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ABSTRACT Balancing selection is an important process, which maintains genetic variability in many functionally important

genes. To increase our understanding of its effects on patterns of genetic diversity, we analyse two models of long-term

balancing selection at a biallelic locus, one with a constant population size and the other with recent population size changes, as

well as a model of recent balancing selection. We use time-inhomogeneous phase-type theory to obtain the expected properties

of the gene tree at a neutral site linked to the target of selection, and the linkage disequilibrium (LD) between the selected and

neutral sites. For long-term balancing selection, we show that selection targets with equilibrium allele frequencies close to 50%

are easier to detect than targets with unequal allele frequencies. The target is also easier to identify after a population size

reduction. The spread of a new mutation under balancing selection initially produces diversity patterns in linked neutral regions

that are similar to those for a selective sweep caused by positive selection, including reduced diversity and an excess of both

high and low frequency derived variants, as well as excess LD with the selected locus. Although the effects of recent balancing

selection are more subtle, patterns of diversity and LD remain in a non-equilibrium state for a much longer period than with a

sweep, and provide complementary information regarding the selection event. These results can be used for developing new

methods for detecting loci under balancing selection, and illustrate the power of time-inhomogeneous phase-type theory, which

can be applied to a wide range of population genetic problems.
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Balancing selection refers to a type of natural selection that1

maintains genetic variability in populations (Fisher 1922;2

Charlesworth 2006; Fijarczyk and Babik 2015). Genes known3

to be under balancing selection are often involved in impor-4

tant biological functions. Examples include the major histo-5

compatibility complex (MHC) genes in vertebrates (Spurgin6

and Richardson 2010), plant self-incompatibility genes (Castric7

and Vekemans 2004), mating-type genes in fungi (van Diepen8

et al. 2013), genes underlying host-pathogen interactions (Bakker9

et al. 2006; Hedrick 2011), inversion polymorphisms (Dobzhan-10

sky 1970), and genes underlying phenotypic polymorphisms11

in many different organisms (e.g., Johnston et al. 2013; Kupper12

et al. 2016; Kim et al. 2019). More recently, it has been proposed13

that a related process, known as associative overdominance,14

may play a significant role in shaping diversity patterns in ge-15
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nomic regions with very low recombination rates (Becher et al. 16

2020; Gilbert et al. 2020). These facts highlight the importance of 17

studying balancing selection. 18

Understanding how balancing selection affects patterns of 19

genetic variability is a prerequisite for detecting genes under this 20

type of selection. The best studied models involve long-term 21

selection acting at a single locus (Strobeck 1983; Hudson and 22

Kaplan 1988; Takahata 1990; Takahata and Nei 1990; Vekemans 23

and Slatkin 1994; Nordborg 1997; Takahata and Satta 1998; In- 24

nan and Nordborg 2003). It is well known that, in addition to 25

maintaining diversity at the selected locus, long-term balancing 26

selection increases diversity at closely linked neutral sites. This 27

reflects an increased coalescence time for the gene tree connect- 28

ing the alleles in a sample from the current population. When 29

this tree is sufficiently deep, it is possible for the ages of the 30

alleles to exceed the species’ age, leading to trans-species poly- 31

morphism. Furthermore, long-term balancing selection alters 32

the site frequency spectrum (SFS) at linked neutral sites, causing 33
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an excess of intermediate frequency derived variants. These1

properties underlie most of the methods used for scanning large-2

scale genomic data for targets of balancing selection (Andres3

et al. 2009; Leffler et al. 2013; DeGiorgio et al. 2014; Bitarello et al.4

2018; Cheng and DeGiorgio 2019; Siewert and Voight 2020).5

Most previous studies have assumed that the population6

is at statistical equilibrium under selection, mutation and ge-7

netic drift, which is a serious limitation. In reality, most pop-8

ulations have experienced recent changes in population size.9

There is currently no effective way to make predictions about10

the joint effects of demographic changes and balancing selec-11

tion on patterns of genetic variability in nearby regions, which12

limits our ability to construct methods for analysing data from13

these populations. Moreover, many cases of balancing selection14

involve variants that have only recently spread to intermediate15

frequencies, rather than having been maintained for periods16

much greater than the neutral coalescent time (e.g. Eanes 1999;17

Kwiatkowski 2005; Corbett-Detig and Hartl 2012). Indeed, re-18

cent theoretical studies have suggested that adaptation may19

occur through the frequent emergence of short-lived balanced20

polymorphism (Sellis et al. 2011; Connallon and Clark 2014). Be-21

cause of their young age, the characteristic diversity patterns22

predicted for long-term balancing selection may not be gener-23

ated. As a result, targets of such selection are unlikely to be24

detected by existing genome scan methods. This is consistent25

with the relatively small number of potential targets returned by26

genome scans (Andres et al. 2009; Leffler et al. 2013; DeGiorgio27

et al. 2014; Bitarello et al. 2018; Cheng and DeGiorgio 2019).28

Multiple authors have suggested that the emergence of re-29

cent balanced polymorphism will generate diversity patterns30

that resemble those generated by incomplete selective sweeps31

(Charlesworth 2006; Sellis et al. 2011; Fijarczyk and Babik 2015),32

and methods designed for detecting sweeps can indeed pick33

up these signals (e.g., Zeng et al. 2006). However, there is cur-34

rently no theoretical framework for studying recent balanced35

polymorphism and quantifying its effects on diversity patterns36

in nearby regions, which precludes a detailed comparison with37

incomplete selective sweeps. Acquiring this knowledge will38

help us devise methods for distinguishing between these two39

forms of selection, which will in turn help us to test hypotheses40

about the role of balancing selection in adaptation.41

Here we tackle these problems by developing and applying42

time-inhomogeneous phase-type theory, thus extending a recent43

study in which a time-homogeneous version of the theory was44

used to study several population genetic models at statistical45

equilibrium (Hobolth et al. 2019). This method is essentially an46

extension of the backwards matrix representation of the struc-47

tured coalescent process that has previously been applied to the48

analysis of the effects of balancing selection on a linked neutral49

site (Nordborg 1997). We prove several useful results under50

the time-inhomogeneous framework, and use them to analyse51

three models of balancing selection: an equilibrium model of52

long-term balancing selection, a model with strong, long-term53

balancing selection and changes in population size, and a model54

with recent balancing selection. The analysis of the last model55

is accompanied by a comparison with a comparable selective56

sweep model.57

For each of these models, we obtain four statistics that are58

useful for understanding the effects of selection on diversity59

patterns in neutral regions linked to the target of selection. For a60

sample of alleles collected from a neutral site, we calculate (1)61

the expected pairwise coalescence time, (2) the expected level62

of linkage disequilibrium (LD) between the selected locus and 63

the focal neutral site, (3) the total branch length of the gene tree, 64

and (4) the site frequency spectrum (SFS). Our results extend 65

previous studies of the equilibrium model by providing a uni- 66

fying framework for obtaining these statistics. The analysis of 67

the non-equilibrium models provides useful insights that can 68

be used for devising new genome scan methods or parameter 69

estimation methods. We conclude the study by discussing the 70

usefulness of phase-type theory in population genetics. 71

An equilibrium model of balancing selection 72

Consider a diploid, randomly mating population. The effective 73

population size Ne is assumed to be constant over time. An 74

autosomal locus with two alleles A1 and A2 is under balancing 75

selection. The intensity of selection is assumed to be sufficiently 76

strong and constant over time that the frequencies of the two 77

alleles remain at their equilibrium values indefinitely. Denote 78

the equilibrium frequencies of A1 and A2 by p̂1 and p̂2, respec- 79

tively (p̂1 + p̂2 = 1). Note that this set-up can accommodate 80

any model of long-term balancing selection (with or without 81

reversible mutation between A1 and A2), as long as it produces 82

these equilibrium allele frequencies. Consider a sample of n 83

alleles with respect to a linked neutral locus, with a recombina- 84

tion frequency r with the selected locus. In the following four 85

subsections, we use time-homogeneous phase-type theory to 86

calculate the four statistics mentioned at the end of the Introduc- 87

tion. This introduces the methodology and notation, and sets the 88

stage for extending the analysis to non-equilibrium models in 89

later sections. A similar model has been investigated previously 90

using different approaches (Strobeck 1983; Hudson and Kaplan 91

1988; Nordborg 1997). However, these do not provide analytical 92

expressions for the SFS. 93

The mean coalescence time for a sample size of two 94

Each of the two alleles in the sample is associated with either A1 95

or A2 at the selected site. The sample is therefore in one of three 96

possible states (Figure 1). In state 1, both alleles are associated 97

with A2. In state 2, one allele is associated with A1, and the 98

other is associated with A2. In state 3, both alleles are associated 99

with A1. Take state 1 as an example. An allele currently associ- 100

ated with A2 was associated with A1 in the previous generation 101

either because there was an A1 to A2 mutation during gamete 102

production, or because the parent was an A1 A2 heterozygote 103

and there was a recombination event. Define v21 as the (back- 104

ward) mutation rate. The first event occurs with probability v21, 105

and the second event occurs with probability rp̂1. The prob- 106

ability that the focal allele becomes associated with A1 in the 107

previous generation is m21 = v21 + rp̂1. The two alleles in state 108

1 may share a common ancestor in the previous generation. Be- 109

cause the frequency of A2 is p̂2, a total of 2Ne p̂2 alleles were 110

associated with A2 in the previous generation. The chance that 111

the two alleles coalesce is 1/(2Ne p̂2). 112

Under the standard assumption that the probability of occur-
rence of more than one event in one generation is negligible, the
probability that the two alleles in state 1 remain unchanged for z
generations is:
✓

1 � 2m21 �
1

2Ne p̂2

◆z
⇡ e�

⇣
2m21+ 1

2Ne p̂2

⌘
z
= e�

⇣
2M21+ 1

p̂2

⌘
t (1)

where M21 = 2Nem21 = µ21 + r p̂1, µ21 = 2Nev21, r = 2Ner, 113

and t = z/(2Ne). 114
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Figure 1 Transition rates between the states of the equilibrium
balancing selection model for a sample size of two. Time is
scaled in units of 2Ne generations. The equilibrium frequen-
cies of A1 and A2 are p̂1 and p̂2, respectively. Mij = µij + r p̂j,
where µij = 2Nevij and r = 2Ner. The neutral locus is repre-
sented by a black dot.

