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Abstract11

During adolescence, youth venture out, explore the wider world,12

and are challenged to learn how to navigate novel and uncertain13

environments. We investigated whether adolescents are uniquely14

adapted to this transition, compared to younger children and adults.15

In a stochastic, volatile reversal-learning task with a sample of 29116

participants aged 8-30, we found that adolescents outperformed17

both younger and older participants. We developed two indepen-18

dent cognitive models, based on Reinforcement learning (RL) and19

Bayesian inference (BI). The RL parameter for learning from nega-20

tive outcomes and the BI parameters specifying participants’ men-21

tal models peaked closest to optimal in adolescents, suggesting a22

central role in adolescent cognitive processing. By contrast, persis-23

tence and noise parameters improved monotonously with age. We24

distilled the insights of RL and BI using principal component anal-25

ysis and found that three shared components interacted to form the26

adolescent performance peak: adult-like behavioral quality, child-27

like time scales, and developmentally-unique processing of positive28

feedback. This research highlights adolescence as a neurodevelop-29

mental window that may be specifically adapted for volatile and30
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uncertain environments. It also shows how detailed insights can be31

gleaned by using cognitive models in new ways.32

Keywords: Reinforcement learning, Bayesian inference, computa-33

tional modeling, development, volatility, adolescence, non-linear changes34

1. Introduction35

In mammals and other species with parental care, there is typically an36

adolescent stage of development in which the young are no longer supported37

by parental care, but are not yet adult (Natterson-Horowitz and Bowers,38

2019). This adolescent period is increasingly viewed as a critical epoch in39

which organisms explore the world, make pivotal decisions with short- and40

long-term impact on survival (Frankenhuis and Walasek, 2020), and learn41

about important features of their environment (DePasque and Galván, 2017;42

Steinberg, 2005), likely taking advantage of a second window of brain plastic-43

ity (Larsen and Luna, 2018; Lourenco and Casey, 2013; Piekarski, Johnson,44

et al., 2017).45

In humans, adolescence often involves an expansion of environmental con-46

texts and increasingly frequent transitions between them (contextual volatil-47

ity ; e.g., new pastime activities, growing relevance of peer relationships; Al-48

bert et al., 2013; Somerville et al., 2017), as well as increased exposure to49

uncertainty (outcome stochasticity ; e.g., increased risk-taking and sensation50

seeking, increased unpredictability of social interactions; Romer and Hen-51

nessy, 2007; van den Bos and Hertwig, 2017). Accordingly, it has been ar-52

gued that adolescent brains and minds are specifically adapted to contextual53
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volatility and outcome stochasticity, showing an increased ability to learn54

from and succeed in these situations (Dahl et al., 2018; Davidow et al., 2016;55

Johnson and Wilbrecht, 2011; Lloyd et al., 2020; Lourenco and Casey, 2013;56

Sercombe, 2014).57

The goal of this study was to test this U-shape hypothesis in a controlled58

laboratory environment. We employed a stochastic reversal-learning task in59

a large developmental sample (n = 291) with a wide, continuous age range60

(8-30 years), offering enough statistical power to observe non-linear effects61

of age (such as the predicted U-shaped pattern with peak in adolescence).62

Another goal was to identify a computational explanation of the non-linear63

development of underlying cognitive processes, using state-of-the-art compu-64

tational modeling.65

1.1. U-Shapes in Development66

The predicted U-shaped development is in line with recent findings: Ado-67

lescents show non-linear developments both in terms of neural maturation68

and with regard to behaviour, including emotional processing, learning, and69

decision making (for reviews, see Dahl et al., 2018; Giedd et al., 1999;70

Somerville and Casey, 2010; Sowell et al., 2003; Toga et al., 2006). Research71

on adolescent development has often focused on aspects with negative real-72

life outcomes, including elevated risk-taking and sensation seeking (Braams73

et al., 2015; Galvan et al., 2006; Harden and Tucker-Drob, 2011; Romer and74

Hennessy, 2007), but positive aspects have become evident more recently,75
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too (DePasque and Galván, 2017; Sercombe, 2014). For example, adoles-76

cents have outperformed adults in certain measures of creativity (Kleibeuker77

et al., 2013) and showed enhanced social learning (Brandner et al., 2021;78

Gopnik et al., 2017) and exploration (Somerville et al., 2017). With par-79

ticular interest to our hypothesis, adolescents have outperformed adults on80

stochastic learning tasks (Cauffman et al., 2010; Davidow et al., 2016) and81

some aspects of a reversal-learning task (van der Schaaf et al., 2011; Fig. 3).82

Adolescents’ behavioral advantages on these tasks are likely related to83

non-linear patterns of brain development (Dahl et al., 2018; Giedd et al.,84

1999; Somerville and Casey, 2010; Sowell et al., 2003; Toga et al., 2006), and85

potentially modulated by puberty-related hormonal changes (Blakemore et86

al., 2010; Braams et al., 2015; Gracia-Tabuenca et al., 2021; Laube, Lorenz,87

et al., 2020; Op de Macks et al., 2016; Piekarski, Johnson, et al., 2017),88

some of which have been associated with cognitive flexibility, decision mak-89

ing under uncertainty, and feedback processing, cognitive processes that are90

particularly relevant for stochastic reversal learning. Supporting this per-91

spective, similar prowess in flexibility has been reported in developing ro-92

dents (Guskjolen et al., 2017; Johnson and Wilbrecht, 2011; Simon et al.,93

2013), and linked to neural and hormonal maturation (Delevich et al., 2019;94

Piekarski, Boivin, et al., 2017).95
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1.2. Stochastic Reversal Learning96

Studied since the birth of the cognitive neurosciences, reversal learning97

has recently seen an exponential growth in published studies. Originally98

meant to measure response inhibition, reversal paradigms are now agreed to99

primarily measure cognitive flexibility (Izquierdo et al., 2017). In stochas-100

tic reversal-learning tasks, participants need to discriminate which outcomes101

occur due to inherent stochasticity, in which case they should double down102

on their current, appropriate strategy; and which outcomes are caused by103

context switches, in which case they need to rapidly change their strategy.104

Stochastic reversal tasks therefore pose a fundamental tension between per-105

sistence with previous strategies and adaptability to new circumstances, a106

major challenge in the adolescent transition.107

An abundance of studies has mapped the specific brain areas (most no-108

tably orbitofrontal cortex and striatum) and endocrine systems (mainly sero-109

tonin, dopamine, and glutamate) relevant for reversal learning (Clark et al.,110

2004; Frank and Claus, 2006; Hamilton and Brigman, 2015; Izquierdo et111

al., 2017; Izquierdo and Jentsch, 2012; Kehagia et al., 2010; Yaple and Yu,112

2019). Most of these systems still undergo developmental changes during113

adolescence and early adulthood, oftentimes following U-shaped trajectories114

(Albert et al., 2013; Casey et al., 2008; Dahl et al., 2018; DePasque and115

Galván, 2017; Larsen and Luna, 2018; Laube, Lorenz, et al., 2020; Lourenco116

and Casey, 2013; Piekarski, Johnson, et al., 2017; Somerville and Casey,117

2010; Toga et al., 2006). This suggests that behavioral development, as well,118
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might show a non-linear development.119

However, even though reversal tasks have been used abundantly in de-120

velopmental populations (e.g., Adleman et al., 2011; DePasque and Galván,121

2017; Dickstein, Finger, Brotman, et al., 2010; Dickstein, Finger, Skup, et122

al., 2010; Finger et al., 2008; Harms et al., 2018; Hildebrandt et al., 2018;123

Minto de Sousa et al., 2015), we still know surprisingly little about their de-124

velopmental trajectory. To our knowledge, only three studies have assessed125

this: Two employed binary group designs comparing adolescents to adults,126

but did not show significant age differences in performance (Hauser et al.,127

2015; Javadi et al., 2014). Note that the U-shaped developments we predict128

would be undetectable in most binary group designs. A third study employed129

a deterministic reversal task, and tested four age groups across adolescence,130

which allowed to assess non-linear changes (van der Schaaf et al., 2011). In-131

deed, there was an adolescent peak in reversal performance (Fig. 3). Here,132

we seek to extend this finding by studying a larger sample, employing a133

stochastic task, and to provide insights into the cognitive mechanisms that134

support adolescents’ superior performance, using computational modeling.135

1.3. Computational Modeling136

1.3.1. Reinforcement Learning (RL)137

RL is a popular framework to model probabilistic reversal learning (Boehme138

et al., 2017; Chase et al., 2010; Gläscher et al., 2009; Hauser et al., 2015;139

Javadi et al., 2014; Metha et al., 2020; Peterson et al., 2009). RL agents140
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choose actions based on action values that reflect actions’ expected long-term141

cumulative reward. Action values are typically estimated by incrementally142

updating them every time an action outcome is observed (see section 4.5.1).143

The size of each update, determined by an agent’s learning rate, captures the144

integration time scale, i.e., whether value estimates are based on few recent145

outcomes, or many outcomes that reach further into the past. A specialized146

network of brain regions, including the striatum and frontal cortex, has been147

associated with specific RL-like computations (Frank and Claus, 2006; D.148

Lee et al., 2012; Niv, 2009; O’Doherty et al., 2015).149

As a computational model, RL interprets cognitive processing during re-150

versal learning as value learning : RL agents continuously adjust current151

action values based on new outcomes, striving to learn increasingly accu-152

rate values (Fig. 3A, left). Importantly, the same gradual learning process153

occurs during stable task periods and after context switches, without an ex-154

plicit concept of switching. Behavioral switching occurs when the previously-155

rewarding action has accumulated enough negative outcomes to push its156

value below the previously-unrewarding action, in stark contrast to the quick157

and flexible switching behavior observed in humans and non-human animals158

(Costa et al., 2015; Izquierdo et al., 2017).159

Because basic RL algorithms hence behave sub-optimally in volatile envi-160

ronments (Gershman and Uchida, 2019; Sutton and Barto, 2017), we imple-161

mented model augmentations that alleviate these issues, including distinct162

learning rates for positive and negative outcomes (e.g., Cazé and van der163
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Meer, 2013; Christakou et al., 2013; Dabney et al., 2020; Frank et al., 2004;164

Harada, 2020; Javadi et al., 2014; Lefebvre et al., 2017; Palminteri et al.,165

2016; van den Bos et al., 2012), counter-factual updating (e.g., Boehme et166

al., 2017; Boorman et al., 2011; Gläscher et al., 2009; Hauser et al., 2014;167

Palminteri et al., 2016), and choice persistence (e.g., Sugawara and Katahira,168

2021). See section 4.5.1 for details.169

1.3.2. Bayesian Inference (BI)170

Many have also argued that a different computational framework, BI171

(specifically, Hidden Markov Models), provides a better model for human and172

animal behavior in reversal tasks (Bromberg-Martin et al., 2010; Costa et al.,173

2015; Fuhs and Touretzky, 2007; Gershman and Uchida, 2019; Solway and174

Botvinick, 2012). Indeed, BI models have shown better fit than RL models in175

three empirical studies on human adults (Hauser et al., 2014; Schlagenhauf176

et al., 2014) and macaques (Bartolo and Averbeck, 2020). Furthermore, BI177

is the standard modeling framework in the “inductive reasoning” literature,178

whose tasks are sometimes identical to stochastic reversal-learning tasks (e.g.,179

Nassar et al., 2012; O’Reilly et al., 2013; Yu and Dayan, 2005).180

The main reason for the supposed superiority of BI in reversal learning is181

the ability to reason about hidden states and switch behavior rapidly after182

recognizing state changes. Hidden states are unobservable features that de-183

termine an environment’s underlying mechanics (e.g., in reversal tasks, which184

choices are objectively correct and incorrect). These states can be difficult185
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to infer when they lead to observable outcomes probabilistically. BI agents186

infer hidden states by engaging predictive models that determine how likely187

different outcomes occur in each state (e.g., how likely a negative outcome188

occurs after a correct versus incorrect choice). Agents continuously com-189

bine state likelihoods with their prior beliefs about hidden states to obtain190

updated posterior beliefs (Perfors et al., 2011; Sarkka, 2013).191

Even though the BI framework supposedly provides an excellent choice192

to model stochastic reversal learning, it is still used rarely, and—to our193

knowledge—never in a developing population. Hence, BI could provide in-194

sights into the development of reversal learning that have so far escaped our195

attention, for example characterizing predictive mental models and inferen-196

tial reasoning.197

The goal of this study was to characterize adolescent behavior in stochas-198

tic reversal, and to identify its underlying cognitive mechanisms, using com-199

putational modeling: Whereas RL can tell us about participants’ learning200

rates in different situations and is in line with previous developmental mod-201

eling work (Hauser et al., 2015; Javadi et al., 2014), the majority of non-202

developmental work on reversal learning, and most standard cognitive neu-203

roscience tasks, BI can assess participants’ mental task models and inferential204

processes, and is increasingly seen as a superior model compared to RL for205

reversal paradigms. Using in-depth modeling analyses, we found that the206

insights of both models could be combined to identify features of cognitive207

processing that went beyond any specific model, including time scales and208
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feedback processing. Our results support the existence of an adolescent per-209

formance peak in stochastic reversal learning, and show that it stems from210

the parallel development of multiple cognitive mechanisms.211

2. Results212

2.1. Task Design213

Participants’ goal in the experimental task was to collect gold coins, which214

were hidden in one of two locations (Fig. 1A). Which location contained the215

coin could change unpredictably (volatility), and the correct location did not216

always provide coins (stochasticity). On each trial, two identical boxes ap-217

peared on the screen. Participants chose one, either receiving a coin (reward)218

or not (Fig. 1A). The correct location was rewarded in 75% of the trials on219

which it was chosen, whereas the other one was never rewarded. Positive220

outcomes were therefore diagnostic of correct actions, whereas negative out-221

comes were ambiguous, arising from either stochastic noise or task switches.222

After reaching a non-deterministic performance criterion (see section 4.3), an223

unsignaled switch occurred, and the opposite location became rewarding (5-9224

switches; 120 trials (Fig. 1B). Before the main task, participants completed225

a child-friendly tutorial (section 4.3).226

2.2. Task Behavior227

Participants gradually adjusted their behavior after task switches, and228

on average started selecting the correct action about 2 trials after a switch,229
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reaching asymptotic performance of around 80% correct choices within 3-4230

trials after a switch (Fig. 1C). Participants almost always repeated their231

choice (“stayed”) after receiving positive outcomes (“- +” and “+ +”), and232

often switched actions after receiving two negative outcomes (“- -”). Behavior233

was most ambivalent after receiving a positive followed by a negative outcome234

(“+ -”), i.e., on “potential” switch trials (Fig. 1D; for age differences, see235

suppl. Fig. 15).236
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Figure 1: (A) Task design. On each trial, participants chose one of two boxes, using the two
red buttons of the shown game controller. The chosen box either revealed a gold coin (left)
or was empty (right). The probability of coin reward was 75% on the rewarded side, and
0% on the non-rewarded side. (B) The rewarded side changed multiple times, according to
unpredictable task switches. (C) Average human performance and standard errors, aligned
to true task switches (dotted line; trial 0). Switches only occurred after rewarded trials
(section 4.3), resulting in performance of 100% on trial -1. The red arrow shows the switch
trial, grey bars show trials included as asymptotic performance. (D) Average probability of
repeating a previous choice (“stay”) as a function of the two previous outcomes (t−2, t−1)
for this choice (“+”: reward; “-”: no reward). Error bars indicate between-participant
standard errors. Red arrow highlights potential switch trials, i.e., when a rewarded trial
is followed by a non-rewarded one, which—from participants’ perspective—is consistent
with a task switch.

