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Abstract 

Alcohol use during emerging adulthood is associated with adverse life outcomes but its risk 

factors are not well known. Here, we predicted alcohol use in 3,153 young adults aged 22 

years from (a) genome-wide polygenic scores (GPS) based on genome-wide association 

studies for the target phenotypes number of drinks per week and Alcohol Use Disorders 

Identification Test scores, (b) 30 environmental factors, and (c) their interactions (i.e., GxE 

effects). Data was collected from 1994 to 2018 as a part of the UK Twins Early Development 

Study. GPS accounted for up to 1.9% of the variance in alcohol use (i.e., Alcohol Use 

Disorders Identification Test score), while the 30 measures of environmental factors together 

accounted for 21.1%. The 30 GPS-environment interactions did not explain any additional 

variance and none of the interaction terms exceeded the significance threshold after 

correcting for multiple testing. Our findings suggest that GPS and environmental factors have 

primarily direct, additive effects rather than interacting systematically.  

 

Keywords: alcohol use, gene-environment interaction, polygenic scores, TEDS, young 

adulthood 
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Alcohol use in emerging adulthood, including early initiation, frequent consumption, 

and drunkenness, is associated with adverse psychological and physical health outcomes (1-

2). However, few environmental risk factors have been found that are causal predictors of 

alcohol use in emerging adulthood (3). Alcohol consumption is a complex behavioral trait 

influenced by many genetic variants called single-nucleotide polymorphisms (SNPs) that 

each have a very small effect size (4-5) and are detected in large genome-wide association 

(GWA) studies. The identified SNPs can then be aggregated into genome-wide polygenic 

scores (GPS) that capture a person's genetic propensity for alcohol consumption.  

Over the past few years, a number of GWA studies for alcohol consumption have 

been published with sample sizes ranging from ~67,000 to nearly one million individuals  

with a vast range of target phenotypes, including the number of alcoholic drinks/units 

consumed per week (4, 6), alcohol intake in grams per day (5), maximum habitual alcohol 

intake (7), and alcohol use and dependence (i.e., Alcohol Use Disorder Identification Test 

(AUDIT) scores (8-9)). GPS based on these GWA studies predict alcohol use, with the 

variance accounted for ranging from 0.1% to 2.5% (4, 5, 10, 11). In general, the predictive 

power of a GPS depends on the GWA sample size, SNP heritability of the trait, selection 

thresholds for selecting markers for creating the score, etc., among many other factors (12).  

GPS provide currently the best platform to directly and robustly test if a genetic 

predisposition for alcohol use develops differently across environmental contexts, a 

phenomenon known as gene-environment interactions (GxE; 13). Four previous studies 

tested GxE effects using GPS in the prediction of alcohol use, with mixed results. Two 

studies found no evidence for GxE: Using a GPS based on a GWA study of 67,000 

individuals and their daily alcohol intake (5), no interactions were found between GPS and 

stress and life satisfaction in the prediction of alcohol use and alcohol-related problems in a 

sample of 6,705 Dutch adults (11). Similarly, no interaction was observed between peer 
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drinking and GPS based on a GWA study of alcohol consumption in 112k UK Biobank 

participants (6) on alcohol use in a sample of 755 university students (14). However, two 

later studies reported significant GxE effects: Using GPS based on the publicly available 

summary statistics (i.e., excluding 23&Me data) from a GWA study of 535,000 individuals 

for the number of alcoholic drinks consumed per week (4), being in a romantic partnership 

was found to reduce the association between the genetic propensity for alcohol use and 

drinking frequency, intoxication frequency and alcohol dependence in 1201 young Finns 

(10). Also, the influence of GPS based on the GWA study mentioned above (6) on alcohol 

use per week was shown to be moderated by socioeconomic status (SES) in 6,567 Dutch 

adults (15). Alas, this finding could not be replicated with a GPS based on the GWAS & 

Sequencing Consortium of Alcohol and Nicotine use (GSCAN) study (4). Other studies that 

used ‘simpler’ GPS, which included fewer SNPs identified in smaller GWA study samples, 

suggested that genetic influences on alcohol use varied as a function of peer relations and 

parental knowledge (16-17). Overall, the current evidence for GxE in the prediction of 

alcohol use is inconclusive because studies employed different GWA studies to build GPS, 

including some with small sample sizes that afford low statistical power, and tested different 

environmental moderators, some of which could be argued to be heritable traits themselves 

(18), rendering direct comparisons of findings across studies impossible.  

