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Highlights 20 

• Coastal acid sulfate soil (CASS) is a global environmental issue. 21 

• Microbial activity can be modelled quantitatively to predict CASS 22 

remediation. 23 

• Sulfate-reducing prokaryotes (SRP) play a key role in CASS remediation. 24 

• Predation on SRP with cultured representatives occurred during early wet-up. 25 

• The above mechanism leads to increased activity among uncultured SRP. 26 

 27 

 28 

Abstract 29 

Microbial iron and sulfate reduction are the primary drivers of coastal acid sulfate soil 30 

(CASS) passive bioremediation schemes.  Microbial sulfate reduction is the limiting 31 

step for pyrite formation, a desirable endpoint for CASS remediation.  Little is 32 

known, however, about the impacts of microbial activity or species interaction on 33 

long-term iron and sulfur cycling in CASS ecosystems. Using a combination of 34 

molecular biology, geochemical speciation and artificial intelligence-powered 35 

computational modeling, we deduced from microbial activity patterns (RNA-based) 36 

and geochemical measurements a best-fit equation for predicting biogeochemical 37 

pyrite formation in a model CASS ecosystem. In addition to the time-dependent 38 

activities of key sulfate-reducing prokaryotic taxa (e.g. Desulfobacteraceae), this 39 

equation required methylotrophs (Methylobacteriaceae) and bacterial predators 40 

(Bacteriovorax) for best-fitting, suggesting that specific microbial interactions exert 41 

meaningful influences on CASS bioremediation efficiency.  Our findings confirmed 42 

that CASS microorganisms act as an assemblage in response to rewetting by 43 

tidewater.  Accurate predictions of long-term CASS bioremediation efficiency require 44 
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modelling of complex and interdependent relationships between geochemical 45 

speciation and microbial activity. 46 

 47 

Introduction 48 

In some coastal regions, human activity has accelerated the oxidation of naturally 49 

formed iron-sulfide minerals, triggering soil acidification and remobilization of heavy 50 

metals (Minh et al., 1997; Moreau et al., 2013; Sundström and Åström, 2002; White 51 

et al., 2007).  These coastal acid sulfate soil (CASS) systems present an 52 

environmental problem worldwide (Ljung et al., 2009).  More than $20 million CAD 53 

have been spent in the last century with an additional $7 million CAD system built in 54 

Halifax International Airport to control the acidic runoff (Hicks, 2003).  There are 55 

about 3,000 hectares of farmland in Malaysia reported as acid sulfate soil, and ground 56 

magnesium limestone treatment costs around $1,130-3,820 USD per 10-hectare farm 57 

annually (Azman et al., 2014).  The Australia Centre for International Agricultural 58 

Research spent around $0.85 million AUD on investigating acid sulfate soil 59 

remediation in Indonesia (project no. FIS/1997/022) (Myler, 2010).  Australia is 60 

facing a $10 billion AUD “legacy” from acid sulfate soil (Fitzpatrick, 2003), even 61 

though Australian acid sulfate soil is only about 18% of the total 17 million hectare 62 

acid sulfate soils worldwide (Ljung et al., 2009). 63 

 64 

Tidal inundation is one established strategy for remediating CASS (Powell and 65 

Martens, 2005), whereby flooding with seawater is used to neutralize acidity and 66 

induce (re)precipitation of metal-sulfides (Burton et al., 2007; Bush et al., 2004; 67 

Moreau et al., 2013).  The driving force in this approach relies on the metabolic 68 

activity of anaerobic microorganisms that contribute up to 74% of the alkalinity in 69 
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lime-assisted tidal treatment systems (Johnston et al., 2012).  Anaerobic microbial 70 

“guilds”, such as iron- and sulfate-reducing prokaryotes (IRP and SRP, respectively) 71 

commonly use organic substrate to metabolise and generate Fe2+ and HS-.  As Fe2+ 72 

and biogenic HS- react, FeS forms as a poorly crystalline metastable phase (Meysman 73 

and Middelburg, 2005); conversion of this FeS to pyrite (FeS2) via S0 addition can 74 

then occur (Gagnon et al., 1995; Schoonen, 2004).  The primary goal of CASS 75 

remediation is to neutralize acidity, and ultimately to re-precipitate iron sulfides 76 

(Burton et al., 2007; Bush et al., 2004), potentially as greigite or pyrite (Moreau et al., 77 

2013), which are theoretically more stable phases (Billon, 2001).   78 

 79 

The East Trinity wetlands (Cairns, Queensland, Australia) is a CASS system that 80 

experienced tidal inundation treatments since 2002 (Johnston et al., 2009b), which led 81 

to soil neutralization and heavy metal immobilization below the water table (Burton et 82 

al., 2011).  In the East Trinity wetlands, microbial sulfate reduction only accounts for 83 

7-13% of total alkalinity, compared to a 50-64% alkalinity increase from microbial 84 

iron reduction (Johnston et al., 2012).  Previous studies have shown that biogenic HS- 85 

is the limiting factor for pyrite formation in CASS ecosystems (Burton et al., 2011; 86 

Keene et al., 2010).  Therefore, microbial sulfate reduction is the rate-determining 87 

step in CASS bioremediation. 88 

 89 

In this study, we aimed to decrypt factors that influence microbial sulfate reduction in 90 

the East Trinity wetlands.  SRP are not only the main driver of CASS bioremediation, 91 

but also play a vital role in the global carbon cycle.  Furthermore, iron sulfide 92 

biominerals that precipitate as an indirect results of SRP activity can adsorb organic 93 

carbon and persist for years in anaerobic conditions  (Picard et al., 2019).  In our 94 
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previous study, we found that environmental organic substrates are generally not a 95 

limiting factor for microbial sulfate reduction (Ling et al., 2015).  However, microbial 96 

activity and species relative abundance have been shown to vary significantly in 97 

response to rewetting by tidewater (Ling et al., 2018).  Therefore, we hypothesize that 98 

other microbial populations may impact SRP metabolic efficiency during different 99 

dry-down and wet-up (i.e. tidal) stages.   100 

 101 

Previous studies have applied artificial intelligence methods to predicting: microbial 102 

diversity in soils (Park et al., 2011), net primary productivity in oceans (D’Alelio et 103 

al., 2020), cyanobacteria blooms in a freshwater lake (Tromas et al., 2017), 104 

nitrification processes in a sludge plant (Awolusi et al., 2016), and bioreactor 105 

performance in treating wastewater (Lesnik and Liu, 2017).  Here, we test the 106 

significance of co-occurring environmental parameters and microbial network 107 

patterns in the East Trinity CASS system, and apply artificial intelligence modelling 108 

to predict the effects on pyrite formation.  Similar to previous studies that focused on 109 

grassland microbial responses to rainfall or freshwater wetting leading to a peak in 110 