2.2.1. Age Differences: Performance Peak in Adolescents237

Using (logistic) mixed-effects regression to test the continuous effects of238

age on performance (for detailed methods, see section 4.4), we found positive239

linear and negative quadratic age contrasts in all three performance mea-240
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sures (overall accuracy, stay after potential switch, accuracy on asymptotic241

trials; Table 1). This is in accordance with a general increase in perfor-242

mance from childhood to adulthood that is modified by an adolescent peak243

in performance.244

To qualitatively assess the potential peak, without restricting the devel-245

opmental trajectory to a quadratic curve, we calculated rolling performance246

averages (for details, see section 4.4). Most performance measures revealed247

peaks at around 13-15 years, including overall accuracy (Fig. 2A), points248

won (suppl. Fig. 7A, E), and performance after switch trials (Fig. 2C)249

and during stable task periods (Fig. 2D). Overall accuracy inclined steeply250

between ages 8-14, after which it gradually declined, settling into a stable251

plateau around age 20 (Fig. 2A). The willingness to repeat previous actions252

after a single negative outcome (Fig. 2C) showed a similarly striking in-253

crease between children and adolescents, and a (less pronounced) decline for254

adults. This shows that in our task, adolescents were most persistent in the255

face of negative feedback. Performance during stable task periods (accuracy256

on asymptotic trials) also was highest in adolescents, especially compared to257

younger participants (Fig. 2D). Response times were the only performance258

measure in which adolescents were outperformed by adult participants (Fig.259

2B, 3D).260

For easier visualization, we binned participants into discrete age groups,261

forming four equal-sized bins for participants aged 8-17, and two for adults262

(see section 6.2; suppl. Fig. 8A). In accordance with our hypothesis, the per-263
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formance peak occurred in the intermediate age range (third youth quartile),264

such that adolescents between 13-15 years outperformed younger partici-265

pants, older teenagers, and adults (Fig. 3C-F). Repeated, post-hoc, 5-wise266

Bonferroni-corrected t-tests revealed several significant differences compar-267

ing 13-to-15-year-olds to younger and older participants (Fig. 3C-F, suppl.268

Table 8).269

Table 1: Statistics of mixed-effects regression models predicting performance measures
from sex (male, female), age (z-scored; “lin.”), and quadratic age (square of z-scored
age; “qua.”; for details, see section 4.4). Overall accuracy, stay after potential (pot.)
switch, and asymptotic performance were modeled using logistic regression, and z-scores
are reported. Log-transformed response times on correct trials and total points won were
modeled using linear regression, and t-values are reported. * p < .05; ** p < .01, ***
p < .001. All models showed significant quadratic effects of age, supporting an inverse-U
shaped developmental trajectory of performance.

Performance measure (Figure) Predictor β z / t p sig.

Overall accuracy (2A) Age (z, lin.) 0.043 2.38 0.017 **
Age (z, qua.) -0.052 -3.11 0.0019 **
Sex 0.009 0.2 0.77

Total points (7A) Age (z, lin.) 0.003 0.01 0.99
Age (z, qua.) -1.36 -3.11 0.002 **
Sex 0.19 0.23 0.82

Response times (2B) Age (z, lin.) -0.21 -10.1 < 0.001 ***
Age (z, qua.) 0.14 7.3 < 0.001 ***
Sex 0.19 5.0 < 0.001 ***

Stay after (pot.) switch (2C) Age (z, lin.) 0.44 3.78 < 0.001 ***
Age (z, qua.) -0.38 -3.48 < 0.001 ***
Sex 0.26 1.24 0.21

Asymptotic performance (2D) Age (z, lin.) 0.17 3.57 < 0.001 ***
Age (z, qua.) -0.18 -3.97 < 0.001 ***
Sex 0.030 0.35 0.73
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Figure 2: Task performance across age. Each dot shows one participant, color denotes
sex. Lines show rolling averages, shades the standard error of the mean. The stars for
“lin”, “qua”, and “sex” denote the significance of the effects of age, squared age, and
sex on each performance measure, based on the regression models in Table 1 (* p < .05,
** p < .01, *** p < .001) (A) Percentage of correct choices across the entire task (120
trials), showing a peak in adolescents. The non-linear shape confirmed the significant
quadratic effect of age (“qua”) on overall accuracy. (B) Median response times on correct
trials. Regression coefficients differed significantly between males and females, and rolling
averages are shown separately. Despite a significant quadratic effect of age, the peak for
this performance measure occurred after adolescence. (C) Fraction of stay trials after
(potential, “pot.”) switches (red arrows in Fig. 1C), showing an inverse U-shaped age
trajectory and peak in adolescents. (D) Accuracy on asymptotic trials (grey bars in Fig.
1C), also showing an inverse U-shaped age trajectory and peak in adolescents.

We next focused on the differential effects of positive compared to negative270

outcomes on behavior, finding that adolescents adapted their choices more271

optimally to previous outcomes than younger or older participants. To show272
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this, we used mixed-effects logistic regression to predict actions on trial t273

from predictors that encoded positive or negative outcomes on trials t − i,274

for delays 1 ≤ i ≤ 8 (for details, see section 4.4). First, we observed that275

the effects of positive outcomes were several times larger than the effects of276

negative outcomes (suppl. Table 7; Fig. 7B-F). This patterns was expected277

given that positive outcomes were diagnostic, whereas negative outcomes278

were ambivalent.279

The regression model also showed an interaction between age and previous280

outcomes, revealing that the effects of previous outcomes on future behavior281

changed with age (suppl. Fig. 7B, C, E, and F; suppl. Table 7). On282

trials t − 1 and t − 2, positive outcomes interacted with age and squared283

age (all p′s < 0.014; suppl. Table 7), confirming that the effect of positive284

outcomes increased with age and then slowly plateaued (suppl. Fig. 7C, F).285

For negative outcomes, the signs of the interaction was opposite for trials286

t − 1 versus t − 2 (all p′s < 0.046; suppl. Table 7), showing that the effect287

of negative outcomes flipped, being weakest in adolescents for trial t − 1288

(Fig. 7F), but strongest for trial t − 2. In other words, adolescents were289

best at ignoring single, ambivalent negative outcomes (t−1), but most likely290

to integrate long-range negative outcomes (t− 2), which potentially indicate291

task switches.292

To summarize, adolescents of about 13-15 years outperformed younger293

participants, older adolescents, and adults on a stochastic reversal task. Per-294

formance advantages were evident in several measure of task performance,295
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and likely related to how participants responded to positive and negative296

outcomes. To understand better which cognitive processes underlie these297

patterns, we employed computational models featuring RL and BI.298

17

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2020.07.04.187971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187971
http://creativecommons.org/licenses/by-nc/4.0/


θlin θsd

θRL = β,p,α+,α-
θBI = β,p,preward,pswitch

θqua θint

θj

ajt

t = 1,...,ntrials
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θlin ~ Normal(μ=0, σ=10)
θqua ~ Normal(μ=0, σ=10)

For θ = [α+,α-,preward,pswitch]:
 θint ~ Beta(α=1, β=1)
For θ = p:
 θint ~ Normal(μ=0, σ=10)
For θ = β:
 θint ~ Gamma(α=1, β=1)

Regression
θsd ~ HalfNormal(μ=0, σ=10)
θj ~ Normal(
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Model
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Figure 3: (A) Conceptual depiction of the RL and BI models. In RL (left), actions
are selected based on learned values, illustrated by the size of stars (Q(left), Q(right)).
In BI (right), actions are selected based on a mental model of the task, which differ-
entiates different hidden states (“Left is correct”, “Right is correct”), and specifies the
transition probability between them (p(switch)) as well as the task’s reward stochasticity
(p(reward)). The sizes of the two boxes illustrate the inferred probability of being in each
state. (B) Hierarchical Bayesian model fitting. Left box: RL and BI models had free
parameters θRL and θBI , respectively. Individual parameters θj were based on group-level
parameters θsd, θint, θlin, and θqua in a regression setting (see text on the right). For
each model, all parameters were simultaneously fit to the observed (shaded) sequence of
actions ajt of all participants j and trials t, using MCMC sampling. Right: We chose
uninformative priors for group-level parameters; the shape of each prior was based on the
parameter’s allowed range. For each participant j, each parameter θ was sampled accord-
ing to a linear regression model, based on group-wide standard deviation θsd, intercept
θint, linear change with age θlin, and quadratic change with age θqua. Each model (RL
or BI) provided a choice likelihood p(ajt) for each participant j on each trial t, based
on individual parameters θj . Action selection followed a Bernoulli distribution (see 4.5.3
for details). (C)-(F) Human behavior for the measures shown in Fig. 2, binned in age
quantiles. (C), (E), and (F) also show simulated model behavior for model validation,
verifying that models closely reproduced human behavior and age differences.
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2.3. Cognitive Modeling299

We first identified a winning model of each family (RL, BI), comparing300

numerical fits (WAIC; Watanabe, 2013) between the most basic implemen-301

tation to versions with added augmentations (suppl. Fig. 17 and Fig. 16;302

Table 2).303

The winning RL model had four free parameters: persistence p, inverse304

decision temperature β, and learning rates α+ and α− for positive and neg-305

ative outcomes, respectively (section 4.5.1). In addition to “factual” action306

value updates on chosen actions, this model also performed “counterfactual”307

updates on the values of unchosen actions (Palminteri et al., 2016). For308

example, after receiving a reward for choosing left (factual outcome), the al-309

gorithm both decreases the value of the right choice (counterfactual update),310

and increases the value of the left choice (factual update). The size of counter-311

factual updates was controlled by learning rates α+ and α−, simplifying the312

model (Table 2). Parameters p and β controlled the translation of RL values313

into choices: Increasing persistence p increased the probability of repeat-314

ing actions independently of action values. Small β induced decision noise315

(increasing exploratory choices), and large β allowed for reward-maximizing316

choices.317

The winning BI model also had four parameters: besides choice-parameters318

p and β as in the RL model, these were task volatility pswitch and reward319

stochasticity preward, which characterized participants’ internal task model320

(Fig. 3A; section 4.5.2). pswitch could represent a stable (pswitch = 0) or321
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volatile task (pswitch > 0), and preward deterministic (preward = 1) or stochas-322

tic outcomes (preward < 1). Because the actual task was based on parameters323

pswitch = 0.05 and preward = 0.75, an optimal agent would use these values,324

obtaining the most accurate inferences.325

In addition to providing better model fit (Table 2), the two winning mod-326

els also validated better behaviorally compared to simpler versions, closely327

reproducing human behavior (Palminteri et al., 2017; Wilson and Collins,328

2019; Fig. 3C, E, F; suppl. Fig. 16 and Fig. 17). The winning RL model329

had the overall lowest WAIC score, revealing best quantitative fit, but both330

models validated equally well qualitatively: Both showed human-like behav-331

ior and reproduced all age differences, including adolescents’ peak in overall332

accuracy (Fig. 3C), proportion of staying after (potential) switch trials (Fig.333

3E), asymptotic performance on non-switch trials (Fig. 3F), and their most334

efficient use of previous outcomes to adjust future actions (suppl. Fig. 7 D-335

F). Other models did not capture all these qualitative patterns (suppl. Fig.336

16, Fig. 17). The closeness in WAIC scores (Table 2) and the equal ability337

to reproduce details of human behavior reveal that both models captured338

human behavior adequately, and suggest that both provide plausible expla-339

nations of the underlying cognitive processes. We therefore fitted both to340

participant data to estimate individual parameter values, using hierarchical341

Bayesian fitting (Fig. 3B; section 4.5.3).342
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Table 2: WAIC model fits and standard errors for all models, based on hierarchical
Bayesian fitting. Bold numbers highlight the winning model of each class. For the
parameter-free BI model, the Akaike Information Criterion (AIC) was calculated pre-
cisely. WAIC differences are relative to next-best model of the same class, and include
estimated standard errors of the difference as an indicator of meaningful difference. In the
RL model, “α” refers to the classic RL formulation in which α+ = α−. “αc” refers to the
counterfactual learning rate that guides updates of unchosen actions, with α+c = α−c (see
section 4.5.1).