We have scaled time in units of 2Ne generations, and will use1

this convention throughout unless stated otherwise. Using this2

timescale, when in state 1, the waiting time to the next event3

follows an exponential distribution with rate parameter 2M21 +4

(1/ p̂2). Given that an event has occurred, it is either caused5

by one of the two alleles becoming associated with A1 with6

probability 2M21/(2M21 + 1/ p̂2), or by coalescence of the two7

alleles with probability (1/ p̂2)/(2M21 + 1/ p̂2). As illustrated8

in Figure 1, the first possibility moves the process from state 19

to state 2, whereas the second possibility terminates the process10

by moving it into the absorbing state where the most recent11

common ancestor (MRCA) is reached (state 4).12

We can derive the transition rates between all four states13

of the process using similar arguments (Figure 1). This model14

is analogous to a two-deme island model in which 2Ne p̂1 and15

2Ne p̂2 are the sizes of the two demes, and M12 and M21 are16

scaled (backward) migration rates (e.g., Slatkin 1991; Nordborg17

1997). Hereafter, we refer to the sub-population consisting of al-18

leles associated with A1 or A2 as allelic class 1 or 2, respectively.19

We can analyse this model efficiently using time-
homogeneous phase-type theory (Hobolth et al. 2019).
To this end, we define an intensity (rate) matrix as:

L =

2

6666666664

�2M21 � 1
p̂2

2M21 0 1
p̂2

M12 �M12 � M21 M21 0

0 2M12 �2M12 � 1
p̂1

1
p̂1

0 0 0 0

3

7777777775

. (2)

The first three rows in L are for states 1, 2, and 3, respectively.20

In row i (i 2 {1, 2, 3}), the j�th element is the rate of jumping21

from state i to state j (j 6= i and j 2 {1, 2, 3, 4}), and the diagonal22

element is the negative of the sum of all the other elements in23

this row. All elements of the last row of L are zero because state24

4 is absorbing, so that the rate of leaving it is zero. Note that25

L~1 =~0, where~1 is a vector of ones and~0 is a vector of zeros. 26

We can write L in a more compact form:

L =

2

4S s

~0 0

3

5 (3)

where S represents the 3-by-3 sub-matrix in the upper left corner 27

of L, and sT = ( 1
p̂2

, 0, 1
p̂1
) consists of the first three elements 28

in the last column of L. Thus, S contains the transition rates 29

between the transient states, and s contains the rates of jumping 30

to the absorbing state. S and s are referred to as the sub-intensity 31

matrix and the exit rate vector, respectively. 32

Let Ti,2�i be the expected time to the MRCA, given that i
and 2 � i alleles in the sample are associated with A1 and A2,
respectively. Let the initial condition vector be a = (a1, a2, a3),
where ai is the probability that the sample is in state i (Â3

1 ai = 1).
For example, if the sample is in state 1, then a = (1, 0, 0); using
phase-type theory (Hobolth et al. 2019), we have:

T0,2 = aU~1 =
3

Â
k=1

u1k (4)

where U = {uij} = �S�1, and uij gives us the expected amount 33

of time the process spends in state j prior to coalescence, pro- 34

vided that the initial state is i (i, j 2 {1, 2, 3}). 35

U is referred to as the Green’s matrix. By changing a, we 36

can obtain all the Ti,2�i without the need to recalculate U. More 37

generally, we can use phase-type theory to obtain the probability 38

density function and all the moments of the coalescence time 39

(Hobolth et al. 2019). It is possible to obtain U analytically for the 40

general model with reversible mutation between A1 and A2, as 41

specified by (2). However, its terms are complicated, and are not 42

shown. For sites that are not very tightly linked to the selected 43

locus, movements of lineages between the two allelic classes are 44

primarily driven by recombination (i.e., r � µij).Furthermore, 45

with only two alleles at the selected locus, the general model is 46

most appropriate for cases where the selected locus contains a 47

small handful of nucleotides. In this case µij is of the order of 48

the average nucleotide diversity at neutral sites (e.g., about 0.02 49

in Drosophila melanogaster or about 0.001 in humans). 50

For most applications, therefore, it is sufficient to work with
a simplified model with µij = 0. In this case, we have p̂1 M12 =
p̂2 M21 (i.e., there is conservative migration; Nagylaki (1980)),
which leads to:

U =

2

6664

p̂2+2p̂1 p̂3
2r

1+2p̂1 p̂2r 2p̂1 p̂2
2p̂3

1 p̂2r
1+2p̂1 p̂2r

p̂2
2 2p̂1 p̂2 +

1
r p̂2

1
2p̂1 p̂3

2r
1+2p̂1 p̂2r 2p̂1 p̂2

p̂1+2p̂3
1 p̂2r

1+2p̂1 p̂2r

3

7775
. (5)

Summing the three rows, we have:
8
>><

>>:

T0,2 = 1 � p̂1( p̂1� p̂2)
1+2p̂1 p̂2r

T1,1 = 1 + 1
r

T2,0 = 1 + ( p̂1� p̂2) p̂2
1+2p̂1 p̂2r

(6)

These results are the same as those derived by Nordborg 51

(1997). The additional insight obtained here is given by (5). For 52

instance, regardless of whether the initial state is 1 or 3, the 53

process spends, on average, an equal amount of time in state 2 54

before coalescence (i.e., u12 = u32 in (5)). The results presented 55
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in Figure S1 further confirm that the simplified model should suf-1

fice in most cases, because the general model converges quickly2

to the simplified model.3

Let pi,2�i be the expected diversity when i and 2 � i alleles in4

the sample are associated with A1 and A2, respectively. Under5

the infinite sites model (Kimura 1969), pi,2�i = 2qTi,2�i, where6

q = 2Nev and v is the mutation rate per generation at the neutral7

site. From (6), we can see that T1,1 is independent of p̂1 and p̂2,8

and is always greater than 1, which is the expected coalescence9

time under the standard neutral model with constant population10

size. Note also that T0,2 is < 1 or > 1 when p̂2 is < 0.5 or > 0.5.11

Similarly, T2,0 is < 1 or > 1 when p̂1 is < 0.5 or > 0.5. These12

trends hold even when there is reversible mutation between A113

and A2 (Figure S1).14

In reality, the selected variants are often unknown, and de-
tection of targets of balancing selection typically relies on in-
vestigating how diversity levels change along the chromosome
(Charlesworth 2006; Fijarczyk and Babik 2015). It is therefore use-
ful to consider the expected coalescence time for two randomly
sampled alleles at the neutral site, defined as:

T = p̂2
1T2,0 + 2p̂1 p̂2T1,1 + p̂2

2T0,2 = 1 +
p̂1 p̂2(r + 2)

r(1 + 2p̂1 p̂2r)
(7)

where the results in (6) are used. The nucleotide site diversity15

is given by p = 2Tq. Figure 2 shows that the diversity level16

is highest when p̂1 = p̂2 = 0.5. This is also true when there17

is reversible mutation between A1 and A2 (Figure S2). The18

simplified model is inherently symmetrical. For example, the19

curve for p̂1 = 0.25 is identical to that for p̂1 = 0.75. These20

results suggest that targets of balancing selection are easiest to21

detect when the equilibrium frequencies of the selected variants22

are close to 50%. In all cases, marked effects on diversity are23

only seen with r of order 1 or less.24

p1=0.5

p1=0.25

p1=0.1

2 4 6 8 10
ρ1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

T

Figure 2 The expected pairwise coalescence time as a function
of r. The simplified model with µ12 = µ21 = 0 is considered.
p̂1 is the equilibrium frequency of A1 at the selected locus.