CO2 generation (Aanderud et al., 2015; Navarro-García et al., 2012; Placella et al., 111 

2012), our study provides new data from a different type of environmental rewetting 112 

event (CASS tidal inundation) and coupled biogeochemical process (iron sulfide 113 

mineralization).   114 

 115 

2. Materials and methods 116 

2.1 Field site and soil sampling 117 

The East Trinity wetland (145°80’E, 16°94’S) is located in a tropical estuary covered 118 

by mangrove trees and samphire (Hicks et al., 1999), across Chinaman Creek from 119 
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Cairns, Queensland, Australia.  The wetland was drained for sugarcane agriculture in 120 

the 1970's, leading to severe soil acidification from enhanced oxidation of geogenic 121 

sulfide minerals (Powell and Martens, 2005).  The practice of managed tidal 122 

inundation treatment was introduced in 2002 (Johnston et al., 2009b), and soil 123 

neutralization and heavy metals immobilization have since been reported for the soil 124 

layers below the water table (Burton et al., 2011). 125 

 126 

Soil sampling and data preparation were performed using previously published 127 

methods (Ling et al., 2018).  The sampling site consists of a 100-meter transect 128 

through the supra- to sub-tidal zones of East Trinity (Burton et al., 2011; Johnston et 129 

al., 2010; Ling et al., 2015).  Duplicate sediment cores were collected in September 130 

2013 across three sites (A: supra-, B: inter-, and C: sub-tidal zone, Fig. 1D) and four 131 

tidal stages (low tide: dry-down stage, flood tide: early wet-up stage, high tide: middle 132 

wet-up stage, ebb tide: late wet-up stage).  These cores were then sectioned into seven 133 

intervals (1: 0-2 cm, 2: 2-4 cm, 3: 4-6 cm, 4: 6-8 cm, 5: 8-10 cm, 6: 12-14 cm, 7: 18-134 

20 cm, Fig. 1D).  One core from each duplicate set was used to assess microbial 135 

diversity and activity, and to quantitatively analyse environmental Fe and S speciation 136 

(Supplementary Table 1); the other core was used to evaluate reproducibility in 137 

molecular biology analyses.  One biofilm sample was collected during the high tide 138 

stage from the surface water. 139 

 140 

In total, six different datasets were evaluated (Supplementary Table 1): microbial 141 

activity (based on RNA sequences), microbial distribution (based on DNA sequences), 142 

sulfate-reducing functionality (based on dsrA and dsrB genes from DNA and cDNA 143 

sequences), DNA and RNA dissimilarity (based on DNA and RNA sequences from 144 
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one biofilm sample), protocol reproducibility (based on DNA sequences), and soil 145 

geochemistry (based on iron and sulfur speciation).   146 

 147 

For checking the validity of sampling and bioinformatic protocols, duplicate soil 148 

subsamples from three sites, four tidal stages, and depths 2, 4, and 6, were selected to 149 

test for reproducibility (Supplementary Table 1).  To prepare the datasets used for the 150 

evaluation of protocols, we extracted DNA from a total of 72 subsamples for 16S 151 

rRNA gene sequencing, and then analyzed the similarity of microbial taxonomic 152 

structures of these samples.  If the sampling and bioinformatic protocols were 153 

reproducible, samples from the duplicate soil subsamples should share the highest 154 

similarity. 155 

 156 

We selected triplicate soil subsamples from three sites, four tidal stages, and seven 157 

depths for microbial diversity and activity evaluation (Supplementary Table 1).  The 158 

triplicate soil subsamples were homogenized before DNA and RNA extraction.  RNA 159 

from a total of 84 samples were isolated to access microbial activity.  For microbial 160 

populations, we homogenized subsamples across four tidal stages to get a total of 21 161 

samples for DNA extractions.  Because the amounts of samples were limited, DNA 162 

and cDNA (synthesized from RNA) samples from seven depths were homogenized 163 

for functional gene (dsr) sequencing, which contained 12 cDNA samples from three 164 

sites and four times, and DNA samples from three sites.  Since soil DNA and RNA 165 

were not extracted from the same samples, we also extracted another DNA and RNA 166 

from a biofilm sample to evaluate the dissimilarity of microbial taxonomic structures 167 

between DNA and RNA sequences.   168 

 169 
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For DNA and RNA extractions, triplicate subsamples were collected from each core 170 

interval and preserved in 15 mL conical tubes with 2 mL of LifeGuard Soil 171 

Preservation Solution (MoBio Laboratory Inc., Carlsbad, CA, USA).  The remaining 172 

soil samples from each interval were preserved in Petri dishes, and duplicate 173 

subsamples were selected afterward for geochemical speciation.  All samples and 174 

subsamples were stored at -80 °C for subsequent analyses.   175 

 176 

2.2 DNA and RNA extraction, 16S rRNA and dsr amplification 177 

Total DNA and RNA from ~1 g of soil were extracted following the PowerSoil DNA 178 

Isolation Kit protocol (MoBio Laboratory Inc.) and RNA PowerSoil Total RNA 179 

Isolation Kit protocol (MoBio Laboratory Inc.), respectively.  Since our samples 180 

contained elevated organic C and salinity, we followed a troubleshooting protocol to 181 

use 1 g of soil, and incubated samples at ~20°C in the nucleic acid precipitation step.  182 

DNA contamination in RNA samples was removed using the Ambion DNA-free kit 183 

(Ambion, Austin, TX, USA) or TURBO DNA-free kit (Ambion). 184 

 185 

After RNA purification, cDNA was synthesized following the SuperScriptTM II 186 

Reverse Transcriptase (Invitrogen) protocol with random primers (Invitrogen) and the 187 

RNaseOUTTM (Invitrogen) reagent.  We performed PCR (polymerase chain reaction) 188 

with three different primer sets to ensure there was (1) no detectable DNA 189 

amplification in the RNA samples, and (2) the DNA extraction and (3) cDNA 190 

synthesis were successful.  The PCR using the following primers: 27F (5'-AGR GTT 191 

