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Abstract

Obesity has reached epidemic proportions in the United States but little is known about
the mechanisms of weight gain and weight loss. Integration of “omics” data is becoming
a popular tool to increase understanding in such complex phenotypes. Biomarkers come
in abundance from high-throughput experiments, but small sample size is still is a
serious limitation in clinical trials. It makes assessment of more realistic assumptions for
complex relationships such as nonlinearity, interaction and normality more difficult. In
the present study, we developed a strategy to screen predictors of weight loss from a
multi-omics, high-dimensional and longitudinal dataset from a small cohort of subjects.
Our proposal explores the combinatorial space of candidate biomarkers from different
data sources with the use of first-order Spearman partial correlation coefficients.
Statistics derived from the sample correlations are used to rank and select biomarkers,
and to evaluate the relative importance of each data source. We tackle the small sample
size problem by combining nonparametric statistics and dimensionality reduction
techniques useful for omics data. We applied the proposed strategy to assess the relative
importance of biomarkers from 6 different data sources: RNA-seq, RT-qPCR,
metabolomics, fecal microbiome, fecal bile acid, and clinical data used to predict the
rate of weight loss in 10 obese subjects provided an identical low-calorie diet in a
hospital metabolic facility. The strategy has reduced an initial set of more than 40K
biomarkers to a set of 61 informative ones across 3 time points: pre-study, post-study
and changes from pre- to post-study. Our study sheds light on the relative importance
of different omics to predict rates of weight loss. We showed that baseline fecal bile
acids, and changes in RT-qPCR biomarkers from pre- to post-study are the most
predictive data sources for the rate of weight loss.

Introduction 1

Obesity has reached epidemic proportions in the United States, with about two-thirds 2

of adults who are classified as being overweight or obese [10]. Little is known about the 3

simultaneous effects of rapid weight loss induced by a clinically relevant very-low calorie 4

diet (VLCD) on subcutaneous adipose tissue (SAT) inflammation, the plasma 5

metabolome, fecal microbiome and bile acid content, and SAT transcriptome. It is well 6
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known that weight loss and weight gain occur at differing rates in individuals but the 7

mechanisms responsible are still unclear [5, 16]. In obese subjects, gradual weight loss 8

ameliorates adipose tissue inflammation and related systemic changes. A greater 9

understanding of the factors that contribute to an individual’s enhanced rapid weight 10

loss might greatly increase the development and efficacy of weight loss therapies. 11

Some existing gaps in disease understanding have been gradually filled by the 12

development of omics and bioinformatics technologies and their ability to generate large 13

amounts of data from biological systems. Omics science has been used for many goals; 14

improving the accuracy of diabetes or heart disease predictive models, clustering cancers 15

that were initiated by genetic aberrations, or revealing cell-type specific mechanisms in 16

brain functions [3, 12]. 17

Despite all the excitement around this so-called Big Data era, biomedical research is 18

still is constrained by sample size restrictions. New research hypotheses are tested in a 19

small number of subjects, preceding more extensive confirmatory studies. Although the 20

costs for high-throughput experiments are decreasing, obtaining the omics profile for a 21

large cohort is far from being feasible in clinical research. 22

The combination of high dimensionality, small sample size, and heterogeneous data 23

sources, typical in multi-omics data, poses a challenge for analytical and inferential 24

methods. This scenario prevents the use of classical statistical models and sophisticated 25

machine learning algorithms. Assumptions such as normality, linearity, and interactive 26

effects are difficult to be assessed; statistical tests are underpowered, and complex 27

models cannot be externally validated. 28

Moreover, it is not feasible to implement the classic supervised learning paradigm of 29

machine learning. Despite the fact that regularization techniques such as 30

lasso-regression, ridge-regression and elastic nets [25] have been successfully used in 31

situations where the number of features is much larger than the number of observations, 32

assumptions such as linearity and additive effects are still difficult to be assessed with 33

very small sample sizes. Kirpich and colleagues [15] pointed out that in multi-omics 34

datasets, variable selection through these methods may inflate type-I error when 35