Free parameters (count) (W)AIC WAIC Difference

BI – (0) 31,959 2,668 +− 0
β (1) 29, 291 +−206 868 +−78
β, p (2) 28, 423 +−201 4, 769 +−132
β, p, preward (3) 23, 654 +−203 51 +−10
β, p, preward, pswitch (4) 23,603 +− 200 0

RL α, β (2) 26, 678 +−200 438 +−44
α, β, αc (3) 26, 240 +−201 1, 429 +−78
α, β, αc, p (4) 24, 811 +−190 42 +−13
α+, β, α+c, p, α− (5) 24, 769 +−213 1, 260 +−73
α+, β, α+c, p, α−, α−c (6) 23, 509 +−211 17 +−10
α+ = α+c, α− = α−c, β, p (4) 23,492 +− 201 0

2.3.1. Age Differences in Model Parameters343

Across models, three parameters showed non-monotonic age trajectories,344

mirroring behavioral differences: α−, preward, and pswitch declined drastically345

within the first three age bins (8-13 years), then reversed their trajectory and346

increased again, reaching slightly lower plateaus around 15 years that lasted347

through adulthood (Fig. 4C, G-H). For pswitch, age differences were captured348

in a significant quadratic effect of age in the age-based model (suppl. Table349

13; for detailed explanation, see section 4.5.3). For α− and preward, differences350

were captured in significant pairwise differences between 13-to-15-year-olds351
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and other age groups, tested within the age-less model (suppl. Table 12).352

BI’s mental model parameters pswitch and preward reflect task volatility353

and stochasticity (Fig. 1A), and can be compared to the true task param-354

eters (preward = 0.75; pswitch = 0.05) to assess how optimal participants’355

inferred models were. Both parameters were most optimal in 13-to-15-year-356

olds, whereas younger and older participants strikingly overestimated volatil-357

ity (larger pswitch), while underestimating stochasticity (larger preward). Sim-358

ilarly in RL, α− was lowest in 13-to-15-year-olds. Indeed, lower learning359

rates for negative feedback α− were beneficial because they avoided prema-360

ture switching based on single negative outcomes, while allowing adaptive361

switching after multiple negative outcomes.362

In both RL and BI, choice parameters p and β increased monotonically363

with age, growing rapidly at first and plateauing around early adulthood364

(Fig. 4A, B, E, F). The age-based model (section 4.5.3) revealed that both365

the linear and negative quadratic effects of age were significant (suppl. Ta-366

ble 13). This shows that participants’ willingness to repeat previous actions367

independently of outcomes (p) and to exploit the best known option (β)368

steadily increased until adulthood, including steady growth during the teen369

years. Parameter α+ showed a unique stepped age trajectory, featuring rel-370

atively stable values throughout childhood and adolescence, and an increase371

in adults (Fig. 4D).372

Through the lens of RL, these findings suggest that adolescents outper-373

formed other age groups because they integrated negative feedback more374
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optimally (α−). Through the lens of BI, the performance peak occurred375

because adolescents used a more accurate mental task model (pswitch and376

preward). Taken together, both models agree that behavioral differences arose377

from cognitive difference in the “update step” of feedback processing (i.e.,378

value updating in RL; state inference in BI). Age differences in the “choice379

step” (i.e., selecting actions), however, showed monotonous age differences380

with steady growth during adolescents, therefore likely contributing less to381

the peak.382
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Figure 4: Fitted model parameters for the winning RL (left column) and BI model (right),
plotted over age. Stars in combination with “lin” or “qua” indicate significant linear (“lin”)
and quadratic (“qua”) effects of age on model parameters, based on the age-based fitting
model. Stars on top of brackets show differences between groups, as revealed by t-tests
conducted within the age-less fitting model (section 4.5.3; suppl. Tables 13 and 12). Dots
(means) and error bars (standard errors) show the results of the age-less fitting model,
providing an unbiased representation of individual fits. (A)-(D) RL model parameters.
(E)-(H) BI model parameters.
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2.4. Integrating RL and BI—Going Beyond Specific Models383

These results raise an important question: Given that both RL and BI384

fit human behavior well, how do we reconcile differences in their compu-385

tational mechanisms? To address this, we first determined whether both386

models covertly employed similar computational processes, predicting the387

same behavior despite differences in form. A generate-and-recover analysis,388

however, confirmed that they truly employed different processes (Heathcote389

et al., 2015; Wilson and Collins, 2019; Appendix 6.3.5).390

We next asked whether both models captured similar aspects of cognition391

by assessing how correlated parameters were between models. Parameters392

p and β were almost perfectly correlated between models (both ρ > 0.94,393

p < 0.05), suggesting high consistency between models when estimating394

choice processes (Fig. 5B). Parameter preward (BI) was strongly correlated395

with α− (RL), suggesting that beliefs about task stochasticity and learning396

rates for negative outcomes played similar roles across models, presumably in397

participants’ response to negative outcomes. The other mental-model param-398

eter, pswitch (BI), was strongly negatively correlated with β (RL), suggesting399

that beliefs about task volatility in the BI model captured aspects that were400

explained by decision noise in the RL model. This is consistent with the401

observation that an agent that expects high volatility could be mistaken for402

one that acts with large noise, given that both will make choices that are403

inconsistent with previous outcomes. The only parameter that showed no404

large correlations with other parameters was α+ (RL), potentially reflecting a405
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cognitive process uniquely captured by RL. Taken together, some parameters406

likely captured similar cognitive processes in both models, despite differences407

in their functional form, shown by large correlations between models. Other408

parameters were more unique, potentially reflecting model-specific cognitive409

processes. Further analyses confirmed high shared explained variance be-410

tween both models, using multiple regression (section 6.3.7).411
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Figure 5: Relating RL and BI models. (A) Model recovery. WAIC scores were worse
(larger; lighter colors) when recovering behavior that was simulated from one model (row)
using the other model (column), than when using the same model (diagonal), revealing that
the models were discriminable. The difference in fit was smaller for BI simulations (bottom
row), suggesting that the RL model captured BI behavior better than the other way around
(top row). (B) Spearman pairwise correlations between model parameters. Red (blue) hue
indicates negative (positive) correlation, saturation indicates correlation strength. Non-
significant correlations are crossed out (Bonferroni-corrected at p = 0.00089). Light-blue
(teal) letters refer to RL (BI) model parameters. Light-blue / teal-colored triangles show
correlations within each model, remaining cells show correlations between models. (C)
Variance of each parameter explained by parameters and interactions of the other model
(“R2”), estimated through linear regression. All four BI parameters (green) were pre-
dicted almost perfectly by the RL parameters, and all RL parameters except for α+ (RL)
were predicted by the BI parameters. (D)-(E) Results of PCA on model parameters. (D)
Cumulative variance explained by all principal components PC1-8. The first four compo-
nents captured 96.5% of total parameter variance. (E) Age-related differences in PC1-4:
PC1 reflected overall behavioral quality and showed rapid development between ages 8-13,
which were captured by linear (“lin”) and quadratic (“qua”) effects in a regression model.
PC2 captured a step-like transition from shorter to longer updating time scales at age
15, as revealed by PC-based model simulations (Supplements). PC3 showed no significant
age effects. PC4 captured the variance in α+ and differed between adolescents 15-17 and
both 8-13 year olds and adults. PC2 and PC4 were analyzed using t-tests. * p < .05; **
p < .01, *** p < .001.
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So far, we have provided two separate cognitive explanations for why412

adolescents performed better than other age groups: RL poses differences413

in value learning as the main driver, whereas BI poses differences in mental414

model-based inference. Could a single, broader explanation combine these415

insights and provide more general understanding of adolescent cognitive pro-416

cessing? To test this, we used PCA to unveil the lower-dimensional structure417

embedded in the 8-dimensional parameter space created by both models (for418

details, see section 4.5.5). We found that the PCA’s first four principle com-419

ponents (PCs) explained almost all variance (96.5%; Fig. 5D), showing that420

individual differences in all 8 model parameters could be summarized by just421

4 abstract cognitive dimensions, which distill the insights of both models422

while abstracting away redundancies. To understand what these abstract423

dimensions reflected, we used a simulation-based approach that took advan-424

tage of the fact that each PC was a linear combination of the original model425

parameters (Table 14), such that we could directly simulate effects of PCs426

on behavior using our computational models.427

This analysis revealed that PC1, capturing the largest proportion of pa-428

rameter variance, reflected a broad measure of behavioral quality; PC2 rep-429

resented integration time scales; PC3 captured responsiveness to task out-430

comes; and PC4 uniquely captured RL parameter α+. A detailed description431

of each PC is provided in supplement 6.3.8. Three of these four PCs (PC1,432

PC2, and PC4) showed prominent age effects: PC1 (behavioral quality) in-433

creased drastically until age 13, at which it reached a stable plateau that434
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lasted—unchanged—throughout adulthood (Fig. 5E, top-left). Regression435

models revealed significant linear and quadratic effects of age on PC1 (lin.:436

β = −0.47, t = −4.0, p < 0.001; quad.: β = 0.011, t = 3.43, p < 0.001), with437

no effect of sex (β = 0.020, t = 0.091, p = 0.93). This suggests that the left438

side of the U-shaped trajectory in task performance (Fig. 2; suppl. Fig. 7;439

Fig. 3C-F) might be caused by the development of behavioral quality (PC1):440

The peak in 13-to-15-year-olds compared to younger participants could be441

explained by the fact that 13-to-15-year-olds had already reached adult levels442

of behavioral quality, while younger participants showed noisier, less focused,443

and less consistent behavior.444

By contrast, PC2 (updating time scales) followed a step function, such445

that participants in the three youngest age bins (8-15 years) acted on shorter446

times scales than participants in the three oldest bins (15-30; Fig. 5E, top-447

right; post-hoc t-test comparing both groups: t(266.2) = 3.44, p < 0.001).448

This pattern is in accordance with the interpretation that children’s shorter449

time scales, facilitating rapid behavioral switches (suppl. Fig. 19B, left),450

were more beneficial for the current task than adults’ longer time scales,451

which impeded switching (suppl. Fig. 19B, right). Differences in subjective452

time scale might therefore be the determining factor that allowed adolescents453

to outperform older participants, including adults.454

PC4 (positive updates) differentiated the two adolescent age bins (13-17)455

from both younger (8-13) and older (18-30) participants (Fig. 5E, bottom-456

right), as revealed by significant post-hoc, Bonferroni-corrected, t-tests (8-13457
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vs 13-17: t(176.8) = 2.28, p = 0.047; 13-17 vs 18-30: t(176.6) = 2.49,458

p = 0.028). In other words, after accounting for variance in PC1-PC3, the459

remaining variance was explained by 13-to-17-year-olds’ relatively longer up-460

dating timescales for positive outcomes (positive outcomes had relatively461

weaker immediate, but stronger long-lasting effects). In sum, the PCA re-462

vealed four dimensions that combine the findings of both computational mod-463

els, potentially allowing for model-independent insights into developmental464

cognitive differences: Adolescents’ unique competence in our task might be465

result of adult-like behavioral quality in combination with child-like time466

scales and unique adolescent processing of positive feedback.467

3. Discussion468

Across species, the adolescent transition brings great challenges for learn-469

ing and exploration, which may have caused the adolescent brain to evolve470

behavioral tendencies that promote adaptive learning in rapidly changing,471

uncertain environments (Dahl et al., 2018). To test this idea, we examined472

the choice behavior of a large sample across a wide age range in a volatile473

and stochastic reversal task adapted from rodent studies (Tai et al., 2012).474

This research fills a knowledge gap regarding the adolescent development of475

reversal learning (also see Hauser et al., 2015; Javadi et al., 2014; van der476

Schaaf et al., 2011), inspired by rapidly-expanding research highlighting the477

developmentally-unique role of adolescence across socio-emotional and cog-478

nitive contexts (Dahl et al., 2018; DePasque and Galván, 2017; Lloyd et al.,479
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2020; Lourenco and Casey, 2013; Sercombe, 2014), and by the non-linear480

development of neural and endocrine systems underlying reversal learning481

(Blakemore et al., 2010; Braams et al., 2015; Giedd et al., 1999; Piekarski,482

Johnson, et al., 2017; Somerville and Casey, 2010; Sowell et al., 2003; Toga483

et al., 2006).484

3.1. Summary of Findings485

We observed an adolescent peak in performance, which was evident in486

adolescents’ highest overall accuracy (Fig. 2A) and winning most points487

(suppl. Fig. 7A, E). This peak was associated with adolescents’ increased488

willingness to ignore non-diagnostic negative feedback (Fig. 2C) and to show489

persistent choices during stable task periods (Fig. 2D). Adolescents used neg-490

ative feedback most optimally to guide future choices, being least affected by491

proximal, but most sensitive to distal outcomes (suppl. Fig. 7C, D, G, H).492

These findings support our prediction that adolescents make better decisions493

in volatile and stochastic environments, potentially due to differences in neg-494

ative feedback processing, in accordance with prior research that has shown495

unique feedback processing in adolescents (e.g., Christakou et al., 2013; Davi-496

dow et al., 2016; Palminteri et al., 2016; van den Bos et al., 2009; for review,497

see Lourenco and Casey, 2013).498

Which cognitive processes underlie this performance advantage? Ado-499

lescents might learn at different speeds than younger or older participants,500

as suggested, e.g., by Davidow et al., 2016, or might process particular feed-501
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back types differently (e.g., Palminteri et al., 2016). These hypotheses can be502

tested using computational modeling in the RL framework, which explicitly503

estimates learning rates for different kinds of feedback.504

It is also possible, however, that adolescents outperformed other partici-505

pants due to a better understanding of the task dynamics, which would allow506

them to predict more accurately whether a switch had occurred, for example.507

Indeed, others have argued that both “model-based” behavior (Decker et al.,508

2016) and the tendency to employ counterfactual reasoning (Palminteri et509

al., 2016) increase with age, in accordance with age differences in mental510

task models. This hypothesis can be tested using computational modeling in511

the BI framework, which explicitly estimates the parameters of participants’512

mental models and inference processes.513

Furthermore, adolescents might explore differently (Gopnik et al., 2017;514

Lloyd et al., 2020; Somerville et al., 2017) or might be more persistent, a515

behavioral pattern commonly linked to the PFC (Kehagia et al., 2010; Mor-516

ris et al., 2016), which continues maturation during adolescence (DePasque517

and Galván, 2017; Giedd et al., 1999; Toga et al., 2006). Whereas the previ-518

ous hypotheses targeted the “updating” step of decision making, these two519

concern the “choice” step, and can be tested in both RL and BI frameworks.520

Our study revealed that several explanations exist for adolescents’ supe-521

rior performance: The RL model showed reduced learning speeds for negative522

outcomes (Fig. 4C), supporting the hypothesis in terms of differential feed-523

back responses. The BI model suggested improved mental models, support-524
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ing the hypothesis about differences in mental models and inference (Fig. 4G,525

H). Crucially, the quantitative fit of both models to human data was similar526

(Table 2), and they both qualitatively reproduced human behavior in simula-527

tion (Fig. 3), suggesting that both explanations are valid. Furthermore, both528

models agreed on developmental differences in exploration/exploitation and529

persistence, as suggested by the last hypotheses. However, these differences530

were unlikely the cause for the adolescent advantage because they showed531

monotonic trajectories between childhood and adulthood (Fig. 4A, B, E,532

G), rather than an adolescent peak. Taken together, our study suggests that533

adolescents make better decisions in stochastic and volatile environments534

than younger or older people, due to non-monotonic age differences in neg-535

ative feedback processing and mental model accuracy, which peak during536

adolescence.537

Both explanations, however, are framed within a specific computational538

model. Can we draw more general conclusions? Combining the unique in-539

sights of each model while stripping away redundancies, our PCA investi-540

gation revealed that developmental changes might be captured by three ab-541

stract, model-independent dimensions that vary with age: behavioral qual-542

ity (PC1), time scales (PC2), and reward processing (PC4). Behavioral543

quality—likely capturing sufficient understanding of the task and experimen-544

tal context, participant compliance, attentional focus, etc.—reached adult545

levels in early adolescence and showed no more age-related differences there-546

after. Time scales, on the other hand—likely capturing an extended planning547

33

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2020.07.04.187971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187971
http://creativecommons.org/licenses/by-nc/4.0/


horizon, long-term credit assignment, memory, prolonged attention, etc.—548

only started to increase during late adolescence, in accordance with our be-549

havioral measure of flexibility (6.3.1). Finally, reward processing was slower550

during adolescence compared to younger or older ages. Taken together, ado-551

lescents’ behavioral advantage might be a combination of already adult-like552

quality of behavior, still child-like time scales, and unique reward processing.553