LD between the selected locus and a linked neutral site25

The expected pairwise coalescence time obtained in the previous
section can be used to calculate a measure of LD between the
two loci (Charlesworth et al. 1997). Assume that the neutral locus
is segregating for two variants B1 and B2. Let the frequencies
of B1 in allelic class 1 and 2 be x and y, respectively. Thus, the
frequency of B1 in the population is q1 = p̂1x + p̂2y, and that of

B2 is q2 = 1 � q1. Let d = x � y. The coefficient of LD between
the two loci is given by D = p̂1 p̂2d (see Chap. 8 of Charlesworth
and Charlesworth 2010, p. 410). The corresponding correlation
coefficient is R2 = D2/( p̂1 p̂2q1q2). It is impossible to derive a
simple expression for E[R2]. An alternative that has been widely
used can be written as:

s2 =
E[D2]

E[ p̂1 p̂2q1q2]
=

p̂2
1 p̂2

2E[d2]

p̂1 p̂2E[q1q2]
=

p̂1 p̂2E[d2]
E[q1q2]

(8)

where we have used the fact that p̂1 and p̂2 are assumed to be 26

constant (Ohta and Kimura 1971; Strobeck 1983; McVean 2002). 27

Note that p = 2E[q1q2] is the expected diversity at the neutral 28

site. 29

As discussed in the previous section, we have p = 2qT under
the infinite sites model. To relate E[d2] to the expected pairwise
coalescence times, we first define the expected diversity within
allelic class 1 and allelic class 2 as pA1 = 2E[x(1 � x)] and
pA2 = 2E[y(1 � y)], respectively. Again, under the infinite sites
model, we have pA1 = 2qT2,0 and pA2 = 2qT0,2. In addition,
let the weighted within allelic class diversity be pA = p̂1pA1 +
p̂2pA2. Note that p � pA = 2E[q1q2 � p̂1x(1 � x) � p̂2y(1 �
y)] = 2p̂1 p̂2E[d2]. Inserting these results into right-most term of
(8), we have:

s2 =
p � pA

p
=

T � TA
T

(9)

where TA = p̂1T2,0 + p̂2T0,2 is the weighted average within al- 30

lelic class coalescence time. Note that s2 has the same form as the 31

fixation indices (e.g., FST) widely used in studies of structured 32

populations. This close relationship between LD and the fixation 33

indices was first pointed out by Charlesworth et al. (1997), who 34

referred to s2 as FAT . Our treatment here clarifies the relevant 35

statements in this previous study. It also provides a genealogical 36

interpretation of the results of Strobeck (1983). 37

p1=0.5

p1=0.25

p1=0.1

neutral

2 4 6 8 10
ρ0.0

0.2

0.4

0.6

0.8

1.0
σ2

Figure 3 The level of LD between the selected and neutral loci
as a function of r. The simplified model with µ12 = µ21 = 0 is
considered. The neutral expectation for s2 is also included.

Figure 3 shows s2 as a function of r generated under the 38

simplified model with µ12 = µ21 = 0. The level of LD between 39

the selected and neutral loci is highest when p̂1 = p̂2 = 0.5, 40

and decreases as p̂1 moves close to either 0 or 1 (note that the 41

model is symmetrical such that, for 0 < z < 1, the curve for 42

p̂1 = z is identical to that for p̂1 = 1� z). As expected, reversible 43

mutation between A1 and A2 lowers LD by increasing the rate at 44

4 Zeng et al.
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which lineages move between the two allelic classes (Figure S3).1

These results mirror those described above for diversity levels.2

Together they show that the effect of balancing selection on3

linked diversity and LD patterns is largest when the equilibrium4

frequencies of the selected variants are close to 50%.5

It is informative to compare LD patterns under balancing6

selection with those under neutrality (i.e., s2 = (5 + r)/(11 +7

13r + 2r2); Ohta and Kimura 1971). With balancing selection8

and p̂1 = 0.5, elevated LD is observed when r < 4 (Figure9

3). With p̂1 = 0.1, LD is higher than neutral expectation when10

r < 0.5, and it becomes lower than the neutral level when11

r > 0.5. Considering crossover alone, the scaled recombination12

rate per site is of the order of 0.002 in humans, and 0.02 in13

Drosophila. These values go up substantially if we also take14

into account gene conversion (e.g., Campos and Charlesworth15

2019). Thus, even when the effect of balancing selection is at its16

maximum, the region affected is small. The effect becomes rather17

insubstantial when the equilibrium frequency is close to 0 or 1,18

suggesting that such selection targets are probably extremely19

difficult to detect.20

Total branch length21

We now consider the situation when a sample of n alleles is22

available, with n1 of them associated with A1 and n2 with A223

(n1 + n2 = n). Let Ln1,n2 be the the expected total branch length24

of the gene tree that describes the ancestry of the sample with25

respect to a neutral site linked to the selected locus. Under the26

infinite sites model, the expected number of segregating sites in27

the sample is given by qLn1,n2 . Thus, Ln1,n2 is closely related to28

Watterson’s qW (Watterson 1975) and Tajima’s D (Tajima 1989),29

both of which are frequently used in the search for selection30

targets (Charlesworth 2006; Fijarczyk and Babik 2015). There31

are also other ways in which Ln1,n2 can be used for detecting32

balancing selection (DeGiorgio et al. 2014).33

For the case with two alleles considered above, the expected34

total branch length is simply 2Ti,2�i. Consider a sample size35

of three. It can be in one of four possible states, with states 1,36

2, 3, and 4 corresponding to situations where 0, 1, 2, and 3 of37

the sampled alleles are associated with A1. Going backwards in38

time, the coalescent process can move between these states via39

recombination or mutation between allelic classes. For instance,40

in state 1 all three alleles are associated with A2, and the process41

moves to state 2 at rate 3M21. When there is more than one allele42

in the same allelic class, coalescence may occur. Again, take state43

1 as an example. There are three alleles in allelic class 2, so that44

the rate of coalescence is (3
2)/ p̂2 = 3/ p̂2. A coalescent event45

moves the process to one of the three transient states depicted46

in Figure 1, referred to as states 5, 6, and 7 here. The transition47

rates between these states, as well as the rates of entering the48

absorbing state (i.e., the MRCA), are identical to those discussed49

above (i.e., (2)).50

A diagram showing the transition rates between the states
in this model can be found in Figure S4. The intensity matrix
L for this model can be defined in the same way as described
above, and is displayed in Supplementary Text S.1. L has a block
structure:

L =

2

6664

S3 S32 0

0 S2 s2

~0 ~0 0

3

7775
(10)

where 0 is a matrix of zeros. S3 is a 4-by-4 matrix and contains51

the transition rates between states 1 - 4, all with three alleles. S32 52

is a 4-by-3 matrix and contains the rates of coalescent events that 53

move the process from a state with three alleles to one with only 54

two alleles (i.e., from states 1 - 4 to states 5 - 7). Finally, S2 and s2 55

are the same as the corresponding elements defined in (3). The 56

sub-intensity matrix S is the 7-by-7 sub-matrix in the upper left 57

corner of L, and contains the transition rates between all the 58

transient states. 59

Taking advantage of the block structure, we can calculate the
Green’s matrix efficiently as:

U = �S�1 = �

2

4S3 S32

0 S2

3

5
�1

=

2

4�S�1
3 S�1

3 S32S�1
2

0 �S�1
2

3

5 . (11)

Recall that U = {uij} and uij is the expected amount of
time the process spends in (transient) state j prior to reaching
the MRCA, provided that the initial state is i. If, for instance,
we want to calculate L0,3, we first note that the sample is in
state 1. The process spends, on average, Â4

j=1 u1j in states 1 - 4.
Because these states have three alleles, the coalescent genealogy
must have three lineages. Thus, these four states contribute
3 Â4

j=1 u1j to L0,3. Similarly, states 5 - 7, which contain two alleles,
contribute 2 Â7

k=5 u1k. Putting these together, we have:

L0,3 = 3
4

Â
j=1

u1j + 2
7

Â
k=5

u1k. (12)

More generally, if the sample is in state i, we can define the
initial condition vector as a = ei, where i 2 {1, 2, 3, 4} and ei is a
1-by-7 vector whose elements are 0 except that the i�th element
is 1. If we further define DT = (3, 3, 3, 3, 2, 2, 2), we have:

Li,3�i = aUD. (13)

As we will see later, expressing the results this way allows us 60

to accommodate non-equilibrium situations. D is known as 61

the reward vector, and we can use phase-type theory to obtain 62

the distribution and all the moments of the total branch length 63

(Hobolth et al. 2019). 64

The approach can be easily extended to an arbitrary sample
size n. As discussed above (see (7)), for data analysis, it is useful
to consider the expected total branch length for a random sample
of size n, defined as:

L =
n

Â
i=0

✓
n
i

◆
p̂i

1 p̂n�i
2 Li,n�i. (14)

In Figure 4, we display L for several combinations of sample 65

sizes and variant frequencies at the selected locus. To make the 66

diversity-elevating effect more visible, we divide L by its neutral 67

expectation (i.e., 2 Ân�1
i=1

1
i ). It is evident that, as n becomes larger, 68

the sensitivity of L to p̂1 decreases, to the extent that, when n = 69

30, L is effectively independent of p̂1. In addition, the strongest 70

signal of elevated diversity appears when n = 2 and p̂1 = 0.5, 71

but becomes less pronounced as n increases. To interpret these 72

observations, recall that, when n = 2, p = qL, whereas for larger 73

n, qL is the expected number of segregating sites in the sample, 74

denoted by S. In data analysis, the nucleotide site diversity p is 75

typically estimated from samples containing many alleles, and 76

is known to be most sensitive to intermediate frequency variants 77

(Tajima 1989). On the other hand, S is determined primarily 78

by low frequency variants in the sample. Thus, these results 79
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Figure 4 The expected total branch length L for several com-
binations of sample size (n) and equilibrium frequency of the
selected variant A1 (p̂1). The value of L under balancing selec-
tion is divided by its neutral expectation. The y-axis is on the
log10 scale.