Here, we overcome previous studies’ limitations. For one, we used two large-scale, 

well-powered GWA studies to build GPS for alcohol use, including (1) the GSCAN study 

with an overall sample of 941,280 individuals that used the number of drinks consumed per 

week as target phenotype (4), and (2) the largest GWA study for AUDIT scores in 141,932 

individuals (9). For the other, we considered many environments that were mostly assessed at 

age 22 and that are likely to influence the association between the genetic propensity for and 

actual alcohol consumption, rather than exploring only one or two environmental moderators. 
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We note that few environments are truly exogenous to the individual (18), and many 

environmental measures show substantial genetic influences (19), with the possibility that 

environments and target phenotype (i.e. alcohol use) have shared their genetic aetiology (20).  

We analyzed data from a large British cohort study, whose participants reported 

alcohol-related behaviors at age 22 and had data available on 30 environmental measures, 

which we categorized into four domains - home environment, adversity, lifestyles, and social 

and emotional learning competencies (SELC) – primarily to organize the results, rather than 

to propose a formal model for mapping out environments. SELC summarize traits of 

recognizing and managing emotions, setting and achieving positive goals, appreciating the 

perspectives of others, establishing and maintaining positive relationships, making 

responsible decisions, and handling interpersonal situations constructively (21). Our 

preregistered hypotheses included finding positive associations between the GPS and alcohol 

use, but we made no predictions about main effects of specific environments or the effect 

sizes associated with their GxE interactions due to the exploratory nature of our study.  
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METHODS 

Sample 

Data came from the Twins Early Development Study (TEDS; 22) that recruited 

families with twin births between 1994-1996 in England and Wales, who have been followed 

up in multiple waves until today. Although some attrition has occurred, TEDS remains 

largely representative of the UK population (22). Genotypes were processed using stringent 

quality control procedures followed by SNP imputation using the Haplotype Reference 

Consortium (release 1.1) reference panels. Following imputation, we excluded variants with 

minor allele frequency <0.5%, Hardy-Weinberg equilibrium P-values of <1 × 10−5. Full 

description of quality control and imputation procedures are provided in the Supplementary 

Methods. For this study we identified unrelated TEDS participants, for who genotype data 

were available at age 22 and who reported AUDIT-C scores (N = 3,390). We excluded 104 

participants (3%), who reported never having had a drink containing alcohol, and 133 

individuals (4%), who responded inconsistently to the AUDIT-C items. Our analysis sample 

consisted of a maximum of 3,153 individuals. 

Measures 

Alcohol use. TEDS participants completed the 10 item AUDIT scale developed by the 

World Health Organization (WHO; 23) to identify hazardous and harmful alcohol use using 

paper, app- or web-based questionnaires at age 22. The first three items provide information 

pertaining to alcohol consumption and are often combined to create an alcohol subdomain 

score termed AUDIT-C. These items measure the frequency and quantity of typical alcohol 

drinking and the frequency of binge drinking. For the current analysis, the AUDIT-C score 

was created by aggregating the scores across all three items (see Supplementary Methods for 

details). 
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Environmental factors. Information on the environment measures was collected using 

paper, app-, or web-based questionnaires administered to TEDS participants at age 22 except 

SES, which was assessed at age 18 months (Supplementary Methods). In total, we included 

all available environmental factors in TEDS, which resulted in a comprehensive set of 30 

quantitative, ordinal, and categorical measurements of environmental factors that represented 

four main domains: home environment, adversity, lifestyles, and social and emotional 

learning competencies (SELC) (Figure 1, Supplementary Table S1, Supplementary Methods). 