3.2. Setting or Adaptation?554

These findings can be interpreted in two ways (Nussenbaum and Hartley,555

2019): 1) Based on a settings account, adolescents integrate negative feed-556

back more slowly than other age groups (α−), expect fewer rewards (preward)557

and less volatility (pswitch), and achieve adult-like behavioral quality (PC1),558

but child-like short time scales (PC2) and slow reward processing (PC4).559

These “settings” are developmentally fixed, i.e., expected to guide behavior560

across experiments and real-life situations. 2) The adaptation account, on561

the other hand, states that adolescents chose the most appropriate cogni-562

tive settings specifically for the current task, and might have chosen different563

settings in different contexts. Our results therefore highlight adolescents’564

adaptability to volatile and stochastic environments.565

A recent review (Nussenbaum and Hartley, 2019) showed favorable em-566

pirical evidence for the adaptation account compared to settings, given that567

specific parameter values differ widely between studies, whereas parameter568

adaptiveness is more consistent (also see Eckstein, Master, et al., 2021; Eck-569
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stein, Wilbrecht, et al., 2021). Another argument for adaption is that adoles-570

cents exhibited balanced learning in a previous study (van der Schaaf et al.,571

2011), responding similarly to rewards and punishment (Fig. 3A; children572

and adults responded more strongly to punishment and rewards, respec-573

tively). In our study, however, adolescents exhibited the most imbalanced574

learning of all age groups, responding least strongly to negative feedback.575

This shows a contradiction between both studies based on a settings view.576

However, both studies agree in that adolescents adapted best to the specific577

task demands, supporting an adaptation-based view: In van der Schaaf et578

al., 2011, both positive and negative outcomes were diagnostic, requiring bal-579

anced learning, whereas in our study, only positive outcomes were diagnostic,580

requiring imbalanced learning.581

Taken together, the specific parameter values obtained in this study likely582

shed less light on specific adolescent behavioral tendencies related to nega-583

tive feedback processing, prior expectations about environmental volatility584

and stochasticity, etc., but showcase the increased ability to quickly and585

effortlessly adapt to stochastic and volatile tasks.586

3.3. General Cognitive Abilities587

A caveat of our study is the use of a cross-sectional rather than longitudi-588

nal design. We cannot exclude, for example, that adolescents had higher IQ589

scores, better schooling, or higher socio-economic status than participants of590

other ages. If this was the case, the performance peak in adolescence might591
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reflect a difference in task-unrelated factors rather than unique adaptation to592

stochasticity and volatility. However, several arguments speak against this593

possibility, including recruitment procedures, supplementary analyses, and594

the distinctness of the U-shaped pattern observed in this task compared to595

the linear trajectories observed in other tasks performed by the same sample596

(see section 6.4.1).597

3.4. A Role of Puberty?598

Despite showing specific age-related differences, our study does not eluci-599

date which biological mechanisms underlie these. There is growing evidence600

that gonadal hormones affect inhibitory neurotransmission, spine pruning,601

and other variables in the prefrontal cortex of rodents (Delevich et al., 2019;602

Delevich et al., 2018; Drzewiecki et al., 2016; Juraska and Willing, 2017;603

Piekarski, Boivin, et al., 2017; Piekarski, Johnson, et al., 2017), and evidence604

for puberty-related neurobehavioral change is also accumulating in human605

studies (Blakemore et al., 2010; Braams et al., 2015; Gracia-Tabuenca et al.,606

2021; Laube, van den Bos, et al., 2020; Op de Macks et al., 2016), suggesting607

that puberty-related changes in brain chemistry might be a mechanism be-608

hind the observed differences. We assessed pubertal status and investigated609

its role in the developmental changes we observed (see section 6.3.3). While610

some trends emerged that deserve more detailed investigation in future re-611

search, particularly with regard to early puberty, our study was inconclusive612

on this issue.613
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3.5. Dual-Model Approach to Cognitive Modeling614

Basic RL and BI (as described in section 1.3) employ different cognitive615

mechanisms (see sections 4.5.1 and 4.5.2) and predict different behaviors on616

our task (suppl. Fig. 16 and 17), justifying their combined use to gain617

additive insights. However, we augmented each model to approximate hu-618

mans, leading to more similar behavior—and potentially overlapping cogni-619

tive mechanisms. Is this a problem for our dual-model approach?620

Two arguments justify the approach: 1) Both models explain the cogni-621

tive process differently. Whereas RL explains it in terms of learning and dif-622

ferentiation of outcome types, BI explains it in terms of mental-model based623

predictions and inference. Hence, invoking different cognitive concepts, both624

explanations are non-redundant and provide additive insights. 2) Both mod-625

els also differ in meaningful ways, both behaviorally (Fig. 5A; suppl. Fig.626

18; suppl. section 6.3.6) and in terms of the cognitive processes captured by627

model parameters (Fig. 5B and C). This implies that both models capture628

different aspects of human cognitive processing, providing additive insights.629

Taking a step back, the most common computational modeling approach630

selects a family of candidate models (e.g., RL) and identifies the best-fitting631

one, interpreting it as the cognitive process employed by participants. An632

issue with this approach is that a model from a different family (e.g., BI)633

might provide a better fit than any of the tested models. To address this634

issue, we fitted models of multiple families, ensuring large coverage of the635

space of cognitive hypotheses.636
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However, a difficulty with our approach is that in addition to quantita-637

tive criteria of model fit (e.g., fit, complexity; Bayes factor, AIC; Mulder638

and Wagenmakers, 2016; Pitt and Myung, 2002; Watanabe, 2013), qualita-639

tive criteria become increasingly important (e.g., interpretability, appropri-640

ateness for current hypotheses, conciseness, generality; Blohm et al., 2020;641

Kording et al., 2020; Uttal, 1990; Webb, 2001). However, qualitative crite-642

ria are more difficult to assess because they depend on scientific goals (e.g.,643

explanation versus prediction; Bernardo and Smith, 2009; Navarro, 2019)644

and research philosophy (Blohm et al., 2020). Furthermore, qualitative and645

quantitative criteria can be at odds, inconveniencing model selection (Jacobs646

and Grainger, 1994). To alleviate these issues, we focused on a range of cri-647

teria, including numerical fit (WAIC; slight advantage for RL), reproduction648

of participant behavior (equally good), continuity with previous neuroscien-649

tific research (RL), link to specific neural pathways (RL), centrality for de-650

velopmental research (equal), claimed superiority in current paradigm (BI),651

and interpretability (BI: model parameters map directly onto main concepts652

pswitch: stochasticity, preward: volatility). Because this survey did not produce653

a clear winner, and both models fitted excellently without being redundant,654

we opted to select two winners. This provided the benefits of converging655

evidence (e.g., replication: βRL ↔ βBI , pRL ↔ pBI ; parallelism between656

models: preward ↔ α−), distinct insights (e.g., RL: importance of learning,657

differential processing of feedback types; BI: importance of inference, mental658

models), and the possibility to combine both models to expose more abstract659
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factors (PC1, PC2, PC4) that differentiate adolescent cognitive processing660

from younger and older participants.661

3.6. Conclusion662

In conclusion, we showed that adolescents outperformed younger par-663

ticipants and adults in a volatile and uncertain context, two factors that664

might have specific relevance in the transition of adolescence. We used two665

computational models to examine the cognitive processes underlying this de-666

velopment, RL and BI. These models suggested that adolescents achieved667

better performance for different reasons: (1) They were best at accurately668

assessing the volatility and stochasticity of the environment, and integrated669

negative outcomes most appropriately (U-shapes in preward, pswitch, and α−).670

(2) They combined adult-like behavioral quality (PC1), child-like time scales671

(PC2), and developmentally-unique processing of positive outcomes (PC4).672

Pubertal development and steroid hormones may impact a subset of these673

processes, yet causality is difficult to determine without manipulation or lon-674

gitudinal designs (Kraemer et al., 2000).675

For purposes of translation from the lab to the “real world”, our study676

indicates that how youth learn and decide changes in a nonlinear fashion677

as they grow. This underscores the importance of youth-serving programs678

that are developmentally informed and avoid a one-size-fits-all approach.679

Finally, these data support a positive view of adolescence and the idea that680

the adolescent brain exhibits remarkable learning capacities that should be681
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celebrated.682

4. Methods683

4.1. Participants684

All procedures were approved by the Committee for the Protection of Hu-685

man Subjects at the University of California, Berkeley. We tested 312 partic-686

ipants: 191 children and adolescents (ages 8-17) and 55 adults (ages 25-30)687

were recruited from the community, using online ads (e.g., on neighborhood688

forums), flyers at community events (e.g., local farmers markets), and phys-689

icals posts in the neighborhood (e.g., printed ads). Community participants690

completed a battery of computerized tasks, questionnaires, and saliva sam-691

ples (Master et al., 2020). In addition, 66 university undergraduate students692

(aged 18-50) were recruited through UC Berkeley’s Research Participation693

Pool, and completed the same four tasks, but not the pubertal-development694

questionnaire (PDS; Petersen et al., 1988) or saliva sample. Community par-695

ticipants were prescreened for the absence of present or past psychological696

and neurological disorders; the undergraduate sample indicated the absence697

of these. Community participants were compensated with 25$ for the 1-698

2 hour in-lab portion of the experiment and 25$ for completing optional699

take-home saliva samples; undergraduate students received course credit for700

participation.701

Exclusion Criteria. Out of the 191 participants under 18, 184 completed702

the current task; reasons for not completing the task included getting tired,703

running out of time, and technical issues. Five participants (mean age 10.0704

years) were excluded because their mean accuracy was below 58% (chance:705

50%), an elbow point in accuracy, which suggests they did not pay attention706

to the task. This led to a sample of 179 participants under 18 (male: 96,707

female: 83). Two participants from the undergraduate sample were excluded708

because they were older than 30, leading to a sample aged 18-28; 7 were709

excluded because they failed to indicate their age. This led to a final sam-710

ple of 57 undergraduate participants (male: 19, female: 38). All 55 adult711

community participants (male: 26, female: 29) completed the task and were712

included in the analyses, leading to a sample size of 179 participants below713

18, and 291 in total (suppl. Fig. 8).714
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4.2. Testing Procedure715

After entering the testing room, participants under 18 years and their716

guardians provided informed assent and permission, respectively; partici-717

pants over 18 provided informed consent. Guardians and participants over718

18 filled out a demographic form. Participants were led into a quiet testing719

room in view of their guardians, where they used a video game controller to720

complete four computerized tasks (for more details about the other tasks, see721

Eckstein, Master, et al., 2021; Master et al., 2020; Xia et al., 2020; for a com-722

parison of all tasks, see Eckstein, Master, et al., 2021; Eckstein, Wilbrecht,723

et al., 2021). At the conclusion of the tasks, participants between 11 and724

18 completed the PDS questionnaire, were measured in height and weight,725

and compensated with $25 Amazon gift cards. The entire session took 2-3726

hours for community participants (e.g., some younger participants took more727

breaks), and 1 hour for undergraduate participants (who did not complete728

the puberty measures and saliva sample). We paid great attention to the729

fact that participants took sufficient breaks between tasks to avoid excessive730

fatigue and limit the effects of the differences in testing duration.731

4.3. Task Design732

The goal of the task was to collect golden coins, which were hidden in733

one of two boxes. On each trial, participants decided which box to open,734

and either received a reward (coin) or not (empty). Task contingencies—735

i.e., which box was correct and therefore able to produce coins—switched736

unpredictably throughout the task (Fig. 1B). Before the main task, partic-737

ipants completed a 3-step tutorial: 1) A prompt explained that only one of738

the boxes contained a coin (was “magical”), and participants completed 10739

practice trials on which one box was always rewarded and the other never740

(deterministic phase). 2) Another prompt explained that the magical box741

sometimes switches sides, and participants received 8 trials on which only742

second box was rewarded, followed by 8 trials on which only the first box743

was rewarded (switching phase). 3) The last prompt explained that the mag-744

ical box did not always contain a coin, and and led into the main task with745

120 trials.746

In the main task, the correct box was rewarded in 75% of trials; the in-747

correct box was never rewarded. After participants reached a performance748

criterion, it became possible for contingencies to switch (without notice),749

such that the previously incorrect box became the correct one. The per-750

formance criterion was to collect 7-15 rewards, with the specific number751
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pre-randomized for each block (any number of non-rewarded trials was al-752

lowed in-between rewarded trials). Switches only occurred after rewarded753

trials, and the first correct choice after a switch was always rewarded (while754

retaining an average of 75% probability of reward for correct choices), for755

consistency with the rodent task (Tai et al., 2012).756

4.4. Behavioral Analyses757

We calculated age-based rolling performance averages by averaging the758

mean performance of 50 subsequent participants ordered by age. Standard759

errors were calculated in the same way.760

We assessed the effects of age on behavioral outcomes (Fig. 2), using761

(logistic) mixed-effects regression models using the package lme4 (Bates et al.,762

2015) in R (RCoreTeam, 2016). All models included the following regressors763

to predict outcomes (e.g., overall accuracy, response times): Z-scored age,764

to assess the linear effect of age on the outcome; squared, z-scored age, to765

assess the quadratic (U-shaped) effect of age; and sex; furthermore, all models766

specified random effects of participants, allowing participants’ intercepts and767

slopes to vary independently. Additional predictors are noted in the main768

text.769

We assessed the effects of previous outcomes on participants’ choices770

(suppl. Fig. 7B, C, E, F) using logistic mixed-effects regression, predict-771

ing actions (left, right) from previous outcomes (details below), while testing772

for effects of and interactions with sex, z-scored age, and z-scored quadratic773

age, specifying participants as mixed effects. We included one predictor for774

positive and one for negative outcomes at each delay i with respect to the775

predicted action (e.g., i = 1 trial ago). Outcome predictors were coded -1776

for left and +1 for right choices (0 otherwise). Including predictors of trials777

1 ≤ i ≤ 8 provided the best model fit (suppl. Table 7). To visualize the778

results of this model including all participants, we also ran separate models779

for each participant (suppl. Fig. 7B, C, E, F).780

4.5. Computational Models781

4.5.1. Reinforcement Learning (RL) Models782

A basic RL model has two parameters, learning rate α and decision tem-
perature β. On each trial t, the value Qt(a) of action a is updated based on
the observed outcome ot ∈ [0, 1] (no reward, reward):