handling small sample sizes. 36

The literature describing statistical methods to handle multi-omics data with small 37

sample sizes is relatively new [18], but it still lacks parsimonious and informative 38

solutions to unravel disease mechanisms. 39

Materials and Methods 40

Our study proposes a method to screen predictors of an ordinal outcome in a 41

multi-omics dataset obtained from a small cohort of subjects. An application of the 42

proposed strategy utilized data from 6 different sources, examining the importance of 43

each one in a study of the rate of weight loss in 10 obese individuals fed an identical 44

diet in a metabolic ward [1]. Our pipeline is built to answer 3 scientific questions: 45

1. which are the most important weight loss predictors ? 46

2. which data sources show the highest predictive ability ? 47

3. how different data sources are interconnected when predicting the outcome ? 48

The small sample size issue is tackled by dimensionality reduction followed by the 49

use of nonparametric statistics namely the first order partial Spearman correlation 50

coefficient. P-values are not used as primary decision statistics but their regularity over 51

a set of confounders is explored. We propose two decision statistics: the Biomarker 52

Predictive Score (BPS) and the Persistent Significance (Ψ) that are jointly used to rank 53

and select predictive biomarkers. 54
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Dataset 55

A prospective cohort study [1, 2] of VLCD-induced weight loss of 10% of baseline weight 56

induced by an identical VLCD in ten grade 2-3 obese postmenopausal women studied in 57

a metabolic unit collected data from 6 data sources : adipose tissue RNA-seq and 58

RT-qPCR, plasma metabolomics, fecal microbiome, fecal bile acid and clinical data. 59

Table 1 shows the number of biomarkers within each data source, the amount of missing 60

data and the proportion of biomarkers in which the coefficient of variation is greater 61

than 10%. Any biomarker with more than 20% missing data was excluded from the 62

analysis. 63

Table 1. Biomarker data source frequency distribution.

Data Sources Total Variables After Dimensionality > 20% Biomarkers
in Data Source Reduction Missing Data with % CV > 10%1

Clinical 50 (0.11%) 50 (12.14%) 0 58%
Bile Acid 24 (0.056%) 24(5.83%) 0 100%
RT-qPCR 23 (0.054%) 23 (5.58%) 1 8.7%
RNA-seq 41986 (98.78%) 176 (42.72%) 0 35%

Microbiota 85 (0.20%) 85(20.63%) 0 0%
Metabolites 336 (0.79%) 54 (13.11%) 0 57%

The rate of weight loss (WL) is characterized as follows: 64

WL =
Weightpost −Weightpre

Days
(1)

where WL is the daily average loss in kilograms observed in a study participant. To 65

account for the fact that days on study were not uniform across subjects as well as the 66

fact that the level of exercising is a potential confounder, we adjusted the daily rate of 67

weight loss by the total number of steps during the study period. Therefore 68

WL∗ = WL/(Total Steps) was further used in the data analysis. 69

Data Analysis 70

Our data analysis pipeline accomplished: a) dimensionality reduction; b) description of 71

the amount of variability within each data source; c) assessment of the univariate 72

association between weight loss rate and each one of the biomarkers; d) assessment of 73

multivariate associations between weight loss rate and the biomarkers ; e) screening 74

predictors of rapid weight loss; f) designing a network of interactions between data 75

sources. 76

Our multivariate approach is described in Figures 1A-B where the use of low order 77

partial rank correlation is the key element to rank predictors from different data sources. 78

The strategy is also used to rank the data sources according to their relative importance 79

when predicting weight loss rate. 80

Correlation Analysis 81

Based on a sample of the bivariate random vector (y, x), our approach relies on the 82

evaluation of the Spearman’s rank-order Correlation Coefficient in (2), a nonparametric 83

measure of strength and direction of monotonic association between y and x: 84

ryx = 1−
6
∑
i d

2
i

n(n2 − 1)
(2)
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where n is the sample size and di is the difference between the ranks of yi and xi. 85