suggest that S is less informative about balancing selection than1

p. However, the contrast between S and p can be used as an2

index of the departure of the SFS from its expectation at neutral3

equilibrium (Tajima 1989). This clearly points to the importance4

of considering SFS, which is done in the next subsection.5

This way of obtaining the total branch length is an alterna-6

tive to the recursion method used in previous studies (Hudson7

and Kaplan 1988; DeGiorgio et al. 2014). The advantage of the8

current approach is that it can be extended to accommodate9

non-equilibrium dynamics such as population size changes and10

recent selection (see below). The dimension of the sub-intensity11

matrix S is now d = (n + 1) + n + ...+ 3 = 1
2 (n � 1)(n + 4). The12

numerical complexity increases rapidly because numerical ma-13

trix inversion requires O(d3) operations. However, by making14

use of the block structure (e.g., (11)), the number of operations is15

reduced to O((n + 1)3). Thus, this approach is computationally16

feasible for samples of several hundred alleles.17

The site frequency spectrum (SFS)18

Again, consider a sample of n alleles at the neutral site, with n119

and n2 of them associated with A1 and A2, respectively. The20

i-th element of the SFS is defined as the expected number of21

segregating sites where the derived variant appears i times in22

the sample (0 < i < n). Note that this definition is different from23

the standard definition for a panmictic population in that it is24

conditional on n1 and n2. Consider the gene tree for the sample.25

We refer to a lineage (branch) that is ancestral to i alleles in the26

sample as a lineage of size i (0 < i < n). Under the infinite sites27

model, mutations on a lineage of size i segregate at frequency28

i in the sample. Let f
(n1,n2)
i be the expected total length of all29

lineages of size i in the gene tree. The SFS under the infinite sites30

model can be expressed as X(n1,n2)
i = qf

(n1,n2)
i (e.g., Polanski31

and Kimmel 2003). We can calculate f
(n1,n2)
i using phase-type32

theory with additional book keeping.33

To illustrate the calculation, consider a sample of three alleles.34

Going backwards in time, before the first coalescent event, all35

the lineages are size one. After the first coalescent event, one36

Table 1 The transient states for a sample size of three
ID state ID state ID state ID state

1 (0, 0, 3, 0) 2 (1, 0, 2, 0) 3 (2, 0, 1, 0) 4 (3, 0, 0, 0)

5 (0, 0, 1, 1) 6 (1, 0, 0, 1) 7 (0, 1, 1, 0) 8 (1, 1, 0, 0)

lineage is size two, and the other is size one. Thus, the transient 37

states of the coalescent process can be represented by 4-tuples of 38

the form (a1,1, a1,2, a2,1, a2,2) where ai,j is the number of lineages 39

of size j that are currently associated with Ai. We have listed 40

all the transient states in Table 1. The first four states contain 41

three lineages, and the last four contain two lineages. We can 42

determine the transition rates between the states using the same 43

arguments that lead to Figures 1 and S4; the intensity matrix 44

L is displayed in Supplementary Text S.2. Note that L has the 45

same form as (10), so that we can obtain U using (11). 46

As an example, if n1 = 2 and n2 = 1, the starting state is 3,
so that only the elements in the third row of U are relevant. Be-
cause states 1 - 4 contain three size one lineages, they contribute
3 Â4

i=1 u3i to f
(2,1)
1 , but nothing to f

(2,1)
2 . The last four states

contain one size one lineage and one size two lineage. Thus,
they contribute Â8

k=5 u3k to both f
(2,1)
1 and f

(2,1)
2 . Putting these

results together, we have:
8
<

:
f
(2,1)
1 = 3 Â4

i=1 u3i + Â8
k=5 u3k

f
(2,1)
2 = Â4

i=1 u3i

(15)

Define the initial condition vector a = (0, 0, 1, 0, 0, 0, 0, 0),
f(2,1) = (f(2,1)

1 , f
(2,1)
2 ) and

DT =

2

43 3 3 3 1 1 1 1

0 0 0 0 1 1 1 1

3

5 . (16)

We have E[f(2,1)] = aUD, which has the same form as (13) 47

and will be useful below when non-equilibrium dynamics are 48

introduced. 49

We can obtain the other f(i,3�i) by defining the appropriate 50

a. In addition to the mean, it is also possible to use phase- 51

type theory to obtain the variance of the SFS, as well as the 52

covariance between different elements of the SFS (Hobolth et al. 53

2019). These results are applicable to any sample size n � 2. 54

We defer showing results regarding the SFS until a later section 55

where a model of recent balancing selection is analysed. 56

Obtaining the SFS with the phase-type approach has been 57

shown to be numerically more stable and accurate than ap- 58

proaches that rely on solving the diffusion equation numerically 59

(Kern and Hey 2017). However, a limitation is that the size of 60

the state space increases rapidly with n (Andersen et al. 2014). 61

This is true even after exploiting the block structure of the sub- 62

intensity matrix S. For instance, when n = 16, the dimension of 63

the largest sub-matrix in S is 922, but it increases to 3493 when 64

n = 20. However, the flexibility of phase-type theory, especially 65

its ability to accommodate complex non-equilibrium models, 66

makes it a useful tool, as we show next. 67

A model with strong balancing selection and changes 68

in population size 69

So far we have only considered a model of balancing selection at 70

statistical equilibrium. In this section, we switch our attention to 71
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a non-equilibrium model in which the population size changes1

in a stepwise manner. Specifically, we consider a diploid, ran-2

domly mating population. Looking back in time, its evolution-3

ary history consists of H non-overlapping epochs, such that the4

effective population size is Ne,h in epoch h (h 2 {1, 2, ..., H}).5

The duration of epoch h is [th�1, th), where t0 = 0 (the present)6

and tH = •. Thus, epoch H, the most ancestral epoch, has7

an infinite time span, over which the population is at statisti-8

cal equilibrium. We assume that an autosomal locus is under9

balancing selection in epoch H, with two alleles A1 and A2 at10

equilibrium frequencies p̂1 and p̂2, respectively. Based on the11

results shown in the previous sections, we only consider the12

simplified model without reversible mutation between A1 and13

A2. In addition, we assume that selection is sufficiently strong,14

and the changes in population size are sufficiently small, that15

the frequencies of the two alleles remain at p̂1 and p̂2 in the more16

recent epochs. A similar approach has been applied successfully17

to modelling the joint effects of background selection and demo-18

graphic changes (Zeng 2013; Nicolaisen and Desai 2013; Zeng19

and Corcoran 2015).20

As before, consider a neutral site linked to the selected lo-21

cus, with a sample of n alleles, of which n1 and n2 are associated22

with A1 and A2, respectively. Consider the expected total branch23

length, Ln1,n2 . Here time is scaled in units of 2Ne,1 generations24

(twice the effective population size in the current epoch). We25

first note that the current model has the same states as the equi-26

librium model analysed above (e.g., see Figure S4 for n = 3). The27

main difference between the two models lies in the transition28

rates between states.29

We define the scaled recombination rate as r = 2Ne,1r. The
rate at which an allele in allelic class i moves to allelic class j is
Mij = r p̂j. These have the same form as above (cf. Figure 1). In
epoch h, the total number of alleles associated with A1 in the
population is 2Ne,h p̂1. The probability that two alleles associ-
ated with A1 in the current generation coalesce in the previous
generation is 1/(2Ne,h p̂1). In other words, the probability that
they remain un-coalesced for z generations is:

✓
1 � 1

2Ne,h p̂1

◆z
⇡ exp

⇢
� z

2Ne,h p̂1

�
= exp

⇢
� gh

p̂1
t
�

(17)

where gh = Ne,1/Ne,h and t = z/(2Ne,1). Thus, the coalescent30

rate between a pair of alleles in allelic class 1 is gh/ p̂1 in epoch31

h. Similarly, the rate for two alleles in allelic class 2 is gh/ p̂2.32

In epoch h, the transition rates between the states are con-33

stant, and we can define an associated sub-intensity matrix, Sh.34

We have already noted that the states in the current model are35

the same as those in the equilibrium model. The only difference36

is that time is now in units of 2Ne,1 generations. Thus, we can37

obtain Sh by simply replacing r and 1/ p̂i in the sub-intensity ma-38

trix for the equilibrium model (e.g., (10); see also Supplementary39

Text S.1) by the newly defined equivalents r and gh/ p̂i.40

Overall, the model has the following parameters: p̂1, r, t1,41

g1, t2, g2, ..., tH�1, gH�1, and gH . Among these, p̂1 and r are42

shared across all the epochs, whereas epoch h has two epoch-43

specific parameters th and gh (note that tH = •). We have H44

sub-intensity matrices: S1, S2, ..., SH . In Supplementary Text S.3,45

we introduce time-inhomogeneous phase-type theory and prove46

the following result:47

Theorem 1. Consider a continuous time Markov chain with finite
state space {1, 2, ..., K, K + 1}, where states 1, ..., K are transient, and
state K + 1 is absorbing. Assume that the time interval [0, •) is
subdivided into H non-overlapping epochs. The duration of epoch h is

