sequence base pair in
H3K36me3-marked regions and regions without H3K36me3. H3K36me3-marked regions are
defined as a 500bp interval centered on each H3K36me3 peak (restricting to exonic regions
only). The distribution is obtained by computing the difference for each gene.

situation in somatic cells (Rodriguez-Galindo et al., 2020). However, this study used H3K36me3
from embryonic stem cells as a proxy for the germline profile, and therefore did not resolve the
question.

Higher loss-of-function intolerance is associated with lower de novo coding mutation rates, an
effect partly explained by H3K36me3

Given that higher genic loss-of-function intolerance is associated with a higher probability of exonic
H3K36me3, we started by asking whether higher loss-of-function intolerance is also linked to a
lower exonic mutation rate. We used a dataset of 15,642 de novo synonymous mutations, aggregated
from 58,011 individuals (Methods; Zhao et al. (2020)). This revealed that, indeed, the more
loss-of-function intolerant a gene is, the lower its exonic mutation rate (Figure 4a; Supplemental
Figure S9a). Genes within the top 10% of loss-of-function intolerance have on average 0.0007
de novo synonymous mutations per coding sequence base pair. By contrast, the corresponding
average rate for genes within the bottom 10% of loss-of-function intolerance is 0.0012, that is, 1.71
times higher. We note that the use of de novo synonymous mutations ensures that this result truly
reflects differences in mutation rates, and not the action of selection. We found that including
intronic mutations makes the association between loss-of-function intolerance and textitde novo
mutation rate a lot weaker (Supplemental Figure S9e,g,h), emphasizing that this phenomenon is
largely localized to the regions under selection: exons.

We next assessed the contribution of H3K36me3 to this pattern. Clearly, since only 40.3% of genes
have an H3K36me3 coding peak, H3K36me3 cannot be the sole determinant of the association
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Figure 5. Higher genic loss-of-function intolerance is associated with increased
conservation of hypomethylated promoter CpGs. (a) The distribution of per promoter
average across-vertebrate conservation (PhyloP score) of CpG sites in the proximal promoter,
stratified according to downstream genic loss-of-function intolerance. (b) The distribution of
per-promoter differences in the average conservation (PhyloP score) of CpG sites minus that
of non-CpG sites, stratified according to downstream genic loss-of-function intolerance. (c,d)
Like (a,b) respectively, but for CpGs in the promoter boundary.

between exonic mutation rate and intolerance to loss-of-function mutations. Nevertheless, we
focused on genes with at least one H3K36me3 coding peak and recalculated the number of de
novo synonymous mutations per base pair, this time after excluding the sequences directly within
or very close (+/- 250bp) to H3K36me3 peaks. Comparing this rate to the corresponding one
when using the entire exonic sequence, we found that 86.2% of genes have a higher mutation
rate after excluding H3K36me3-associated sequences (Figure 4b; Supplemental Figure S9b). This
confirms that germline H3K36me3 is associated with lower exonic mutation rates, and shows that
this association is present in the vast majority of genes which harbor an H3K36me3 coding peak.

Promoter CpGs at loss-of-function intolerant genes are under selection

Turning our attention to CpGs, we investigated if their loss at promoters is deleterious or not. We
used conservation across 100 vertebrate species, quantified using the PhyloP score (with higher
values indicating greater conservation; Methods). We examined 1,076,680 proximal promoter CpGs
and 563,098 CpGs that are in hypomethylated regions but not within proximal promoters (which
we refer to as promoter boundary CpGs).

While conservation alone generally does not necessarily reflect selection, conservation at promoter
nucleotides does reflect selection if it increases when genic loss-of-function intolerance increases.
We found that the per promoter average CpG conservation increases as downstream gene loss-
of-function-intolerance increases. This is true both at the proximal promoter and at promoter
boundaries (Figure 5a, c). Furthermore, this increase does not reflect background selection due
to linkage to other promoter or coding sites, because it is accompanied by a progressively larger
difference between the average per promoter conservation of CpGs versus that of non-CpG sites
(Figure 5b, d).
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Theory and simulations support the existence of selection on promoter CpG methylation and
exonic H3K36me3 because of their effect on regional mutation rates

The drift-barrier hypothesis posits that – under realistic mutation rate values – the fitness effect
of local changes in mutation rate is not strong enough to overcome random drift (Lynch, 2011;
Lynch et al., 2016) in a finite population. However, the major feature of epigenetic marks, which
has been central to our study, is their regulation in trans at multiple genomic loci. This implies
that changes in epigenetic state will affect multiple locations simultaneously. In light of this, we
re-evaluated the drift-barrier hypothesis. We based our investigation on a well-established model
for the accumulation of deleterious mutations at genomic regions (Methods; Haigh (1978)). While
this model does not capture the full complexities of biological reality (see Methods for simplifying
assumptions used), we reasoned that it can provide useful insights.

To make our results as realistic as possible, we used empirical estimates for selection coefficients
of mutations in conserved non-coding and coding regions (Kryukov et al., 2005). In addition, we
empirically estimated the relevant mutation rates (Methods) and, in the case of DNA methylation,
the proximal promoter “epimutation” rates (via a human-chimp comparative analysis of sperm
methylomes with rhesus as an outgroup; Methods). Of particular note, we found these “epimu-
tation” rates to be 3.23 · 10−8 for methylated promoters and 2.4 · 10−9 for hypomethylated ones.
These values are on par with and lower than, respectively, mutation rates in human coding se-
quences. Therefore, because we are considering marks occurring at multiple locations throughout
the genome, we hereafter neglect this epimutation rate, in analogy with the assumption underlying
the standard dN

dS test for coding sequences (Nielsen, Yang, 2003; Kryazhimskiy, Plotkin, 2008). An
analysis of CpG genetic diversity among 62,874 individuals supports this approximation (Sup-
plemental Figure S11; Methods, see also last paragraph of section ”A test statistic for selection”).
This immediately implies, that in an infinite population, the epigenetic state associated with lower
mutation rate will eventually dominate in the population (Methods).

Turning to the case of a finite population, we first examined the limiting case of a small region in a
single gene (corresponding, for example, to a single promoter or a single H3K36me3 exonic peak).
In agreement with the drift-barrier hypothesis, we observe that the difference in mutation rate it
too small for selection to overcome drift (Figure 6); the fixation probability is the same as what is
expected under neutrality. We corroborated this simulation result with a heuristic argument based
on a diffusion approximation to the probability of the epigenetic mutation rate modifier (Methods).

We then examined different scenarios with increasing number of regions under upstream regu-
latory control. We observed that, as the number of regions under upstream control increases,
the effectiveness of selection increases as well (Figure 6). For DNA methylation, the increase in
CpG mutation rate is such that even with small trans-regulatory groups, selection overcomes drift
(Figure 6). Moreover, the fixation probability decreases when the selection coefficients increase
(Figure 6), a trend which qualitatively mirrors our empirical results. For exonic H3K36me3, even
though the effect on the mutation rate is smaller, selection still becomes effective when the trans-
regulatory group size increases, although the required number of regions is substantially higher
than for DNA methylation (Figure 6). This is not necessarily inconsistent with biological reality, as
coding H3K6me3 patterns are largely set by the globally-acting SETD2 histone methyltransferase
(XJ Sun et al., 2005; Bhattacharya, Workman, 2020). Again, we observe a gradient of decreasing
fixation probabilities with increasing selection coefficients (Figure 6), although this gradient is less
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Figure 6. The selective pressure on promoter DNA methylation and coding H3K36me3 may
be due to their effect on regional germline mutation rates. (a) The probability of fixation of
proximal promoter DNA methylation, under different scenarios. Each scenario corresponds to
a different value of the product between the effective population size and the selection
coefficient (Ns) and to different numbers of promoters under simultaneous control by
upstream trans-regulators, with 80 CpGs per promoter (Methods). (b). The probability of
fixation of H3K36me3 at the coding region. As in (a), different scenarios are depicted,
corresponding to different values of Ns and the numbers of H3K36me3 peaks under
simultaneous control.
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pronounced than in the case of DNA methylation.

These results show that trans-regulation of multiple regions can make regional epigenetic muta-
tion rate modifiers subject to selection strong enough to overcome drift. This can reconcile our
observations with population genetics theory.

Discussion

We have presented a framework for detecting natural selection on epigenetic marks. Our main
contribution is twofold. First, we show that estimates of selective pressure against heterozygous
coding loss-of-function alleles – which have recently become available – motivate a definition of
the fitness effect of epigenetic marks associated with genes. Second, we use this definition to derive
a test for selection. Ultimately, we provide a characterization of what it means for an epigenetic
mark to be under selection versus not. If a mark is equally likely to be encountered across genes
regardless of their tolerance to loss-of-function variation, it is not under selection; if it less (more)
likely to be encountered the more loss-of-function intolerant a gene is, the mark is under negative
(positive) selection.

More fundamentally, our framework is general. There is nothing that restricts its applicability
to epigenetic marks only, and we envision that several molecular (and genomic) features will be
amenable to testing with the same approach. This rests on the belief that the central function of the
genome is to transcribe genes. Thus, a test for selection which relies on a genic shet-based fitness
definition will be appropriate for a multitude of features. Importantly, our framework incorpo-
rates adjustment for confounders, an essential component of any test for selection on intermediate
molecular features. We use this to establish that selection on the marks we consider is not merely a
passive consequence of selection on gene expression. With any given feature, however, one should
carefully decide what confounders to adjust for, and this choice must be informed by the relevant
biology. This illustrates a caveat of our approach, as it may often be difficult to completely rule out
the possibility that an inferred selective pressure is driven by confounders that were not accounted
for. Another limitation behind our test currently is that it provides information about the presence
or absence of selection, but not about its strength. Future work should address this gap, although
it may require the full specification of how a mark is regulated in trans.

We note that the core idea underlying our test and its application here - the assessment of the
relationship between genic loss-of-function intolerance and the presence of an epigenetic mark
throughout the genome - may seem intuitively obvious. Indeed, an initial version of our work,
focusing only on germline promoter DNA methylation (Boukas et al., 2020b), as well as work
by (Monroe et al., 2022) on A. Thaliana, use this idea in a heuristic fashion. Here we make the
approach precise, which illustrates its generality and the subtleties underlying its application. In
addition, we provide a framework based on the notion that epigenetic marks are controlled by
trans-acting regulators. This is a major conceptual issue that was ignored in previous studies, and
- as we also discuss below - takes center stage when assessing the impact of epigenetic marks on
mutation rates, the subject of the aforementioned studies.