Home environment included (i) relationship with twin, (ii) CHAOS (confusion, hubbub and 

order scale), (iii) relationship status, (iv) whether on benefits, (v) education status, and (vi) 

parenthood. Adversity included (i) peer victimisation, (ii) life events, (iii) negative childhood 

experiences, and (iv) online bullying. Lifestyles included (i) conflict with the law, (ii) life 

satisfaction, (iii) healthy diet, (iv) BMI, (v) physical activity, (vi) involvement in sports, (vii) 

sleep quality, and (viii) online media use. SELC included social-emotional traits and 

behaviors, ranging from (i) self-control, (ii) risk-taking behavior, (iii) aggressive behavior, 

(iv) purpose in life, (v) volunteering, (vi) mood, (vii) peer pressure, (viii) ambition, (ix) 

general anxiety, (x) hassles to (xi) antisocial behavior. We note that this classification of the 

environmental variables is preliminary rather than confirmatory of a theoretical model. For a 

detailed description of these measures see Supplementary Methods. We used continuous 

measures of environments wherever possible to optimise the statistical power of our models.  

Genome-wide polygenic scores  

The predictive power of a GPS depends on GWA study sample sizes, SNP 

heritability, and selection thresholds for selecting the markers for creating the score (12). For 

this reason we computed two GPS using PRSice-2 (24) and publicly available summary 

statistics from (i) the largest GSCAN study  on "average number of alcoholic drinks 

consumed per week" that sampled ~1 million individuals (after excluding 23andMe N = 
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537,349; 4), and (ii) the GWA study of AUDIT-C score (the same phenotype used in the 

current study) including UK Biobank research participants of European ancestry (after 

excluding 23andMe N = 121,604; 9). The GPS were generated as the sum of alleles 

associated with the phenotypic trait and weighted by their effect sizes reported in the 

discovery GWA studies. We performed clumping with r2 = 0.25 cut-off within a 250-kb 

window to remove SNPs in linkage disequilibrium and created eight scores for each 

discovery GWA study based on differing thresholds of discovery GWA study P-values (5e-

08, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.5, 1).  

Statistical analyses 

First, we compared the predictive validity of each of the GPS created using the two 

GWA studies and differing P-value thresholds described in the section above for phenotypic 

alcohol use (AUDIT-C score) in our sample using individual linear regression models, 

controlling for gender, age, the first ten principal components (PCs; i.e., population 

stratification), and genotyping array. We then determined the GPS that explained the largest 

amount of variance in the target phenotype (based on Model R2, P < 0.05/16 tests = 0.003) 

and used that in all further analyses. Second, we tested the direct effects of each of the 30 

environments on alcohol use in individual linear regressions models. Because our sample size 

is relatively small for the planned analyses, the P-value was Bonferroni-corrected to 

conservatively identify significant predictors (conventional P = 0.05/30 models = 0.002), 

instead of using a more lenient False Discovery Rate (FDR) method. We then performed a 

multiple linear regression including all 30 environments to predict alcohol use. Third, we 

individually tested moderation effects of each of the environments on the association between 

GPS and alcohol use (i.e., 30 models) by adding interaction terms to the regression models 

including the GPS and each environment, controlling again for gender, age, the first ten PCs, 

and genotyping array as covariates, as well as for all GPS x covariate and E x covariate 
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interaction terms (25). Finally, we fitted a multiple regression model that included all 

interaction terms for the 30 environments and the GPS to assess their combined predictive 

power for alcohol use, controlling again for gender, age, the first ten PCs, and genotyping 

array as covariates, as well as for all GPS x covariate and E x covariate interaction terms. 

Predictor variables were scaled to mean 0 and unit variance prior to the analyses. All 

statistical analyses were conducted using R statistical software (26). All our analyses were 

preregistered at osf.io/ugk3n.  
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RESULTS 

Genome-wide polygenic scores  

Among the GPS generated using the GWA study for the number of drinks consumed 

per week (4) and for AUDIT-C scores (9) using eight selection P-value thresholds, 14 out of 

16 exceeded the multiple testing significance threshold of P < 0.003 in the prediction of 

phenotypic alcohol use in our sample (Supplementary Figure S1, Supplementary Table S2). 

In general, the GPS based on both the GWA studies explained more variance in the 

phenotypic alcohol use as the selection P-value became less stringent. Specifically, GPS 

based on GSCAN study for the number of drinks consumed per week accounted for a 

maximum of 1.9% at the selection threshold of P < 0.1, while GPS based on the GWA study 

for AUDIT-C scores accounted for only 0.9% of the variance at best (Supplementary Figure 

S1, Supplementary Table S2). We therefore carried forward the best predictive GPSP < 0.1 

based on GSCAN study for the number of drinks consumed per week (4) for all further 

analyses. 