[th�1, th), where 1  h  H, t0 = 0, and tH = •. The sub-intensity
matrix for epoch h is denoted by Sh. Then the Green’s matrix is:

U =
H

Â
h=1

h h�1

’
i=1

eSidi
i
Uh (18)

where dh = th � th�1, Uh = eShdh S�1
h � S�1

h , and eShdh = 0 if 48

dh = •. 49

Applying this theorem requires the evaluation of matrix ex- 50

ponentials. Although this can be done analytically for certain 51

models (e.g., Waltoft and Hobolth 2018), it is not feasible in the 52

models considered here. We instead employ recent numerical 53

methods (Al-Mohy and Higham 2010; Moler and Van Loan 2003), 54

as implemented in the expm function in Matlab. The computa- 55

tional cost for obtaining eShdh is typically O(d3), where d is the 56

dimension of Sh. Once U has been calculated using Theorem 1, 57

we can obtain the expected total branch length by Ln1,n2 = aUD 58

(see (13)). 59

In Figures 5a and b, we show L, the expected total branch 60

length for a random sample of n = 20 alleles (see (14)), under 61

either a one-step population size increase or a one-step popu- 62

lation size reduction. The population size change occurred at 63

time t before the present. Because L is insensitive to p̂1 when 64

n is relatively large (Figure 4), we only consider p̂1 = 0.5 (the 65

results are qualitatively very similar with n = 2; not shown). 66

Neutral diversity levels in genomic regions closely linked to the 67

selected site are affected by recent population size changes to a 68

much smaller extent than regions farther afield. This is because, 69

when r is small, the coalescent process is dominated by the slow 70

movement via recombination between the two allelic classes, 71

which dampens the diversity-changing effects of population size 72

changes. In particular, when there has been a recent reduction 73

in population size, this effect protects against the loss of neutral 74

polymorphisms in a larger genomic region (Figure 5b). Con- 75

sequently, strong balancing selection affects a bigger stretch of 76

the genome and produces a higher peak of diversity in smaller 77

populations, making them easier to detect. 78

It is also instructive to consider the effects of recent popula- 79

tion size changes on LD between the selected and neutral loci. 80

This can be achieved by replacing T and TA in (9) with T(t) 81

and TA(t). In Figures 5c and d, we can see that s2 converges to 82

its new equilibrium level at a much higher rate than the level 83

of diversity, which is a well-known effect (e.g., McVean 2002). 84

Interestingly, s2 appears to approach its new equilibrium in a 85

non-monotonic way. For instance, in Figure 5c, LD levels at 86

t = 0.4 are temporarily higher than the equilibrium value (the 87

solid black curve), but become lower than the equilibrium value 88

at t = 1.3. In Figure 5d, we can see that the level of LD is higher, 89

and extends further, after the population size reduction. These 90

effects are due to the corresponding reduction in the scaled re- 91

combination rate, and explain why balancing selection becomes 92

easier to detect. 93

A model of recent balanced polymorphism 94

We now turn our attention to the effects of the recent origin 95

of a balanced polymorphism on patterns of genetic variability. 96

Consider a diploid panmictic population with constant effective 97

population size Ne. At an autosomal locus, a mutation from A1 98

(the wild type) to A2 (the mutant) arises. The fitnesses of the 99

genotypes A1 A1, A1 A2, and A2 A2 are w11 = 1 � s1, w12 = 1, 100

and w22 = 1 � s2 (s1 > 0 and s2 > 0; i.e., there is heterozygote 101
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Figure 5 Expected total branch length and LD as a function of r and t. The population experienced a one-step change in population
size at time t before the present. The population size in the present and ancestral epochs are Ne,1 and Ne,2, respectively. Time is scaled
in units of 2Ne,1 generations. The selected alleles A1 and A2 are at equilibrium frequencies p̂1 = p̂2 = 0.5. The sample size is n = 20.

advantage). As above, we ignore reversible mutation between1

A1 and A2. In what follows, we first use a forward-in-time ap-2

proach to obtain equations for describing the increase in the3

frequency of A2 in the population. We then use the backward-4

in-time coalescent approach to calculate various measures of5

sequence variability in linked genomic regions. Wherever ap-6

propriate, we present results from a related selective sweep7

model, so that the two models can be compared.8

Frequency of the mutant allele in the population9

Let the frequencies of A1 and A2 in the current generation be p1
and p2, respectively. Let p02 be the frequency of A2 in the next
generation. Using the standard theory (reviewed in Chap. 2
of Charlesworth and Charlesworth (2010)), the change in allele
frequency in one generation due to selection is given by

Dp2 = p02 � p2 =
p1 p2(w2. � w1.)

w̄
(19)

where w1. = p1w11 + p2w12, w2. = p1w12 + p2w22, and w̄ =10

p1w1. + p2w2.. Assuming that both s1 ⌧ 1 and s2 ⌧ 1, Dp2 ⇡11

p1 p2(w2. � w1.) = p1 p2(p1s1 � p2s2). At equilibrium, Dp2 = 0,12

such that the frequencies are p̂1 = s2
s1+s2

and p̂2 = s1
s1+s2

.13

When p2 ⌧ 1, Dp2 ⇡ s1 p2. This is the same as when A2 is14

under positive selection with fitnesses of the three genotypes be-15

ing w11 = 1, w12 = 1 + s1, and w22 = 1 + 2s1, respectively (i.e.,16

there is semi-dominance). Thus, we expect that the initial signals 17

generated by the increase in p2 to be similar to those from an in- 18

complete selective sweep, referred to here as the “corresponding 19

sweep model". 20

The similarity between the two selection models means that
we can borrow useful results from the selective sweep litera-
ture. In particular, after A2 has been generated by mutation, its
frequency must increase rapidly for it to escape stochastic loss
when rare. Following an approach first proposed by Maynard
Smith (1976), we assume that p2 increases instantly to e = 1

g1
,

where g1 = 2Nes1 (see also Desai and Fisher 2007). Thereafter,
p2 changes deterministically until its rate of change becomes
very slow near the equilibrium point, when the coalescent pro-
cess (considered in the next sub-section) is effectively the same
as at equilibrium. Measuring time in units of 2Ne generation,
p2(t) satisfies:

dp2
dt

= p1 p2(p1g1 � p2g2) (20)

where g2 = 2Nes2. The solution to this differential equation is

g1 ln(1 � p2) + g2 lnp2 � (g1 + g2) ln
⇥
g1 � (g1 + g2)p2

⇤

= g1g2(t + c) (21)
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where c is a constant such that p2(0) = e. We can obtain p2(t)1

by fixing t on the right-hand side and solving the equation nu-2

merically with respect to p2.3

It is instructive to compare the dynamics of p2(t) with those
for the corresponding sweep model defined above. We assume
that the frequency of the positively selected variant A2 increases
instantly to e and grows deterministically until 1 � e. Let p⇤2(t)
be the frequency of A2 at scaled time t after its frequency has
arrived at e. It can be shown that:

p⇤2(t) =
e

e + (1 � e)e�g1t (22)

(Crow et al. 1970; Stephan et al. 1992).4

A recent study explicitly considered the stochastic phases5

when the frequency of the positively selected variant A2 is below6

e or greater than 1 � e (Charlesworth 2020). These two phases7

contribute relatively little to the fixation time under the current8

model with strong selection and semi-dominance (see Table 1 of9

Charlesworth 2020). Furthermore, when the frequency of A2 is10

very close to 0 or 1, the coalescent process is effectively the same11

as under neutrality. Thus, ignoring these two stochastic phases12

is reasonable for our purposes.13

In Figure 6, we display three balancing selection models, all14

with g1 = 500, but different g2 values, so that they have different15

equilibrium allele frequencies. For comparison, the correspond-16

ing sweep model with g1 = 500 is also presented. As can be17

seen, the allele frequency trajectories for the balancing selection18

models and the corresponding sweep model are similar only19

for a rather short period. After that, p2(t) increases at a much20

slower pace than p⇤2(t). As shown below, these observations21

explain the differences between recent balanced polymorphism22

and the spread of a beneficial mutation with respect to their23

effects on diversity patterns in nearby genomic regions.24
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Figure 6 The frequency of the mutant allele A2 as a function of
t (time since its frequency reaches e). g1 = 500. g2 is adjusted
such that the equilibrium frequency p̂2 is 0.25, 0.5, and 0.75,
respectively. The trajectory under the corresponding sweep
model is included for comparison.