Our results also yield biological insights. First, with regards to specific marks, probably what is
most unexpected is the positive selection detected on the width of the hypomethylated region
around hypomethylated proximal promoters. This is despite the fact that there is a negligible
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association between the size of this region and gene expression. These hypomethylated regions
largely correspond to CpG island shores (Irizarry et al., 2009), which are characterized by rapid
methylation-demethylation kinetics (Ginno et al., 2020), and are often differentially methylated
between tissues. Whether these properties are relevant to the selective pressure we detect here in
the germline remains to be determined.

Second, more generally, whether the epigenetic states encountered in the vicinity of genes are
purely a passive byproduct of gene expression regulation with no active role of their own has
long been debated (Cooper, 1983; AP Bird, 1984; Ptashne, 2007; Murray et al., 2019; Z Wang et
al., 2022). To the best of our knowledge, our study is the first to approach this question through
an evolutionary lens. Our findings show that epigenetic marks have a causal effect on cellular
function strong enough to render them subject to selection.

It is tempting to conclude that the epigenetic marks considered here are under selection because
of their involvement in gene regulation. Indeed, targeted epigenome editing experiments support
this interpretation (XS Liu et al., 2016; Bintu et al., 2016; Korthauer, Irizarry, 2018; XS Liu et al.,
2018). However, here we make the case that aside from a causal role in expression regulation,
complementary explanations are also needed in order to explain the full selective pressure. This
is motivated in part by the fact that some aspects of promoter DNA methylation are only weakly
correlated with expression, and in part by a general consideration concerning the interplay between
epigenetic marks and their readers.

For promoter DNA methylation and exonic H3K36me3, a complementary explanation could be
their impact on local mutation rates in the germline. Whether selection acts on local mutation rate
modifiers is a very old question in population genetics and molecular evolution. A long line of
theoretical investigations has led to the proposal that selection may act to reduce the mutation
burden at location where mutations are deleterious (Sturtevant, 1937; Kimura, 1967; Leigh, 1970;
Kondrashov, 1995). However, empirical evidence for this phenomenon has been lacking. In
fact, it has been questioned whether such secondary selection can overcome the force of random
genetic drift in finite populations (Lynch, 2011; Lynch et al., 2016), an argument termed the drift-
barrier hypothesis. Our simulations here show that – under realistic mutation rates and selection
coefficients – the drift barrier can be overcome in the case of epigenetic mutation rate modifiers
that are under trans-regulation, because they affect multiple genomic regions simultaneously. This
provides support for the notion that regional “optimization” of promoter and coding germline
mutation rates has shaped the evolution of DNA methylation and H3K36me3, and is relevant for
the interpretation of a recent result in A. thaliana (Monroe et al., 2022) as well. But we highlight that
it is is non-trivial to answer conclusively whether there is selection on a mark because of its effect
on local mutation rates, on top of selection due to a causal effect on gene expression that the mark
has at the same time. At best, one can establish – as we do here – that the secondary selection due
to mutation rate modification is consistent with evolutionary theory. Providing “proof” for this
is likely to require experimental evidence with directed evolution (Morselli et al., 2015; Finnegan
et al., 2020). However, even for DNA methylation, whose effect on the mutation rate is strong and
unequivocally established, it will be difficult to retain that effect while simultaneously blocking
its potential effect on gene expression, since the mere methylation of CpGs changes the local
thermodynamic properties of DNA (S Wang, Kool, 1995; Renciuk et al., 2013; Tsuruta et al., 2021)
and can modulate transcription factor binding (Yin et al., 2017; Héberlé, Bardet, 2019).
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It is worth commenting further on the potential for selective pressure on CpGs via the exclusion of
DNA methylation. Earlier work on the evolution of CpG islands in primates reported no evidence
for selection maintaining them (Cohen et al., 2011). This work has become accepted by leading
members of the epigenetics community (Antequera, A Bird, 2018). However, the approach in Co-
hen et al. (2011) assumes that, when studying the evolutionary dynamics of promoter CpGs, DNA
methylation is merely a confounder that needs to be adjusted for. This rests on the long-standing,
widely held belief that promoter CpG-richness is a passive consequence of the hypomethylated
state of these promoters in the germline. Our work provides evidence for the reverse rationale:
that part of the reason why these promoters have remained hypomethylated is because this is how
selection is preserving their CpG-richness. Such a scenario is consistent with the high mutational
constraint of CXXC-domain-containing proteins, which bind to unmethylated CpGs (Lee et al.,
2001; Boukas et al., 2019) and are also present in organisms lacking DNA methylation FIXME:
cite, and with the role of these unmethylated CpGs in expression regulation (Thomson et al., 2010;
Clouaire et al., 2012; Hartl et al., 2019).

Finally, we have shown that the more intolerant to loss-of-function variation a gene is, the lower
its exonic mutation rate in the germline. In light of a recent similar result in A. thaliana (Monroe
et al., 2022), and previous observations in E. coli (Martincorena et al., 2012), it is natural to sug-
gest that this is a universal phenomenon: essential genes have an inherently lower propensity to
mutate across diverse organisms. We emphasize that while we here focus on the contribution of
H3K36me3, H3K36me3 is certainly not the sole factor explaining the variation in has the potential
to provide new clues into the determinants of germline mutation rates. Of relevance here may be
the recently proposed ”transcriptional scanning” hypothesis (Xia et al., 2020; Xia, Yanai, 2022).

Methods

A model for the fitness effect of an epigenetic mark regulated in trans

We consider an epigenetic mark which occurs at multiple sites throughout the genome. We restrict
our attention to cases where each individual site is associated with a specific gene. Examples of
such sites where epigenetic marks are known to occur are promoters and gene bodies. Hereafter,
we use the words site and gene interchangeably.

For simplicity, we assume that at each gene there are two possible epigenetic states, which we call
M and U. As we show later, our test for selection is readily applicable to marks whose states vary
along a continuous spectrum.

trans-regulatory groups

As described in the Results section, epigenetic marks are regulated in trans by upstream factors.
Owing to this, the same epigenetic state is present at a group of genes which are under shared
upstream regulation. What we observe at an individual gene is a consequence of the particular
trans-regulatory group that the gene belongs to. To capture this trans-regulation in our model, we
denote a given trans-regulatory group by G, and use wG to denote the fitness of individuals with
the M state at this group. This fitness wG will be a function of the fitness effect of the M state at
each of the genes belonging to group G.
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Before providing a model for this fitness effect at the single-gene level, let us further illustrate the
reasoning behind a trans-regulatory group, with a simple scenario. Consider a single transcription
factor that binds to a set of promoters and recruits chromatin modifiers, which in turn set up a
particular epigenetic state. We assume that, when expressed and active, the transcription factor
binds to all promoters that contain its cognate motif. In that case, a group G consists of the set of
genes whose promoters harbor the transcription factor motif. At a given individual and within
a given cell type, the epigenetic state we observe at these genes is determined by whether the
transcription factor is expressed and is active, or not. Variation across the population in that cell
type is governed by variation in the expression and activity of the transcription factor. However,
the networks of upstream regulators (transcription factors and chromatin modifiers) and their
interactions, which define these groups, are currently incompletely characterized.

Example (DNA methylation) We now briefly describe a concrete example relevant to the regula-
tion of DNA methylation provided in Boulard et al. (2015). In that study, the focus is on KDM2B, a
regulatory factor (histone demethylase that also has DNA and histone binding ability) which binds
to approximately 15,000 CpG-rich promoters via its CXXC domain. It was shown that knockout
of KDM2B in embryonic stem cells leads to a gain of DNA methylation, but only at a subset of
CpG-rich promoters that are also bound by Polycomb repressive complexes 1 or 2. This implies the
existence of the following regulatory groups: a) the group of genes whose promoters are bound by
both KDM2B and Polycomb repressive complex 1 or 2; these promoters are unmethylated when
KDM2B is expressed at normal levels; b) the group of genes whose promoters are not bound by
KDM2B; these promoters are normally methylated; c) the group of genes whose promoters are
bound by KDM2B, but not by Polycomb repressive complex 1 or 2; these genes are in fact probably
split into more than one regulatory group, and the logic determining their DNA methylation state
is unknown.

From the fitness effect on a single gene to the fitness effect on a trans-regulatory group

We now present an explicit model that connects the fitness effect of a given epigenetic state at
individual genes with the resulting aggregate effect on a trans-regulatory group. In doing so,
we make explicit the contribution of genic shet coefficients, which is critical for our subsequent
inference procedure.

A single gene At a given gene g, we define the fitness of an individual heterozygous for the M
epigenetic state as

wg =1 − αgshet,g

where shet,g is the gene-specific selection coefficient against heterozygous coding loss-of-function
alleles, and αg is a gene-specific parameter that is positive if M is under negative selection and
negative if M is under positive selection (strictly speaking, the fitness should be defined as wg =
max(0, 1 − αgshet,g)).

αg can be thought of as a parameter that reflects how sensitive the gene is to alterations of its
epigenetic state. For instance, in the case of negative selection, one may impose the additional
restriction that 0 ≤ αg ≤ 1. Then, the closer αg is to 1, the more important the epigenetic mark is
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for the gene, and changes in the epigenetic state have almost as large of a fitness effect as a coding
loss-of-function mutation (which provides an upper bound since it completely inactivates the gene
by leading to non-sense mediated decay). By contrast, if αg is close to 0, then the gene is unaffected
by changes in epigenetic state.

The key implication of this fitness definition is that, at a given gene, if an intervention were to be
applied that would change shet,g (e.g. manipulation of the environment that makes a gene very
intolerant to loss-of-function mutations), then the fitness effect of the epigenetic state would also
change. The larger αg is, the larger that change would be.

Finally, there is nothing specific about M being an epigenetic state here; the same definition could
be used to capture the fitness effect of any other type of feature.