TGA TYM TGG CTC AG-3')/518R (5'-ATT ACC GCG GCT GCT GG-3'), 926F (5'-192 

AAA CTC AAA KGA ATT GAC GG-3')/1392R (5'-ACG GGG GGT GWG TRC-3') 193 

and U341F (5'-CCT ACG GGN GGC WGC AG-3')/805R (5'- GAC TAC HVG GGT 194 
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ATC TAA TCC-3') (Klindworth et al., 2013).  Dissimilatory sulfite reductase genes 195 

dsrA and dsrB were amplified from DNA and cDNA samples, with DSR1F+ (5'- 196 

ACSC ACT GGA AGC ACG GCG G-3')/DSR-R (5'- GTG GMR CCG TGC AKR 197 

TTG G-3') and DSRp2060F (5'- CAA CAT CGT YCA YAC CCA GGG -3')/DSR4R 198 

(5'-GTG TAG CAG TTA CCG CA -3') primer sets, respectively (Geets et al., 2006; 199 

Kondo et al., 2004; Perez-Jimenez et al., 2001).  200 

 201 

Genomic DNA, genomic cDNA, dsrA, and dsrB samples were sent to Monash 202 

University Malaysia Genomic Facility for Illumina MiSeq sequencing (250-base pair, 203 

bp, 50 paired-end reads), with primer sets U341F/805 for genomic DNA and cDNA 204 

samples, DSR1F+/DSR-R for dsrA samples, and DSRp2060F/DSR4R for dsrB 205 

samples.  Raw data were deposited in the Sequence Read Archive (SRA) of NCBI 206 

(PRJNA291811). 207 

 208 

2.3 Bioinformatic analysis 209 

We followed the MiSeq pipeline released by the MOTHUR authors (Kozich et al., 210 

2013) to combine the forward and reverse sequences, trim low-quality bases and 211 

sequences with unexpected lengths, select unique sequences, cluster the unique 212 

sequences, detect chimera using UCHIME (Edgar et al., 2011), remove chimera, and 213 

classify the 16S and dsr sequences.  Also, we used a phylotype-based approach for 214 

16S OTU classification (Schloss and Westcott, 2011).  After passing quality controls, 215 

sequences were aligned with the RDP database for classification.  The 16S 216 

phylogenetic operational taxonomic units (OTUs) were defined based on taxonomic 217 

classification assigned by reference to the Ribosomal Database Project (RDP) (Cole et 218 

al., 2013) with an 80% confidence threshold and up to five mismatches using a naïve 219 
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Bayesian classifier (Wang et al., 2007) (MOTHUR’s “classify.seqs” and “phylotype” 220 

commands).   221 

 222 

Operational taxonomic identities were assigned to dsr sequences by reference to the 223 

published dsrAB databases (Müller et al., 2015), respectively, using a naïve Bayesian 224 

classifier (Wang et al., 2007) in MOTHUR.  The dsr operational taxonomic units 225 

(OTUs) were defined by a distance of 0.1 (Müller et al., 2015).  The most abundant 226 

sequence in each dsrA and dsrB OTU was selected as the representative sequence for 227 

building phylogenetic trees; 16S OTUs in cDNA and DNA datasets that shared the 228 

same family or genus names as dsrA and dsrB OTUs were selected, and the most 229 

abundant sequence in each OTU was selected for building the phylogenetic tree.  All 230 

the steps were processed using MOTHUR. 231 

 232 

2.4 Environmental parameter measurement  233 

Soil moisture was measured by weighing mass loss in ~5g soil after 24 hours of 234 

drying in an oven at 105°C.  Measured values were used to normalise Fe and S 235 

speciation to per gram of dry soil. 236 

 237 

Reduced inorganic sulfur species, including acid volatile sulfide (AVS), elemental 238 

sulfur (ES), and chromium-reducible sulfur (CRS), were extracted and measured 239 

sequentially following well-established protocols (Burton et al., 2011; 2009; 2008). 240 

AVS is defined as sulfur in iron monosulfide, ES is defined as elemental sulfur, and 241 

CRS is defined as sulfur in pyrite.  AVS values can be converted to iron in iron 242 

monosulfide (FeS-Fe) using a 1:1 ratio, and CRS values can be converted to iron in 243 

pyrite (FeS2-Fe) using a 2:1 ratio (Table 2).   244 
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 245 

AVS was extracted using 6 M HCl and two mL 1 M L-ascorbic acid, and captured 246 

using a NaOH-buffered zinc acetate solution, and then quantified by iodometric 247 

titration.  ES was extracted from the AVS-extracted samples using toluene, and 248 

analyzed using high-performance liquid chromatography (HPLC) using a Dionex 249 

UltiMate 3000 system.  CRS was extracted from the ES-extracted samples using 250 

acetone and ethanol, captured using a NaOH-buffered zinc acetate solution, and was 251 

quantified by iodometric titration.   252 

 253 

Fe species included soluble Fe salts (MgCl2-Fe), crystalline Fe (CDB-Fe), and poorly 254 

crystalline Fe (the HCl-Fe minus FeS-Fe, Table 2); HCl-Fe, and CDB-Fe, were 255 

extracted and measured sequentially following established protocols (Claff et al., 256 

2010), and MgCl2-Fe was extracted using 1 M MgCl2.  The remaining samples were 257 

used to extract HCl-Fe using 1 M HCl; the amounts of extracted Fe(II) and total Fe 258 

were determined using spectrophotometry by the ferrozine method (Viollier et al., 259 

2000).  DCB-Fe was extracted from the residual samples using the dithionite-citrate 260 

buffer (DCB), and determined using inductively coupled plasma mass spectrometry 261 

(ICP-MS). 262 

 263 

Soils were dried at 60°C for 48 hrs before crushing and analyzing for total Fe and S 264 

measurements at the Environmental Analysis Laboratory (EAL) of Southern Cross 265 

University (SCU).  Total Fe was analyzed using inductively coupled plasma-mass 266 

spectrometry (ICP-MS) using a 1:3 HNO3/HCl digestion method, and total S was 267 

quantified using a LECO TruMAC CNS Analyser. 268 

 269 
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2.5 Data processing 270 