Total branch length25

We extend the coalescent approach developed above for the equi-26

librium model, in order to calculate the expected total branch27

length L for a random sample of size n at a linked neutral28

site (see (14)). The frequency of A2 at the time of sampling 29

is p2(t) where t is the time since the frequency of A2 reaches 30

e, expressed in units of 2Ne generations. At time t before the 31

present (0  t < t), the frequency of A2 is given by p2(t � t). 32

For t � t, the process reduces to a standard neutral coales- 33

cent model with constant population size. To make use of 34

Theorem 1, we divide [p2(t), e) into H � 1 equal-sized bins, 35

such that the h-th bin is [p2,h�1, p2,h), where p2,0 = p2(t) and 36

p2,h = p2(t) + h
H�1 (e � p2(t)) (h 2 {1, 2, ..., H � 1}). Let th be 37

the solution to p2(t � th) = p2,h given by (21). The correspond- 38

ing time interval for bin h is [th�1, th), which is shorter when 39

the frequency of A2 is changing at a faster rate. Thus, as shown 40

in Figure 7, we have H epochs, with the first H � 1 in [0, t) and 41

epoch H covering the whole of [t, •). 42

Figure 7 A diagram showing the discretisation scheme used to
obtain the expected total branch length and the site frequency
spectrum under the model of recent balanced polymorphism.

Consider epoch h with h < H. The state space in this epoch is
the same as that discussed above for the equilibrium model (see
the arguments leading to (10)). Thus, the sub-intensity matrix
for this epoch, Sh, can be obtained in a similar way (cf., Figure
S4). The only complication is that the frequency of A2 changes
within the epoch. However, if the time interval is sufficiently
small, we can treat the frequency of A2 as if it were constant.
Here we fix the frequency of A2 in epoch h to its harmonic mean
q2,h, which can be calculated as:

1
q2,h

=
1

th � th�1

Z th

th�1

1
p2(t � t)

dt. (23)

We can then obtain Sh by simply replacing p̂1 and p̂2 in the sub- 43

intensity matrix for the equilibrium model with q1,h and q2,h, 44

where q1,h = 1 � q2,h. 45

Note that, although the space state is the same for the epochs 46

in [0, t), this is not true for the transition from epoch H � 1 to 47

epoch H. At the end of epoch H � 1, if more than one allele is 48

associated with A2, they coalesce into a single ancestral allele 49

instantly. If the resulting ancestral allele is the only allele left, 50

the process is terminated. Otherwise, if there are also n1 alleles 51

associated with A1 at the time, then the n1 + 1 alleles enter epoch 52

H and coalesce at rate (n1+1
2 ). Thus, we need a mapping matrix 53

EH�1,H , which is defined below (S22) in Supplementary Text 54

S.3, to correct for the differences between the two epochs. For 55

instance, for a sample of two alleles, the state space in [0, t) has 56

three transient states: (0, 2), (1, 1), and (2, 0), where the first and 57
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second number of each tuple represent the number of alleles1

linked to A1 and A2, respectively. However, epoch H has only2

one transient state, representing two uncoalesced alleles. If the3

process is in state (0, 2) at the end of [0, t), it terminates with the4

instant coalescence of the two alleles. If the process is in any of5

the other two states, it enters epoch H with the same starting6

condition. Thus ET
H�1,H = (0, 1, 1), where 0 in the first element7

means it is impossible to enter epoch H via state 1 in epoch8

H � 1, and the 1s mean that, if the process is in state 2 or 3 by9

the end of epoch H � 1, the process begins epoch H in state 1.10
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Figure 8 Nucleotide site diversity and LD in genomic regions
surrounding a recently-emerged variant under balancing se-
lection. The parameters are g1 = 500 and p̂2 = 0.75 (as in
Figure 6). The discretisation scheme has H = 76 bins. In (a),
the expected total branch length for a sample of n = 2 alleles is
calculated for various value of t, the time since the frequency
of A2 reaches e. To make the effects more visible, L is divided
by its neutral expectation. s2 in (b) measures the level of LD
between the selected locus and a linked neutral site. For com-
parison, the neutral expectation of s2 is also included.

In all, the model has the following parameters: g1, g2, t, and11

r. By increasing the number of bins in the discretisation scheme12

(i.e., H; Figure 7), we can get arbitrarily accurate approximations. 13

The results presented below are based on values of H such that 14

the size of the frequency bins is about 1%. This is a rather 15

conservative choice; using larger bins does not significantly 16

change the results. Once the sub-intensity matrices are defined 17

(i.e., Sh for 1  h  H), we can obtain U using Theorem 1 (see 18

also Supplementary Text S.3) and L = aUD (see (13)). 19

Figure 8a shows how neutral diversity levels are affected by 20

a recent balanced polymorphism, using the balancing selection 21

model with p̂2 = 0.75 considered in Figure 6. Initially, the 22

rapid increase in the frequency of A2 produces a drop in neutral 23

diversity in nearby regions (the solid blue line). The maximum 24

extent of reduction appears when p2(t) is close to its equilibrium 25

value (the dotted line; p2(0.04) = 0.742). After that, the diversity 26

level starts to recover. Here, the increase in diversity level is 27

fastest for regions closely linked to the selected site, because 28

coalescence is slow when r is small. This leads to a U-shaped 29

diversity pattern that persists for some time, which is followed 30

by a rather slow approach to the equilibrium value (Figure S5). 31

These dynamics are qualitatively the same when we consider 32

a larger sample size with 20 alleles, although the reduction in 33

diversity is less pronounced (Figure S6). Similar patterns are also 34

observed for the other two balancing selection models in Figure 35

6 (Figure S7). The main difference is that models with a smaller 36

p̂2 tend to result in a smaller reduction in neutral diversity. For 37

instance, for the model with p̂2 = 0.25, the maximum reduction 38

in nucleotide site diversity in very tightly linked regions is less 39

than 6% (as opposed to a more than 50% reduction in Figure 8a), 40

making them very difficult to detect from data. 41

LD between the selected locus and a linked neutral site 42

It is straightforward to use the method developed in the previ- 43

ous subsection to calculate s2. From Figure 8b, we make two 44

observations. First, LD builds up quickly and extends to a large 45

genomic region when the frequency of A2 is increasing rapidly 46

(blue solid curve vs the neutral curve). This suggests the forma- 47

tion of long haplotypes around the selected locus, which can be 48

used to help detect selection targets, as is done in extended hap- 49

lotype tests (e.g., Voight et al. 2006; Ferrer-Admetlla et al. 2014). 50

Second, the level of LD starts to decline before the reduction in 51

diversity is maximal (the dotted curves in Figures 8a and b), sug- 52

gesting that LD based detection methods will have already lost 53

a substantial amount of their statistical power by this time. This 54

implies that LD and diversity patterns complement each other 55

when it comes to detecting targets of recent balancing selection. 56

Differences between balancing selection and selective 57

sweeps in their effects on L and LD 58

We can analyse selective sweep models using the discretisation 59

scheme outlined in Figure 7. In Figure 9a, we compare the 60

balancing selection model shown in Figure 8 to its corresponding 61

sweep model, with respect to their effects on L. Because the 62

frequency of the beneficial allele increases much more rapidly 63

(Figure 6), it causes a more pronounced reduction in diversity 64

than the balanced polymorphism of the same age (before fixation 65

of the beneficial variant). After fixation of the beneficial allele, 66

diversity returns to its neutral level over a time period of the 67

order of 2Ne generations, which is much faster than the time it 68

takes for diversity to reach its equilibrium level under balancing 69

selection (Figure S5). The patterns are similar when a larger 70

sample size is considered (Figure S8). 71

A comparison between the two selection models with respect 72
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Figure 9 Comparing recent balancing selection with the cor-
responding sweep model, with respect to their effects on di-
versity and LD levels in surrounding genomic regions. The
parameters of the balancing selection model (bls) are g1 = 500
and p̂2 = 0.75 (i.e., the same as in Figure 8). The correspond-
ing sweep model (ssw) has g1 = 500. In (a), the expected
total branch length for a sample of n = 2 alleles, divided by
its neutral value, is presented. In (b), we consider the level
of LD between the selected locus and a linked neutral site, as
measured by s2. Fixation (taken as the time when the mutant
allele frequency reaches 1 � e) occurs at t = 0.025 under the
sweep model. The reduction in diversity reaches its maximum
at t ⇡ 0.04 under the balancing selection model.

to their effects on LD patterns in the surrounding neutral re-1

gion is shown in Figure 9b. Both models result in elevated LD.2

As expected, the corresponding sweep model leads to a more3

pronounced build-up of LD (red vs black dotted lines). This4

suggests that recent balancing selection is harder to detect than5

a comparable beneficial mutation. Under both models, LD starts6

to decay before the reduction in diversity is maximal (pink vs7

grey dashed lines). The decay appears to be much faster under8

the sweep model. This is because, under the balancing selection9

model, A2 approaches an equilibrium frequency, instead of fixa-10

tion. Therefore, a sizeable genomic region remains at elevated 11

levels of LD with the selected locus for a longer period. Recall 12

that diversity levels also take much longer to reach equilibrium 13

under balancing selection (Figure 9a). Thus, there may well 14

be a bigger window of opportunity for detecting targets of re- 15

cent balancing selection, despite the fact that the signals they 16

produce tend to be less dramatic than those produced by the 17

corresponding sweep model. 18

The site frequency spectrum 19

The SFS can also be obtained using the time discretisation pro-
cedure. Here the state space is the same as that detailed for the
equilibrium balancing selection model. As above, we obtain
the sub-intensity matrix for epoch h by replacing p̂1 and p̂2 in
the sub-intensity matrix for the equilibrium model (e.g., Supple-
mentary Text S.2) with q1,h and q2,h, respectively. We then use
Theorem 1 to calculate X(n1,n2)

i . It is more instructive to consider
the SFS for a sample of n randomly collected alleles, defined as:

