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ABSTRACT 

Deep neural networks (DNNs) have attained human-level performance on dozens 

of challenging tasks through an end-to-end deep learning strategy. Deep learning 

gives rise to data representations with multiple levels of abstraction; however, it does 

not explicitly provide any insights into the internal operations of DNNs. Its success 

appeals to neuroscientists not only to apply DNNs to model biological neural systems, 

but also to adopt concepts and methods from cognitive neuroscience to understand the 

internal representations of DNNs. Although general deep learning frameworks such as 

PyTorch and TensorFlow could be used to allow such cross-disciplinary studies, the 

use of these frameworks typically requires high-level programming expertise and 

comprehensive mathematical knowledge. A toolbox specifically designed for 

cognitive neuroscientists to map DNNs and brains is urgently needed. Here, we 

present DNNBrain, a Python-based toolbox designed for exploring internal 

representations in both DNNs and the brain. By integrating DNN software packages 

and well-established brain imaging tools, DNNBrain provides application 

programming and command line interfaces for a variety of research scenarios, such as 

extracting DNN activation, probing DNN representations, mapping DNN 

representations onto the brain, and visualizing DNN representations. We expect that 

our toolbox will accelerate scientific research in applying DNNs to model biological 

neural systems and utilizing paradigms of cognitive neuroscience to unveil the black 

box of DNNs.  
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Introduction 

Over the past decade, artificial intelligence (AI) has made dramatical advances 

because of the rise of deep learning (DL) techniques. DL makes use of a deep neural 

network (DNN) to model complex non-linear relationships, and thus is able to solve 

real-life problems. A DNN often consists of an input layer, multiple hidden layers, and 

an output layer. Each layer generally implements some non-linear operations that 

transform the representation at one level into another representation at a more abstract 

level. As a result, DL could automatically discover multiple levels of representations 

that are needed for a given task (LeCun et al., 2015; Goodfellow et al., 2016). 

Particularly, the deep convolutional neural network (DCNN) architecture stacks 

multiple convolutional layers hierarchically, inspired by the hierarchical organization 

of the primate ventral visual stream. A supervised learning algorithm is generally used 

to tune the parameters of the network to minimize the error between the network 

output and the target label in an end-to-end manner (LeCun et al., 1998; Rawat and 

Wang, 2017). With such a built-in architecture and learning on large external datasets, 

DCNNs have achieved human-level performance on a variety of challenging object 

(Krizhevsky et al., 2012; Szegedy et al., 2014; Simonyan and Zisserman, 2015; He et 

al., 2016) and speech recognition tasks (Hinton et al., 2012; Sainath et al., 2013; 

Hannun et al., 2014). 

Besides the feats of engineering, DNNs provide a potentially rich interaction 

between studies on biological and artificial information processing systems. On the 

one hand, DNNs offer the best models of biological intelligence so far (Cichy and 
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Kaiser, 2019; Richards et al., 2019). Particularly, good correspondence has been 

identified between DNNs and the visual system (Yamins and DiCarlo, 2016; Kell and 

McDermott, 2019; Serre, 2019; Lindsay, 2020). First, DNNs exhibit similar 

behavioral patterns to human and non-human primate observers on some object 

recognition tasks (Jozwik et al., 2017; Rajalingham et al., 2018; King et al., 2019). 

Second, DCNNs appear to recapitulate the representation of visual information along 

the ventral stream. That is, early stages of the ventral visual stream (e.g., V1) are well 

predicted by early layers of DNNs optimized for visual object recognition, whereas 

intermediate stages (e.g., V4) are best predicted by intermediate layers, and late stages 

(e.g., IT) are best predicted by late layers (Khaligh-Razavi and Kriegeskorte, 2014; 

Yamins et al., 2014; Güçlü and van Gerven, 2015; Eickenberg et al., 2017). Finally, 

DNNs designated for object recognition spontaneously generate many well-known 

behavioral and neurophysiological signatures of cognitive phenomena such as shape 

tuning (Pospisil et al., 2018), numerosity (Nasr et al., 2019), and visual illusions 

(Watanabe et al., 2018), and thus provide a new perspective to study the origin of 

intelligence. Indeed, neuroscientists have already used DNNs to model the primate 

visual system (Schrimpf et al., 2018; Lindsey et al., 2019; Lotter et al., 2020). 