Multiple genes Our inference procedure does not make any assumptions about the form of the
function that relates the fitness effects of the M state at each of the individual genes of the group to
the group-level fitness wG. However, it is illustrative to briefly consider the case of a multiplicative
fitness landscape. Then, we have

wG = ∏
g∈G

1 − αgshet,g

The set of (αg; g ∈ G) parameterizes the fitness of the M epigenetic state in terms of the set of
(shet,g; g ∈ G). Importantly, these parameters only influence the evolutionary dynamics of the M
state through their effect on wG.

The fixation probability of an epigenetic state at a trans-regulatory group

An epigenetic state M at a trans-regulatory group G has a fixation probability which depends on
the fitness wG (in addition to population size and starting frequency of the state). To emphasize
this, we introduce the function m defined as

P(M becomes fixed at G) = m(wG)

From standard population genetics theory, we know that, if the fitness effect is not strong enough,
selection is dominated by random genetic drift in finite populations. We define wweak as a threshold
such that

m(wG) = mdrift for wG ≥ wweak

under negative selection, and

m(wG) = mdrift for wG ≤ wweak

under positive selection.

This merely states that if selection cannot overcome drift, then the fixation probability does not
depend on fitness (since it is governed by random fluctuations over time).
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A genome-wide model

We can divide the genome into disjoint (by definition) trans-regulatory groups G1, . . . , GK with
associated fitnesses w1, . . . , wK. We assume without loss of generality that the groups are ordered
in terms of these fitnesses, so that under neutrality or negative selection:

w1 ≤ . . . ≤ wK

and under neutrality or positive selection:

w1 ≥ . . . ≥ wK

At each group separately, selection may (or may not) overcome drift, implying that the epigenetic
state may be under selection only at some groups. We will say the epigenetic state is under selection
if it is under selection for at least one trans-regulatory group.

A quantity determined by selection

To construct a test for selection we need a quantity which behaves differently, i.e. attains different
values, depending on whether the epigenetic mark of interest is under selection or not. Because the
compoosition and logic of trans-regulatory groups are largely unknown, we need a quantity which
does not depend on the composition of these groups. To obtain such a quantity, we examine the
relationship between the probability of fixation and the gene-specific selection coefficients against
heterozygous coding loss-of-function alleles shet,g, which are now known for most human genes
(Cassa et al., 2017; Karczewski et al., 2020).

We consider the genome-wide model, where we have a finite set of genes with associated αg and
shet,g. The genes are divided into K regulatory groups G1, . . . , GK. The presence of the M epigenetic
state at these groups has an associated fitness w1 ≤ . . . ≤ wK.

We now consider the following experiment: we draw two genes independently at random (i.e.
uniformly across genes) and start the evolutionary process. We define the following stochastic
variables:

g, ĝ : The two genes

S, Ŝ : The shet coefficients of g, ĝ respectively

Mfix, M̂fix : Binary variables equal to 1 if the M epigenetic state is fixed at g, ĝ respectively

We define the following quantity:

dM = E
(

Mfix − M̂fix | S > Ŝ
)

Our main result is the following, stated below for the case of negative selection (the case of positive
selection is completely analogous and is treated afterwards):

Proposition 1. If the M epigenetic state is neutral or under selection that is too weak to overcome drift, i.e.
if wi ≥ wweak, for all i, then

dM = 0
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If the M epigenetic state is under negative selection that is strong enough to overcome drift, i.e. there is at
least one i such that wi < wweak (and we do not have w1 = · · · = wK), then

dM < 0

under the assumption that differences in fitness between groups correspond to differences in shet distributions,
in the following sense:

wi ≤ wj =⇒ P
(
S > Ŝ | g ∈ Gi, ĝ ∈ Gj

)
≥ P

(
S < Ŝ | g ∈ Gi, ĝ ∈ Gj

)
, with the inequality for the probabilities being strict when the inequality for the fitnesses is strict

Remark 1 The assumption describes first order stochastic dominance between certain conditional
distributions. This is illustrated in Supplemental Figure S2 which considers 3 trans-regulatory
groups where w1 > w2 > w2 together with shet,g distributions under two different scenarios. It
exemplifies that it is possible to have different fitness even with the same shet,g distributions. As
described in the “From the fitness effect on a single gene to a trans-regulatory group”, this different
fitness effect can be caused by differences in the αg distributions.

Remark 2 We emphasize that the assumption is only used in the second part of the theorem.
When the epigenetic mark is neutral or under negative selection too weak to overcome drift, we
always have dM = 0. When negative selection is strong enough to overcome drift, we have dM < 0,
provided the assumption is satisfied. This means that observing dM < 0 is strong evidence for
negative selection, whereas dM = 0 could follow either from lack of selection or violation of the
assumption.

Proof. First, we rewrite

E
(

Mfix | S > Ŝ
)
=

K

∑
i=1

E
(

Mfix | S > Ŝ, g ∈ Gi
)

P
(

g ∈ Gi | S > Ŝ
)

Conditional on {g ∈ Gi}, and since we have a binary state, the expectation becomes the fixation
probability m(wi) as previously discussed. So

E
(

Mfix | S > Ŝ
)
=

K

∑
i=1

m(wi)P
(

g ∈ Gi | S > Ŝ
)

The same argument can be used to conclude

E
(

M̂fix | S > Ŝ
)
=

K

∑
i=1

m(wi)P
(

ĝ ∈ Gi | S > Ŝ
)

If M is neutral or selection is too weak to overcome drift, then m(wi) does not depend on i, and we
can write m(wi) = mdrift, for all i. We therefore conclude

dM = E
(

Mfix − M̂fix | S > Ŝ
)

= mdrift

K

∑
i=1

P
(

g ∈ Gi | S > Ŝ
)
− mdrift

K

∑
i=1

P
(

ĝ ∈ Gi | S > Ŝ
)

= 0

Boukas et al. | 2022 | bioRχiv | Page 22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2020.07.04.187880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187880


We now consider the negative selection regime, assuming that we do not have w1 = · · · = wK.
Recall that without loss of generality, we assume that the groups are ordered according to the
fitness effect of M. We therefore have that w1 < wweak. We return to our quantity of interest, dM:

E
(

Mfix − M̂fix | S > Ŝ
)
=

K

∑
i=1

m(wi)
(

P
(

g ∈ Gi | S > Ŝ
)
− P

(
ĝ ∈ Gi | S > Ŝ

))
Now we use the identities (which are consequences of every gene belonging to a group)

P
(

g ∈ Gi | S > Ŝ
)
=

K

∑
j=1

P
(

g ∈ Gi, ĝ ∈ Gj | S > Ŝ
)

P
(

ĝ ∈ Gi | S > Ŝ
)
=

K

∑
j=1

P
(

g ∈ Gj, ĝ ∈ Gi | S > Ŝ
)

to obtain

E
(

Mfix − M̂fix | S > Ŝ
)
=

K

∑
i=1

K

∑
j=1

m(wi)
(

P
(

g ∈ Gi, ĝ ∈ Gj | S > Ŝ
)
− P

(
g ∈ Gj, ĝ ∈ Gi | S > Ŝ

)︸ ︷︷ ︸
=T(i,j)

)

Consider the inner terms of the sum, which we denote by T(i, j). Notice that T(i, i) = 0 and
T(i, j) = −T(j, i). Because of this

K

∑
i=1

K

∑
j=1

m(wi)T(i, j) =
K−1

∑
i=1

K

∑
j=i+1

(
m(wi)− m(wj)

)
T(i, j)

which written out becomes
K−1

∑
i=1

K

∑
j=i+1

(
m(wi)− m(wj)︸ ︷︷ ︸

≤0

)(
P
(

g ∈ Gi, ĝ ∈ Gj | S > Ŝ
)
− P

(
g ∈ Gj, ĝ ∈ Gi | S > Ŝ

))
When i = 1, there is at least one j0 in {2, · · · , K} such that m(w1)− m(wj0) < 0 by assumption. We
now look at the conditional probabilities in the product. We have

P
(

g ∈ Gi, ĝ ∈ Gj | S > Ŝ
)
= P

(
S > Ŝ | g ∈ Gi, ĝ ∈ Gj

)P
(

g ∈ Gi, ĝ ∈ Gj
)

P
(
S > Ŝ

)
Because G and Ĝ are independent and identically distributed, we have

P
(

g ∈ Gi, ĝ ∈ Gj
)

P
(
S > Ŝ

) =
P
(

g ∈ Gi
)

P
(

g ∈ Gj
)

P
(
S > Ŝ

)
We therefore get

P
(

g ∈ Gi, ĝ ∈ Gj | S > Ŝ
)
− P

(
g ∈ Gj, ĝ ∈ Gi | S > Ŝ

)
=

P
(

g ∈ Gi
)

P
(

g ∈ Gj
)

P
(
S > Ŝ

) (
P
(
S > Ŝ | g ∈ Gi, ĝ ∈ Gj

)
− P

(
S > Ŝ | g ∈ Gj, ĝ ∈ Gi

))
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Looking at the second term of the difference, because of symmetry and independence, we can
write

P
(
S > Ŝ | g ∈ Gj, ĝ ∈ Gi

)
= P(Ŝ > S | ĝ ∈ Gj, g ∈ Gi

)
= P(S < Ŝ | g ∈ Gi, ĝ ∈ Gj

)
Now it is time to use our assumption

P
(
S > Ŝ | g ∈ Gi, ĝ ∈ Gj

)
> P

(
S < Ŝ | g ∈ Gi, ĝ ∈ Gj

)
to conclude that the difference is positive

P
(

g ∈ Gi
)

P
(

g ∈ Gj
)

P
(
S > Ŝ

)︸ ︷︷ ︸
>0

(
P
(
S > Ŝ | g ∈ Gi, ĝ ∈ Gj

)
− P

(
S > Ŝ | g ∈ Gj, ĝ ∈ Gi

)︸ ︷︷ ︸
≥0

)

, with the inequality being strict at least when i = 1 and j = j0, since w1 < wj0 . It follows that
dM < 0

The case of positive selection The case of positive selection is entirely analogous to the case of
negative selection presented above. The only modification is that for the fitnesses we now have
w1 > wweak, and the stochastic dominance assumption is modified as:

wi ≥ wj =⇒ P
(
S > Ŝ | g ∈ Gi, ĝ ∈ Gj

)
≥ P

(
S < Ŝ | g ∈ Gi, ĝ ∈ Gj

)
The proof proceeds in an identical manner, with changes in the appropriate signs, to yield dM > 0.