Xi =
n

Â
j=0

✓
n
j

◆
pj

1 pn�j
2 X(j,n�j)

i (24)

where p1 and p2 are the frequencies of A1 and A2 at the time of 20

sampling. The effects of selection has on the shape of the SFS are 21

visualised using the ratio Xi/Xi(neutral), where Xi(neutral) = 22

2q/i. 23
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Figure 10 The SFS at various time points after the arrival of the
selected variant for a random sample of 10 alleles. The balanc-
ing selection (bls) and selective sweep (ssw) models are the
same as those shown in Figure 9. The scaled distance between
the focal neutral site and the selected site is r = 2. The reduc-
tion in diversity reaches its maximum at t ⇡ 0.04 and 0.025
(fixation) under the balancing selection and selective sweep
models, respectively. The SFS under selection is expressed
relative to its neutral expectation.
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In Figure 10, we present the SFS at different time points since1

the arrival of the mutant allele, for the balancing selection model2

and the corresponding sweep model considered in Figures 83

and 9. When the frequency of the selected variant is rapidly4

increasing in the population, both types of selection produce a5

U-shaped SFS, with an excess of both low and high frequency6

derived variants. The extent of distortion is maximised around7

the time when the reduction in neutral diversity is also the most8

pronounced (see plots in the second row). The corresponding9

sweep model has a much bigger effect on the shape of the SFS.10

For example, under the sweep model, at the time of fixation11

(t = 0.025), X9/X8 = 4.91 and X1/X2 = 8.05. In contrast, when12

the SFS is most distorted under the balancing selection model13

(t = 0.04), X9/X8 = 1.34 and X1/X2 = 3.29. The excess of14

high frequency derived variants quickly disappears after the15

selected allele has stopped its rapid increase in frequency (plots16

in the third row), although the SFS remains U-shaped for longer17

under balancing selection. The plots in the last row shows the18

transition from a situation with reduced diversity and an ex-19

cess of low frequency variants to a situation that resembles the20

pattern expected under long-term balancing selection, with an21

elevated diversity level and an excess of intermediate frequency22

variants. Qualitatively similar dynamics have been observed23

for the balancing selection models with p̂2 = 0.5 and 0.25, re-24

spectively, considered in Figure 6. Again, the SFS-distorting25

effect is weaker when p̂2 is smaller (Figure S9), with the case26

with p̂2 = 0.25 producing hardly any excess of low and high27

frequency variants due to the increase in the frequency of A2.28

To investigate the SFS further, we consider p (the nucleotide
site diversity) and Watterson’s qW . Recall that, under the infinite
sites model, p = 2qT, where T is defined by (7). Let S be the
expected number of segregating sites in a sample of size n. We
have S = qL. Because qW = S/an where an = Ân�1

i=1
1
i , we have

qW = qL/an. Following Becher et al. (2020), we define

DqW = 1 � p

qW
= 1 � 2qT

qL/an
= 1 � 2anT

L
. (25)

DqW = 0 under neutrality, > 0 when there is an excess of rare29

variants, and < 0 when there is an excess of intermediate fre-30

quency variants.31

Figure 11 shows DqW for the balancing selection model with32

g1 = 500 and p̂2 = 0.75 (as in Figures 6 - 10); the corresponding33

sweep model is also included for comparison. At t = 0.012, the34

balancing selection model produces no obvious deviation from35

neutrality (black dotted line), whereas the sweep model has36

already started to cause a significant excess of rare variants (red37

dotted line). This is consistent with the much slower increase38

in the frequency of A2 under balancing selection (p2(t) = 0.339

vs p⇤2(t) = 0.5). The extent of deviation caused by the sweep40

is maximal around the time when A2 becomes fixed (t ⇡ 0.025;41

pink dashed line). Under the balancing selection model, the42

maximum deviation is when the frequency of A2 becomes close43

to its equilibrium value (t ⇡ 0.04; grey dashed line), but is less44

pronounced than under the sweep model. After the maximum45

is achieved, diversity patterns gradually return to neutrality46

over 4Ne generations under the sweep model. For the balancing47

selection model, there is a much longer period of non-stationary48

dynamics as shown by the light blue and blue lines.49

It is instructive to compare the three balancing selection mod-50

els with g1 = 500, but with different equilibrium allele frequen-51

cies (Figure 6). The model with p̂2 = 0.75 produces the strongest52

sweep-like signals, including a reduction in diversity and excess53
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Figure 11 DqW as a function of r and t. The two selection mod-
els are the same as those considered in Figure 10. “bls: t = •"
corresponds to the equilibrium under balancing selection. The
sample size is 10.

of rare variants (Figure 11 vs Figure S10). At the other extreme, 54

the model with p̂2 = 0.25 effectively emits no such signal (Fig- 55

ure S10). Thus, targets of recent balancing selection with larger 56

p̂2 are easier to detect. However, for older targets of selection, 57

the excess of intermediate frequency variant (i.e., negative DqW ) 58

is most noticeable for selection targets with p̂2 ⇡ 0.5 (Figure 59

S10), making them the most amenable to detection. Altogether, 60

it seems that balancing selection targets with low equilibrium 61

allele frequencies (e.g., p̂2 ⇡ 0.25) are difficult to identify regard- 62

less of their age. 63

Discussion 64

In this study, we have used the power and flexibility afforded by 65

phase-type theory to study the effects of balancing selection on 66

patterns of genetic variability and LD in nearby genomic regions. 67

Our results go beyond previous attempts in that they provide 68

a unifying framework for calculating important statistics for 69

both equilibrium and nonequilibrium cases. In what follows, we 70

discuss how our results can be used in data analyses and future 71

method developments. We will also discuss the usefulness of 72

phase-type theory in general. 73

Accommodating other biological factors 74

Here we have only considered selection on an autosomal locus
in a randomly mating population. However, our results can be
readily extended to accommodate other important biological
factors. Take self-fertilization as an example. Let s be the selfing
rate and F = s/(2 � s) be the corresponding inbreeding coeffi-
cient. For this model, Ne = N/(1 + F), where N is the number
of breeding individuals (Charlesworth 2009). Because selfing
increases the frequency of homozygotes in the population, it re-
duces the effective frequency of recombination to re = (1 � F)r,
where r is the autosomal recombination rate in a random-mating
population (Nordborg 1997; see Hartfield and Bataillon 2020
for a more accurate expression for re). Finally, for the model of
recent balancing selection, we also need to consider the effects of
selfing on the frequency trajectory of A2. This can be achieved
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by replacing (20) with:

dp2
dt

= p1 p2 [(1 � F)(p1g1 � p2g2) + F(g1 � g2)] . (26)