On the other hand, the end-to-end DL strategy makes DNN a black box, without 

any explanation of its internal representations. The experimental paradigms and 

theoretical approaches from cognitive neuroscience have significantly advanced our 

understanding of how DNNs work (Hasson and Nusbaum, 2019). First, concepts and 

hypotheses from cognitive neuroscience, such as sparse coding and modularity, 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188847
http://creativecommons.org/licenses/by/4.0/


provide a hand-on terminology to describe the internal operations of a DNN (Agrawal 

et al., 2014; Ritter et al., 2017). Second, a variety of methods in manipulating stimuli 

such as stimulus degradation and simplification have been used to characterize units’ 

response dynamics (Baker et al., 2018; Geirhos et al., 2019). Finally, rich data 

analysis techniques in cognitive neuroscience, such as ablation analysis (Morcos et 

al., 2018; Zhou et al., 2018), activation maximization (Nguyen et al., 2016), and 

representation similarity analysis (Khaligh-Razavi and Kriegeskorte, 2014; Jozwik et 

al., 2017), provide a powerful arsenal in exploring the computational mechanisms of 

DNNs.  

Such a crosstalk between cognitive neuroscience and AI needs an integrated 

toolbox that can fulfill the requirements of both fields. However, the most commonly-

used DL frameworks such as PyTorch1 and TensorFlow2 are developed for AI 

researchers. The use of these frameworks typically requires high-level of 

programming expertise and comprehensive mathematical knowledge of DL. To our 

knowledge, there is no software package that is specifically designed for both AI 

scientists and cognitive neuroscientists to interrogate DNNs and brains at the same 

time. Therefore, it would be of great value to develop a unifying toolbox to integrate 

DNN software packages and well-established brain mapping tools.  

Here we present DNNBrain, a Python-based toolbox specifically designed for 

exploring representations in both DNNs and brains (Figure 1), which has five major 

                                                   
1 https://pytorch.org 
2 https://www.tensorflow.org 
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features.  

• Versatility: DNNBrain supports a diverse range of applications in utilizing DNNs 

to understand the brain such as accessing DNN representations, mapping DNN 

representations to the brain, representational similarity analysis (RSA) between DNNs 

and the brain, and utilizing cognitive neuroscience methods to unveiling DNNs’ black 

box such as visualizing DNN representations and evaluating behavioral relevance of 

the representations. 

• Usability: DNNBrain provides a command line interface (CLI) and an application 

programming interface (API) to process DNN and brain imaging data. At the 

application level, users can conveniently run CLI to conduct typical representation 

analysis on data. At the programming level, all algorithms and computational 

pipelines are encapsulated into objects with a high-level interface in the experimental 

design and data analysis language of neuroscientists. Users can write their own scripts 

to develop a more flexible and customized pipeline. 

• Transparent input/output (IO): DNNBrain supports diverse neuroimaging data 

formats and multiple meta-data file formats, and can automatically complete data 

reading, conversions, and writing. Therefore, DNNBrain spares users from specific 

knowledge about different data formats.  

• Open source: DNNBrain is freely available in source and binary forms. Users can 

access every detail of the DNNBrain implementation, which improves the 

reproducibility of experimental results, leads to efficient debugging, and gives rise to 

accelerated scientific progress.  
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• Portability: DNNBrain, implemented in Python, can run on all major operating 

systems. It is easy to set up without complicated dependencies on external libraries 

and packages. 

The toolbox is freely available for download3 and complemented with an 

expandable online documentation4. As follows, we first introduce the framework of 

DNNBrain and its building blocks. Then, with a typical application example, we 

demonstrate the versatility and usability of DNNBrain in characterizing DNNs and in 

examining the correspondences between DNNs and the brain. 