A test statistic for selection

The quantity we use as basis for our test is

dM = E
(

Mfix − M̂fix | S > Ŝ
)

We have shown that dM = 0 if there is no selection, whereas dM < 0 under negative selection
and dM > 0 under positive selection. We again note that it is possible that dM = 0 even if we
have selection (details above), and in this sense the test we propose will only have power under
some alternatives: if we observe dM ̸= 0 we can confidently conclude selection whereas dM = 0
is compatible with both no selection and - if certain assumptions are not met - selection.

Now, suppose we sample an individual from the population. dM is defined based on an expecta-
tion over possible evolutionary trajectories and our observed data only represent the realization
of one of these trajectories. To circumvent this, we leverage the fact that we observe the epigenetic
state throughout the entire genome. Our test statistic is an empirical approximation of dM defined
as

dMemp =
∑g,ĝ:shet,g>shet,ĝ

Mobs
g − Mobs

ĝ

# pairs g, ĝ : shet,g > shet,ĝ

where Mobs
g is the observed epigenetic state at gene g (equal to 1 is M is observed and 0 otherwise).

Each term in the sum has values in {−1, 0, 1}.

Boukas et al. | 2022 | bioRχiv | Page 24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2020.07.04.187880doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187880


This test is essentially testing for stochastic monotonicity between M and shet. Hence, to obtain
the distribution of the test statistic under the null hypothesis of no selection, we use permutations.
Specifically, we permute the selection coefficients associated with each gene: this reflects the null
hypothesis because without selection there is no association between the fixation probability and
genic shet.

For visualization, we use the following quantity (or a variant thereof): we bin genes into deciles
based on their shet. For each decile, we plot the proportion of genes with the M epigenetic state,
that is

1
|Ds| ∑

g∈Ds

Mobs
g

where Ds is a given decile. Under the scenario of no selection, the resulting curve will be flat (with
random fluctuations), whereas if there is selection the curve will be increasing or decreasing.

Finally, we explicitly state two approximations that are implicit in our test. For the first approxima-
tion, we treat the population-scaled “epimutation” rate as being low enough, so that an epigenetic
state introduced into the population at a given gene always undergoes fixation or extinction before
a new epigenetic state arises at the same gene. Based on this, we consider a randomly sampled
individual from the population as having the resident epigenetic state at the vast majority of genes
(we note that a similar assumption underlies the popular dN

dS test, see e.g. Nielsen, Yang (2003) and
Kryazhimskiy, Plotkin (2008)). In the case of proximal promoter DNA methylation, we performed
an analysis of changes along primates and found that the genome-wide epimutation rate across
promoters is in fact lower than the coding mutation rate (Supplemental Figure S10; see also section
”Promoter DNA methylation ”epimutation” rate”), providing support for this approximation. In
addition, we further examined the validity of this approximation by comparing the nucleotide
diversity of methylated CpGs (+/- 2kb from the TSS) to the nucleotide diversity of hypomethy-
lated CpGs in the same regions, as estimated from the sequences of 62,874 individuals (Taliun
et al. (2021); see section ”Genetic Variation data from TOPMed”). We found that the methylated
CpGs have substantially higher diversity (Supplemental Figure S11). This confirms that, while the
methylation state was determined based on samples from only 2 individuals (Molaro et al., 2011),
these 2 individuals suffice to obtain an accurate picture of the methylation state of the majority of
the population. The second approximation we make is that in our definition of dMemp we view
each gene pair as an independent realization of the evolutionary process; this is only true for genes
belonging to different regulatory groups.

Epigenetic marks with continuous states

The framework above can readily accommodate epigenetic marks with continuous states. In
that case, we no longer have just two different states U and M. Instead, we have a mark whose
state, denoted by M, attains values in a continuous interval. Then, the only difference is that
E
(

Mfix | S > Ŝ, g ∈ Gi
)

corresponds to the expected value of the state at equilibrium, instead of
the fixation probability. This again depends only on the fitness effect of M at group i, and can be
written as m(wi). The proof is otherwise identical.

We note that in some cases, it may be possible to obtain the continuous behavior of an epigenetic
state as the sum of latent binary states. As an example, let us consider the case of the size of the
hypomethylated region around hypomethylated proximal promoters. Let the total region around a
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promoter consist of N sub-regions, each of which can exist in a methylated or hypomethylated state.
Let Mtotal be the (continuous) stochastic variable representing the size of the methylated region
and let Mi, i = 1, . . . , N be a set of binary stochastic variables as above, with Mtotal = ∑N

i=1 Mi.
Then we have

dM = E
(

Mfix
total − M̂fix

total | S > Ŝ
)

= E(
N

∑
i=1

Mfix
i −

N

∑
i=1

M̂fix
i | S > Ŝ

)
=

N

∑
i=1

E(Mfix
i − M̂fix

i | S > Ŝ
)

While we do not investigate this further, we mention that the observed states of other marks may
be thought to arise in a similar fashion. For example, the ChIP-seq signal of a histone modification
at a given region may be viewed approximately as the additive contribution from the different
nucleosomes present in that region.

For visualization, similar to binary marks, we first bin genes into deciles. For each decile, we then
plot the distribution of the states.

Adjusting for the effect of confounding molecular features

It is important to test if the observed signal of selection on a given mark is in fact a spurious signal
arising as a passive consequence of selection on a different molecular feature. To address this, we
consider a counterfactual dM:

E
(

Mfix − M̂fix | S > Ŝ, do(F = constant)
)

where F stands for any other molecular feature we wish to test, and do(F = constant) means that
the value of F is fixed to the same level for every gene in the genome.

If F is entirely responsible for the selection signal on M, then

E
(

Mfix | S > Ŝ, g ∈ Gi, do(F = constant)
)

will be the same for all groups. This is because the underlying variation that drives differences
in the fixation probability (or, for epigenetic marks with continuous states, the expected value at
equilibrium) between different groups is eliminated. Therefore, as in the scenario of neutrality, the
counterfactual dM will be equal to 0.

The rationale behind this counterfactual dM becomes clear by recognizing the analogy between
our setup for selection inference, and standard causal inference (Imbens, Rubin, 2015). In our case,
the ”unit” is the population of individuals, a certain proportion of which have the epigenetic state
associated with a gene of interest. The ”exposure” is the genic shet, and the ”potential outcome”
is the fixation of the epigenetic state. Note that in our case, the potential outcome is inherently
stochastic due to the action of random genetic drift; this is a difference with the traditional causal
inference framework, where the potential outcome is treated as a deterministic function of the
exposure (Imbens, Rubin, 2015).
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In the case of a spurious signal, selection acts on the intermediate feature. But because the inter-
mediate feature causally determines the epigenetic state, our test yields a result consistent with
selection on that state. In other words, the effect of the exposure on the fixation of the epigenetic
state is mediated through the exposure’s effect on the fixation of the intermediate feature. Using
terminology from mediation analysis (Pearl, 2014; VanderWeele, 2016), we want to know if there is
a statistically significant controlled direct effect of shet on the fixation probability of the epigenetic
state (in other words, whether or not there is complete mediation).

Traditionally in mediation analysis, this is achieved fitting a regression model with the outcome
as the response, and testing if the partial regression coefficient of the exposure while adjusting for
the mediator is different than zero (James et al., 2006; MacKinnon, 2012; VanderWeele, 2016). In
the case of linear regression, this is mathematically equivalent to a residual-on-residual regression,
with the two residuals obtained by regressing the outcome on the mediator and the exposure
on the mediator, respectively. Following this, we perform our test as follows. If the epigenetic
state is binary, we first fit a logistic regression model across genes using the observed state as a
binary response and the feature we wish to adjust for as a covariate. We then obtain the deviance
residuals from this model, which are bimodal, and treat the binarized version of these residuals as
the adjusted version of the binary state. If the epigenetic state is continuous, we instead use the
residuals from a linear regression of the state on the confounding feature. In both the binary and
the continuous case, we then apply our test on the adjusted epigenetic state, but instead of shet we
use the residuals from a linear regression of shet on the feature.

As with all applications of mediation analysis, it is important to be aware that if the observations
of the mediator are too noisy, the presence of a controlled direct effect may be inferred, even when
the true causal model is one of complete mediation (Ledgerwood, Shrout, 2011; Otter et al., 2018;
Gastonguay et al., 2022). In our framework, this means that if the intermediate, potentially con-
founding feature (e.g. gene expression) is measured with too much noise, one can erroneously infer
that the selection on the epigenetic state is not a passive byproduct of selection on the intermediate
feature, even when the opposite is true. We further investigated this by simulating simple idealized
scenarios with linear mediation and measurement corrupted by normally distributed noise, and
performed 10000 simulations under complete mediation for each of several levels of noise. We
found that, as long as the variance of the noise is less than 10% of the variance of the signal, type I
error control in the inference of a controlled direct effect is maintained. Notwithstanding this, the
results from the analysis of potential mediation driving selection should generally be corroborated
by orthogonal lines of evidence. In our case, they are consistent with targeted epigenome editing
experiments (see main results section and references therein).

A model for the interaction between an epigenetic state and a coding variant

Finally, given that we are focusing on epigenetic marks associated with genes, we briefly present a
simple model for interactions between epigenetic states and coding variants in the associated gene.
We note that this is not used in our selection test.

First, consider a single gene with a biallelic site with coding alleles A and D in the population. Let
D correspond to a loss-of-function allele, with the selection coefficient against heterozygotes equal
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to shet. The fitness w is then given by

wAA = 1
wAD = 1 − shet

with 0 ≤ shet ≤ 1. We ignore the DD genotype, since selection happens predominantly through
heterozygotes (Falconer, MacKay, 1995; Fuller et al., 2019).

We extend this model with an additional site in the same gene, where an epigenetic mark is present,
with possible epigenetic states U and M. Since D is a loss-of-function allele, we will assume that
the fitness effect of the D, U and D, M combinations is the same when D and U/M reside on the
same chromosome, and just use D to designate them (in other words, if a coding loss-of-function
allele is present, the epigenetic state has no extra fitness effect). We then write the fitness now as:

wAU,AU = 1
wAU,AM = 1 − αshet

wAM,AM = max(0, 1 − βαshet)

wAU,D = 1 − shet

wAM,D = max(0, 1 − shet − αshet)

, with β ≥ 1.