Qt+1(a) = Qt(a) + α(ot −Qt(a))
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Action values inform choices probabilistically, based on a softmax trans-
formation:

pt(a) =
exp(β Qt(a))

exp(β Qt(a)) + exp(β Qt(ans))

Here, a is the selected, and ans the non-selected action.783

Compared to this basic 2-parameter model, the best-fit 4-parameter model784

was augmented by splitting learning rates into α+ and α−, adding persistence785

parameter p, and the ability for counterfactual updating. We explain each in786

turn: Splitting learning rates allowed to differentiate updates for rewarded787

(ot = 1) versus non-rewarded (ot = 0) trials, with independent α− and α+:788

Qt+1(a) =

{
Qt(a) + α+(ot −Qt(a)), if ot = 1

Qt(a) + α−(ot −Qt(a)), if ot = 0

Choice persistence or “stickiness” p changed the value of the previously-789

selected action at on the subsequent trial, biasing toward staying (p > 0) or790

switching (p < 0):791

Qt+1(a) =

{
Qt+1(a) + p, if at = at−1

Qt+1(a), if at 6= at−1

Counterfactual updating allows updates to non-selected actions based on792

counterfactual outcomes 1− ot:793

Qt+1(ans) =

{
Qt(ans) + α+((1− ot)−Qt(ans)), if o = 1

Qt(ans) + α−((1− ot)−Qt(ans)), if o = 0

Initially, we used four parameters α+, α+c, α−, and α−c to represent each794

combination of value-based (“+” versus “-”) and counter-factual (“c”) versus795

factual updating, but collapsing α+ = α+c and α− = α−c improved model796

fit (Table 2). This suggests that outcomes triggered equal-sized updates to797

chosen and unchosen actions.798

This final model can be interpreted as basing decisions on a single value799

estimate (value difference between both actions), rather than independent800

value estimates for each action because chosen and unchosen actions were801

updated to the same degree and in opposite directions on each trial. Action802

values were initialized at 0.5 for all models.803
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4.5.2. Bayesian Inference (BI) Models804

The BI model is based on two hidden states: “Left action is correct”805

(aleft = cor) and “Right action is correct” (aright = cor). On each trial, the806

hidden state switches with probability pswitch. In each state, the probability807

of receiving a reward for the correct action is preward (Fig. 3A). On each808

trial, actions are selected in two phases, using a Bayesian Filter algorithm809

(Sarkka, 2013): (1) In the estimation phase, the hidden state of the previous810

trial t− 1 is inferred based on outcome ot−1, using Bayes rule:811

p(at−1 = cor | ot−1) =
p(ot−1|at−1 = cor) p(at−1 = cor)

p(ot−1|at−1 = cor) p(at−1 = cor) + p(ot−1|at−1 = inc) p(at−1 = inc)

p(at−1 = cor) is the prior probability that at−1 is correct (on the first812

trial, p(a = cor) = 0.5 for aleft and aright). p(ot−1|at−1) is the likelihood813

of the observed outcome ot−1 given action at−1. Likelihoods are (dropping814

underscripts for clarity): p(o = 1|a = cor) = preward, p(o = 0|a = cor) =815

1 − preward, p(o = 1|a = inc) = ε, and p(o = 0|a = cor) = 1 − ε. ε is816

the probability of receiving a reward for an incorrect action, which was 0 in817

reality, but set to ε = 0.0001 to avoid model degeneracy.818

(2) In the prediction phase, the possibility of state switches is taken into819

account by propagating the inferred hidden-state belief at t − 1 forward to820

trial t:821

p(at = cor) = (1− pswitch) p(at−1 = cor) + pswitch p(at−1 = inc)

We first assessed a parameter-free version of the BI model, truthfully822

setting preward = 0.75, and pswitch = 0.05. Lacking free parameters, this823

model was unable to capture individual differences and led to poor qualitative824

(suppl. Fig. 17A) and quantitative model fit (Table 2). The best-fit BI model825

had four free parameters: preward and pswitch, as well as the choice parameters826

β and p, like the winning RL model. β and p were introduced by applying a827

softmax to p(at = cor) to calculate p(at), the probability of selecting action828

a on trial t:829

p(at) =
1

(1 + exp(β(0.5− p− p(at = cor)))
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When both actions had the same probability and persistence p > 0, then830

staying was more likely; when p < 0, then switching was more likely.831

4.5.3. Model Fitting and Comparison832

We fitted parameters using hierarchical Bayesian methods (Katahira,
2016; M. D. Lee, 2011; van den Bos et al., 2017; Fig. 3B), whose parame-
ter recovery clearly superseded those of classical maximum-likelihood fitting
(suppl. Fig. 6). Rather than fitting individual participants, hierarchical
Bayesian model fitting estimates the parameters of a population jointly by
maximizing the posterior probability p(θ|data) of all parameters θ condi-
tioned on the observed data, using Bayesian inference:

p(θ|data) ∝ p(data|θ) p(θ)

An advantage of hierarchical Bayesian model fitting is that individual param-833

eters are embedded in a hierarchical structure of priors, which helps resolve834

uncertainty at the individual level.835

We ran two models to fit parameters: The “age-less” model was used to836

estimate participants’ parameters in a non-biased way and conduct binned837

analyses on parameter differences; the “age-based” model was used to statis-838

tically assess the shapes of parameters’ age trajectories. In the age-less model,839

each individual j’s parameters θRLj = [p, β, α−, α+] or θBIj = [p, β, pswitch, preward]840

were drawn from group-based prior parameter distributions. Parameters841

were drawn from appropriately-shaped prior distributions, limiting ranges842

where necessary, which where based on non-informative, appropriate hyper-843

priors (suppl. Table 5).844

Next, we fitted the model by determining the group-level and individual845

parameters with the largest posterior probability under the behavioral data846

p(θ|data). Because p(θ|data) was analytically intractable, we approximated847

it using Markov-Chain Monte Carlo sampling, using the no-U-Turn sampler848

from the PyMC3 package in python (Salvatier et al., 2016). We ran 2 chains849

per model with 6,000 samples per chain, discarding the first 1,000 as burn-850

in. All models converged with small MC errors, sufficient effective sample851

sizes, and R̂ close to 1 (suppl. Table 6). For model comparison, we used852

the Watanabe-Akaike information criterion (WAIC), which estimates the ex-853

pected out-of-sample prediction error using a bias-corrected adjustment of854

within-sample error (Watanabe, 2013).855

To obtain participants’ individual fitted parameters, we calculated the856
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means over all posterior samples (Fig. 4, suppl. Figures 15, 16, and 17).857

To test whether a parameter θ differed between two age groups a1 and a2,858

we determined the number of MCMC samples in which the parameter was859

larger in one group than the other, i.e., the expectation E(θa1 < θa2) across860

MCMC samples. p < 0.05 was used to determine significance. This concludes861

our discussion of the age-less model, which was used to calculate individual862

parameters in an unbiased way.863

To adequately assess the age trajectories of fitted parameters, we em-864

ployed a fitting technique based on hierarchical Bayesian model fitting (Katahira,865

2016; M. D. Lee, 2011), which avoids biases that arise when comparing pa-866

rameters between participants that have been fitted using maximum-likelihood867

(van den Bos et al., 2017), and allows to test specific hypotheses about param-868

eter trajectories by explicitly modeling these trajectories within the fitting869

framework: We conducted a separate “age-based” model, in which model pa-870

rameters were allowed to depend on participants’ age (Fig. 3B). Estimating871

age effects directly within the computational model allowed us to estimate872

group-level effects in an unbiased way, whereas flat (hierarchical) models that873

estimate parameters but not age effects would underestimate (overestimate)874

group-level effects, respectively (Boehm et al., 2018). The age-based model875

was exclusively used to statistically assess parameter age trajectories because876

individual parameters would be biased by the inclusion of age in the model.877

In the age-based model, each parameter θ of each participant j was sam-878

pled from a Normal distribution around an age-based regression line (Fig.879

3B):880

θj ∼ Normal(µ = θint + age × θlin + age2 × θqua, σ = θsd)

Each parameter’s intercept θint, linear change with age θlin, quadratic881

change with age θqua, and standard deviation θsd were sampled from prior882

distributions of the form specified in suppl. Table 5.883

4.5.4. Correlations between Model Parameters (Fig. 5B)884

We used Spearman correlation because parameters followed different, not885

necessarily normal, distributions. Employing Pearson correlation led to sim-886

ilar results. p-values were corrected for multiple comparisons using the Bon-887

ferroni method.888
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4.5.5. Principal Component Analysis (PCA)889

To extract general cognitive components from model parameters, we ran890

a PCA on all fitted parameters (8 per participant). PCA can be understood891

as a method that rotates the initial coordinate system of a dataset (in our892

case, 8 axes corresponding to the 8 parameters), such that the first axis is893

aligned with the dimension of largest variation in the dataset (first princi-894

ple component; PC1), the second axis with the dimension of second-largest895

variance (PC2), while being orthogonal to the first, and so on. In this way,896

all resulting PCs are orthogonal to each other, and explain subsequently less897

variance in the original dataset. We conducted a PCA after centering and898

scaling (z-scoring) the data, using R (RCoreTeam, 2016).899

To assess PC age effects, we ran similar regression models as for behavioral900

measures, predicting PCs from z-scored age (linear), z-scored age (quadratic),901

and sex. When significant, effects were noted in Fig. 5E. For PC2 and PC4,902

we also conducted post-hoc t-tests, correcting for multiple comparison using903

the Bonferroni method (suppl. Table 15).904
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6. Supplemental Material1388

6.1. Supplemental Introduction1389

6.1.1. Overview of Previous Reversal-Learning Studies in Adolescents1390

We know of three other groups that have investigated the development1391

of reversal learning before. Table 3 shows the methods used in these studies,1392

and Table 4 summarizes the main findings. It is of note that others have1393

investigated developing populations on reversal tasks as well, but either age1394

effects were not recorded (e.g., due to a focus on clinical questions; Adleman1395

et al., 2011; Boehme et al., 2017; Dickstein, Finger, Brotman, et al., 2010;1396

Dickstein, Finger, Skup, et al., 2010; Finger et al., 2008; Harms et al., 2018),1397

or participants were younger and studies did not include adolescents (e.g.,1398

Minto de Sousa et al., 2015).1399

6.2. Supplemental Methods1400

Quantile Age Bins. For some analyses, we split participants into quantiles1401

based on age. This data binning led to samples of adequate sizes for sum-1402

mary statistics, while re-balancing group sizes after participant exclusion (see1403

section 4.1). For participants below 18 years, quantiles were created by first1404

separating males and females. For each sex, we then determined the cut-off1405

ages that created the most balanced groups in terms of participant numbers,1406

and recombined males and females to ensure even proportions of males and1407

females in each age bin. For adult participants, we split the sample at 251408

years of age.1409

6.2.1. Comparing the Effectiveness of Hierarchical Bayesian Model Fitting1410

versus Maximum-Likelihood Fitting on the Current Task1411

All model fits are relative: When model A fits data better than model B,1412

there is no guarantee that model A fits the data “well”. Both models could1413

fit the data poorly, with model A fitting just slightly better than model B.1414

To ensure that our models fit well, we therefore validated parameter fitting1415

and model comparison by first simulating and then recovering parameters1416

from each model (Palminteri et al., 2017; Wilson and Collins, 2019). An1417

identifiable model will recover the simulated parameters well during fitting,1418

whereas an unidentifiable model will not. We also compared the results1419

of maximum likelihood and hierarchical Bayesian model fitting using this1420

procedure.1421
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Figure 6A shows the well-established finding that hierarchical Bayesian1422

model fitting outperforms the maximum likelihood method (Katahira, 2016):1423

Both BF and RL model parameters were recovered well when using hierar-1424

chical Bayesian model fitting (age-free model), but not when using maximum1425

likelihood. Furthermore, hierarchical Bayesian model fitting led to more con-1426

sistent estimates of parameters β and p between both models (suppl. Fig.1427

6B), showing that this method was especially suited for our dual-model ap-1428

proach. These results lend credence to the superior fit that can be achieved1429

using Hierarchical Bayesian methods, and to the precision with which model1430

parameter can be estimated.1431
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Figure 6: Model validation using hierarchical Bayesian model fitting (top, unshaded) and
Maximum likelihood fitting (bottom, shaded). A) Simulate-and-recover procedure. The
x-axes of all graphs show the parameter values of simulated datasets; the y-axes show the
recovered parameters obtained by fitting these datasets using the same models. Recovered
parameters should be as close to the simulated ones as possible, i.e., lie on the identity
line. Black lines and shaded areas indicate best-fit regression lines. The left half presents
simulate-and-recover results for the BI model, the right for the RL model. The top half
shows the results of hierarchical Bayesian model fitting (our method), the bottom of the
maximum likelihood method (standard). B) Consistency in the estimation of parameters
β and p. Human data was fit using RL and BI models to compare the estimates of β
(left row) and p (right row) between models. When both—independent—models lead to
the same estimates, dots lie on the identity line. This was indeed the case for hierarchical
Bayesian fitting (top row), but not for maximum likelihood fitting (bottom row).

6.2.2. Hierarchical Bayesian Model Fitting1432

Hierarchical Bayesian model fitting requires the choice of the shapes of1433

the prior distributions from which individuals’ parameters are drawn, and1434

in some cases the choice of the distributions and parameters from which the1435

parameters of the prior distributions are drawn. These choices can poten-1436

tially influence fitting results; we chose non-informative prior distributions1437

to limit the effect of these choices on our results. Table 5 shows the chosen1438

distribution shapes and parameters.1439
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Prior Distributions for Individual Parameters. As shown in the table, in the1440

age-based model (see section 4.5.3 for the differentiation between the age-1441

based and age-free models), individuals’ parameters were drawn from a Nor-1442

mal distribution around a parameter-specific, continuously age-dependent1443

mean θm, with parameter-specific standard deviation θsd.1444

In the age-free model, on the other hand, individuals’ parameters were1445

drawn from parameter-specific group-level prior distributions. The shapes of1446

these distributions were based on allowed parameter ranges (e.g., Gamma dis-1447

tribution for parameters with range [0, ∞], Beta distribution for parameters1448

with range [0, 1]). The same prior distribution was used for all individuals,1449

i.e., no age information was present in the age-free model. The distributions1450

of individuals’ parameters were themselves parameterized by prior parame-1451

ters.1452

Hyper-Prior Distributions of Prior Distribution Parameters. As further shown1453

in the table, in the age-based model, prior parameter θsd was distributed1454

according to a HalfNormal (Normal, truncated at 0 to leave only support1455

> 0), and parameterized by hyper-parameter sd = 10 to allow for a wide,1456

non-informative shape. Group-level prior θm was defined as an age-based re-1457

gression function, parameterized by θint, θlin, and θqua for each parameter θ.1458

The prior on the intercept θint of each parameter in the age-based model had1459

the same shape as the group-level prior distribution in the age-free model,1460

and was parameterized by the same hyper-priors.1461

In the age-less model, prior parameters parameterized the distributions1462

of individual model parameters.1463

66

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2020.07.04.187971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187971
http://creativecommons.org/licenses/by-nc/4.0/


Table 5: Priors and hyper-priors used in hierarchical Bayesian model fitting (Fig. 7B),
chosen to be uninformative.