  

Figure. 1 DNNBrain is designed as an integrated toolbox to characterize artificial 

representations of DNNs and the neural representations of the brain. After stimuli 

                                                   
3 http://github.com/BNUCNL/dnnbrain 
4 http://dnnbrain.readthedocs.io 
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are submitted to both DNNs and human, the artificial neural activity and the biological 

neural activity can be acquired. By assembling stimuli, artificial activity data, and 

biological neural activity data together with custom-designed auxiliary IO files, 

DNNBrain allows users to easily characterize, compare, and visualize representations 

of DNNs and brains.  

 

Overview of the DNNBrain 

The framework of DNNBrain 

DNNBrain is a modular Python toolbox that consists of four modules: IO, Base, 

Model, and Algorithm (Figure 2). The Python language was selected for DNNBrain 

because it provides an ideal environment for research on DNNs and the brain. First, 

Python is currently the most commonly-used programming language for scientific 

computing. A lot of excellent Python libraries have been developed for scientific 

computing. The libraries used in the DNNBrain are: NumPy for numerical 

computation5, SciPy for general-purpose scientific computing6, Scikit-learn for 

machine learning7, and Python imaging library (PIL) for image processing8. Second, 

Python has increasingly been used in the field of brain imaging. Many Python 

libraries have been developed for brain imaging data analysis such as NiPy9 

(Millman and Brett, 2007)and fMRIPrep10(Esteban et al., 2019). Finally, Python is the 

                                                   
5 https://numpy.org 
6 https://www.scipy.org 
7 https://scikit-learn.org 
8 http://pythonware.com/products/pil 
9 https://nipy.org 
10 https://fmriprep.org 
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most popular language in the field of DL. Python is well supported by the two most 

popular DNN libraries (i.e., PyTorch1 and TensorFlow2 ). Using Python and these 

DNN libraries, users can build their own DNN in just a couple of lines of code.  

Supported by a large variety of existing software packages, DNNBrain was 

designed with a high-level API in the domain language from the cognitive 

neuroscience. All algorithms and computational pipelines are encapsulated into 

classes in an object-oriented programming manner. All modules provide user-friendly 

APIs. Based on the APIs, a set of CLIs was developed for a variety of research 

scenarios. 

 

Figure. 2. DNNBrain is a modular framework which consists of four modules: IO, 

Base, Model, and Algorithm. The IO module provides facilities for managing the file-

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188847
http://creativecommons.org/licenses/by/4.0/


related input and output operations. The Base module defines the base level classes for 

array computing and data transforming. The Model module holds a variety of DNN 

models. The Algorithm module defines various algorithms for exploring DNNs and the 

brain. All modules provide user-friendly APIs. A set of CLIs was developed for a variety 

of research scenarios. 

 

IO module: Organizing datasets in DNNBrain 

DNNBrain introduces a few auxiliary file formats to handle various types of 

scientific data and supporting metadata including stimulus files, DNN mask files, and 

DNN activation files. With these file formats, users can easily organize their inputs 

and outputs. The stimulus file is a comma separated values (CSV) text file designed to 

configure the stimulus information including the stimulus type (image or video), 

stimulus directory, stimulus ID, stimulus duration, stimulus conditions, and other 

possible stimulus attributes. The DNN mask file is also a CSV text file designed for 

users to specify channels and units of interest in analyzing the DNN. Both the 

stimulus file and the DNN mask file can be easily configured through a text editor. 

The DNN activation file is a h5py file in which activation values from the specified 

channels are stored. Besides, DNNBrain uses NiBabel11 to access brain imaging files. 

Almost all common brain imaging file formats, including GIFTI, NIfTI, CIFTI, AFNI, 

and MGH, are supported.  

 

                                                   
11 https://nipy.org/nibabel 
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Base module: defining the basic data structure  

The base module defines the base level objects for data structure and data 

transformations. Specifically, a set of objects is defined to organize the data from the 

input stimulus and the output activation data from the DNN, respectively. The data 

objects were designed as simple as possible while keeping necessary information for 

further representation analysis. The stimulus object contains stimulus images and 

associated attributes (e.g., category label), which are read from stimulus files. The 

activation object holds DNN activation patterns and associated location information 

(e.g., layer, channel and unit). Beside these data objects, several data transformation 

objects were also developed, including popular classification and regression models 

such as generalized linear models, support vector machines, logistic regression and 

Lasso. All these models were wrapped from the widely used machine learning library 

scikit-learn7.  