Data processing and analysis

Promoter coordinates and transcript selection

We defined proximal promoters as 1kb regions centered around the transcriptional start site (TSS).
We obtained a set of 11,059 promoters with high-confidence GENCODE TSS annotation provided
in Boukas et al. (2020a). As described therein, this set does not contain subtelomeric promoters
(within 2 Mb of chromosome ends), as the CpG islands of such promoters have distinct characteris-
tics (they are organized in clusters, and are thought to be maintained principally by GC-biased gene
conversion (Cohen et al., 2011)). Also excluded are promoters of genes on the sex chromosomes,
for which loss-of-function intolerance estimates have a different interpretation than for autosomal
genes, owing to hemizygosity in males/X inactivation in females.

We further restricted to promoters where the downstream transcript had ≥ 10 expected loss-of-
function variants, in order to ensure that our rank ordering of genes according to the selective
pressure against heterozygous loss-of-function alleles is not severely corrupted by genes not ade-
quately powered for LOEUF or shet estimation. Subsequently, bidirectional promoters were han-
dled exactly as described in Boukas et al. (2020a), yielding a set of 7,518 promoters that we used as
input for our downstream analyses.

To exclude the possibility that our stringent filters for TSS selection led to a biased result, we tested
for selection on proximal promoter DNA methylation, this time using CAGE data from the FAN-
TOM5 project to define promoter coordinates. Since our focus is on DNA methylation in the male
germline, we used data from human testis (http://fantom.gsc.riken.jp/5/datafiles/
latest/basic/human.tissue.hCAGE/testis%252c%2520adult%252c%2520pool1.CNhs10632.

Boukas et al. | 2022 | bioRχiv | Page 28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2020.07.04.187880doi: bioRxiv preprint 

http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.tissue.hCAGE/testis%252c%2520adult%252c%2520pool1.CNhs10632.10026-101D8.hg19.ctss.bed.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.tissue.hCAGE/testis%252c%2520adult%252c%2520pool1.CNhs10632.10026-101D8.hg19.ctss.bed.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/basic/human.tissue.hCAGE/testis%252c%2520adult%252c%2520pool1.CNhs10632.10026-101D8.hg19.ctss.bed.gz
https://doi.org/10.1101/2020.07.04.187880


10026-101D8.hg19.ctss.bed.gz). This bed file contains TSS coordinates as defined by CAGE-
seq. We grouped the TSS’s by gene, and for each gene chose the TSS corresponding to the transcript
with lower LOEUF. If a gene still had more than one TSS, we chose the TSS with the highest value
in the ”score” column. For genes that still did not have a unique TSS, we randomly selected one
of the TSS’s. These approach allowed us to study 12,967 promoters, a substantial increase com-
pared to the 7,235 promoters we studied before (note that there are still several promoters that are
excluded because we require the downstream transcript to have ≥ 10 expected loss-of-function
variants). Reassuringly, the results with these FANTOM5-based promoter coordinates were the
same. We found strong evidence for selection against the presence of DNA methylation at the
proximal promoter; dM is equal to −0.08 (p = 9.9 · 10−4), very close to our original dM of −0.07.

Finally, we also performed our test of selection on proximal promoter DNA methylation using only
the portion of the promoter upstream of the TSS. That is, we do not include any 5’ UTR or coding
sequence. For this analysis, we defined the upstream promoter portion as 750bp upstream of the
TSS, to ensure it includes enough CpGs. The results were in full agreement with our original results,
with negative selection against proximal promoter DNA methylation (dM = −0.04; p = 9.9 · 10−4).

Whole-genome bisulfite sequencing data from human sperm

We used processed whole-genome bisulfite sequencing data from human sperm (Qu et al., 2018).
These data were accessed though the DNA methylation trackhub at the UCSC genome browser
(hg19 assembly; Song et al. (2013)), and consisted of methylation level (defined as the proportion of
reads supporting the methylated state) and coverage. The raw experimental data consisted of two
biological replicates (Molaro et al., 2011). We note here that we chose sperm because it has been
established that the majority of CpG>TpG transitions occur in the male germline. For example, a
recent analysis of trio genomic sequencing data showed that the distribution of de novo CpG>TpG
transitions along the genome is strongly correlated with genome-wide methylation levels in testis,
and much less so with methylation levels in ovaries (Gao et al., 2019). This implies that a major
fraction of these mutations arise after germ cell specification, and not during the period from
zygote until germ cell formation, where the methylation landscape of both male and female cells
is similar. Further underscoring the major contribution of male germline methylation to the load
of CpG>TpG mutations, these mutations show a 6.5-fold yearly increase in males compared to
females following puberty (Gao et al., 2019).

We only considered CpGs with at least 10x coverage, and restricted to proximal promoters with
≥ 10 CpGs (7,235 promoters in total). To compute the percentage of methylated CpGs in each
proximal promoter, we labeled a given CpG as methylated if its methylation level was ≥ 80%, and
hypomethylated if its methylation level was ≤ 20%; CpGs with intermediate methylation level
(that is, between 20% and 80%) were discarded. As orthogonal support for the methylation state of
the human promoter CpG sites, we examined their nucleotide diversity and minor allele frequency
spectrum in TOPMed (see section ”Genetic variation data from TOPMed” below); reassuringly,
methylated CpGs are substantially more variable than hypomethylated ones (Supplemental Fig-
ure S11a, b).

To ensure that the result of our test on selection on proximal promoter methylation is not driven by
the thresholds used to define the methylation status of the CpGs, we also calculated the average
methylation (across all CpGs) for each proximal promoter. We then applied our test again, this time
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treating this per-promoter average methylation as a continuous mark, and obtained very similar
results (dM = −0.06; p = 9.9 · 10−3 after 1000 permutations).

Hypomethylated regions

To obtain the coordinates of hypomethylated regions in human sperm – as detected in Qu et al.
(2018) – we first downloaded the corresponding BigBed (”.bb”) file from the DNA methylation
trackhub at the UCSC genome browser (hg19 assembly). We then converted this BigBed file into a
BED file, and imported it into R using the ”rtracklayer” package.

When assessing the relationship between hypomethylated region width and LOEUF, we sought
to minimize confounding by hypomethylated regions that are large because they correspond to
bidirectional promoters. To this end, we adopted a more stringent procedure than the one used to
exclude bidirectional promoters in Boukas et al. (2020a). Specifically, out of the high-confidence pro-
moters we used for the analysis of proximal promoter methylation, we further excluded promoters
which overlapped regions +/- 4kb from any TSS corresponding to a transcript. This was done after
obtaining coordinates of such TSSs with the promoters() function from the ”EnsDb.Hsapiens.v75”
R package. Our procedure resulted in 3,580 transcripts.

Transcriptional end regions

We obtained coordinates of transcriptional end sites using the transcripts() function from the
”EnsDb.Hsapiens.v75” R package. We defined transcriptional end regions as regions +/- 500bp
on either side of the transcriptional end site. We estimated the methylation state of these tran-
scriptional end regions by following the exact same steps as for proximal promoters. To avoid
the detection of a spurious selection signal driven by selection on promoter methylation, we ex-
cluded transcriptional end regions that overlapped regions +/-2kb from any TSS corresponding to
a transcript (coding or non-coding). We then also restricted to transcripts with at least 10 expected
loss-of-function variants in gnomAD. These filters resulted in 4,545 transcriptional end regions.
Finally, as with proximal promoters, we also tested for selection by computing the average methy-
lation (across all CpGs) of each end region, and treating it as a continuous mark. This yielded very
similar results (dM = 9.54 · 10−5; p = 0.487)

H3K36me3 ChIP-seq data

We downloaded the raw ChIP-seq reads (fastq files) from GSE40195. Reads were mapped to hg19
using Bowtie2 (Langmead, Salzberg, 2012). Subsequently, we used Picard (http://broadinstitute.
github.io/picard/) to remove duplicate reads, with the function MarkDuplicates. We then
called broad peaks using MACS2 (Y Zhang et al., 2008), with the “keep-dup” parameter equal to
“all”. We chose to perform our main analyses using these broad peaks, as H3K36me3 is a mark
that tends to show broad distribution. However, to ensure that the result of positive selection on
coding H3K36me3 is not dependent on this choice, we also performed our test after calling narrow
peaks and obtained a very similar result (dM = 0.07, p = 9.9 · 10−4).

To investigate the relationship between genic loss-of-function intolerance and exonic H3K36me3,
we first obtained coordinates of coding exons using the cdsBy() function from the ”EnsDb.Hsapiens.v75”
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R package. We then restricted to canonical transcripts (as provided by gnomAD; 18,912 tran-
scripts total), and identified all such transcripts that have at least one H3K36me3 peak in their
coding sequence using the findOverlaps() function from the ”GenomicRanges” R package. We
then restricted to transcripts that have at least 10 expected loss-of-function variants in gnomAD.
Ultimately, we examined 13,361 transcripts.

H3K4me3 ChIP-seq data

We used the ”AnnotationHub” R package to obtain processed H3K4me3 data from human H1
embryonic stem cells (sample ID ”UCSD.H1.H3K4me3.LL312”). These data include the locations
(genomic coordinates) of narrow peaks, as well as the intensity of the signal at each peak (column
named ”signalValue”). If a given promoter harbored more than one peak, we computed the
promoter H3K4me3 signal as the average of the signals for each peak.

Permutation p-values

We calculated permutation p-values following Phipson, Smyth (2010), with the number of permu-
tations being either 10,000 or 1,000.

Triplosensitivity estimates

We obtained probability of triplosensitivity (pTS) values for human genes from the supplemental
material of Collins et al. (2021). Since this supplemental material provides only gene names as
the identifier, we matched these gene names to transcript ids using the ”EnsDb.Hsapiens.v75” R
package.

eQTL datasets

We obtained eQTLs corresponding to testis from the GTEx portal (GTEx Consortium, 2020) and
eQTLs corresponding to human induced pluripotent stem cells from the supplemental material of
DeBoever et al. (2017). These datasets provide information about eQTLs mapped using genotype
data from 322 and 215 individuals, respectively. This information includes the effect size and
p-value corresponding to each variant. For testis, following standard GTEx practices, we used the
allelic fold-change (in log2 scale) as the measure of effect size. For induced pluripotent stem cells,
since the allelic fold change was not provided, we used the estimated betas.