Predicting alcohol use from environmental factors  

Correlations between AUDIT-C and GSCAN GPS and the environmental factors (P < 

0.01) are displayed in Supplementary Figure S2. When testing the individual, direct effects of 

the 30 environments on alcohol use, 14 exceeded the Bonferroni-corrected significance 

threshold (Bonf P < 0.002, Supplementary Table S3A-D, Figure 2A). From the domain of 

home environments (7 measures), being a parent, being on benefits and SES were associated 

with alcohol use, such that higher SES individuals consumed more alcohol and individuals 

with children or on benefits consumed less alcohol (Supplementary Table S3A). In the 

adversity domain (4 measures), only peer victimization was significantly associated with 

alcohol use, with individuals who experienced more victimization by peers consuming more 

alcohol (Supplementary Table S3B). From the lifestyles (8 measures), life satisfaction, 
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physical activity, involvement in sports at a competitive level (i.e., athlete status) and online 

media use were associated with higher alcohol use (Supplementary Table S3C). Among the 

11 factors in the SELC domain, lower self-control and higher risk taking, aggression, peer 

pressure, ambition and antisocial behavior were significantly associated with greater alcohol 

use (Supplementary Table S3D). The amount of variance explained by each of these 

environments ranged from 0.4% for ambition to 11.5% for risk-taking behavior 

(Supplementary Table S3A-D).  

Jointly, the 30 environments accounted for 21.1% of the variance in alcohol use. The 

environments that remained significant predictors in the multiple regression model included 

being a parent (home environment domain), online media use (lifestyles domain), and peer 

pressure, risk-taking and antisocial behavior (SELC domain; Supplementary Table S4). Akin 

to the univariate regression results, risk-taking emerged as the strongest predictor of alcohol 

use, independently accounting for 6% of the variance after adjusting for all other 

environmental effects. The GPS and all the 30 environments together accounted for 22.2% of 

the variance in alcohol use (Supplementary Table S5). 

Testing GxE in alcohol use  

When testing the individual interaction effects of the GPS and the 30 environment 

factors on alcohol use, none exceeded the Bonferroni-corrected significance threshold (Bonf 

P < 0.002; (Supplementary Table S3A-D, Figure 2B). A multiple regression model with all 

the interaction terms between the GPS and each of the 30 environments together with the 

main effects of the GPS and the environments accounted for a total of 22.5% of the variance 

in alcohol use (Supplementary Table S6). However, the GxE interaction terms did not explain 

any additional variance in alcohol use beyond the confounding effects of G x covariates and 

E x covariates. None of the G x E interaction terms reached statistical significance after 

multiple testing correction (Supplementary Table S6). 
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DISCUSSION  

Our study is the first to offer a comprehensive analysis of the influence of 30 factors that 

map environments on the genetic contribution to alcohol use in emerging adulthood. We found 

that a GPS based on the GSCAN study for alcohol consumption (4) predicted alcohol use in our 

sample of young adults, but there was no evidence for moderation of this genetic effect by any of 

the environmental factors. The discrepancies between our current and previous findings (e.g., 10, 

15) are likely to be due to the vast methodological differences between studies. In particular, 

previous studies in this area based their GPS on different GWA studies, assessed different 

phenotypes, and tested populations of different ages (10, 11, 14, 15).  

Our findings contribute to a growing body of literature that struggles to identify GxE 

effects (27-30), because of three key challenges. First, studies that examine only one or two 

environmental moderators are likely to identify false positives, because of residual confounding 

that is unaccounted for (cf. 25). We partly overcome this challenge in the current research by 

comprehensively assessing the environment and testing 30 environmental moderators 

simultaneously. Second, testing GxE effects requires extremely large samples that afford 

sufficient statistical power to detect associations of very small effect size, which are likely to be 

true for GxE terms (25, 27). In the current study, we analyzed data from more than 3,000 

individuals, which compares well with other GxE studies on alcohol use but is small relative to 

the populations that are typically assessed in GWA studies (31). Post-hoc power calculations 

using G*Power (32) suggested that our study had more than 80% power to detect two-way 

interactions with an effect size of f2=0.005 (15) but had less than 37% power to detect GxE when 

all the interaction terms are entered simultaneously with their direct effects. Because interaction 

models require much more power compared to tests of main effects, the modest predictive 
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validity of the GPS for alcohol use in young adulthood suggests that the sample size required to 

detect GxE may be far greater than those currently available (28). Third, a principal caveat in 