 

Model module: encapsulating DNNs  

In DNNBrain, a DNN model is implemented as a neural network model from 

PyTorch. Each DNN model is a sequential container which holds the DNN 

architecture (i.e., connection pattern of units) and associated connection weights. The 

DNN model is equipped with a suit of methods that accesses the attributes of the 

model and updates the states of the model. PyTorch has become the most popular DL 

framework because of its simplicity and ease of use in creating and deploying DL 
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applications. At present, several well-known pretrained PyTorch DCNN models12 

have been adopted into DNNBrain including AlexNet (Krizhevsky et al., 2012), VGG 

(Simonyan and Zisserman, 2015), GoogLeNet (Szegedy et al., 2014), and ResNet (He 

et al., 2016) which were pretrained on ImageNet for classification of 1,000 object 

categorizes13.  

 

Algorithm module: characterizing DNNs and brains 

The algorithm module defines various algorithms objects for exploring DNNs. An 

algorithm object contains a DNN model and corresponding methods to study specific 

properties of the model. Three types of algorithms are implemented in the DNNBrain. 

The first one is the gradient descent algorithm for DNN model training wrapped from 

PyTorch14. The second are tools for extracting and summarizing the activation of a 

DNN model such as principal component analysis (PCA) and clustering. The third 

type are algorithms to visualize the representations of a DNN including discovering 

the top stimulus, mapping saliency features of a stimulus, and synthesizing the 

maximum activation stimulus for a specific DNN channel (Montavon et al., 2018; 

Nguyen et al., 2019). Each algorithm takes a DNN model and a stimulus object as 

input which can be imported from a user specified stimulus file. 

 

 

                                                   
12 https://github.com/pytorch/vision 
13 http://image-net.org 
14 https://pytorch.org/docs/stable/optim.html 
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The command line interface  

At the application level, DNNBrain provides several workflows as a command-

line interface, including accessing the DNN representations, visualizing the DNN 

representations, evaluating the behavioral relevance of the representations, and 

mapping the DNN representations to the brain. Users can conveniently run command 

lines to perform typical representation analysis on their data.  

 

Methods 

DNN model: AlexNet 

AlexNet is one of the most influential DCNNs that demonstrated that DCNNs 

could significantly increase ImageNet classification accuracy by a significant stride 

for the first time in the 2012 ImageNet challenge (Krizhevsky et al., 2012). AlexNet is 

composed of five convolutional (Conv) layers and three fully connected (FC) layers 

that receive inputs from all units in the previous layer (Figure 3A). Each 

convolutional layer is generally comprised of a convolution, a rectified linear unit 

function (ReLU), and max pooling operations. These operations are repeatedly 

applied across the image. In the paper, when we refer to Conv layers, we mean the 

output after the convolution and ReLU operations.  

 

BOLD5000: stimulus and neuroimaging data 

The BOLD5000 is a large-scale publicly-available human fMRI dataset in which 

four participants underwent slow event-related BOLD fMRI while viewing 
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approximate 5,000 distinct images depicting real-world scenes (Chang et al., 2019). 

The stimulus images were drawn from three most commonly-used computer vision 

datasets: 1,000 hand-curated indoor and outdoor scene images from the Scene 

UNderstanding dataset (Xiao et al., 2010), 2,000 images of multiple objects from the 

Common Objects in Context dataset (Lin et al., 2015), and 1,916 images of mostly 

singular objects from the ImageNet dataset (Deng et al., 2009). Each image was 

presented for 1 s followed by a 9 s fixation cross. Functional MRI data were collected 

using a T2*-weighted gradient recalled echo planar imaging multi-band pulse 

sequence (In-plane resolution = 2 × 2 mm; 106 × 106 matrix size; 2 mm slice 

thickness, no gap; TR = 2000 ms; TE = 30 ms; flip angle = 79 degrees). The scale, 

diversity and naturalness of the stimuli, combined with a slow event-related fMRI 

design, make BOLD5000 an ideal dataset to explore DNNs and brain representations 

of a wide range of visual features and object categories. The raw fMRI data were 

preprocessed with the fMRIPrep pipeline including motion correction, linear 

detrending, and spatial registration to the native cortical surface via boundary-based 

registration (Esteban et al., 2019). No additional spatial or temporal filtering was 

applied. For a complete description of the experimental design, fMRI acquisition, and 

the preprocessing pipeline, see (Chang et al., 2019). 