Gene expression data

For expression in the male germline, we downloaded the gene-level TPM expression values in
testis from the GTEx v7 release (GTEx Consortium et al., 2017), from the GTEx portal. We restricted
to the genes downstream of our 7,518 promoters. Subsequently, for each gene we computed the
median (across individuals) expression in testis (in log2(TPM + 1) scale).

We expression in embryonic stem cells, we downloaded the raw fastq files from GSE90225, corre-
sponding to RNA-seq data in H1 embryonic stem cells generated by ENCODE (ENCODE Project
Consortium, 2012). We pseudoaligned these reads to a fasta file containing all human cDNA se-
quences (Homo sapiens.GRCh37.75.cdna.all.fa; downloaded from ENSEMBL), and subsequently
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quantified transcript abundances with Salmon (version 0.10.0) (Patro et al., 2017). We then ob-
tained normalized gene-level counts from the transcript abundances using the tximport R package
(Soneson et al., 2015), with the “countsFromAbundance” parameter equal to “lengthScaledTPM”.
We subsequently performed all analyses in log2(TPM + 1) scale.

For fetal gene expression data, we downloaded the ”Proportion Matrix by Cell Type” from https:
//descartes.brotmanbaty.org/bbi/human-gene-expression-during-development/.
This matrix contains the proportion of cells expressing a given gene (UMI > 0) in each of 172 fetal
cell types identified with single-cell RNA-seq (Cao et al., 2020).

Identification of genes whose promoters change methylation status between the germline and
embryonic stem cells.

We downloaded whole-genome bisulfite sequencing data corresponding to human h9 embryonic
stem cells in an identical manner with the sperm data. We then calculated the sperm and H9-ESC
proximal promoter methylation of all canonical transcripts, and selected the proximal promoters
that are hypomethylated in H9-ESCs (≤ 20% CpGs methylated) but methylated in sperm (≥ 80%
CpGs methylated). We subsequently sought to exclude genes whose expression in the germline
may be driven by some alternative hypomethylated promoter, which then also potentially drives
expression in embryonic stem cells. To this end, we restricted to genes whose expression in the
germline (testis; GTEx Consortium et al. (2017)) is less than 1 (in log2(TPM + 1) scale). Finally, to
match the embryonic stem cell expression between genes whose proximal promoters are methy-
lated in the germline but become hypomethylated in ESCs, and gene whose proximal promoters
are hypomethylated both in the germline and ESCs, from the latter group we excluded genes with
expression greater than 8.

Association between coding mutation rate and loss-of-function intolerance

We downloaded all synonymous de novo mutations from the gene4denovo database (total of 15,642
mutations; Zhao et al. (2020)). For each transcript, we normalized the number of synonymous
mutations by the total length of the coding sequence, and subsequently restricted to transcripts
with at least 10 expected loss-of-function variants in gnomAD (13,361 transcripts in total). However,
the assessment of the relationship between coding de novo mutation rate and loss-of-function
intolerance is complicated by the fact that there are genes which have no de novo mutations in the
database. The interpretation for these genes differs according to the length of their coding sequence
(observing 0 mutations implies a different mutation rate in a gene whose coding sequence length is
3kb compared to a gene whose coding sequence length is 1kb). To address this issue, we performed
the following analyses. First (corresponding to Figure 4), we excluded genes with 0 mutations.
Second, we included all genes but added a pseudocount of 1 to each gene; the results were highly
similar (Supplemental Figure S9a, b).

As an orthogonal measure of mutation rate, we used the synonymous substitution rate (dS), calcu-
lated from a comparative analysis of: a) human vs chimp, and b) human vs mouse. We obtained
these dS values from ENSEMBL version 96 using the biomaRt R package, and then assessed the
relationship between LOEUF and dS after excluding genes with dS equal to 0. Again, we found
that greater loss-of-function intolerance is associated with lower mutation rate (Supplemental
Figure S9c, d).
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We note here that, after our preprint was posted, another study reported no association between
de novo mutation rate and genic selective constraint in humans (H Liu, J Zhang, 2022). However,
that report examined a much smaller dataset of de novo mutations. Thus, due to the paucity of data,
they were forced to calculate mutation rates over the entire gene sequence, after including not
only synonymous mutations, but also intronic mutations, as well as missense and loss-of-function
ones. Prompted by the results of H Liu, J Zhang (2022), we examined how the choice of the specific
types of de novo mutations used to calculate the mutation rate impacts the results. Using our (much
larger) dataset, we found that the inclusion of intronic mutations leads to a big reduction in the
strength of the association between LOEUF and de novo mutation rate (Supplemental Figure S9e,g,h;
adjusted r2 = 0.7 when including intronic mutations vs 3.8 with synonymous mutations only).
This emphasizes that the effect is highly localized to the regions under selection: coding exons.
This locality also supports the notion that the effect is driven by features like epigenetic marks.
Finally, if one also includes non-synonymous coding mutations in addition to intronic ones, the
association disappears (Supplemental Figure S9g,h). This is most likely attributed to the fact that
a lot of the studies on de novo mutations include sequencing data from individuals with Autism
Spectrum Disorder and developmental disorders, and are thus enriched for damaging mutations
in loss-of-function intolerant genes.

Between species nucleotide conservation

We quantified nucleotide conservation across 100 vertebrates species with the PhyloP score (Pollard
et al., 2010). We obtained these scores for nucleotides in promoters with the
phastCons100way.UCSC.hg19 R package.

Estimation of promoter CpG mutation rates.

We first obtained processed whole-genome bisulfite sequencing data from chimp and rhesus sperm
(Qu et al., 2018) in an identical manner to the human data. Briefly, these data were generated as
follows. First, reads were mapped to the corresponding chimp and rhesus assemblies to generate
methylation and coverage level, and the CpGs were subsequently aligned to their homologous
position in hg19 (which need not be a CpG; see Qu et al. (2018) for details). We restricted to
CpGs which had more than 10x coverage and overlapped human proximal promoters. In each
species, we categorized CpGs whose methylation level was ≥ 80% as methylated, and CpGs whose
methylation level was ≤ 20% as hypomethylated.

We restricted to CpGs in promoters within the top LOEUF quartile, in order to minimize the ef-
fect of selection on our mutation rate estimates. Using rhesus as the outgroup, we subsequently
defined ancestrally methylated CpGs as those methylated in both chimp and rhesus (1,490 CpGs),
and ancestrally hypomethylated CpGs as those hypomethylated in both chimp and rhesus (42,732
CpGs). We found that 118 of the methylated and 1,090 of the hypomethylated CpGs, respectively,
are mutated in human. Using a generation time of 25 years for chimp, and a human-chimp diver-
gence time of 8 million years, this yielded mutation rate estimates of 2.47 · 10−7 for methylated
CpGs and 7.97 · 10−8 for hypomethylated CpGs.

Across the entire genome, approximately 65% of CpGs are hypomethylated and 14% are methy-
lated in the male germline. Based on these percentages, and assuming that the genome-wide
CpG mutation rates are similar to our promoter CpG mutation rates, our estimates are consistent
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with the genome-wide estimate obtained by parent-offspring trio sequencing in (Kong et al., 2012).
Moreover, the 3.10-fold increase in mutation rate conferred by methylation is concordant with
estimates recently provided in Zhou et al. (2020).

Estimation of exonic mutation rates within and outside H3K36me3-marked regions.

To estimate these mutation rates, we first calculated the ratio of the number of synonymous muta-
tions per base pair in non-H3K36me3-marked exonic sequences to the corresponding number for
H3K36me3-marked exonic sequences (+/- 250 bp on either side of an H3k36me3 peak excluding
intronic sequence) as 1.23. Then, combining the marginal exome-wide mutation rate estimate
of 1.38 · 10−8 per site per generation from Rodriguez-Galindo et al. (2020), with the fact that
H3K36me3-marked exonic sequences form 8% of all exonic sequences, we arrived at the system of
equations

0.08x + 0.92y = 1.38 · 10−8

y
x
= 1.23

, where x and y are the mutation rates of H3K36me3-marked and non-H3K36me3-marked exonic
regions, respectively. Solving the system yields values of 1.14 · 10−8 for x and 1.4 · 10−8 for y.

Estimation of promoter DNA methylation ”epimutation” rates

Using whole-genome bisulfite sequencing data from chimp and rhesus sperm (see ”Estimation
of promoter CpG mutation rate” section above) we categorized human proximal promoters as
methylated (≥ 80% methylated CpGs) or hypomethylated (≤ 20% methylated CpGs) in chimp
and rhesus.

To minimize the influence of selection on our estimates, we again focused on promoters within
the top LOEUF quartile. Using rhesus as the outgroup, we then defined ancestrally methylated
promoters as those methylated in both chimp and rhesus (387 promoters), and ancestrally hy-
pomethylated promoters as those hypomethylated in both chimp and rhesus (1301 promoters).
We found that 4 of the methylated and 1 of the hypomethylated promoters, respectively, have the
opposite methylation status in human. Using the same estimates for chimp generation time and
human-chimp divergence as above, this corresponds to ”epimutation” rate estimates of 3.23 · 10−8

for methylated promoters and 2.4 · 10−9 for hypomethylated promoters.

Genetic variation data from TOPMed

We downloaded a VCF file containing human variation data from dbSNP (version 151, hg19
assembly). We then used bedtools (Quinlan, Hall, 2010) to restrict to variants within our set of
7,518 promoter regions, extended to 2kb on either side of the TSS. We used the allele frequencies
of these variants in TOPMed (freeze 5; 62,874 individuals), and only considered biallelic sites with
single nucleotide variants (that is, we excluded multiallelic sites and sites with indels). We further
restricted to sites where the reference allele was the major allele (allele frequency ≥ 0.5). These
filters resulted in a total of 4,568,818 sites, of which 707,637 were CpGs. Following Asthana et al.
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(2007), the nucleotide diversity (π) for a given set of sites was estimated as

∑
i

mafi(1 − mafi)N/(N − 1)
L

where L is the total number of sites, mafi is the minor allele frequency in site i, and N is the total
number of individual chromosomes (which in our case is equal to 125, 748 as there are 62, 874
individuals). For sites with no variant allele, the minor allele frequency was taken to be 0.