The Spearman correlation coefficient lies in the interval between −1 and +1, and the 86

closer to the interval limits, the stronger is the evidence of association. 87

This coefficient is a less restrictive alternative to the Pearson product-moment 88

correlation coefficient used to measure linear association between two variables. The 89

only assumption used here is that all biomarkers are measured at least in an ordinal 90

scale. Although this approach restricts the use of categorical variables, they can be 91

included through the use of latent variables [8]. 92

Our feature selection approach relies heavily on the first-order partial Spearman’s 93

Correlation Coeficient described in equation (3), 94

ryx.z =
ryx − ryzrxz√

(1− ryz)2(1− rxz)2
(3)

where y is the response variable, x is a biomarker and z is a potential biomarker 95

confounder. This coefficient measures the monotonic association between y and x after 96

adjusting, or accounting, for a potential confounding effect generated from a third 97

variable z. An alternative way of evaluating this coefficient is by computing the 98

correlation between the residuals from the regressions of y on z and x on z (see [14, 27]). 99

Biomarker Predictive Score 100

Due to the small sample size restriction, we propose a metric for predictive importance 101

that explores the partial correlation between the outcome and biomarkers from all data 102

sources. We define our strategy as multivariate since all biomarkers are used in the 103

construction of this metric. The use of the partial correlation coefficient for robust 104

selection of features is described in [17] and also in [6] in an application to genomic data. 105

The Biomarker Predictive Score evaluated according to (4), 106

BPS = Q0.5(S∗yx(z)) (4)

where Qp(u) is the p-th quantile of u’s distribution and S∗yx(z), as function of z, is a 107

scaled S-value [9], described in equation (5), obtained by combining the first-order 108

partial Spearman’s correlation and its p-value. 109

S∗yx(z) = −|ryx.z|ln(pryx.z ) (5)

In (5), ryx.z is the partial Spearman correlation in equation (3). pryx.z
is the p-value 110

derived from a hypothesis test based on the statistic in equation (6) described in [22,26], 111

tyx.z = ryx.z

√
N − 3

1− r2yx.z
(6)

that follows the Student’s t distribution with N-3 degrees of freedom. 112

The partial correlation coefficient is measured across the set of confounders Z−j that 113

includes all biomarkers z1, z2, . . . , zp except zj = x, and tested for its significance for 114

each one of the p− 1 elements of Z−j. This approach permits one to incorporate the 115

magnitude of the association between y and x, its significance and confounding effects 116

from all variables in the dataset. 117

The BPS statistic can be seen as a function of p− 1 random variables, assuming 118

values in the positive real numbers. Consequently, its distribution is directly associated 119

to the multivariate distribution of the random vector Z−j. 120
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Persistent Significance (Ψα) 121

The BPS is useful for ranking the biomarkers according to their predictive ability but 122

does not perform feature selection. To complement the BPS statistic in order to obtain 123

a subset of important predictors, we propose the use of a complementary metric, the 124

Persistent Significance Ψα in (7). 125

Ψα =
1

p− 1

∑
Z−j

I(pryx.z < α) (7)

I(.) is an indicator variable. The statistic in equation (7) represents the proportion 126

of times in which the confounding variable does not remove the partial correlation 127

statistical significance, at a fixed α level. It is an index of robustness to the confounding 128

in the association between y and x. 129

An ad hoc threshold θ for Ψα defines which biomarkers will be included in the set of 130

selected features. 131

Network Analysis 132

The partial correlation coefficient is further explored to assess how biomarkers interacts 133

in a network when predicting the outcome. Considering x and z two vertices in a 134

directed graph, with edges that are obtained according to the following metric : 135

C(x, z) =
r2yx − r2yx.z

r2yx
(1− pryx

)(pryx.z
) (8)

that can be seen as a measure of interaction between x and z when predicting the 136

outcome y. In equation (8), C(x, z) represents the percentual decrease in the 137

determination coefficient between y and x when accounting for a confounder z. As 138

proposed in equations (5) and (7), the p-values from significance test are used as 139

weights to leverage the connection strength between x and z. This metric accounts for 140

the impact of the confounder z on the variability explained by the predictor x. 141