The BOLD response maps for each image were firstly estimated from the 

preprocessed individual fMRI data through a general linear model in the subject-

native space and then transformed into fsLR space using ciftify (Dickie et al., 2019) . 

The response maps of each image were finally averaged across four subjects in the 
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fsLR space and used for further analyses.  

 

Results 

We demonstrated the functionality of DNNBrain on AlexNet and the BOLD5000 

dataset. Specifically, we accessed the DNN activation of the images from BOLD5000, 

probed the category information represented in each DNN layer, mapped the DNN 

representations onto the brain, and visualized the DNN representations. These 

examples do not aim to illustrate the full functionalities available from DNNBrain, 

but rather to sketch out how DNNBrain can be easily used to examine DNNs’ and 

brain’s representations in a realistic study. All the analyses were implemented in both 

API and CLI levels. The code can be found in the DNNBrain online documentation4. 

 

Scanning DNNs  

To examine the artificial representations of the DNN, we first scanned the DNN 

and to obtain its neural activities, just as we scan the human brain using brain imaging 

equipment. DNNBrain provides both API and CLI to extract the activation states for 

user-specified channels of a DNN. Figure 3 shows the activation patterns of three 

example images (cheetah, dumbbell, and bald eagle) from the channels of AlexNet 

which showed the maximal mean activation within each of the five Conv layers, 

revealing that the DNN representation of the image became more abstract along the 

depth of the layers. 
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Figure 3. AlexNet architecture and the example unit activity patterns. (A) 

AlexNet consists of five Conv layers followed by three FC layers and finally a 1000-

way softmax classifier. (B) The activation maps from each five Conv layers of 

AlexNet were extracted for three example images (cheetah, dumbbell, and bald 

eagle). The presented channels are those showing the maximal mean activation for 

that example image within each of the five Conv layers. 

 

Revealing information presented in DNN layers 

To reveal whether specific stimuli attributes or behavioral performances are 

explicitly encoded in a certain layer of a DNN, a direct approach is to measure to 

what degree is the representation from the layer useful for decoding them. Linear 

decoding models (classifier or regression) were implemented in DNNBrain to fulfill 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 6, 2020. ; https://doi.org/10.1101/2020.07.05.188847doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.05.188847
http://creativecommons.org/licenses/by/4.0/


this. Here, we manually sorted the BOLD5000 stimulus images into binary categories 

(animate versus inanimate) according to salient objects located in each image, and 

examined how animate information are explicitly encoded in AlexNet. In total, 2,547 

images were labeled as animate, and 2,369 inanimate. We trained a logistic regression 

model on the artificial representation from each Conv layer of AlexNet to decode the 

stimulus category. To avoid the risk of overfitting with limited training data, the 

dimension (i.e. the number of units) of the activation pattern from each layer was 

reduced by PCA to retain the top 100 components. The accuracy of the model was 

evaluated with a 10-fold cross validation. As shown in Figure 4, the classification 

accuracy progressed with the depth of Conv layers, indicating higher layers encode 

more animate information than lower layers. Moreover, the ReLU operation within 

each convolutional layer plays a significant role in improving the representation 

capacities for animate information.  

 

Figure 4. DNNBrain probes (or decodes) the explicit representation contents of 

layers of interest in a DNN using linear models. On BOLD5000 stimuli, a logistic 

regression model revealed that the higher a layer is, the more animate information it 

encoded.  
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Mapping representations between a DNN and the brain 

A growing body of studies is testing DNNs as a model of brain information 

processing. For example, several recent studies mapped the artificial representations 

from a DNN optimized for object classification task to the primate ventral visual stream 

and revealed that internal representations of DNNs provide the best current models of 

representations of visual images in the inferior temporal cortex in humans and monkeys 

(Lindsay, 2020). DNNBrain supports two kinds of analyses to link DNN artificial 

representations to brain representations: encoding model (EM) (Naselaris et al., 2011) 

and RSA (Kriegeskorte et al., 2008).  