We compared measured soil properties to results from previous studies of the same 271 

locations in East Trinity.  Pyrite and poorly crystalline Fe fractions (defined as the 272 

ratios of pyrite-S : total S and poorly crystalline Fe : total Fe) in actual CASS, 273 

inundation-treated CASS, and undrained mangrove wetland from a previous study at 274 

the same site (Johnston et al., 2009c; Keene et al., 2010) were evaluated.  275 

 276 

The degree of pyritization (DOP) and degree of sulfidization (DOS) provided indices 277 

to characterise depositional environments: DOS measures the extent of reactive iron 278 

transformed into iron sulfide minerals (Boesen and Postma, 1988), while DOP 279 

represents reactive iron transformed to pyrite (Berner, 1970).  In this study, we 280 

calculated the difference between DOS and DOP to deduce the extent of reactive iron 281 

transformation to iron monosulfide, but which was not yet converted to pyrite.  DOS 282 

and DOP were calculated as follows (Berner, 1970; Boesen and Postma, 1988): 283 

 284 

  DOS = ([FeS-Fe] + [FeS2-Fe]) / ([FeS2-Fe] + [HCl-Fe]) (Eq. 1) 285 

  DOP = ([FeS2-Fe]) / ([FeS2-Fe] + [HCl-Fe])   (Eq. 2) 286 

 287 

where FeS is iron monosulfide, and FeS2 is pyrite. 288 

 289 

Sequences were rarefied before calculating similarities among samples using the 290 

"dist.shared" and “sub.sample” commands in MOTHUR.  The "dist.shared" command 291 

generated a distance matrix for dissimilarity analyses.  The “sub.sample” command 292 

normalized samples to the same size by selecting sequences randomly prior distance 293 

calculating.  Sample normalization and distance calculation were repeated for 1,000 294 
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times and generated an average result of distance matrix for subsequent dissimilarity 295 

analyses using MOTHUR.  The taxonomic similarity between cDNA and DNA (16S 296 

rRNA gene based) in soil and biofilm samples was calculated using the Jaccard index 297 

(Jaccard, 1908) and visualized by non-metric multidimensional scaling (NMDS) 298 

using MOTHUR software.  The test statistic and associated significance value 299 

(ANOSIM) (Clarke, 1993) of these four datasets were calculated using MOTHUR. 300 

 301 

To evaluate whether pyrite and poorly crystalline Fe ratios drove observed differences 302 

in cDNA taxonomic-based microbial community structures, we first calculated 303 

taxonomic dissimilarity between 16S OTUs in cDNA rarefied samples using the 304 

Bray-Curtis index, then we tested these environmental factors for correlation, with 305 

significant correlations (p < 0.05) shown as vectors on the non-metric 306 

multidimensional scaling (NMDS) using the R package vegan.   307 

 308 

We used the artificial intelligence package Eureqa (Schmidt and Lipson, 2013; 2009) 309 

to find a best-fit equation for predicting soil pyrite ratios from microbial cDNA (16S 310 

based) contents (i.e., to construct a “pyrite predicting equation”).  Eureqa first creates 311 

random equations based on the provided dataset, then evaluates the fitness of every 312 

equation.  These preliminary best-fit equations are selected and are used to generate a 313 

new round of searching.  In the new round of searching, new equations are formed by 314 

varying the previous equations and retaining the equations that better fit the dataset.  315 

The 84 soil samples were ranked based on pyrite-S fractions, and then divided into 316 

two sets (Fig. S4A).  One set was used to train Eureqa to find the best-fit equation, 317 

and the other set was used to validate results (Fig. S4A).  Taxa present in less than 318 

25% of the samples were removed from both the training and validation sets.  The 319 
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accumulated relative abundances of selected OTUs from each sample were calculated 320 

to evaluate that filtering criterion.   321 

 322 

To assess potential environmental and microbial parameters controlling SRP activity, 323 

geochemical data (e.g., concentrations of pyrite, iron monosulfide, or organic carbon) 324 

and variations in cDNA levels of selected taxa and metabolic guilds (SRP, 325 

Bdellovibrionales, Acidobacteria GP 3, and Gammaproteobacteria) in different dry-326 

down and wet-up stages were quantitatively compared.   327 

 328 

To evaluate the response of microbial interactions to rewetting by tidewater, all 84 329 

cDNA samples were divided into four groups based on collection timepoints.  Each 330 

group contained 21 subsamples across depths and tidal zones used to perform 331 

microbial network analysis, in order to investigate microbial interaction patterns 332 

across the study site at specific dry-down and wet-up stages.  OTUs present in less 333 

than 50% of samples from each tidal stage were removed from the cDNA datasets.  334 

Microbial interaction networks were inferred using CoNet (Faust et al., 2012) and 335 

visualized using Cytoscape (Shannon et al., 2003).  Correlation between microbial 336 

cDNA abundances were measured using the Pearson and Spearman correlations, 337 

Bray–Curtis distance and Kullback–Leibler divergence measurement, then the best 338 

predictions were selected.  A well-established approach was used for multiple-testing 339 

correction (Benjamini and Hochberg, 1995), and p-values were merged using the 340 

method of Brown (Brown, 1975).  Only the relationships that displayed significant 341 

correlations (p < 0.05) were visualized as networks.  Microbial networks were 342 

reconstructed, containing OTUs that were present in more than 50% of samples across 343 

all four tidal stages, and displayed significant correlations with each other.  In these 344 
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networks, each node represents one OTU, while connections between two nodes 345 

represent an interrelationship between two OTUs.  Due to the complexity of node 346 

relationships, sub-networks were constructed to focus on potential predator-prey 347 

relationships.  Only the first and second neighbors of potential predators were kept in 348 

these sub-networks.   349 

 350 

2.6 Plotting and data processing software 351 

The software R (Team, 2013) with packages gplots (Warnes et al., 2009), MASS 352 

(Venables and Ripley, 2002), vegan (Oksanen et al., 2015), and plyr (Wickham, 353 

2011) were used for statistical analysis and data visualisation.  We also used the AI 354 

software package Eureqa to analyse datasets for network correlations.  The software 355 

packages TreeGraph 2 (Stöver and Müller, 2010), Cytoscape (Shannon et al., 2003) 356 

with application CoNet (Faust and Raes, 2016), iWork Keynote and Office Excel 357 

were also used to visualise data and generate plots.   358 

 359 

3. Results 360 

3.1 Replication evaluation and overall microbial taxonomic structures 361 

Our previous work showed that samples from the same soil depth interval displayed 362 

the highest similarity of microbial DNA taxonomy-based microbial community 363 

structure, confirming our sampling reproducibility (Ling et al., 2018).  We identified 364 

1170 OTUs from a total 107 16S sequencing samples for microbial distribution and 365 

activity, DNA and RNA dissimilarity evaluations.  A significant separation between 366 

soil DNA and soil RNA taxonomic structure (16S based) was detected by ordination 367 

NMDS (Fig. S1A); ANOSIM analysis displayed an R-value of 0.45, p < 0.001 (Fig. 368 