GxE studies is the discrepancy in the assessment of genes and environment. GPS capture 

inherited DNA differences that are systematically coded in base pairs of single-nucleotide 

polymorphisms (SNPs) and remain unchanged from conception throughout life (33). By 

comparison, measures of the environment capture broad, often stochastic events that 

continuously change across time and contexts. Identifying interactions between two domains that 

are so asymmetrically assessed in research is inherently complicated, if not impossible.  

Our results suggest that alcohol use in emerging adulthood is best predicted by a plethora 

of factors, including genetics with our GPS accounting for up to 1.9% of the variance in the 

AUDIT-C scores. Greater effect sizes were observed when modelling the environmental 

variables jointly: Together they accounted for ~21% of the variance in alcohol use, with peer 

pressure, parenthood, online media use, risk-taking and antisocial behavior emerging as 

significant predictors. Risk-taking appeared as a particularly strong predictor, accounting 

independently for 6% of the variance in alcohol use. Risk-taking and alcohol use are genetically 

correlated (34), suggesting a common genetic origin. Future research will have to disentangle if 

both traits are causally related across development.  

Limitations  

Our study has several limitations. First, the discovery GWA study for creating the GPS 

and the target sample were both composed mainly of European ancestry making the GxE 

findings from this study less generalizable to other ancestry populations. Second, TEDS like all 

longitudinal studies has suffered from attrition, although it still remains fairly representative of 

the population in England and Wales in terms of ethnicity and family SES (22). Third, we 
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included 30 environmental factors in our analyses; yet, it is possible other environments that we 

did not assess play an important role in moderating the genetic contributions to alcohol use. 

Fourth, we Bonferroni-corrected our P-values for multiple testing, which might be an overly 

conservative and stringent approach, which avoids detecting false positives but limits observing 

small effect sizes. Finally, we did not explore sex-specific moderation by the environments on 

the genetic contributions to alcohol use behavior due to our lack of power to detect three-way 

interactions.  

Conclusion 

We undertook here for the first time a hypothesis-free approach for identifying GxE 

interactions by investigating many environmental factors, instead of using one or two as 

moderators of the genetic predisposition to alcohol use. We confirmed previous findings that 

GPS predict alcohol use in young adults, with small effect sizes, and we found that not having a 

child, risk-taking, antisocial behavior, peer pressure, and use of online media increased the risk 

of alcohol use in emerging adulthood. However, we found no support for GxE effects on alcohol 

use in the current analyses. Future studies with larger sample sizes and more powerful polygenic 

scores, based on bigger GWA studies, that comprehensively assessed the environment are key to 

unravelling the complex interplay between the genes and environment in predicting alcohol use. 

Our results suggest that the effects of genetics and environments on alcohol use are primarily 

additive rather than due to interactive effects. 
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Figure Legends 

Figure 1. Summary of environment measures used in the present analyses of Twins Early 

Development Study participants. SELC = social and emotional learning competencies. SES = 

socioeconomic status. CHAOS = Confusion, Hubbub and Order Scale. BMI = body mass index. 

 

Figure 2. P-values for the associations between AUDIT-C scores and environments (A) and GxE 

interaction terms (B) from the univariate regression models for the present study of Twins Early 

Development Study participants. A) The P-values are based on the 30 individual regression 

models for each environment and its association with AUDIT-C scores, controlling for age, 

gender, PCs, and genotyping array. B) The P-values are based on the 30 individual regression 

models including the GPS, the environment, and their GxE interaction term, controlling for age, 

gender, PCs, genotyping array, G x covariates and E x covariates terms. In panels A and B, the 

grey dotted line refers toP < 0.05, while solid grey line refers to the Bonferroni-corrected P < 

0.002, and dark grey dotted line refers to P < 2e-16, which is the lowest P-value that R reports. 

SELC, Social and emotional learning competencies. 
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