Selection on regional epigenetic mutation rate modifiers

Infinite population size

In this and the following section, we denote the epigenetic states as A and B instead of U and M,
in order to maintain terminology consistent with the standard population genetics literature.

Let us consider an effectively infinite haploid population consisting of individuals of type A and
B, corresponding to the two states of the epigenetic mark of interest. The time evolution of the
population is described by the equations

pA(t + 1) =
1

w̄(t)
pA(t)w̄A(t) (1)

pB(t + 1) =
1

w̄(t)
pB(t)w̄B(t) (2)

, where the average fitnesses of type A and type B individuals are given by w̄A(t) = ∑K
i=0 pi|A(t)wi

and w̄B(t) = ∑K
i=0 pi|B(t)wi, respectively, and w̄(t) = pA(t)w̄A(t) + pB(t)w̄B(t).

To model the conditional distributions pi|A and pi|B, we make the following assumptions:

• The number of new mutations harbored by an individual after each generation follows a
Poisson distribution with rate parameter equal to UA and UB for the two types, respectively

• Each mutation has the same selection coefficient s

• The relative fitness of an individual with i mutations is given by wi = (1 − s)i

• Each new mutation arises at a unique site

• There are no backmutations

• There is no recombination. We note that recombination can play a very important role in
the case of genetic mutation rate modifiers (such as DNA repair gene variants), because
it can break the association between the mutator allele and the mutation-loaded genome,
thus preventing further accumulation of mutations at an elevated rate. However, epigenetic
mutation rate modifiers are not subject to recombination themselves. Recombination may
temporarily reduce the genomic mutation load, but mutations will continue to accumulate
at an elevated rate.
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Then, the process of mutation accumulation gives rise to the following time dynamics for pi|A and
pi|B (Kimura, Maruyama (1966), Haigh (1978), see also Maia et al. (2003) for an explicit exposition):

pi|A(t) =
1

w̄A(t − 1)

i

∑
j=0

pj|A(t − 1)wje−UA
Ui−j

A
(i − j)!

(3)

pi|B(t) =
1

w̄B(t − 1)

i

∑
j=0

pj|B(t − 1)wje−UB
Ui−j

B
(i − j)!

(4)

At within-type equilibrium, i.e. when pi|A(t) = pi|A(t − 1) and pi|B(t) = pi|B(t − 1), it is a standard
result (Kimura, Maruyama, 1966) that w̄A(t) = e−UA and w̄B(t) = e−UB . From equations (1) and (2)
it then follows that, for all t after within-type equilibrium has been reached:

pA(t + 1)
pB(t + 1)

=
pA(t)
pB(t)

eUB−UA

But UB > UA, so eUB−UA > 1. Therefore,

pA(t + 1)
pB(t + 1)

>
pA(t)
pB(t)

Finite population size

We simulated a population with effective size N = 1000, consisting of two types of individuals. As
before, type A corresponded to individuals with the U epigenetic state, and type B to individuals
with the M epigenetic state. Each region consisted of 80 sites for the simulations corresponding to
proximal promoter DNA methylation, and 135 sites for the simulations corresponding to exonic
H3K36me3; these numbers were chosen based on the relevant genome-wide averages. We note
that the choice of 1000 for the effective population size was made to strike a compromise between
computational efficiency and the actual value for vertebrates (104). To match this, we also scaled
the mutation rate estimates by multiplying by 10; we verified that these scalings do not affect the
results.

At t = 0, we assumed 500 individuals of type A and 500 individuals of type B, and that all
individuals of both types harbored 0 mutations. Then, each generation was generated by the
previous one assuming the following life-cycle.

• First, within each type, mutation and selection acted in an infinite population of gametes, as
described in equations (3) and (4) of the previous section.

For computational efficiency, we viewed ∑i
j=0 pj|A(t − 1)wje−UA Ui−j

A
(i−j)! as the convolution of

x[n] = pn|A(t − 1)wn and y[n] = e−UA Un
A

n! . We computed the convolution using the Fast
Fourier Transform. Specifically, we used the ”fftwtools” R package (Rahim, 2021), which
provides the ”Fastest Fourier Transform in the West” implementation (Frigo, Johnson, 2005).

• Then, from the resulting, still infinite, population of gametes, a sample of 1000 gametes were
allowed to survive to ”adulthood” and form the next generation of individuals. These 1000
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gametes were chosen via multinomial sampling, with the probability of choosing a gamete
with i mutations given by

1
w̄(t)

pA(t)pi|A(t)wi

1
w̄(t)

pB(t)pi|B(t)wi

for gametes of type A and type B, respectively. This gave the next generation of individu-
als, from which the updated type A and type B frequencies, as well as the updated type-
conditional frequencies of individuals with i mutations, were calculated.

We investigated different scenarios, corresponding to simultaneous upstream control of the epige-
netic state of different numbers of locations (Figure 6). In each scenario, we allowed the product
Ns to obtain different values. Specifically, we used values at the border of effective neutrality for
CpGs (Figure 6), based on the results of Kryukov et al. (2005) for conserved non-coding sites. By
contrast, we used higher selection coefficients for coding sites (Figure 6, Kryukov et al. (2005)). For
each of these sub-scenarios, we performed 150 forward simulations, and each simulation lasted
until either type A or type B reached fixation.

Diffusion approximation to the fixation probability of a mutation rate modifier affecting a small
number of sites.

For notational convenience, in this section we move t to the subscript. Let U(pB,t) be the probability
that the M state reaches fixation, conditional on its current frequency at time t being equal to pB,t,
and conditional on the fitnesses wA,t and wB,t. It is well-known that U satisfies the Kolmogorov
backward equation:

∂U
∂pB,t

M(pB,t) +
1
2

∂2U
∂p2

B,t
V(pB,t) = 0 (5)

, where M is the conditional expectation of the change in allele frequency from the present gen-
eration to the next, and V is the sum of M2 and the conditional variance of the change in allele
frequency from the present generation to the next. Both M and V are conditional on the present
allele frequency pB,t, and on wA,t and wB,t.

We have:

M(pB,t) = E(pB,t+1 − pB,t|pB,t) = E(pB,t+1|pB,t)− pB,t

=
pB,t ∑K

i=0 pi|B,twi

pB,t ∑K
i=0 pi|B,twi + pA,t ∑K

i=0 pi|A,twi
− pB,t

Now let us consider the situation where M causes only a negligible increase in the mutation rate,
which is the case when it affects a small number of sites. In that case, we expect that, on average,
the conditional distributions pi|A and pi|B would be the same. Therefore, we have:

E(pB,t+1|pB,t) ≈
pB,t

pB,t + pA,t
= pB,t =⇒ M(pB,t) = 0
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And,

V(pB,t) = Var(pB,t+1 − pB,t|pB,t) + M2(pB,t) =

Var(pB,t+1 − pB,t|pB,t) = Var(pB,t+1|pB,t) =
pB,t(1 − pB,t)

N

, where N is the effective population size.

From Equation (5), since V(pB,t) ̸= 0, we obtain

∂2U
∂p2

B,t
= 0 =⇒ U(pB,t) = c1 pB,t + c2

, where c1 and c2 are constants.

Using the fact that U(0) = 0 and U(1) = 1, we arrive at U(pB,t) = pB,t.

This is what we would intuitively expect to be true: when the modifier only affects a small number
of sites, and thus causes a negligibly small increase in the total mutation rate, the probability of
fixation of the modifier is equal to its present frequency, which is the result under neutrality.

Code availability

The code used for the analyses and figures is available at https://github.com/hansenlab/
epigenetics_selection.
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Héberlé É, Bardet AF (2019). Sensitivity of transcription factors to DNA methylation. Essays
Biochem. 63.6: 727–741.

Imbens GW, Rubin DB (2015). Causal Inference in Statistics, Social, and Biomedical Sciences. Cam-
bridge University Press.

Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione
M, Webster M, et al. (2009). The human colon cancer methylome shows similar hypo- and
hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics 41.2: 178–186.
D O I: 10.1038/ng.298.

James LR, Mulaik SA, Brett JM (2006). A Tale of Two Methods. Organizational Research Methods 9.2:
233–244. D O I: 10.1177/1094428105285144.

Jørgensen HF, Bird A (2002). MeCP2 and other methyl-CpG binding proteins. Ment Retard Dev
Disabil Res Rev 8: 87–93. D O I: 10.1002/mrdd.10021.

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia
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Musselman CA, Lalonde ME, Côté J, Kutateladze TG (2012). Perceiving the epigenetic landscape
through histone readers. Nat Struct Mol Biol 19: 1218–1227. D O I: 10.1038/nsmb.2436.

Nielsen R (2005). Molecular signatures of natural selection. Annual Review of Genetics 39: 197–218.
D O I: 10.1146/annurev.genet.39.073003.112420.

Nielsen R, Bustamante C, Clark AG, Glanowski S, Sackton TB, Hubisz MJ, Fledel-Alon A, Tanen-
baum DM, Civello D, White TJ, et al. (2005). A scan for positively selected genes in the
genomes of humans and chimpanzees. PLOS Biology 3.6: e170. D O I : 10.1371/journal.
pbio.0030170.

Nielsen R, Hellmann I, Hubisz M, Bustamante C, Clark AG (2007). Recent and ongoing selection
in the human genome. Nature Reviews Genetics 8.11: 857–868. D O I: 10.1038/nrg2187.

Nielsen R, Yang Z (2003). Estimating the distribution of selection coefficients from phylogenetic
data with applications to mitochondrial and viral DNA. Molecular Biology and Evolution 20.8:
1231–1239. D O I: 10.1093/molbev/msg147.

Ooi SKT, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD,
et al. (2007). DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of
DNA. Nature 448.7154: 714–717. D O I: 10.1038/nature05987.

Otter T, Pachali MJ, Mayer S, Landwehr JR (2018). Causal Inference Using Mediation Analysis or
Instrumental Variables–Full Mediation in the Absence of Conditional Independence. Marketing:
ZFP–Journal of Research and Management 40.2: 41–57. D O I: 10.2139/ssrn.3135313.