S1B).  The R values are between 1 and -1, in which positive numbers suggest that 369 
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there are more similarities within groups than between groups; negative numbers 370 

indicate vice versa. 371 

 372 

3.2 Geochemical characteristics  373 

The chemical profiles of iron sulfide minerals show that site C (subtidal zone) 374 

contains the highest amount of iron monosulfide and pyrite among the three sampling 375 

sites, and of iron monosulfide accumulated in the flood and ebb tides (Fig. S2).  By 376 

comparing the poorly crystalline Fe and pyrite-S contents to values from a previous 377 

study (Fig. 1A), we could semi-quantitatively assess the degree of bioremediation 378 

progress achieved to date in the East Trinity wetland site.  None of our samples 379 

contained the pyrite-S : total S ratios representative of “undisturbed” mangrove soils 380 

(Fig. 1B).  Instead, our soil samples displayed variable levels of poorly crystalline Fe 381 

and pyrite-S.  Generally, samples that contained lower pyrite and poorly crystalline Fe 382 

levels originated mostly from the organic-enriched zone (Figs. 1C and 1D), whereas 383 

samples that contained higher pyrite-S : total S ratios were collected during ebb tide 384 

conditions (Fig. 1C).  DOS values were higher than the DOP values in all of our 385 

samples (Fig. 1E), suggesting that Fe was present in the more reactive iron 386 

monosulfide phase instead as pyrite.  Variations of cDNA taxonomic structure were 387 

correlated with soil pyrite and poorly crystalline Fe ratios (Fig. 1F).   388 

 389 

3.3 Prediction of soil pyrite ratios 390 

We selected 326 and disregarded 686 OTUs (from a 16S cDNA-constructed database) 391 

for predicting soil pyrite ratios, the selected OTUs constituted more than 98% of 392 

relative abundances (Fig. S3).  The best-fit pyrite equation, based on 72 samples in 393 

the training set, displayed a Pearson coefficient of r = 0.92 with p < 2.2e-16 (Fig. 394 
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S4B).  This equation predicted soil pyrite ratios well for the validation dataset (r = 395 

0.88 with p < 0.001, Fig. S4C).  The equation contained two archaeal taxa 396 

(Euryarchaeota), 11 bacterial taxa (Acidobacteria, Actinobacteria, and 397 

Proteobacteria classes Alpha-, Delta-, and Gamma-proteobacteria) (Table 1).  398 

Among the selected taxa, we identified taxa 1730 and 1739 as SRP, taxon0694 as a 399 

methylotroph (Kuever, 2014), and taxon1713 as a bacterial predator (Table 1).  We 400 

also observed taxa that could be assigned to early and delayed responders identified 401 

from different wet-up stages in our previous study (Ling et al., 2018).  Acidobacteria 402 

GP 3 displayed a higher cDNA contents during flood and high tides (taxon0089, Fig. 403 

S4D), and taxa within the Gammaproteobacteria had the highest cDNA contents 404 

during the ebb tide (e.g. taxon0160, Fig. S4F).   405 

 406 

3.4 Microbial activities and chemical variations during different tidal stages 407 

Seven SRP were classified at the family or genus level from dsrA and dsrB sequence 408 

datasets, with six of these also identified in the 16S dataset (Fig. S5).  One SRP taxon 409 

found with 16S, but not dsrA or dsrB, sequences was of order Desulfuromonadales.  410 

In the following analysis, classified SRP were referred to as dsrA and dsrB targeted 411 

OTUs (Fig. S5) and Desulfuromonadales.  Ten of the SRP taxa identified using dsrA 412 

and dsrB genes are presently uncultured (Fig. S5).  The number of uncultured SRP 413 

able to be identified was higher when using dsrB, as compared to dsrA, genes (Fig. 414 

S5).  Thus we represented cDNA variability of uncultured SRP across tidal stages 415 

using reverse-transcribed dsrB cDNA sequences (Fig. 2E).  These uncultured SRP 416 

displayed increased dsrB cDNA during the middle and late wet-up stages (high and 417 

ebb tides), in contrast to dsrB cDNA from flood and high/ebb tides (t-test, P < 0.05, 418 

Fig. 2E).  In contrast, SRP OTUs most closely related to cultured representatives 419 
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increased in cDNA during the early and middle wet-up stages (flood and high tides), 420 

and decreased during the late wet-up stage (ebb tide).  Average cDNA values during 421 

ebb tide showed significant differences from the other three tidal stages (t-test, P < 422 

0.05, Fig. 2D). 423 

 424 

To interpret changes in cDNA levels for all SRP taxa, we co-analyzed (1) changes in 425 

environmental parameters, and (2) microbial predator abundance over different dry-426 

down and wet-up tidal stages.  Pyrite and iron monosulfide accumulated at flood and 427 

ebb tides (Figs. 2A and 2B), and organic carbon content was highest at ebb tide (Fig. 428 

2C).  Five predator genera were identified within order Bdellovibrionales, including 429 

Bacteriovoracaceae and Bdellovibrionaceae families (Table 2), two well-known 430 

predatory microorganisms (Pineiro et al., 2007).  The cDNA levels of microbial 431 

predators displayed similar patterns to known SRP, with increasing cDNA levels 432 

during flood and high tides, and decreasing cDNA at ebb tide (Fig. 2F).  The cDNA 433 

levels of known SRP and predators were proportional only at flood tide (Figs. 3A-D).  434 

 435 

The numbers of predators’ first neighbors in microbial networks were 1, 16, and 9, at 436 

low and ebb tides, flood tide, and high tide, respectively (Fig. 4).  Among these first 437 

neighbors, 2 and 1 known SRP taxa negatively correlated with predator taxa during 438 

the flood and high tides, respectively.  OTU 1034 was first neighbor to predators taxa 439 

Bacteriovoracaceae and Bdellovibrionaceae at both ebb and high tides, and is most 440 

closely related to genus Thioprofundum, known to fix CO2 and oxidize sulfur (Mori et 441 

al., 2011; Watts et al., 2017).  OTU 809, most closely related to genus Burkholderia 442 

(Estrada-de los Santos et al., 2001), capable of fixing nitrogen, was first neighbor to 443 

predator taxa at low tide. 444 
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 445 

In microbial network analyses, OTUs needed to be present in more than 50% of 446 

samples from each tidal stage, and to display a significant correlation to other OTUs, 447 

in order to be visualized as networks.  OTUs that were present in more than 50% of 448 

samples from each tidal stage were: 244, 153, 174, 243, at low, flood, high, and ebb 449 

tides, respectively.  The relationships between OTUs with p-values above the 450 

threshold (0.05) were then removed.  In the end, the total number of nodes (OTUs) 451 

were 200, 138, 163, and 178 at low, flood, high, and ebb tides, respectively (Fig. 4).  452 