Consider different data sources labelled as k ∈ {1, 2, . . . ,K}, in (9), we propose to 142

evaluate the interaction between two data sources k1 and k2 with a graph with edges 143

characterized as: 144

C(k1, k2) = medianx∈k1,z∈k2C(x, z). (9)

Based on C(x, z) and C(k1, k2), we applied weighted correlation network analysis as 145

implemented in the R package qgraph [7] to build a network and to cluster predictors 146

and data sources according to their similarity. 147

Results 148

Weight loss rates differ across individuals 149

Motivation for this application comes from data behavior displayed in Figures 2A-B. 150

The rates of weight loss characterized by their longitudinal trajectories and estimated 151

slopes differ markedly between study participants. In general, the participants showed a 152

linear decay in weight at different speed rates. The addition of a quadratic term to 153

describe the weight loss trajectory had no statistical significance. 154

The simplest predictor equation assuming each pound lost to be equivalent to 3300 155

kcal deficit did not predict individual rates. The slopes are different not only on their 156

magnitude but also on the level of uncertainty estimated by the standard error. 157
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Although subjects were enrolled in different months over a period of one year, there is 158

no statistical evidence of seasonal components affecting the weight loss dynamics. 159

To explain this variability, we explore information available in a wide format 160

multi-omics data matrix containing a large number of features, but a small sample of 161

subjects. The features are originated from different data sources: clinical, metabolomics, 162

microbiome, fecal bile acids, RNA-seq and RT-qPCR gene expressions. The strategy for 163

screening potential predictors of weight loss is carried out by assembling information 164

gathered from simple statistical models rather than using complex formulations. 165

Dimensionality Reduction 166

The large number of individual genes analyzed in the adipose tissue RNA-seq and 167

plasma metabolite datasets required dimensionality reduction from these sources. To 168

prevent a selection bias due to this problem, the dimensions in RNA-seq and 169

metabolites biomarkers were reduced by mapping gene expressions and metabolites 170

concentration to pathways scores, evaluated for each subject. The Gene Set Variation 171

Analysis (GSVA, [11]) as implemented in the gsva R package was applied to reduce the 172

large number of RNA-seq genes and metabolites to a manageable number of pathways. 173

GSVA scores were computed for 4107 canonical pathways curated from online databases 174

and available at Broad Institute website. An additional step was carried out to reduce 175

this number to 176 pathways gene sets, selected according to the nominal significance of 176

their estimated differences from pre- to post-VLCD with a mixed-effects model. The set 177

of 336 metabolites was mapped to a reduced set of 87 metabolic pathways. 178

Data source variability 179

The data sources are heterogeneous, both in their between- and within-individuals 180

variability. For predicting weight loss, large between-individuals variability in 181

biomarkers can be beneficial to discriminate the most predictive ones. On the other 182

hand, large within-individual variability may not add much gain to a rank-based 183

method since a subject may be ranked differently at different time points. To establish 184

a fair comparison between data sources, we have evaluated for each biomarker the 185

coefficient of variation at baseline, post-VLCD, and the changes from pre- to 186

post-VLCD. Figure 3A boxplots summarize the variability with the log-scaled 187

coefficient variation in biomarkers from different data sources. 188

At each time point, pre- and post-VLCD, bile acids and metabolic pathways exhibit 189

the most extreme biological variation, while gut microbiome and RT-qPCR have the 190

least extreme ones. The low biological variation in microbiota biomarkers is partially 191

due to the excess of zeros, a common problem when handling this kind of data [13]. The 192

same applies to RT-qPCR where several measurements are close or below the lower 193

limit of detection (LLOD). 194

The coefficient of variation expectedly rises in all data sources when evaluating 195

changes from pre- to post-VLCD, at a less extent in RNA-seq, fecal bile acids, and 196

metabolites. The variance computed for the difference between two variables is reduced 197

when these two variables are positively correlated (see [20]). Therefore, the small 198

increment suggests high, and positive, correlation between pre- and post-VLCD 199

measurements within these three data sources. 200

Biomarkers Correlation with Weight Loss grouped by Data Source and 201

Time Point 202

Figure 3B illustrates how the correlation between weight loss rate and biomarkers 203

ranges across data sources and different time points. In this figure, the blue horizontal 204
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line is placed at the null association level(ryx = 0), and the red horizontal lines 205

represent moderate association (ryx = 0.5) according to the Spearman correlation 206

coefficient. RT-qPCR changes from baselines are the unique scenario in which the 207

median Spearman correlation coefficient exceeds moderate correlation levels with weight 208

loss rate. Bile acids’ correlations are close to this level but still below the 0.5 threshold. 209