The EM aims to find linear combinations of DNN units to predict the response of 

a neuron or voxel in the brain. The linear model is preferred because how the two kinds 

of representations are similar in an explicit format (i.e. a linear transform) is primarily 

concerned for researchers (Yamins et al., 2014; Wen et al., 2018). Here, we used voxel-

wise EM to check how the human ventral temporal cortex (VTC) encodes the 

representations from the Conv layers of AlexNet. The VTC region was defined by 

merging the areas V8, FFC, PIT, VVC, and VMV from HCP MMP 1.0 (Glasser et al., 

2016). For each voxel within the VTC, five EMs were constructed using the artificial 

representation from each of five Conv layers in AlexNet. The encoding accuracy was 

evaluated with the Pearson correlation between the measured responses and the 

predicted responses from the EM using a 10-fold cross validation procedure on 

BOLD5000 dataset. Two main findings were revealed (Figure 5A). Firstly, the overall 

encoding accuracy of the VTC gradually increased for the hierarchical layers of 
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AlexNet, indicating that as the complexity of the visual representations increase along 

the DNN hierarchy, the representations become increasingly VTC-like. Second, the 

encoding accuracy varied greatly across voxels within the VTC for the artificial 

representations of each AlexNet layer, indicating the VTC may organize in distinct 

functional modules, each preferring different kinds of features. 

Instead of predicting brain responses directly, RSA compares the representations 

of the DNN and that of the brain using a representational dissimilarity matrix (RDM) 

as a bridge: the RDMs are first created to measure how similar the response patterns 

are for every pair of stimuli or conditions using the multivariate response patterns from 

the DNN and the brain, respectively. The representation similarity between the DNN 

and the brain is further calculated as the correlation between their RDMs (Khaligh-

Razavi and Kriegeskorte, 2014; Cichy et al., 2016). As an example, the RDMs of the 

BOLD5000 stimuli are shown in Figure 5B, which were calculated on the BOLD 

representation from the VTC and the artificial representation from each of the five Conv 

layers of AlexNet. First, the RDM from AlexNet revealed that the category 

representations gradually emerge along the hierarchy. Second, the artificial 

representations of AlexNet are increasingly resembling the neural representation from 

the human VTC. 
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Figure 5. Both the encoding model and the representational similarity analysis 

are implemented in DNNBrain to help researchers to examine the 

correspondence between the DNN and brain representations. (A) The encoding 

accuracy map from voxel-wise encoding models of predicting the VTC BOLD 

responses using the artificial representation from the Conv layers of AlexNet. (B) The 

RDMs for the BOLD5000 stimuli computed on the artificial representation from 

Conv layers of AlexNet and brain activation patterns from the human VTC. The 

representation distance between each pair of images was quantified as the correlation 
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distance between their representation. The representation similarity between DNN and 

brain is further calculated as the Pearson correlation between their RDMs. 

 

Visualizing features from DNNs 

DNNs are a kind of complex non-linear transformation that does not provide any 

explicit explanation of their internal workings. Identifying relevant features 

contributing the most to the responses of an artificial neuron is central to understand 

what exactly each neuron has learned (Montavon et al., 2018; Nguyen et al., 2019). In 

DNNBrain, three approaches were implemented to help users examine the stimulus 

features that an artificial neuron prefers. The first approach is top stimulus discovering 

that finds the top images with the highest activations for a specific neuron (or unit) from 

a large image collection (Zeiler and Fergus, 2014; Yosinski et al., 2015). The second 

approach is saliency mapping that computes gradients on the input images relative to 

the target unit by a backpropagation algorithm. It highlights pixels of the image that 

increase the unit’s activation most when its value changes (Simonyan et al., 2014; 

Springenberg et al., 2015). The third approach is optimal stimulus synthesizing which 

synthesizes the visual stimulus from scratch guided by increasing activation of the 

target neuron (Erhan et al., 2009; Nguyen et al., 2016). It offers advantages over the top 

stimulus discovering and saliency mapping because it avoids the risks that effective 

images that could activate the neuron may not exist in the stimulus set. 