Level Parameter Distribution / Value

Shared hyperpriors a 1
b 1
m 0
sd 10

Age-less model
Parameter priors aβ , bβ , aα+, bα+, aα−, bα−, Gamma(α = a, β = b)

ap reward, bp reward, ap switch, bp switch
mp Normal(µ = m, σ = sd)
sdp HalfNormal(µ = m, σ = sd)

Indiv. parameters β Gamma(α = aβ , β = bβ)
p Normal(µ = mp, σ = sdp)
α+ Beta(α = aα+, β = bα+)
α− Beta(α = aα−, β = bα−)
preward Beta(α = apreward, β = bpreward)
pswitch Beta(α = apswitch, β = bpswitch)

Age-based model
Parameter priors θsd, for any parameter θ HalfNormal(µ = m, σ = sd)

θm, for any parameter θ θint + θlin age+ θqua age
2

βint Gamma(α = a, β = b)
pint Normal(µ = m, σ = sd)
α+ int, α− int, preward int, pswitch int Beta(α = a, β = b)
θlin, θqua, for any parameter θ Normal(µ = m, σ = sd)

Indiv. parameters θ Normal(µ = θm, σ = θsd)

It is important to verify the convergence of the Markov-Chain Monte-1464

Carlo (MCMC) chains that are used in hierarchical Bayesian model fitting1465

to approximate the intractable posterior distributions over model parameters1466

given a dataset p(θ|data) (see section 4.5.3). To this aim, we calculated the1467

Markov-Chain error, effective sample size, and the R-hat statistic (suppl.1468

Table 6), using the functions provided by the PyMC3 toolbox (Salvatier et1469

al., 2016).1470
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Table 6: Convergence of MCMC chains used in hierarchical Bayesian model fitting. We
report the Markov-Chain error, effective sample size (n), and the R-hat statistic (R̂),
showing averages and ranges (min and max over all model parameters) for both winning
models.

Model MC error Effective n R̂

4-param. RL mean < 0.001 2, 517 1.001
range [< 0.001; 0.002] [155; 4, 261] [1.000; 1.015]

4-param. BI mean 0.002 816 1.001
range [< 0.001; 0.01] [281; 1, 576] [1.000; 1.004]

One of our main questions in this research was whether model parameter1471

changed with age. We used hierarchical Bayesian model fitting to address1472

this question, given the possibility to assess age-related differences in compu-1473

tational model parameters in an unbiased way using this method (see section1474

4.5.3). In order to estimate individual (and group-level) parameters in hier-1475

archical Bayesian model fitting, obtained MCMC samples are averaged; to1476

test particular parameter hypotheses (e.g., a parameter is greater than 0),1477

the proportion of samples is calculated in which the hypothesis is true, and1478

this proportion can be compared to a pre-determined p-value to assess sig-1479

nificance. Following this procedure, we determined whether the parameters1480

in the age-based model that controlled the effect of age on model parameters1481

showed significant differences from 0. Table 13 shows the results, revealing1482

significant linear and quadratic effects for some parameters.1483

6.3. Supplemental Results1484

6.3.1. Additional Behavioral Measures1485

We analyzed participant behavior in more detail than presented in the1486

main text. For example, we completed the assessment of performance by1487

analyzing the number of points won by each participant suppl. Fig. 7A, E),1488

we assessed flexibility by counting the trials it took participants between a1489

task switch to complete a behavioral switch (lower is faster; suppl. Fig. 7B,1490

F). We also assessed the effects of positive (suppl. Fig. 7D, H) and negative1491

((suppl. Fig. 7C, G) outcomes on subsequent actions, using the regression1492

analysis described in section 4.4, whose statistics are reported in Table 71493

below. Each behavior showed interesting age trajectories.1494
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Figure 7: Human behavior (A-D) and model validation (E-H) for additional behavioral
measures. (A, E) Number of points won by each participant. (A) Each dot represents
one participant, colors denote sex; the lines shows the rolling average, shades the standard
error, highlighting the performance peak in mid- to late adolescence. (E) Number of points,
averaged within age groups, showing human as well as model behavior for validation. (B,
F) Number of trials after task switch until participants reached performance criterion (2
correct responses). (C, D, G, H) Effect of previous negative (C, G) or positive (D, H)
outcomes on participants’ choices. “t− 1”: The assessed outcome occurred 1 trial before
choice, i.e., delay i = 1. Regression weights were tanh transformed for visualization. The
youngest age groups showed the lowest overall and asymptotic accuracy (main text Fig.
3C, F) and were most likely to switch after a single negative outcome (main text Fig. 3E,
suppl. Fig. 15B, middle). This explains why they were also fastest at switching (this
Figure, parts B and F).

69

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2020.07.04.187971doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.187971
http://creativecommons.org/licenses/by-nc/4.0/


Table 7: Logistic mixed-effect regression, predicting future actions from past actions and outcomes. The
number of predictors (i ≤ 8) was chosen as to provide the best model fit: AICi≤3: 31.046; AICi≤4:
31.013; AICi≤5: 31.001; AICi≤6: 30.981; AICi≤7: 30.963; AICi≤8: 30.962; AICi≤9: 30.966; AICi≤10:
30.964.

Predictor delay i β z p Sig.

Intercept -0.01 -0.74 0.46
Main effects
Age (lin.) -0.13 -1.40 0.16
Age (qua.) 0.12 1.30 0.19
Pos. outcome 1 2.19 68.09 < 0.001 ***

2 0.84 27.36 < 0.001 ***
3 0.24 7.87 < 0.001 ***
4 0.13 4.30 < 0.001 ***
5 -0.017 -0.54 0.58725
6 -0.017 -0.56 0.57548
7 -0.0035 -0.12 0.90613
8 -0.077 -2.77 0.0057 **

Neg. outcome 1 -0.73 -37.09 < 0.001 ***
2 -0.24 -10.64 < 0.001 ***
3 0.0055 0.22 0.82278
4 0.13 5.39 < 0.001 ***
5 0.12 4.87 < 0.001 ***
6 0.12 4.73 < 0.001 ***
7 0.13 5.32 < 0.001 ***
8 0.016 0.71 0.47857

Interaction age (lin.)
Pos. outcome 1 0.90 4.50 < 0.001 ***

2 0.84 4.19 < 0.001 ***
3 0.50 2.52 0.012 *
4 -0.069 -0.35 0.73
5 0.088 0.44 0.66
6 -0.38 -1.94 0.052
7 -0.18 -0.94 0.35
8 -0.27 -1.49 0.14

Neg. outcome 1 0.67 5.27 < 0.001 ***
2 -0.37 -2.48 0.013 *
3 0.16 1.03 0.30
4 -0.089 -0.55 0.58
5 0.012 0.07 0.94
6 0.066 0.41 0.68
7 0.011 0.07 0.94
8 -0.068 -0.47 0.63

Interaction age (qua.)
Pos. outcome 1 -0.64 -3.14 0.0017 **

2 -0.89 -4.41 < 0.001 ***
3 -0.38 -1.90 0.057
4 0.0020 0.01 0.99
5 -0.066 -0.33 0.74
6 0.36 1.80 0.072
7 0.15 0.75 0.456
8 0.29 1.62 0.11

Neg. outcome 1 -0.56 -4.34 < 0.001 ***
2 0.30 2.00 0.046 *
3 -0.16 -0.97 0.33
4 0.092 0.57 0.57
5 -0.0070 -0.04 0.97
6 -0.092 -0.57 0.57
7 -0.057 -0.35 0.72
8 0.064 0.44 0.66
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6.3.2. Comparing Behavioral Measures between Adolescents and Other Age1495

Groups1496

In terms of which behavioral measures, and compared to which specific1497

age groups, did adolescents perform better? For completeness, Table 8 re-1498

ports the results of t-tests comparing the age bin of 13-to-15-year-olds to1499

each other age group, in each performance measure. All tests were corrected1500

for multiple comparisons using the Bonferroni method.1501

Table 8: T-tests comparing participants in the 13-to-15-year-old age bin to all other age
groups in terms of overall accuracy (Fig. 3C), stay after apparent switch (Fig. 3E),
accuracy on asymptotic trials (Fig. 3F), and total points won (Fig. 2B). Each row shows
the comparison of mid- to late adolescence to one other age group.

Measure Age group t p sig.

Overall accuracy
8-10 6.76 < 0.001 ***
10-13 4.19 < 0.001 ***
15-17 2.58 0.052
18-24 2.77 0.030 *
25-30 1.64 0.51

Stay after app. switch
8-10 5.31 < 0.001 ***
10-13 2.86 0.026 *
15-17 1.00 1
18-24 1.29 1
25-30 1.91 0.30

Asympt. accuracy
8-10 3.74 0.0017 **
10-13 1.73 0.44
15-17 0.62 1
18-24 1.19 1
25-30 1.41 0.80

Total points
8-10 4.70 < 0.001 ***
10-13 1.68 0.48
15-17 1.77 0.40
18-24 4.64 < 0.001 ***
25-30 4.57 < 0.001 ***
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6.3.3. An Effect of Puberty?1502

As mentioned in the Discussion, our results show age differences in the1503

adaptation to stochastic and volatile environments, but do not identify a1504

biological mechanism that underlies these differences. One possibility are1505

puberty-related changes. To address this possibility, we asked participants1506

aged 8-17 to complete the pubertal developmental scale (PDS), a question-1507

naire that determines pubertal status based on questions about physical de-1508

velopment (Petersen et al., 1988), and to provide a 1.8 ml saliva sample,1509

which was analyzed for testosterone levels as a marker of pubertal develop-1510

ment, an hour after the start of the experiment and in-between tasks (for1511

detailed methods, see Master et al., 2020). We then investigated how perfor-1512

mance and model parameters changed with pubertal development, assessed1513

using these two measures. We found qualitatively similar developmental pat-1514

terns for puberty as for age (suppl. Fig. 9, 10, 11; suppl. Tables 10, 11),1515

making it difficult to disentangle the effects of both because pubertal mea-1516

sures were highly correlated with age (suppl. Fig. 8). To investigate whether1517

pubertal development had a unique effect after controlling for age, we also1518

tested puberty effects within age bins, but failed to observe differences that1519

were statistically significant (suppl. Fig. 12, 13, 14).1520

Nevertheless, some trends that emerged in the pubertal analyses, espe-1521

cially in pre-pubertal participants, deserve a more detailed investigation in1522

future research, potentially employing longitudinal designs for enhanced ex-1523

perimental control (Kraemer et al., 2000).1524
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Figure 8: A) Participant numbers for each age bin (top), PDS score bin (middle), and
Testosterone level bin (bottom). Pubertal measures were available for participants aged
8-17, and quantile bins were calculated in a similar way as for age, with one exception: For
PDS scores, all participants with score 1 were classified as pre-pubertal, and the binning
was only only conducted for remaining participants. Note that PDS and testosterone
ranges differed substantially between sexes. B) Correlations between age, testosterone
levels (Test.), and PDS questionnaire, for male and female participants aged 8-17. Stars
refer to p-values, using the same convention as in main text figures. For both males and
females, PDS scores and testosterone levels were highly correlated with age, as well as
with each other, making it difficult to assess these three factors separately.
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Figure 9: Behavior broken up by age (top row), PDS (middle row), and testosterone
bins (bottom row). Significance bars and stars show the results of planned t-tests. A)
Reproduced from main text Fig. 3. Planned t-tests compared 8-to-10-year-olds to 13-to-
15-year-olds. B) Same data, but broken up by PDS bins. T-tests compared pre-pubertal
to late-pubertal participants. C) Same data, broken up by testosterone bins. T-tests
compared participants in the first quantile to participants in the fourth quantile. The
figure shows that pubertal development (PDS, testosterone) was related to overall similar
developmental patterns as age. The main difference lay in the bin of peak performance:
Performance peaked in the third quantile based on age (13-15 years), but in the fourth
quantiles based on PDS and testosterone.
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Figure 10: Model parameters broken up by age (A), PDS (B), and testosterone bins (C),
showing that parameter trajectories varied slightly when analyzed through the lens of
puberty compared to age. A) Reproduced from main text Fig. 4 after removing adult
participants. B) Same data, broken up by PDS bins. Parameters p and β seem to show
step functions between mid- and late puberty, as opposed to the gradual change with age
(part A). Parameters α− and preward seemed to show a drastic step at puberty onset
(between “pre” and “early”), rather than the age-based U-shape. C) Same data, broken
up by testosterone bins. Parameters α−, preward, and pswitch seemed to show U-shaped
functions similar to age (elevated adult values are shown in main text Fig. 4), but minima
occurred in the fourth rather than the third quantile. “lin.” indicates whether a linear
effect of the measure of interest (PDS / testosterone) reached significance in a linear
regression model.
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Figure 11: Model parameter PCs broken up by age (left), PDS (middle), and testosterone
bins (right). Left: Reproduced from Fig. 5 after removing adult participants. Middle
(right) row: same data, but broken up by PDS (testosterone) bins. This figure shows that
in terms of parameter PCs, trajectories were relatively similar between pubertal mea-
sures and age. Slight differences included a more unique role of pre-pubertal participants,
especially for PC2 in terms of PDS and PC3 for testosterone.
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Figure 12: Effect of pubertal status on four performance measures, controlling for age.
Each column shows one age group, colors denote sex. Pubertal status was determined
by (A) PDS questionnaire, or (B) salivary testosterone. We sought to examine the effect
of puberty after controlling for age. To this end, we investigated the continuous effects
of puberty within each age bin, to eliminate—as much as possible—confounds with age
(Master et al., 2020). A) In concordance with the finding that behavior peaked in the
third age bin (13-15 years), but in the fourth PDS bin (75-100th percentile; suppl. Fig.
9), most performance measures increased qualitatively with respect to PDS in the third
and fourth age bins (center-right and right-most column). Nevertheless, this pattern was
difficult to interpret because pubertal status was heavily confounded with sex in the fourth
age bin, such that girls scored higher on the PDS questionnaire than boys of the same age,
a typical pattern that is caused by sex differences in pubertal maturation. It is therefore
unclear whether the performance increase within the fourth age bin (right-most column)
was driven by PDS scores or by sex. Stay after (pot.) switch trials showed a qualitative
decrease with PDS score in 10-13 year olds, was constant in mid- to late adolescence, and
showed a qualitative increase in 15-to-17-year-olds. This could indicate a weak U-shaped
effect or might result from experimental noise. B) Same data, assessing age-controlled
effects of testosterone on performance measures.
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Figure 13: Effects of PDS scores on model parameters, controlling for age. Each column
shows one age group, each row one parameter, and colors denote sex. Pubertal devel-
opment did not show significant positive relationships with choice parameters p and β,
which we might predict if pubertal development was a driving mechanism in growth for
these parameters between ages 8-18 (see also suppl. Table 9 and suppl. Fig. 14). In
terms of learning parameters, pubertal development also did not show significant nega-
tive relationships with α− and α+ (RL), or preward and pswitch (BI), which we might
predict if pubertal onset was driving the decrease of these parameters between ages 8-
15. If anything, we saw the opposite pattern in males: α−, preward, and pswitch showed
a qualitatively positive relationship with PDS scores and testosterone (suppl. Fig. 14)
in 10-to-13-year-olds, and a qualitatively negative relationship with PDS in mid- to late
adolescence. Overwhelmingly, these relationships were not statistically significant (suppl.
Table 9). Trend relationships within mid- to late adolescence included a marginal effect of
PDS on α+ (suppl. Table 9). Note, however, that statistical tests were not corrected for
multiple comparisons, making it possible that these results were observed by chance, and
should thus be interpreted carefully. The cross-sectional design of our experiment may
limit our ability to detect pubertal effects (Kraemer et al., 2000). It is possible that ex-
periments with greater power, longitudinal studies, and studies of hormone manipulation
may further inform these results.
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Figure 14: Effects of salivary testosterone levels on model parameters, controlling for age.
Each column shows one age group, each row one parameter, and colors denote sex. Trend
relationships within mid- to late adolescence included a marginal effect of sex on pswitch
in the testosterone model, and a significant interaction between sex and testosterone on
pswitch (suppl. Table 9). Note, however, that statistical tests were not corrected for
multiple comparisons, making it possible that these results were observed by chance, and
should thus be interpreted carefully.
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Table 9: Statistics of regression models testing effects of puberty within the age bin 13-
15 years. This bin was chosen because it contained participants across the full range of
pubertal development.