Biomarker and Data sources Ranked and Selected According to Predictive 210

Importance and Persistent Significance 211

The multivariate approach ranks and selects the biomarkers according to the proposed 212

Biomarker Predictive Score (BPS) and persistent significance metrics. After ranking, 213

our feature selection criteria extracts a robust subset of predictive biomarkers by using 214

the persistent significance Ψα as defined in equation (7). Two ad hoc hyperparameters 215

need to be defined when using this statistic, the significance level, fixed at the classic 216

5% level and the persistence threshold that represents the proportion of correlations 217

that remain significant after adjusting for all possible confounder from all different data 218

source. This threshold was set to 70% and whenever Ψ0.05 < 0.70 the biomarker was 219

included in the final set. 220

The panel in Figures 4A,B summarizes the results of the application of this pipeline. 221

Figure 4A shows a bar plot with the BPS statistic estimated for biomarkers selected in 222

each time point, considering a persistent significance greater than 0.7. In pre-, 223

post-VLCD and changes from baseline, the procedure selected 26, 27 and 22 biomarkers, 224

respectively (see Supplementary Table S1). 225

Among the biomarkers selected from changes from pre- to post-VLCD, the most 226

represented data sources are RNA-seq (22.8%) and RT-qPCR (22.8%) followed by fecal 227

bile acids(18.2%) and fecal microbiota (18.2%) , then metabolites(13.6%) and only one 228

(4.5%) clinical biomarker. In terms of relative overrepresentation, fecal bile acids and 229

RT-qPCR are the most significant ones. When taking into consideration the ranking, 230

fecal bile acids overperform RT-qPCR markers. 231

In Figure 4B, violin plots show the distribution of BPS statistic across data sources 232

and time points. The different distributions suggest that data sources have different 233

degrees of importance in the weight loss prediction. The central tendency of the 234

distribution is a proxy for the data source importance and the dispersion indicates how 235

heterogeneous is the information contained in this specific block of data. These figures 236

also show that the importance of data sources is relative to the time reference 237

(pre-VLCD, post-VLCD or ∆). The densities in Figure 4B are skewed towards zero. A 238

high concentration of biomarkers close to zero indicates that most of them have no 239

impact in explaining variation in weight loss rates. 240

Enrichment of Data Sources 241

The multivariate correlation analysis and the resulting BPS provide a way of ranking all 242

biomarkers independent of which data source the biomarker comes from. To verify the 243

enrichment of the data sources on top ranked biomarkers, we applied the Gene Set 244

Enrichment Analysis (GSEA) [24] on a pre-ranked list of biomarkers sorted in 245

descending order from the highest to the lowest BPS. The results are presented in 246

Figure 4C. This analysis can be seen as an indirect way of quantifying the predictive 247

importance and determining the statistical relevance of each data source. The 248

Normalized Enrichment Score was used as statistic for enrichment and p-value for its 249

significance. 250
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RT-qPCR and Fecal Bile Acids as Network Hubs 251

Lastly, we aimed to understand the connectivity between the examined biomarkers by 252

network analysis. In Figure 5A-C we show 3 networks built with the connectivity 253

measures described in equations (8) and (9) for each time point; pre-, post-VLCD and 254

for the ∆ changes from pre- to post-VLCD. The directed arrows in the network indicate 255

how a data source in the origin node impact the weight-loss predictive capability of the 256

data source in the descendant node. In Figure 5C, all data sources have a clear impact 257

on RT-qPCR, meaning that the relationship between the gene expression and the rate 258

of weight loss is largely modified when the partial correlation adjusts for a biomarker 259

from a specific data source (e.g. microbiota). An expected self-loop in RT-qPCR is also 260

expected since the selected genes for amplification are supposed to be jointly linked to 261

the weight loss rate. This dynamic is different from the one in Figure 5A where fecal 262

bile acids, and clinical data sources are most affected by RT-qPCR and RNA-seq. 263