We used DNNBrain to visualize the preferred features for three output units of 

AlexNet (i.e., ostrich, peacock, and flamingo) as an example. The output units were 
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selected as examples because the produced features for them are easy to check (i.e., 

each unit corresponds to a unique category). These procedures essentially work for 

any unit in a DNN. As shown in Figure 6A, the top stimulus was correctly found from 

4916 BOLD5000 images for each of three units: every top stimulus contains the 

object in the correct category. The saliency maps highlight the pixels in the top stimuli 

that contribute to the activation of the neurons most (Figure 6B). Finally, the images 

synthesized from scratch correctly emerge objects of the corresponding category 

(Figure 6C). In summary, these three approaches are able to reveal the visual patterns 

that a neuron has learned on various levels and thus provide a qualitative guide to 

neural interpretations. 

  

Figure 6. The top stimuli, saliency maps and synthesized images for three output 

units of AlexNet. (A) The top stimuli discovered from the BOLD5000 dataset. (B) 
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The saliency maps computed for the top stimuli presented in (A). (C) The images 

synthesized from scratch guided by increasing the activation of corresponding 

neurons. 

 

Other analyses DNNBrain supported 

Besides the functionality illustrated in the above examples, DNNBrain also 

provides many other flexible pipelines for neuroscience-orientated analysis of DNNs 

including ablation analysis of individual units and estimation of the empirical 

receptive field of a unit (Zhou et al., 2014). It also comes with a variety of utilities 

such as image processing tools used for converting image data types between PyTorch 

tensor, NumPy array, and PIL image objects, translating and cropping images, etc. A 

set of utilities that helps users training a new model or doing transfer learning was 

also provided. Visit the DNNBrain documentation page for details4.  

 

Discussion  

DNNBrain integrates well-established DNN software and brain imaging packages 

to enable researchers to conveniently map the representations of DNNs and brains, 

and examining their correspondences (Figure 1). DNN models provide a biologically 

plausible account of biological neural systems, and show great potential for novel 

insights into the neural mechanisms of the brain. On the other hand, experimental 

paradigms from cognitive neuroscience provide powerful approaches to pry open the 

DNNs’ black box, which promotes the development of explainable DNNs. DNNBrain 
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as a toolbox that is explicitly tailored toward integrated mapping between DNNs and 

the brain will likely accelerate the merge of AI and neuroscience.  

DNNBrain integrates many of the currently most popular pretrained DCNN 

models. With the advance of the interplay of neuroscience and DNN communities, 

new DNN models are constantly emerging and will be included into DNNBrain in the 

future. For example, a generative adversarial network could be introduced into 

DNNBrain to help users to reconstruct external stimuli (Shen et al., 2019; VanRullen 

and Reddy, 2019) and to synthesize preferred images for neurons or brain areas 

(Ponce et al., 2019) according to their dynamic brain activities. Besides, there are a 

few issues that we would like to address in the future. First, DNNBrain until now only 

supports DNN models from PyTorch, which limits users to study DNNs constructed 

under other frameworks within DNNBrain. We next will make great efforts to 

integrate the TensorFlow framework into DNNBrain. Second, only fMRI data is 

currently well supported in DNNBrain because the organization of other types of 

brain imaging data have not yet been well standardized (Gorgolewski et al., 2016). As 

the standardization of electrophysiology data progresses (Niso et al., 2018; Pernet et 

al., 2019), we would very much like to extend DNNBrain to support 

magnetoencephalography, electroencephalography, multiunit recordings, and local 

field potentials. Finally, DNNBrain mainly supports the exploration of pretrained 

models trained on external stimuli. A recent advance demonstrated the brain 

representation can provide additional and efficient constraints on DNN constructions 

(McClure and Kriegeskorte, 2016). Therefore, it would be a good attempt to equip 
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DNNBrain with tools in the future to fuse brain activities and external tasks/stimuli to 

create DNN models that are more closely resembling the human brain. 

 

 

Code and data availability  

Our toolbox is freely available via github3. The code used in this tutorial and 

additional documentation is available for via readthedocs4. All data are freely 

provided by the BOLD5000 Project15 and available from Kilthub16 or OpenNeuro17. 
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