Outcome Predictor β p Sig.

Testosterone
p (RL) Test. -0.00096 0.57

Sex 0.062 0.65
Interaction 0.0011 0.58

β (RL) Test. -0.022 0.23
Sex 1.86 0.22
Interaction 0.034 0.13

α− Test. -0.00033 0.69
Sex 0.047 0.48
Interaction 0.0014 0.16

α+ Test. -0.00074 0.47
Sex 0.0026 0.97
Interaction 0.00055 0.65

p (BF) Test. -0.00052 0.43
Sex 0.045 0.40
Interaction 0.00083 0.30

β (BF) Test. -0.018 0.12
Sex 1.12 0.21
Interaction 0.021 0.12

preward Test. -0.00038 0.31
Sex 0.0012 0.97
Interaction 0.00027 0.54

pswitch Test. 0.00053 0.10
Sex 0.047 0.078 ’
Interaction 0.00097 0.015 *

PDS
p (RL) PDS 0.0044 0.95

Sex 0.18 0.52
Interaction 0.079 0.43

β (RL) PDS 0.87 0.30
Sex 2.37 0.45
Interaction 0.67 0.55

α− PDS -0.024 0.52
Sex 0.071 0.61
Interaction 0.063 0.21

α+ PDS 0.075 0.092 ’
Sex 0.21 0.21
Interaction 0.051 0.39

p (BF) PDS 0.011 0.69
Sex 0.084 0.45
Interaction 0.032 0.43

β (BF) PDS 0.62 0.21
Sex 1.96 0.30
Interaction 0.64 0.34

preward PDS -0.0080 0.63
Sex 0.023 0.72
Interaction 0.022 0.33

pswitch PDS -0.010 0.51
Sex 0.010 0.86
Interaction 0.0057 0.82
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Table 10: Statistics of mixed-effects regression models predicting performance measures
from sex (male, female) and puberty measures (PDS questionnaire / salivary testosterone).
Only participants aged 8-17 were included in this analyses because pubertal measures
were only available for them. Overall accuracy, stay after potential (pot.) switch, and
asymptotic performance were modeled using logistic regression, and z-scores are reported.
Log-transformed response times on correct trials were modeled using linear regression,
and t-values are reported. * p < .05; ** p < .01, *** p < .001. Within the age bins that
contained participants across the entire range of pubertal status (10-13, 13-15, and 15-17
years), few significant effects of PDS (part A) or salivary testosterone levels (part B) were
observed, possibly including some that occurred by chance.

Performance measure (Figure) Predictor β z / t p sig.

Overall accuracy (9B, left) PDS 0.069 2.9 0.0038 **
Sex 0.017 0.37 0.71

Response times (9B, 2nd-to-left) PDS -0.13 -4.9 < 0.001 ***
Sex 0.25 4.8 < 0.001 ***

Stay after (pot.) switch (9B, 2nd-to-right) PDS 0.48 3.5 < 0.001 ***
Sex 0.76 2.9 0.0036 **

Asymptotic performance (9B, right) PDS 0.25 4.2 < 0.001 ***
Sex 0.098 0.9 0.39

Overall accuracy (9C, left) Test. < 0.0001 1.2 0.24
Sex 0.032 0.69 0.49

Response times (9C, 2nd-to-left) Test. -0.0034 -5.1 < 0.001 ***
Sex 0.010 1.9 0.049 *

Stay after (pot.) switch (9C, 2nd-to-right) Test. 0.012 3.5 < 0.001 ***
Sex 0.27 1.0 0.29

Asymptotic performance (9C, right) Test. 0.0034 2.2 0.029 *
Sex 0.12 1.0 0.34
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Table 11: Parameter estimates and statistics from hierarchical model fitting, for pubertal
predictors (PDS questionnaire, salivary testosterone), for participants under the age of 18.
Significance tests against 0 for parameters whose range includes 0, NA otherwise.

Model Parameter µ+−sd 95% CI p-value sig.

PDS
4-param. BI pint 0.11 +−0.013 [0.082, 0.13] < 0.001 ***

psd 0.089 +−0.0085 [0.073, 0.11] 0 NA
plin 0.022 +−0.0096 [0.0039, 0.041] 0.0086 **
βint 3.81 +−0.26 [3.31, 4.34] 0 NA
βsd 1.25 +−0.14 [0.98, 1.53] 0 NA
βlin 0.31 +−0.16 [−0.018, 0.62] 0.028 *
preward int 0.88 +−0.019 [0.84, 0.92] 0 NA
preward sd 0.060 +−0.011 [0.038, 0.082] 0 NA
preward lin < 0.001 +−0.010 [−0.019, 0.020] 0.48 –
pswitch int 0.16 +−0.016 [0.13, 0.20] 0 NA
pswitch sd 0.067 +−0.0070 [0.053, 0.080] 0 NA
pswitch lin −0.0098 +−0.0099 [−0.029, 0.0099] 0.16 –

4-param. RL pint 0.25 +−0.026 [0.20, 0.30] < 0.001 ***
psd 0.24 +−0.019 [0.20, 0.28] 0 NA
plin 0.039 +−0.024 [−0.0093, 0.087] 0.054 –
βint 3.15 +−0.13 [2.90, 3.41] 0 NA
βsd 1.37 +−0.13 [1.12, 1.62] 0 NA
βlin 0.41 +−0.13 [0.17, 0.66] < 0.001 ***
α− int 0.60 +−0.016 [0.56, 0.62] 0 NA
α− sd 0.16 +−0.013 [0.14, 0.18] 0 NA
α− lin −0.0155 +−0.017 [−0.048, 0.019] 0.18 –
α+ int 0.66 +−0.028 [0.61, 0.72] 0 NA
α+ sd 0.35 +−0.034 [0.023, 0.15] 0 NA
α+ lin 0.0085 +−0.027 [−0.048, 0.059] 0.38 –

Testosterone
4-param. BI pint 0.11 +−0.013 [0.081, 0.13] < 0.001 ***

psd 0.089 +−0.0084 [0.073, 0.11] 0 NA
plin 0.02 +−0.010 [0.0023, 0.040] 0.015 *
βint 3.78 +−0.26 [3.29, 4.31] 0 NA
βsd 1.28 +−0.14 [1.00, 1.55] 0 NA
βlin 0.12 +−0.17 [−0.20, 0.45] 0.22 –
preward int 0.88 +−0.019 [0.85, 0.92] 0 NA
preward sd 0.056 +−0.011 [0.035, 0.077] 0 NA
preward lin −0.0135 +−0.010 [−0.033, 0.0081] 0.90 –
pswitch int 0.16 +−0.016 [0.13, 0.19] 0 NA
pswitch sd 0.067 +−0.0069 [0.054, 0.081] 0 NA
pswitch lin −0.0082 +−0.010 [−0.029, 0.012] 0.22 –

4-param. RL pint 0.24 +−0.025 [0.20, 0.29] < 0.001 ***
psd 0.24 +−0.0195 [0.20, 0.28] 0 NA
plin 0.038 +−0.025 [−0.0091, 0.190] 0.066 –
βint 3.16 +−0.14 [2.89, 3.43] 0 NA
βsd 1.42 +−0.13 [1.17, 1.69] 0 NA
βlin 0.28 +−0.13 [0.037, 0.54] 0.013 *
α− int 0.60 +−0.017 [0.55, 0.62] 0 NA
α− sd 0.16 +−0.013 [0.13, 0.18] 0 NA
α− lin −0.035 +−0.018 [−0.070,−0.0016] 0.24 –
α+ int 0.66 +−0.028 [0.61, 0.72] 0 NA
α+ sd 0.10 +−0.030 [0.045, 0.16] 0 NA
α+ lin −0.017 +−0.026 [−0.066, 0.036] 0.015 *
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6.3.4. Qualitative Model Fit of RL and BI1525

To test the qualitative fit of our models, we simulated behavior using fitted1526

parameters (from the age-free model; section 4.5.3) and checked whether the1527

simulated behavior was able to reproduce the patterns of interest in the1528

human data (Blohm et al., 2020; Palminteri et al., 2017; Wilson and Collins,1529

2019). We found that RL and BI models replicated human behavior and1530

age differences, including linear increase in staying after positive outcomes1531

(“+ +” and “- +”), and the inverse-U shape on potential switch trials (red1532

arrow; “+ -” condition). Qualitative (non-significant) sex differences were1533

also captured (suppl. Fig. 15B). Both models also captured quicker switching1534

on switch trials in younger (light green) compared to older participants (blue1535

and grey), and best performance on asymptotic trials in adolescents (green-1536

blue; suppl. Fig. 15A). In summary, both the winning RL and BI model1537

captured human learning curves, as well as sex and age differences, very1538

closely. Simpler, non-winning models, on the other hand, failed to capture1539

human characteristics (suppl. Fig. 17, 16).1540
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Figure 15: A) Behavior in response to switch trials. Colors refer to age groups, red arrows
show switch trials, grey bars trials of asymptotic performance. B) Stay probability in
response to outcomes 1 and 2 trials back.

To asses effects of age groups, we tested differences in posterior samples1541

of the age-free model. Statistics are shown in suppl. Table 12.1542
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Table 12: Parameter differences between specific age groups. p-values were obtained by
assessing means for each parameter for three age groups (8-10, 13-15, and 18-30) and
show in how many MCMC samples the group mean of 8-10 year olds (18-30 year olds)
was smaller than the group mean of mid- to late adolescence.

Parameter Compared groups p-value sig.

α− 8-10 vs 13-15 0 ***
13-15 vs 18-30 0.0045 **

preward 8-10 vs 13-15 0.019 *
13-15 vs 18-30 0.078 ’

pswitch 8-10 vs 13-15 0.023 *
13-15 vs 18-30 0.13

To evaluate continuous age effects in a statistically sound way, we used1543

a hierarchical Bayesian model that explicitly modeled age effects (the “age-1544

based” model; Fig. 3B). Significant effects (suppl. Table 13) are shown as1545

lines in suppl. Figures 17 and 16.1546
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Table 13: Parameter estimates and statistics from hierarchical model fitting. Significance
tests against 0 for parameters whose ranges include 0, NA otherwise.

Model Parameter µ+−sd 95% CI p-value sig.