There were 1231, 638, 912, and 659 connections among nodes for low, flood, high, 453 

and ebb tide networks, respectively.  Predators’ first and second neighbor 454 

relationships during flood and high tides outnumbered those of other tidal stages (Fig. 455 

4).  The numbers of predators’ first and second neighbors in microbial networks were 456 

24 at low tide, 67 at flood tide, 75 at high tide, and 7 at ebb tide.  Known SRP were 457 

among the first and second neighbors to predator taxa across all four tidal stages.  458 

 459 

Discussion 460 

Soil microorganisms can contain a higher abundance of inactive microbes than other 461 

environments, such as freshwater, activated sludge, and the human gut (Lennon and 462 

Jones, 2011).  These inactive microorganisms have low metabolic rates when 463 

environmental conditions become unfavourable, and decoupling occurs between 464 

active and total microbial populations (Jones and Lennon, 2010).  A previous study 465 

observed significant separation between standing (DNA-based) and active (RNA-466 

based) communities in soil systems (DeAngelis et al., 2010), which was also found in 467 

our study site (Fig. S1).  To observe relationships between environmental and 468 

microbial dynamics in a more rapid period of land transition, researchers have 469 
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suggested using RNA-based community structure rather than DNA (Meyer et al., 470 

2019).  Tidal inundation treatment imposes rapid environmental changes on coastal 471 

microorganisms, and therefore we used cDNA (RNA-based) communities to link with 472 

soil mineralization for this study.   473 

 474 

Because rRNA (cDNA) content may not always be directly proportional to growth 475 

rate, and some microorganisms can contain more rRNA in dormancy (Blazewicz et 476 

al., 2013), we used the variation in cDNA relative abundances as an indicator of 477 

microbial activity.  Since growth is only part of cellular activity (Hoehler, 2004), the 478 

cDNA variability to which we refer represents overall activity and not solely growth.  479 

Variation in cDNA content can be viewed as a change of total activity (Ling et al., 480 

2018), because RNA synthesis costs energy (Wagner, 2005); thus we treat increasing 481 

cDNA levels as increasing activity, and vice versa.  The following analyses of 482 

microbial activity (Figs. 2D-F, 3) relied on changing cDNA contents across different 483 

dry-down and wet-up tidal stages, and the constructed pyrite-prediction equation was 484 

based on cDNA variations across 84 samples (Figs. S4A-C).  The microbial 485 

interaction networks (Fig. 4) were built by comparing the cDNA variability of OTUs 486 

during each dry-down or wet-up stage. 487 

 488 

4.1 Passive bioremediation progress in the East Trinity wetland 489 

A previous study compared the compositions of soil iron and sulfide compounds in 490 

soils from three different bioremediation stages: mangrove soils (represented as 491 

undisturbed soils), actual acid sulfate soils, and tidally inundated CASS soils (Keene 492 

et al., 2010).  The mangrove soils contained high amounts of pyrite (Fig. 1A) that was 493 

oxidized during drainage to form Fe(III) minerals; reductive dissolution of Fe(III) 494 
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minerals during tidal inundation leads to accumulation of poorly crystalline Fe and re-495 

precipitation of pyrite (Fig. 1A).  The soil samples in this study contained different 496 

degrees of soil pyrite and poorly crystalline Fe ratios providing a range of mineral 497 

phase and potential transformations.  A small number of samples displayed low pyrite 498 

and poorly crystalline Fe ratios (Figs. 1B and 1C), characteristic of actual acid sulfate 499 

soils.  These samples were located in the high organic carbon zone (Figs. 1C and 1D), 500 

where soil pH was below 5.5 (Ling et al., 2018; 2015), conditions which are 501 

consistent with the formation of CASS.   Soils in the supra-tidal zone were exposed to 502 

air for a longer time than those in inter- and sub-tidal zones, causing pyrite oxidation 503 

and release of acidity.  Samples containing the highest pyrite ratios and lowest poorly 504 

crystalline Fe ratios were collected during the flood and ebb tide periods (Fig. 1B), 505 

confirming that tidal inundation provides the primary CASS remediation mechanism.  506 

Previous studies reported that soil pH in the East Trinity wetland increased from ~3 to 507 

~6 after five years of tidal inundation treatment (Hicks et al., 1999; Johnston et al., 508 

2009a).   509 

 510 

Soil pyrite and poorly crystalline Fe ratios in our samples also suggested that 511 

remediation is ongoing, and has not yet resulted in pyrite contents as high as those 512 

associated with undisturbed mangrove soils.  Relatively high DOS and low DOP 513 

values in our samples (Fig. 1E) suggested that iron monosulfides, instead of pyrite, 514 

comprised the bulk of iron sulfide mineral phases in our system.  Many samples 515 

contained abundant reactive iron (Fig. 1B), favoring iron monosulfide accumulation 516 

and limiting the transformation of AVS and ES to pyrite (Keene et al., 2010).  This 517 

observation is consistent with results from a previous study of the same site, in which 518 

sulfide concentrations were below detection limits (Burton et al., 2011).  Compared to 519 
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pyrite that is more stable during tidal inundation stages, soils contained higher 520 

amounts of iron monosulfide during the flood and ebb tides, (Fig. S2).  This finding 521 

supports the previous study which stated that pyrite is considered to be a stable 522 

compound (Billon, 2001).  Iron monosulfide, however, could form black ooze with 523 

organic matter and cause rapid de-oxygenation when mixed with water (Bush et al., 524 

2004). 525 

 526 

4.2 Microbial activities controls pyrite formation 527 

The taxonomic structure of active microbial populations correlated with soil pyrite 528 

and iron ratios (Fig. 1F), reflecting concomitant changes in microbial activities and 529 

soil iron and sulfur cycling.  The pyrite prediction equation accurately predicted soil 530 

pyrite ratios based on cDNA content (Fig. S4C), confirming that microbial activity 531 

mainly controlled pyrite formation.   532 

 533 

The best-fit pyrite prediction equation contains multiple metabolic guilds, such as 534 

