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feeds back to visual areas and is thought to be a key mechanism for remapping and stabilizing 

perception (Wurtz, 2018). This corollary discharge signal can even precede the motor movement 

itself, allowing for predictive remapping in 2D (Sommer & Wurtz, 2006) and 3D (Wexler, 

2005). Indeed, in a classic study where the eye muscles were paralyzed and eye movements were 

intended but unable to execute, corollary discharge resulted in false perception of a displacement 

of the visual scene (Stevens et al., 1976); when the thalamus is lesioned, patients may mis-

attribute perceptual consequences of oculomotor targeting error to external stimulus changes 

(Ostendorf et al., 2010). In typical vision, we perceive objects in the world as stationary when 

we’re moving our eyes, but an object displacing the analogous amount on our retinas without an 

active eye movement would be readily detected. Consistently, an fMRI study showed that scene 

representations spanning different views can be integrated across eye movements in scene-

selective cortex, but not in the condition where eyes were stable and the scene was moved to 

mimic the retinal changes induced by eye movements (Golomb et al., 2011).  

Thus, it seems likely that in our study, the blocks in which participants were actively 

making saccades triggered additional neural signals not present during the sustained fixation 

blocks, and this could have contributed to greater integration and stability, resulting in more 

tolerant representations1. What is equally intriguing, though, is the amount of fixation position 

dependence found in the no-saccade blocks, even for spatial dimensions that are not directly 

 
1 Note that in the current study we did not actually test whether the location representations 

became more stable due to dynamic saccades or dynamic retinal changes. One could imagine a 

control condition where the fixation was kept stable and the stimulus jumped between left and 

right sides every 2s. However, this condition would likely produce an inconclusive answer, 

because as noted earlier, Finlayson et al., 2017 found that vertical and depth location information 

was partially tolerant to horizontal location during sustained (stable) fixation,  so in this case we 

would expect to see a tolerant representation in the hypothetical control as well.  
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affected by the change in eye position (i.e. vertical and depth information, across different 

horizontal fixation positions). The idea of eye position gain fields discussed earlier underlies 

another theory of visual stability; that spatiotopic (world-centered) neural representations are 

formed implicitly by the combination of current retinotopic position and current eye position 

(Melcher & Morrone, 2015; Merriam et al., 2013; Wurtz, 2008), the latter signal coming from 

proprioceptive information relaying the position of the eye in the orbit (Bridgeman, 1995). An 

interesting interpretation of our current findings is that there may be different stability-related 

signals during active vs static perception, such that 3D location is labeled with eye position 

information during fixation, but this information is integrated in the context of active eye 

movements. This maps nicely onto the idea that visual stability across saccades incorporates two 

distinct sources of feedback operating at different timescales: a rapid, predictive corollary 

discharge signal (triggered by an active eye movement), and an oculomotor proprioceptive 

(static) signal that stabilizes more slowly after a saccade (Sun & Goldberg, 2016).  

 In addition to active remapping mechanisms, we can also consider some other possible 

mechanisms underlying our observation of 3D location representations becoming tolerant in the 

context of active, dynamic saccades. These might include factors related to the predictability and 

expectation of the saccades sequence and/or repetitive retinal changes, as well as questions about 

whether the increased tolerance could be achieved with a single saccade or is built up over the 

course of several repeated actions.  Follow-up investigation is still needed to further test these 

possibilities, but all of these possibilities indicate the important role of an active observer, in 

contrast with a passive viewer.  

In sum, our findings highlight the important role of active, dynamic saccades on 

stabilizing 3D spatial representations in the brain. Even though the horizontal saccades may have 
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introduced a challenge for preserving accurate stereopsis through binocular disparity, 

information about stimulus position in depth in human visual cortex was not diminished. If 

anything, the representations became more robust and tolerant. Given the strong similarity 

between the depth and 2D (vertical) patterns, our findings could likely be extended to other depth 

cues and spatial dimensions. However, it seems likely that task settings also matter, where based 

on task requirements, different processing or different heuristics can be applied. Our study 

provides support to a potential mechanism, triggered by active saccades, for spatial location 

processing across eye movements, and indicates that we may represent the visual world more 

flexibly, based on different situations (e.g., whether sustained fixations or frequent saccades are 

expected).  
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Figure 1 Experiment paradigm. Each block lasted 16s, with 2s inter-block interval. In each block, 

a dynamic RDS patch stimulated one of four locations, defined by its vertical location (above or 

below the screen center) and its depth location (in front of or behind the screen depth plane). In 

half of the blocks, participants kept fixated at the fixation dot at either left or right of the screen 

center throughout the block; in the other half, participants made repetitive saccades between the 

left and right, following the alternating fixation dot (as shown in the schematics in the upper 

right). 
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Figure 2 Hypothetical correlation matrices for MVPA. (A) Correlation matrices for calculating 

overall Y (top panel) and Z (bottom panel) location information, using data from all blocks. 

Information is calculated by subtracting between-category correlation coefficients (white cells) 

from within-category coefficients (colored cells). (B) For the subsequent breakdowns, Y and Z 

information are calculated in the same way (within-category minus between category), but only 
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from subsets of the cells in the correlation matrix. Each quadrant is numbered to link to the 

corresponding analyses, as indicated in the left bottom panel.  

 

 

 

Figure 3 Y and Z location information averaged for the four grouped ROIs. (A) Information 

calculated with data from all blocks, using the correlation matrices in Figure 2 Matrix 1. (B) 

Information calculated with data from no-saccade blocks (left) and saccade blocks (right) 
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separately, using the correlation matrices in Figure 2 Matrix 2 and Matrix 3 respectively. (C) 

Information calculated with correlations between no-saccade and saccade blocks, using the 

correlation matrices in Figure 2 Matrix 4. 

 

 

Figure 4 Tolerance/dependence analysis: Vertical (Y) and depth (Z) location information 

calculated separately for same vs different fixation position (no-saccade blocks) and saccade 

direction (saccade blocks). (A) No-saccade blocks. Y and Z location information calculated from 

MVPA between blocks with the same fixation position (left panel, using the matrix in Figure 2 

Matrix 2a), and different fixation position (right panel, using the matrix in Figure 2 Matrix 2b). 

Y and Z location information is dependent on fixation position in no-saccade blocks. (B) 

Saccade blocks. Y and Z location information calculated from MVPA between sacade blocks 

with the same saccade directions (left panel, using the matrix in Figure 2 Matrix 3a), and 
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different saccade directions (right panel, using the matrix in Figure 2 Matrix 3b). Y and Z 

location information is tolerant of fixation differences in saccade blocks. 

 

 

Figure 5 MVPA time course for vertical (Y) location information for each ROI group in the 

visual hierarchy (Z information timecourses shown in Supplemental Materials). Similar to Figure 

5, in most regions location information is dependent on fixation position in no-saccade blocks 

but tolerant of fixation changes in saccade blocks, even when analyzing timepoint by timepoint. 
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