Panchin AY, Makeev VJ, Medvedeva YA (2016). Preservation of methylated CpG dinucleotides in
human CpG islands. Biology Direct 11.1: 11. D O I: 10.1186/s13062-016-0113-x.

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017). Salmon provides fast and bias-aware
quantification of transcript expression. Nature Methods 14.4: 417–419. D O I: 10.1038/nmeth.
4197.

Pearl J (2014). Interpretation and identification of causal mediation. Psychological Methods 19.4:
459–481. D O I: 10.1037/a0036434.

Boukas et al. | 2022 | bioRχiv | Page 43

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 17, 2022. ; https://doi.org/10.1101/2020.07.04.187880doi: bioRxiv preprint 

https://doi.org/10.1038/nature10995
https://doi.org/10.1038/nature10995
https://doi.org/10.1016/j.cell.2011.08.016
https://doi.org/10.1038/s41586-021-04269-6
https://doi.org/10.7554/eLife.06205
https://doi.org/10.1101/709014
https://doi.org/10.1038/nsmb.2436
https://doi.org/10.1146/annurev.genet.39.073003.112420
https://doi.org/10.1371/journal.pbio.0030170
https://doi.org/10.1371/journal.pbio.0030170
https://doi.org/10.1038/nrg2187
https://doi.org/10.1093/molbev/msg147
https://doi.org/10.1038/nature05987
https://doi.org/10.2139/ssrn.3135313
https://doi.org/10.1186/s13062-016-0113-x
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1037/a0036434
https://doi.org/10.1101/2020.07.04.187880


Petrovski S, Wang Q, Heinzen EL, Allen AS, Goldstein DB (2013). Genic intolerance to functional
variation and the interpretation of personal genomes. PLOS Genetics 9.8: e1003709. D O I: 10.
1371/journal.pgen.1003709.

Pfister SX, Ahrabi S, Zalmas LP, Sarkar S, Aymard F, Bachrati CZ, Helleday T, Legube G, La
Thangue NB, Porter ACG, et al. (2014). SETD2-dependent histone H3K36 trimethylation is
required for homologous recombination repair and genome stability. Cell Reports 7.6: 2006–2018.
D O I: 10.1016/j.celrep.2014.05.026.

Phipson B, Smyth GK (2010). Permutation P-values should never be zero: calculating exact P-
values when permutations are randomly drawn. Statistical Applications in Genetics and Molecular
Biology 9: Article39. D O I: 10.2202/1544-6115.1585.

Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A (2010). Detection of nonneutral substitution rates
on mammalian phylogenies. Genome Research 20.1: 110–121. D O I: 10.1101/gr.097857.109.

Ptashne (2007). On the use of the word ‘epigenetic’. Current Biology 17.7: R233–R236. D O I: 10.
1016/j.cub.2007.02.030.

Qu J, Hodges E, Molaro A, Gagneux P, Dean MD, Hannon GJ, Smith AD (2018). Evolutionary
expansion of DNA hypomethylation in the mammalian germline genome. Genome Research 28.2:
145–158. D O I: 10.1101/gr.225896.117.

Quinlan AR, Hall IM (2010). BEDTools: a flexible suite of utilities for comparing genomic features.
Bioinformatics 26.6: 841–842. D O I: 10.1093/bioinformatics/btq033.

Rahim K (2021). fftwtools: Wrapper for ’FFTW3’ Includes: One-Dimensional, Two-Dimensional, Three-
Dimensional, and Multivariate Transforms. R package version 0.9-11.

Renciuk D, Blacque O, Vorlickova M, Spingler B (2013). Crystal structures of B-DNA dodecamer
containing the epigenetic modifications 5-hydroxymethylcytosine or 5-methylcytosine. Nucleic
Acids Research 41.21: 9891–9900. D O I: 10.1093/nar/gkt738.

Rodriguez-Galindo M, Casillas S, Weghorn D, Barbadilla A (2020). Germline de novo mutation
rates on exons versus introns in humans. Nature Communications 11.1: 3304. D O I: 10.1038/
s41467-020-17162-z.

Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS,
Altshuler D, Lander ES (2006). Positive natural selection in the human lineage. Science 312.5780:
1614–1620. D O I: 10.1126/science.1124309.

Soneson C, Love MI, Robinson MD (2015). Differential analyses for RNA-seq: transcript-level esti-
mates improve gene-level inferences. F1000Research 4: 1521. D O I: 10.12688/f1000research.
7563.2.

Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD (2013).
A reference methylome database and analysis pipeline to facilitate integrative and comparative
epigenomics. PLOS One 8.12: e81148. D O I: 10.1371/journal.pone.0081148.

Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Schöler A, Nimwegen E van, Wirbelauer C,
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Supplementary Figure S1. Examples of different trans-regulatory groups. Four different
hypothetical trans-regulatory groups defined by the logic based on which the corresponding
regulatory factors interact to determine the epigenetic state (here, DNA methylation states).
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Supplementary Figure S2. Hypothetical shet distributions of 3 different trans-regulatory groups.
We assume that for the fitness effect of the epigenetic mark at the 3 different trans-regulatory
groups it holds that w1 > w2 > w3. Therefore, in (a), the assumption that differences in fitness
correspond to differences in shet is satisfied. In (b), the assumption is violated.
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Supplementary Figure S3. Assessing the concordance between two different measures of
selective pressure against heterozygous coding loss-of-function alleles. Scatterplot of LOEUF
estimates from gnomAD against shet estimates from Cassa et al. (2017). Each point corresponds to
a gene.
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Supplementary Figure S4. Variation exhibited by different epigenetic marks across the genome.
(a) The distribution of DNA methylation across proximal promoters in the male germline. (b) The
relationship between the total number of CpGs and the percentage of methylated CpGs across
proximal promoters in the male germline. Each point corresponds to one of the 7,235 promoters
used in our analysis. (c) The distribution of the percentage of sequencing reads supporting the
methylated state at the individual CpG level, shown for all human CpGs with greater than 10x
coverage (26,365,461 CpGs in total). The dashed vertical lines correspond to the thresholds of 0.2
and 0.8 that we used for labeling individual CpGs as hypomethylated and methylated,
respectively. (d) The distribution of the size of the hypomethylated region at genes whose
proximal promoter is hypomethylated in the male germline. (e) The distribution of DNA
methylation at the transcriptional end site in the male germline. (f) The distribution of the
intensity (height) of the H3K4me3 ChIP-seq signal at genes whose proximal promoter has at least
one H3K4me3 peak in embryonic stem cells.
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Supplementary Figure S5. The relationship between genic intolerance to expression level
elevation and the presence of proximal promoter DNA methylation/H3K4me3 peaks. (a) The
distribution of genic triplosensitivity (Methods), for genes with methylated proximal promoters
compared to genes with hypomethylated proximal promoters. (b) Like (a), but for genes with at
least one H3K4me3 peak in the proximal promoter versus genes without any H3K4me3 peak in
the proximal promoter. (c) The distribution of eQTL effect sizes (betas), estimated from human
induced pluripotent stem cells (iPSCs), stratified according to proximal promoter methylation
status in the male germline (Methods). (d) Like (c), but for testis eQTLs, where the effect size is
represented by the log2 of allelic fold change following standard GTEx practices (Methods). (e)
Like (c), but with genes stratified according to whether the proximal promoter has at least one
H3K4me3 peak in h1-ESCs or not. For (c-e), only eQTLs with q-value less than 0.05 and positive
effect size (in log2 scale) are analyzed.
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Supplementary Figure S6. Testing whether the selective pressure on different epigenetic marks
is a passive consequence of selection on gene expression in fetal cell types. (a) - (e) For different
epigenetic marks, we computed the adjusted dM statistic and its corresponding null distribution
for each of 172 fetal cell types (see Methods). We depict the distribution of adjusted dM (pink, 172
points) and compare it to the distribution of the most extreme null permutation (blue); maximum
if the epigenetic mark is under positive selection, minimum if it is under negative selection.
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Supplementary Figure S7. Assessing whether the positive selection on the size of the
hypomethylated region around hypomethylated proximal promoters in the germline is
explained by a causal role in gene regulation. The distribution of gene expression levels in testis
((a)) or embryonic stem cells ((b)), stratified according to the width of the hypomethylated region
around the proximal promoter in the germline. Only genes with hypomethylated proximal
promoters are analyzed.
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Supplementary Figure S8. Assessing whether a causal role of proximal promoter DNA
methylation methylation on expression during early pre-implantation development completely
accounts for the inferred selective pressure. (a) The distribution of LOEUF estimates, stratified
according to proximal promoter methylation status in the germline and embryonic stem cells (see
Methods for details). (b) The distribution of expression level in embryonic stem cells, stratified
according to proximal promoter methylation status in the germline and embryonic stem cells. The
same genes as in (a).
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Supplementary Figure S9. Coding de novo mutation rate, loss-of-function intolerance, and
coding H3K36me3 patterns; additional analyses. (a) and (b). Like Figure 4a and b, respectively,
but where the number of synonymous mutations is computed by also adding a pseudocount of 1
to each gene. (c) and (d). The distribution of the synonymous substitution rate (dS; obtained from
Ensembl version 96 for human vs chimp and human vs mouse), stratified according to
loss-of-function intolerance. (e) - (g). Like Figure 4a, but with the mutation rate calculated using
different types of de novo mutations (y axis label). (h) Percentage of variance in genic mutation
rate explained by loss-of-function intolerance (LOEUF), for different types of de novo mutations
used to calculate the mutation rate.
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Supplementary Figure S10. Comparative analysis of proximal promoter methylation.
Methylation state in the human male germline of proximal promoters methylated (a) or
hypomethylated (b) in chimp and rhesus male germline. In this analysis, rhesus serves as an
outgroup.
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Supplementary Figure S11. Genetic diversity of promoter CpG sites in TOPMed. (a) The
nucleotide diversity of all promoter CpG sites, stratified according to whether they are methylated
or hypomethylated in the male germline (≥ 80% and ≤ 20% of bisulfite sequencing reads
supporting the methylated state, respectively). Nucleotide diversity was estimated as described in
methods. Only CpGs with ≥ 10x coverage are considered. (b) The minor allele frequency
spectrum of the CpGs used in (a).
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