Clinical data at baseline has a larger impact from RNA-seq and microbiota. Figure 5B 264

shows that the network built based on post-VLCD data has as configuration that is 265

similar to baseline (pre-VLCD), except for the fact that fecal bile acids hub position is 266

not as evident. 267

Discussion 268

We propose a method for ranking and selecting predictive biomarkers in a 269

high-dimensional study with a small sample size. A multi-omics pipeline integrates 270

different data sources, identifying how they are interconnected. The strategy relies 271

heavily on the use of the first-order partial correlation between the outcome and 272

potential predictive biomarkers. Two metrics BPS and the PS score, are combined to 273

generate a final set of predictive biomarkers. 274

This methodology is applied to identify predictors of weight loss rate in a small 275

cohort of subjects provided a very low-calorie diet. We used this strategy in the 276

pre-study, post-study, and changes from pre to post study (diff) timepoints for each 277

data source.. Before integrating data derived from multiple sources, we investigated 278

factors that contributed to their heterogeneity. Fecal bile acids, for example, show 279

pre-study greater biological variability but also greater magnitude in their correlation 280

with the rate of weight loss when compared to post study data (see Figure 3A). Unlike 281

other data sources that are heavily skewed towards lower BPS values, fecal bile acids are 282

over-represented in the upper tail of the BPS distribution (see Figure 3B). 283

Finally, in Figure 5A, for prestudy data bile acids occupy a hub position in the 284

interaction network. In the diff data, fecal bile acids and RT-qPCR biomarkers also are 285

an essential predictive data source, especially when investigating changes from pre to 286

post-study. 287

Different approaches confirm the importance of fecal bile acids and RT-qPCR as 288

predictors of weight loss, such as the , shifted distribution in the univariate correlation 289

displayed in Figure 3A, the BPS distribution in Figure 4, and also the interaction 290

network, as shown in Figure 5C. Among the 22 markers selected for diff, five came from 291

the RT-qPCR data source. Gene Set Enrichment Analysis (GSEA) shows significant 292

enrichment of bile acids and RT-qPCR in the top positions on the list of biomarkers 293

ranked according to predictive power. The fecal bile acid is enriched at all 3 time points 294

and RT-qPCR from pre to post-study(Figure 4C). Even though RNA-seq is the data 295

source with the largest number of predictors (176 pathways), it shows weak enrichment 296

in the top predictive group . Although metabolic pathways show similar biological 297

variation as fecal bile acids (see Figure 3A), their association with weight loss is only 298

evident in the pre-study data, as seen in Figures 3B, 4A,C. Their minor contribution is 299
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further demonstrated by their position in the interaction network at the periphery with 300

weak connections (Figures 5A,C). Overall, our data shows that clinical, microbiota, and 301

RNA-seq data sources are of less predictive importance. Microbiota only appear in the 302

list of 5 top predictive markers pre study but not at other times. Clinical data were not 303

found to be as important as other sources and their changes from pre to post-study are 304

under-represented in the list of selected predictive biomarkers (see Figure 4A). 305