4-param. RL pint 0.34 +−0.027 [0.29, 0.39] < 0.001 ***
psd 0.24 +−0.015 [0.21, 0.26] 0 NA
plin 0.11 +−0.020 [0.075, 0.15] < 0.01 **
pqua −0.050 +−0.020 [−0.089,−0.012] 0.0051 **
βint 3.48 +−0.15 [3.18, 3.79] 0 NA
βsd 1.48 +−0.10 [1.29, 1.69] 0 NA
βlin 0.36 +−0.11 [0.14, 0.57] < 0.001 ***
βqua −0.22 +−0.11 [−0.42,−0.015] 0.020 *
α− int 0.60 +−0.018 [0.56, 0.63] 0 NA
α− sd 0.16 +−0.0093 [0.14, 0.18] 0 NA
α− lin 0.011 +−0.015 [−0.017, 0.040] 0.77
α− qua 0.013 +−0.014 [−0.013, 0.040] 0.84
α+ int 0.73 +−0.034 [0.66, 0.79] 0 NA
α+ sd 0.081 +−0.021 [0.042, 0.12] 0 NA
α+ lin 0.055 +−0.024 [0.0045, 0.10] 0.015 *
α+ qua −0.015 +−0.021 [−0.055, 0.027] 0.25

4-param. BI pint 0.13 +−0.013 [0.11, 0.16] < 0.001 ***
psd 0.081 +−0.0061 [0.069, 0.093] 0 NA
plin 0.04 +−0.008 [0.023, 0.054] < 0.001 ***
pqua −0.02 +−0.007 [−0.038,−0.010] < 0.001 ***
βint 4.27 +−0.27 [3.76, 4.83] 0 NA
βsd 1.39 +−0.12 [1.16, 1.64] 0 NA
βlin 0.39 +−0.17 [0.054, 0.72] 0.011 *
βqua < 0.001 +−0.16 [−0.32, 0.30] 0.49
preward int 0.87 +−0.016 [0.84, 0.91] 0 NA
preward sd 0.064 +−0.0087 [0.046, 0.081] 0 NA
preward lin 0.0045 +−0.0096 [−0.014, 0.024] 0.68
preward qua −0.0017 +−0.0085 [−0.018, 0.015] 0.43
pswitch int 0.16 +−0.014 [0.14, 0.19] 0 NA
pswitch sd 0.071 +−0.0053 [0.062, 0.083] 0 NA
pswitch lin −0.0066 +−0.0095 [−0.025, 0.012] 0.24
pswitch qua 0.014 +−0.0082 [−0.0013, 0.030] 0.042 *
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Figure 16: Qualitative fit of different versions of the RL model. Model behavior is shown
in the same way as human behavior in suppl. Fig. 15. A-B) Behavior of simulations from
the basic, 2-parameter version, with free parameters α and β. Lacking counterfactual
updating and the ability to differentiate positive and negative outcomes, the model was
unable to capture the shape of human learning curves and age differences. Colors denote
age groups, red arrow (potential) switch trials, and grey bars asymptotic trials, as in
suppl. Fig. 15. C-D) Behavior of simulations from the winning, 4-parameter RL model,
in which free parameters β, p, α+, and α− were fitted to participants using hierarchical
Bayesian model fitting (age-less model; see section 4.5.3). E) Fitted parameters of each
individual. Dashed lines show significant age differences (Table 13). This is the same data
as summarized in Fig. 4A-D.
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Figure 17: Qualitative fit of different versions of the BI model. Model behavior is shown in
the same way as human behavior in suppl. Fig. 15. A-B) Behavior of simulations from the
basic, 0-parameter version, in which truthfully preward = 0.75 and pswitch = 0.05. Lacking
free parameters, the model predicted the same behavior for all participants, being unable
to capture age differences. C-D) Behavior of simulations from the winning, 4-parameter
version of the BI model, in which free parameters β, p, preward, and pswitch were fitted to
participants using hierarchical Bayesian model fitting. To avoid double-dipping into age
differences when visualizing the model, we fitted the model without access to participants’
age (Methods). E) Fitted parameters of each individual, based on the same model. Dashed
lines show age differences when significant (suppl. Table 13). This is the same data as
summarized in Fig. 4.

6.3.5. Generate and Recover Model Parameters (Fig. 5A)1547

In order to assess whether the RL and BI models made the same or1548

different behavioral predictions, we conducted a generate-and-recover test1549

(section 2.3): Artificial behavior is simulated from both models, and the1550

simulated datasets are fitted using both models. Specifically, we simulated1551

one dataset per participant from each model (RL and BI), using the model1552

parameters fitted for the participant (age-free model). We then fitted the1553

simulated data with the RL and BI model (age-free model). We finally1554
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calculated WAIC scores and standard errors using PyMC3 (Salvatier et al.,1555

2016). If both datasets are fitted equally well by both models, they are1556

not distinguishable—the behavior they each produce is so similar that both1557

models capture it equally well. If one model fits both behavioral datasets1558

better, it is more appropriate and subsumes the other. If, however, each1559

model fits the artificial dataset better that was generated by its own class1560

(e.g., RL ↔ RL), both models must produce different behaviors to explain1561

why the corresponding model captures it more neatly. This pattern was the1562

case for our models: Based on human-fitted parameter values for simulation1563

(Heathcote et al., 2015; Wilson and Collins, 2019), each model fit its own1564

simulated dataset better than to the other model’s (Fig. 5A). This confirms1565

that the winning RL and BI models were distinguishable, i.e., predicted1566

different behaviors.1567

Comparable results were obtained when using the more classical generate-1568

and-recover method of assessing the number of best-fitted models based on1569

maximum likelihood (suppl. Fig. 18), rather than hierarchical Bayesian1570

model fit (WAIC; Fig. 5A).1571
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Figure 18: Number of simulated datasets (out of 100) of each model (y-axis) that were
best fit using each of the two models (RL and BI; x-axis). Lighter colors indicate larger
fractions and highlight the diagonal of the confusion matrix, showing that RL simulations
were best recovered by the RL model and BI simulations by the BI model, using maximum
likelihood.

6.3.6. Trial Types of Behavioral Difference for RL versus BI1572

Further analyses showed that the differences between RL and BI could1573

be traced to specific types of decision situations: The RL model is more1574

likely to stay with a choice after receiving two consecutive rewards than after1575

receiving just a single reward because the action value is increased twice1576

in the former case, but only once in the latter. To assess this, we used a1577
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t-test to compare the probability of RL model simulations (based on human-1578

fitted parameters) to stay between both cases (t = 2.6, p = 0.010). The BI1579

model, however, is equally likely to stay in both cases (t = −0.5, p = 0.6)1580

because a single reward already leads to maximally certain state inference,1581

and another reward cannot increase this probability further. This analysis1582

provides a concrete example of how the RL and BI models differ in terms of1583

behavior, confirming that they do not make identical predictions.1584

6.3.7. Between-Model Parameter Similarities, Assessed Using Regression (Fig.1585

5C)1586

The correlation analysis in section 2.4 showed that both models captured1587

similar processes using different individual parameters, but similar processes1588

might also be captured in the interplay between several parameters. To1589

investigate this possibility, we used linear regression to evaluate how well1590

we could predict each parameter based on the parameters and one-way pa-1591

rameter interactions of the other model. This analysis revealed that 7 of 81592

parameters could be predicted almost perfectly (Fig. 5C), showing that the1593

interplay between parameters in one model captured almost all variance in1594

almost every parameter in the opposite model. In other words, fitting the1595

RL model to participants’ data allowed us to nearly perfectly predict par-1596

ticipants’ BI parameters, without fitting the BI model. Parameter α+ (RL)1597

was again an exception, with only small amounts of variance captured by1598

BI parameters, suggesting that it reflected mechanisms that were unique to1599

the RL model. These mechanisms might increase the versatility of the RL1600

model, and possibly account for the slightly better numerical fit of the RL1601

model to human (Table 2) and simulated data (Fig. 5A). In sum, in ad-1602

dition to significant similarities between individual parameters, the RL and1603

BI models showed even greater similarities in terms of cognitive processes1604

that were captured in the interactions between multiple parameters. This1605

suggests that both models captured very similar cognitive processes, albeit1606

without reaching identity (e.g., parameter α+).1607

We ran eight different regression models, predicting each parameter from1608

the 4 parameters of the opposite model, as well as their one-way interactions,1609

using linear regression in R (RCoreTeam, 2016). Fig. 5C shows the explained1610

variance (R2) of each model.1611
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6.3.8. Details on the PCA Analysis1612

We conducted a PCA on the joint parameter space of our winning RL and1613

BI models in the hope of identifying model-general factors (PCs) that explain1614

age differences in cognitive processing. The crucial step in this analysis is to1615

interpret the resulting PCs. PCs are often interpreted through the weights1616

(factor loadings) that each raw feature (model parameter) has on the PC (a1617

PC is just a linear combination of raw features). In our case, this approach1618

was impeded by the fact that model parameters are themselves difficult to1619

interpret because their roles are influenced by many factors, including the1620

underlying task (Eckstein, Master, et al., 2021) and computational model1621

(Sugawara and Katahira, 2021), which makes them less suitable to anchor1622

the meaning of PCs.1623

For this reason, we devised the following simulation approach: We simu-1624

lated data from our computational models based on the obtained principal1625

components (PCs) in order to visualize the role of each PC. It is common1626

practice to simulate data based on small or large values of a parameter (e.g.,1627

smaller or larger decision noise β) to assess the role of this parameter for1628

model behavior (e.g., better or worse performance). We similarly simulated1629

data based on smaller or larger values of each PC to clarify the precise role1630

of each PC: We calculated two sets of parameters for each PC, one that1631

represented high levels of this PC (“plus”), and one that represented low1632

values (“minus”). Low levels were determined by subtracting 4 times the1633

inverse-z-scored factor loading of a PC (center) from the population mean of1634

each parameter; low levels were determined by adding it. Suppl. Table 141635

shows these two sets of parameters. (For PC2 of the BI model, we added1636

and subtracted 2 times the factor loading instead, to ensure preward < 1.)1637

We then simulated behavior based on the resulting parameters to assess the1638

effect of low versus high values of each PC.1639
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Table 14: Parameters used in suppl. Fig. 19 to visualize the role of PCs.

p (RL) β (RL) α− α+ p (BI) β (BI) preward pswitch

PC1 (plus) 0.57 6.95 0.45 0.87 0.26 5.67 0.84 0.07
PC1 (minus) 0.04 0.10 0.80 0.65 0.02 1.72 0.98 0.20
PC2 (plus) 0.06 2.65 0.31 0.64 0.10 2.98 0.84 0.12
PC2 (minus) 0.54 4.41 0.94 0.89 0.18 4.41 0.98 0.15
PC3 (plus) 0.76 0.49 0.57 0.74 0.29 1.87 0.85 0.19
PC3 (minus) -0.16 6.56 0.68 0.78 -0.01 5.52 0.97 0.08
PC4 (plus) 0.15 1.68 0.58 1.19 0.10 3.06 0.88 0.14
PC4 (minus) 0.45 5.38 0.67 0.33 0.18 4.33 0.94 0.13
Parameter mean 0.30 3.53 0.62 0.76 0.14 3.69 0.91 0.13

This analysis revealed that PC1, capturing the largest proportion of pa-1640

rameter variance, reflected a broad measure of behavioral quality: Low values1641

of PC1 led to low performance and lacked differentiation between different1642

outcome histories, while high values led to high performance and efficient1643

responses that were in tune with outcome histories (suppl. Fig. 19A; suppl.1644

Table 14). PC1 factor loadings revealed that low behavioral quality was re-1645

lated to larger-than-average values of α− (RL), which likely led to premature1646

switching due to the over-sensitivity to recent negative outcomes. Low behav-1647

ioral quality was also due to larger-than-average values of preward and pswitch1648

(BI), which created overly deterministic and overly volatile mental models1649

of the task; whereas an overly deterministic task model leads to pre-mature1650

switching after negative outcomes (because negative outcomes only arise in1651

deterministic tasks when contingencies have switched), and an overly volatile1652

task model leads to a reduced reliance on past outcomes (because frequent1653

task switches mean that past information is soon outdated; suppl. Fig. 19A,1654

center). High behavioral quality, on the other hand, was caused by larger-1655

than-average values of α+ (RL), which underlies the quick learning from1656

positive outcomes, and therefore reliable staying behavior after (diagnostic!)1657

outcomes. High behavioral quality was also caused by larger-than-average1658

values of p (RL and BI), which increased choice persistence, facilitating rep-1659

etition of non-rewarded actions; and of larger-than-average values of β (RL1660

and BI), which reduced decision noise, allowing for a more direct translation1661

of beliefs (BI) or action values (RL) into choices.1662

PC2 represented integration time scales: Low values of PC2 (short time1663

scales) led to win-stay behavior—defined as immediate switching after neg-1664
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ative outcomes and consistent staying after positive outcomes—, which re-1665

sulted in poor performance on asymptotic trials (suppl. Fig. 19B, left).1666

High values of PC2, on the other hand, led to increasingly slow behavioral1667

switches, resulting in poor performance on switch trials (suppl. Fig. 19B,1668

right). In order to achieve high performance on both asymptotic and switch1669

trials, participants needed to find the appropriate balance between both ends1670

on this spectrum. PC3 captured responsiveness to task outcomes: Low val-1671

ues of PC3 led to a lack of differentiation between outcome histories and1672

slow behavioral switching (suppl. Fig. 19C, right), whereas high values led1673

to extremely consistent win-stay-lose-shift behavior (suppl. Fig. 19C, left).1674

PC4 uniquely captured RL parameter α+, i.e., the tension between slow1675

versus fast updates when integrating positive outcomes (suppl. Fig. 19D).1676

Suppl. Figures 19B, C, and D (center) show which model parameters drove1677

the behavior of PC2-4.1678
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Figure 19: Determining the role of each PC for behavior. The figure shows simulated
behavior based on low (left) and high (right) values of each PC. Parts A-D) show the
results for PCs1-4.
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To address the main question of our study, we also assessed age differences1679

in PCs. Table 15 shows the results of this analysis.1680

Table 15: Results of t-tests on PC2 and PC4. df: Welch-adjusted degrees of freedom.

Comparison t df p Sig.

PC2 (8-15 vs. 15-30) 3.44 266.2 < 0.001 ***
PC4 (8-13 vs. 13-17) 2.28 176.8 0.047 *
PC4 (13-17 vs. 18-30) 2.49 176.6 0.028 *

6.4. Supplemental Discussion1681

6.4.1. Potential Effect of Recruitment on Results1682

As explained in the Discussion, it is not impossible that recruitment dif-1683

ferences affected our results. However, speaking against this possibility, re-1684

cruitment processes were identical for children, adolescents, and community1685

adults, limiting the possibility that the observed age differences were due to1686

recruitment. The only age group that was recruited differently were college1687

students (see section 4.1); however, given the competitive nature of the col-1688

lege, we would expect college students to perform better than adolescents1689

and not worse. Furthermore, removing college students does not affect the1690

observed behavioral peak in adolescence. Lastly, the adolescent peak was spe-1691

cific to the current task, and did not arise in two structurally-similar learning1692

tasks participants performed in the same session (Master et al., 2020; Xia et1693

al., 2020; for side-by-side comparison, see Eckstein, Master, et al., 2021; Eck-1694

stein, Wilbrecht, et al., 2021). Both other tasks lacked the reversal aspect,1695

suggesting that adolescents are specifically adapted to reversal, in accordance1696

with the similarity in findings in van der Schaaf et al., 2011, a deterministic1697

reversal task.1698

6.4.2. Different Models at Different Ages?1699

Previous studies have shown that participants of different ages some-1700

times are better fitted by different computational models, suggesting that1701

they might employ different cognitive mechanisms (e.g., Palminteri et al.,1702

2016). Could the same apply to our study? For example, previous stud-1703

ies have reported age-based increases in “model-based” (Decker et al., 2016)1704

and counterfactual learning (Palminteri et al., 2016), which might reflect an1705

improved mental task model. Accordingly, one might expect that in our1706
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study, children’s cognitive processes would resemble a simple incremental1707

RL model, whereas adolescents’ would resemble the mental-model-based—1708

and more optimal—BI model. Even though this is a justified question, it is1709

unlikely that different models applied to different age groups in our study,1710

given that both models captured the behavior of all age groups equally well in1711

model validation. Compared to previous studies that showed age differences1712

in model types, the greater flexibility of our models in terms of the number1713

of free parameters and augmentations might have allowed them to capture1714

more age differences, obliterating the need to change the model itself.1715
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