SRP, methylotrophs, and predators (Table 3), although clearly SRP comprise the 535 

dominant metabolic guild in the CASS system (Ling et al., 2018; 2015), and their 536 

metabolic product (sulfide) is the limiting factor to forming pyrite.  A previous study 537 

reported that microbial predation can decrease SRP growth and metabolic yields (Qiu 538 

et al., 2016).  Methylobacteriaceae is one of the most abundant taxa in the sulfide-539 

bearing sediments that experience periodic dry-down and wet-up (Jones et al., 2017), 540 

and is also part of the best-fit pyrite prediction equation.  Thus, the accuracy of this 541 

relationship was improved by inclusion of potential microbial network interactions. 542 

 543 
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In our previous study, we observed sequential microbial guild resuscitations across 544 

different dry-down and wet-up tidal stages (Ling et al., 2018).  So called “early 545 

responders” increased in activity during the initial stages of seawater inundation, 546 

while “delayed responders” increased in activity during late wet-up stage.  The pyrite 547 

prediction equation also accounts for such time-dependence in the activity of different 548 

microbial taxa (Figs. S4D and S4E).  For example, Acidobacteria Gp 3 (taxon0089) 549 

and Gammaproteobacteria (taxon0160) were identified as early and delayed 550 

responders, respectively, in our previous study (Ling et al., 2018).  Sequential 551 

microbial resuscitations might account for the observed pyrite and iron monosulfide 552 

accumulations during two distinct periods (early and late wet-up stages, Figs. 2A and 553 

2B).  Since microbial activity changes quickly (over hours) during tidal inundation 554 

treatment (Ling et al., 2018), it is possible that more than one metabolic group was 555 

ultimately responsible for net iron sulfide formation. 556 

 557 

We note that the best-fit pyrite prediction equation is based on four different dry-558 

down and wet-up tidal stages (symmetrically across two days to avoid night sampling 559 

in crocodile inhabited waters).  Some factors that could influence bioremediation 560 

efficiency over a more extended time period were: minerals preserved in organic 561 

matter, increasing temperature, changing rainfall patterns, and day/night (i.e. 562 

wetting/drying) shifts.  We observed that iron-sulfide minerals preserved labile 563 

organic carbon from microbial degradation in the system (Ling et al., 2015).  Forming 564 

iron sulfide minerals is the primary goal to remediate soil acidity in the CASS 565 

systems, and higher ratios of iron sulfide minerals could change organic matter 566 

availability and thus further influence microbial metabolic efficiency.  In the future, a 567 

greater contrast in precipitation between wet and dry seasons is expected due to 568 
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climate change (Trenberth et al., 2014).  It is predicted that the temperature will be 569 

warmer by 1.2 to 4.2°C, and the rainfall will change by -40 to +5% in the southeast 570 

region of Australia by 2090 (Reid and Mosley, 2016).  When the evaporation rates 571 

exceed precipitation rates due to higher temperature, such as with summertime in the 572 

Netherlands, coastal acid sulfate soils will release more sulfuric acid to nearby 573 

ecosystems than during any other season (Vermaat et al., 2016).  Microbes have 574 

displayed resuscitation sequencing in response to rewetting events such as rainfall 575 

(Placella et al., 2012) and tidal inundation (Ling et al., 2018).  Therefore, prolonged 576 

rainfall may generate different microbial metabolic yields to multiple short periods of 577 

rain.  A previous study showed that phagotrophic protists are more active at night, 578 

compared to daytime, in a subtropical gyre (Hu et al., 2018), while another study 579 

reported that the existence of protists increases microbial sulfate reduction activity in 580 

a sludge reactor (Hirakata et al., 2016).  It is possible that protists engulfing 581 

prokaryotes displayed different activity patterns between day and night, hence 582 

impacting the overall dynamics of bioremediation.  For long-term remediation 583 

efficiency in acid sulfate soils, such environmental factors should be considered and 584 

studied in more detail.   585 

 586 

Compared to soil models such as RothC and CENTURY that are designed for 587 

predicting soil organic carbon (Farage et al., 2007; Molina et al., 2017), artificial 588 

intelligence packages provide flexible options for researchers to customize modelling 589 

targets.  For example, previous studies have used Eureqa to predict bacterial 590 

assemblages in marine systems (Larsen et al., 2012), and microbial taxonomic and 591 

functional structures in acid mine drainage (Kuang et al., 2016).  Here we have 592 

modelled microbial activity to predict soil pyrite ratios in coastal acid sulfate soils.  593 
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However, results from artificial intelligence packages are not always straightforward 594 

and often require further interpretation to decrypt key relationships between the 595 

parameters that are listed in the predictive algorithms. 596 

 597 

4.3 Microbial interactions changed during different dry-down and wet-up tidal stages 598 

Although organic carbon fuels bacterial sulfide generation, we did not observe 599 

variations in organic carbon to correlate with pyrite or iron monosulfide levels (Figs. 600 

2A-C).  Instead, when seawater entered the CASS system during flood tide, we 601 

observed that cDNA contents of SRP increased and were accompanied by pyrite and 602 

iron monosulfide accumulations.  However, SRP decreased their cDNA content at ebb 603 

tide, whereas pyrite and iron monosulfide levels exhibited another concentration peak 604 

at this stage, obfuscating this relationship somewhat.  Furthermore, SRP decreased in 605 

activity at a tidal stage during which their environment still contained a high 606 

abundance of organic carbon, suggesting that other parameters controlled SRP 607 

activity. 608 

   609 

The identification of classified and uncultured SRP (Fig. S5) allowed us to compare 610 

physiological characteristics between these two groups.  Order Desulfuromonadales 611 

was observed in 16S datasets only, but in neither dsrA or dsrB sequences, which 612 

suggests that Desulfuromonadales dsr genes may differ from those of strain 613 

Desulfuromonadales bacterium Tc37 (reference sequence).  Compared with classified 614 

SRP that increased in cDNA content during flood and high tides (Fig. 2D), uncultured 615 

SRP increased in cDNA content quickly during ebb tide (Fig. 2E).  Both classified 616 

and uncultured SRP utilize sulfate as the electron acceptor, and ebb tides displayed 617 

the highest organic carbon contents during different dry-down and wet-up tidal stages 618 
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(Fig. 2C), indicating that the decreasing activity of classified SRP during the ebb tide 619 

was not limited by the availability of organic substrate.  Both predators and classified 620 