Conclusion 306

The present study was launched by the observation that a group of 10 obese 307

postmenopausal women placed on an identical very low calorie diet in a metabolic 308

facility lost weight at rates that varied by over 100%.Major variations in weight loss [23] 309

and weight gain [4] rates have been observed in previous studies. Hypotheses about the 310

determinants of weight loss rates in individual subjects have focused on genetic factors, 311

differences in metabolic rates, energy expenditure. microbiota composition and 312

metabolites. Some individuals have been shown to have a “thrifty” phenotype, with 313

lower weight loss rates during calorie restriction than those with a “spendthrift” 314

phenotype, who lost more weight [21]. 315

Our study attempted to examine the importance of several potential biomarker 316

sources on a predictive model of the rates of weight loss. Striking was data that showed 317

the impact of fecal bile acids on predicting weight loss rate from the pre-study data as 318

well as the difference between pre and post study results. Bile acids in the gut are now 319

recognized as powerful signaling molecules for receptors that act on systemic lipid and 320

carbohydrate metabolism [19]. Further studies on the biologic role of gut bile acids in 321

determining the rate of weight loss in individuals during caloric restriction are 322

warranted. 323
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Figure 1. Schematic of multi-omic predictive model generation.. (A) Multiple
data views serve as input to the predictive model. After dimensionality reduction,
all possible regressions including two predictors are run. The rank first order partial
correlation coefficient is used as a measure of association between Y and X after removing
the effect of the potential confounder Z. (B) Evaluation of predictive performance. Partial
correlation coefficients are computed over the confounders space and mapped to the
BPS statistic. Biomarkers are ranked according to an importance metric, and this
approach allows ranking and enrichment evaluation of data sources. A network based on
aggregated measures of partial correlation is built to illustrate interactions between data
sources.
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Figure 2. Rate of diet-induced weight loss is highly variable and not pre-
dicted by baseline weight.. (A), Dynamics of the individual weight losses across
the study period. The y-axis displays the % weight loss from baseline and x-axis the
number of days after baseline at which the weight measurements were taken. Smoothed
curves and their confidence intervals are estimated by the Loess method and overlaid
to individual data points. (B),Estimated slope coefficients and their 95% confidence
intervals obtained from the OLS regression of the Weight Loss as a linear function of the
days on study. The subjects are ordered according to their weights at baseline (x-axis).
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Figure 3. Bile acids and gene expression by RT-qPCR are most informative
before and during weight loss, respectively. (A) The boxplots illustrate variation
in measurements before (pre), after (post) or during (diff) weight loss according to the
different data sources and time references. The boxes are built based on the quartiles of
absolute coefficient of variation in log-scale. Negative values are associated with lower
variability in the biomarkers as shown by microbiota and RT-qPCR pre and post study.
(B) The boxplots show the correlation of biomarkers with weight loss depends on the
data source and time point in the study. The box shows quartiles of the Spearman
Correlation Coefficient. The horizontal blue line locates the null correlation, and red
lines correlations of intermediate magnitude (r = 0.5). Proximity of the center of the
box to the red lines shows that bile acids at pre study as the most highly correlated data
source, and metabolites at post measurements. Changes (diff) demonstrate RT-PCR as
the most highly correlated data source.
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Figure 4. Biomarker prediction of weight loss rate. (A) Biomarkers selected at
pre-study, post study and during (diff) study according to BPS and persistent significance
> 0.7. Biomarker description is labelled in the Y-axis and colors discriminate the data
source. (B) Violin plots show BPS distribution for different data sources at pre-study,
post study and during (diff) study. (C) A bubble plot based on Gene Set Enrichment
Analysis (GSEA) results explains how data sources are enriched in the ranked list
of biomarkers. The ranking is built according to the BPS statistic. The size of the
bubble is proportional to the normalized enrichment score and the gradient color schema
indicates statistical significance. Bile acids are significantly enriched in all time points
and RT-qPCR data source has largest enrichment in during (diff) study.
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Figure 5. Network analysis of biomarker interactions for weight loss rate.
Networks analyses at pre-study, post-study, and changes from pre- to post-study (diff)
show how data sources interact when predicting the weight loss rate. Nodes represent
individual data sources, and the line thickness represents the strength of the interaction.
(A) Pre-study bile acids interact with genomic data sources (RT-qPCR and RNA-seq).
(B) Post-study network preserves the structure in (a) where bile acids interact with
higher intensity with RT-qPCR , RNA-seq, and, to a lesser extent, with microbiota and
metabolites. (C) Diff network structure shows RT-qPCR occupying a hub position,
interacting with other data sources.
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