SRP increased their cDNA levels during flood and high tides (Fig. 2F), and 621 

corresponding changes in predators and classified SRP cDNA levels were observed at 622 

flood tide (Figs. 3).  This observation supports a “kill the winner” hypothesis (Maslov 623 

and Sneppen, 2016), in which SRP forming dominant metabolic guild in the system 624 

become substrates for microbial predation. 625 

 626 

To further investigate microbial predator-prey relationships, we built microbial 627 

association networks for each tidal stage (Fig. 5).  The interactions of predators during 628 

different dry-down and wet-up tidal stages showed that they played a “keystone” role 629 

during early and middle wet-up stages (flood and high tides).  Keystone species have 630 

significant influence on the community, and form higher level nodes in microbial co-631 

occurrence networks (Berry and Widder, 2014).  We also observed that keystone 632 

species consisted of the predators’ first neighbors in microbial networks during early 633 

and middle wet-up stages (flood and high tides).  Classified SRP are among the 634 

predators’ first and second neighbors, which supports our hypothesis that predation 635 

influenced classified SRP activity during these wet-up stages.  Microbial predation on 636 

classified SRP likely created opportunities for uncultured SRP, potentially having a 637 

narrower environmental niche, to become more active during delayed wet-up stage 638 

(ebb tides).  Since classified SRP taxa decreased in activity during ebb tides, while 639 

pyrite and iron monosulfide still accumulated, we may assume that uncultured SRP 640 

also contributed significantly to total iron sulfide formation.   641 

 642 
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In summary, our observations confirm that microbial activity controls iron and sulfur 643 

speciation, and serves as an accurate predictor for pyrite (re)precipitation in CASS 644 

bioremediation.  We discovered that microorganisms displayed at least two different 645 

interaction patterns that influenced iron sulfide formation at the early and late wet-up 646 

stages (Fig 5).  Classified SRP were early responders to tidal inundation and became 647 

abundant taxa in the system, which induced microbial predation and decreased their 648 

activity during late wet-up.  Microbial predation on classified SRP taxa created 649 

ecological space for uncultured SRP taxa to proliferate and further drive iron sulfide 650 

formation.  Uncultured SRP increased their activity quickly during ebb tides, and also 651 

contributed to net pyrite formation.  Our work reveals the need to consider a complex 652 

interplay of geochemical parameters and microbial interactions in the 653 

(bio)remediation of CASS ecosystems. 654 
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 668 

Figure legends 669 

Fig. 1 Field data of poorly crystalline Fe and pyrite-S fractions of (A) a previous 670 

study (Keene et al., 2010) and (B, C) this study.  Samples were grouped based on 671 

tidal stages in (B), and on biogeochemical zones in (C).  (D) The distribution of 672 

biogeochemical zones in the study site.  (E) Correlations between DOS and DOP 673 

values in soil samples.   (F) Beta diversity analysis comparing microbial taxonomic 674 

structural similarity of cDNA samples.  The poorly crystalline Fe, pyrite-S, and 675 

organic carbon fractions were significantly correlated to microbial cDNA taxonomic 676 

structure. 677 

 678 

Fig. 2 Environmental parameters and microbial activities, including (A) pyrite 679 

contents, (B) iron monosulfide content, (C) organic carbon content, (D) classified 680 

SRP activity, (E) uncultured SRP activity, and (F) predator activity across different 681 

dry-down and wet-up tidal stages.  In the boxplots, upper and lower bars represent 682 

maxima and minima, respectively, excluding outliers plotted as points.  The upper and 683 

lower portions of boxes from the first and third quartiles, respectively, while the lines 684 

inside boxes are sample medians.  685 

 686 

Fig. 3 Correlations between cDNA contents of classified SRP and predators in (A) 687 

low tide, (B) flood tide, (C) high tide, and (D) ebb tide. 688 

 689 

Fig. 4 Microbial networks of all OTUs, predators’ first and second neighbors across 690 

four tidal stages.  Each node represents an OTU or environmental parameter, and 691 
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edges that connect OTUs or parameters represent either positive (yellow line) or 692 

negative (blue dashed line) correlations between the two nodes. 693 

 694 

Fig. 5 Conceptual model showing the trend in relative activity of classified and 695 

uncultured SRP, predators, early and delayed responders over different dry-down and 696 

wet-up tidal stages. 697 

 698 

Table legends 699 

Table 1  The pyrite predicting equation and the taxonomic information of the 700 

selected taxa in the East Trinity coastal acid sulfate soil wetlands.  Detailed 701 

taxonomic information of taxon089, taxon492, taxon694, and taxon160 are listed in 702 

Table S3. 703 

 704 

Table 2 The taxonomic information of bacterial predators in the East Trinity 705 

coastal acid sulfate soil wetlands. 706 

  707 
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Fig. 1  710 
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Fig. 3 714 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.04.188110doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.04.188110
http://creativecommons.org/licenses/by-nc-nd/4.0/


 715 
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Table 1 719 

Formula 
S ratio = 0.02406 + taxon0893 + 13.28*taxon1960 + 0.02406*taxon0941 + taxa0160*taxon0492 + taxon1730*taxon1739 + 

1229*taxon0089*taxon0892*taxon1713 - taxon0694 - taxon1531*taxon1784 

Taxa OTU Kingdom Phylum Class Order Family Genus 

taxon0892 OTU0035 Archaea Euryarchaeota Thermoplasmata unclassified unclassified unclassified 

taxon0893 OTU0036 Archaea Euryarchaeota unclassified unclassified unclassified unclassified 

taxon0089  Bacteria Acidobacteria Acidobacteria Gp3    

taxon0941 OTU0084 Bacteria Actinobacteria Actinobacteria Acidimicrobiales Acidimicrobiaceae Ilumatobacter 

taxon0492  Bacteria Actinobacteria Actinobacteria Actinomycetales Microbacteriaceae  

taxon1531 OTU0674 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhodobiaceae unclassified 

taxon0694  Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae  

taxon1713 OTU0856 Bacteria Proteobacteria Deltaproteobacteria Bdellovibrionales Bacteriovoracaceae Bacteriovorax 

taxon1730 OTU0873 Bacteria Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae Desulfofaba 

taxon1739 OTU0882 Bacteria Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae unclassified 

taxon1784 OTU0927 Bacteria Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae unclassified 

taxon0160  Bacteria Proteobacteria Gammaproteobacteria    

taxon1960 OTU1103 Bacteria Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Vibrio 

 720 

 721 

Table 2 722 

Kingdom Phylum Class Order Family Genus 

Bacteria Proteobacteria Deltaproteobacteria Bdellovibrionales 

Bacteriovoracaceae 

Bacteriovorax 

Peredibacter 

unclassified 

Bdellovibrionaceae 
Bdellovibrio 

Vampirovibrio 

 723 

  724 
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