Other factors, including division into two sexes, mode of in-1

heritance (e.g., X-linkage vs autosomal), and background se-2

lection, can also be modelled (Charlesworth 2009; Vicoso and3

Charlesworth 2009; Glémin 2012; Charlesworth 2020; Hartfield4

and Bataillon 2020).5

Detecting long-term balancing selection6

We have examined two models of long-term balancing selection,7

one with a constant population size and the other with recent8

demographic changes. We confirm the well-known result that9

long-term balancing selection leads to elevated diversity and LD10

in a relatively small region in the immediate vicinity of the locus11

under selection (Charlesworth 2006; Fijarczyk and Babik 2015).12

We also find that, under our two-allele model, the strength of13

these signals is highest when the equilibrium frequencies of14

the selected variants are close to 50%, and weakens when the15

frequencies become unequal (Figures 2 and 3), so that genome16

scan methods are biased towards detecting selection targets17

where the selected variants are more common (Bitarello et al.18

2018; Siewert and Voight 2020).19

Our results can be used to improve existing methods for20

detecting balancing selection. For example, the T1 test by De-21

Giorgio et al. (2014), which has been shown to be among the22

most powerful, is based on L, the expected total branch length.23

The recursion equations DeGiorgio et al. (2014) used to obtain24

L assumes a constant population size. We can now relax this25

assumption by incorporating changes in population size. The26

increase in the strength of signals of long-term balancing selec-27

tion after population size reduction (Figure 5b) points to the28

importance of incorporating non-equilibrium demographic dy-29

namics, which may help to increase statistical power and reduce30

false positive rates. On the other hand, the results presented31

in Figure 4 shows that the number of segregating sites in the32

sample, denoted by S, does not capture all of the information33

about balancing selection in the data. Instead, statistical power34

can be gained by making use of the SFS. Recall that S = qL. This35

explains why the T1 test (based on L) is often less powerful than36

the T2 test (based on the SFS) (DeGiorgio et al. 2014). However,37

DeGiorgio et al. (2014) obtained the SFS via stochastic simula-38

tions, due to a lack of analytical methods. Here we have filled39

this gap. As above, it is of interest to extend the T2 test, so that it40

includes both the equilibrium and non-equilibrium models.41

Detecting recent balancing selection42

It has long been suggested that signals generated by recent bal-43

ancing selection should be similar to those generated by incom-44

plete sweeps (Charlesworth 2006; Fijarczyk and Babik 2015). Em-45

powered by time-inhomogeneous phase-type theory, we present46

a systematic comparison between these two models. The dy-47

namics of a recent balanced polymorphism are similar to those48

of a beneficial mutation of comparable strength when the fre-49

quency of the mutant allele is no more than a few percent in50

the population (Figure 6). This period is only a small fraction of51

the time it takes for the beneficial mutation to become fixed. In52

addition, the sigmoid shape of the allele frequency trajectories53

clearly indicates that the rate of allele frequency change in this54

period is slower than when the mutant allele is more common.55

Combining these two factors, it is unsurprising that, when the al-56

lele frequency trajectories under the two models start to diverge,57

neither model produce a noticeable effect on diversity patterns 58

in nearby genomic regions (data not shown). Thus, this initial 59

period of identity contributes very little signal. 60

After the initial period, the frequency of the beneficial mu- 61

tation increases rapidly. In contrast, the rate of growth under 62

the balancing selection model is much slower, especially when 63

the equilibrium frequency of the mutant allele is low (Figure 64

6). Nonetheless, the increase in frequency of a recent balanced 65

polymorphism does produce sweep-like diversity patterns, but 66

they are more subtle than for sweeps. These include reductions 67

in genetic variability, a skew towards high and low frequency 68

derived variants in the SFS, and a build-up of LD between the 69

selected and linked neutral sites (Figures 8 - 11). In addition, 70

similar to sweeps, the maximum build-up of LD appears before 71

the reduction in diversity levels and the distortion of the SFS 72

are most pronounced, suggesting that these signals complement 73

each other. Thus, we expect that these patterns, which exist in 74

a period around the time at which the frequency of the mutant 75

gets close to its equilibrium value, should be detectable by meth- 76

ods designed for identifying sweeps (Booker et al. 2017; Pavlidis 77

and Alachiotis 2017), as has been shown previously (Zeng et al. 78

2006). An open question is whether it is possible to distinguish 79

between these two types of selection. Another question is related 80

to the result that recent balancing selection causes diversity and 81

LD patterns to be in a non-equilibrium state for a long period. It 82

is unclear whether these patterns can be exploited for detecting 83

selection targets. 84

It is informative to compare the three balancing selection 85

models with equilibrium allele frequencies p̂2 = 0.25, 0.5, and 86

0.75, respectively (Figure 6). The model with p̂2 = 0.75 pro- 87

duces the strongest sweep-like patterns (e.g., Figure 10 vs Figure 88

S9). These recent selection targets should be easiest to detect, 89

although they may also be the most difficult to be separated 90

from sweeps. On the other hand, although selection targets with 91

p̂2 = 0.5 are not as easy to detect when they are young, they 92

produce the strongest deviation from neutrality if they have 93

been maintained for a sufficiently long period of time (Figures 2, 94

3, and S10), suggesting that they are most likely to be picked up 95

by methods for detecting long-term selection targets. Finally, it 96

seems that selection targets with p̂2 = 0.25 are the most difficult 97

to detect regardless of the age of the mutant allele. 98

Using phase-type theory to assess the accuracy of simpler 99

approximations 100

We have shown the ease for which phase-type theory can be 101

used to analyse complex models. In some cases, this can lead 102

to simple analytic solutions (e.g., (5) and (6)). When explicit 103

analytic solutions are difficult to obtain, phase-type theory can 104

serve as a useful tool to search for simpler approximations. Take 105

the model of recent balancing selection as an example. By using 106

a large number of bins in the discretisation scheme (Figure 7), 107

we can obtain results that are effectively exact. It is, however, 108

impossible to write them as simple equations. Nonetheless, if 109

we make an additional assumption that the recombination fre- 110

quency between the selected locus and the neutral locus is not 111

too high relative to the strength of selection, we can adopt the 112

methods developed in Charlesworth (under review) for selective 113

sweeps, such that they can be used to obtain the expected pair- 114

wise coalescence time (see Supplementary Text S.5 for details). 115

We can assess the reliability of this approximation by compar- 116

ing its results with those obtained using the phase-type method. 117

As expected, the approximate results match the exact results 118
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closely when the recombination rate is low (e.g., r = 1 in Figure1

12). For higher recombination rates, the approximation under-2

estimates the diversity-reducing effect of the spread of A2. The3

main reason for this discrepancy is because the approximation4

assumes that the recombination rate is low, and the “sweep5

phase" is short. When these assumptions hold, once recombina-6

tion during the sweep phase has moved a lineage from allelic7

class 2 to allelic class 1, back migration to allelic class 2 can be8

ignored. Although these assumptions work well for selective9

sweep models Charlesworth (under review), they are less suitable10

for the model of recent balancing selection, because the increase11

in allele frequency is much slower, leading to a longer sweep12

phase, and hence more opportunities for recombination. Thus,13

by preventing lineages from being moved back into allelic class14

2, the approximation artificially slows down the rate of coales-15

cence during the sweep phase, explaining the overestimation16

of pairwise coalescence time. Using results produced by phase-17

type theory as the baseline is desirable because, unlike stochastic18

simulations, these results are analytical, making comparisons19

straightforward and small differences easier to detect.20

0 0.2 0.4 0.6 0.8 1 1.2

t

0.4
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 = 30 (exact)

Figure 12 Comparing expected pairwise coalescence times
obtained by phase-type theory (exact) and an approximation
assuming low recombination rates. The model of recent bal-
ancing selection model has the following parameters: g1 = 500
and p̂2 = 0.75 (i.e., the same as in Figures 8 - 11). t is the time
since the arrival of A2. The discretisation scheme has H = 76
epochs. Details of the approximation are given in Supplemen-
tary Text S.5.

Applying phase-type theory to other population genetic mod-21

els22

Phase-type theory is highly flexible and can be applied to many23

different models in population genetics. For example, Hobolth24

et al. (2019) used a time-homogeneous version of the model25

to study the standard Kingman’s coalescent with and without26

recombination, coalescent models with multiple mergers, and27

coalescent models with seed banks. They show the ease for28

which useful results can be obtained (e.g., all the moments of29

the pairwise coalescence time, the covariance in coalescence30

times between two linked loci, or the SFS). By extending the31

framework to non-equilibrium cases, we make this approach32

applicable to a yet larger class of models. In addition to Theo-33

rem 1 (see also Corollary 1), we have also proved Theorem 2 in34

Supplementary Text S.4, which can be used to obtain the second 35

moment of the mean coalescence time. We can now, for instance, 36

introduce population size fluctuations into the models consid- 37

ered by Hobolth et al. (2019). Even for models that have been 38

analysed before using other approaches (e.g., Matuszewski et al. 39

2017), it is worth exploring whether the new theory provides a 40

better alternative, both in terms of ease of analysis and numeri- 41

cal stability of the resulting method, which may be beneficial for 42

parameter estimation purposes (e.g., Kern and Hey 2017). 43

The phase-type approach may be particularly useful for mod- 44

els that involve selection on a single locus at which the fre- 45

quencies of the selected variants are “tightly regulated" in the 46

sense that the dynamics of the allele frequencies over time are 47

deterministic (Maynard Smith and Haigh 1974; Kaplan et al. 48

1988; Coop and Ralph 2012). These include the balancing selec- 49

tion models considered here, selective sweep models (Barton 50

1998; Kim and Stephan 2002; Kim and Nielsen 2004; Ewing 51

et al. 2010; Charlesworth 2020; Hartfield and Bataillon 2020), soft 52

sweeps caused by recurrent mutation or migration (Pennings 53

and Hermisson 2006), incomplete sweeps (Vy and Kim 2015), 54

and recurrent sweeps (Kaplan et al. 1989; Kim 2006; Campos and 55

Charlesworth 2019). 56

Here, we have briefly considered selective sweep models 57

with semi-dominance and compared it to the corresponding 58

balancing selection model (see (22) and Figures 6, 9 - 11). In a 59

related study, we will use the phase-type approach to look at 60

some of the sweep models listed above more systematically (K. 61

Zeng and B. Charlesworth, in prep). As discussed above, because 62

we can use phase-type theory to obtain exact solutions, it pro- 63

vides a convenient way to determine the accuracy of existing 64

approximations. For instance, for the sweep model with semi- 65

dominance, a widely-used approximation assumes that there is 66

no coalescence during the sweep phase, such that the the gene 67

tree for a set of alleles sampled immediately after a sweep has 68

a simple “star shape” (Maynard Smith and Haigh 1974; Barton 69

2000; Durrett and Schweinsberg 2004). However, a recent study 70

of the pairwise coalescence time suggests that this approxima- 71

tion can be rather inaccurate when the ratio of the recombination 72

rate to the selection coefficient is high Charlesworth (under re- 73

view). It is important to also assess the effect of this simplifying 74

assumption on the SFS, given that both nucleotide site diversity 75

and the SFS are informative when it comes to estimating the 76

strength and prevalence of (recurrent) sweeps (Corbett-Detig 77

et al. 2015; Elyashiv et al. 2016; Booker et al. 2017; Comeron 2017). 78

In addition, we can also explore the joint effects of recurrent 79

sweeps and recent population size changes. These are not well 80

understood, and are important for estimating the relative impor- 81

tance of background selection and recurrent sweeps in shaping 82

genome-wide patterns of variability (e.g., Johri et al. 2020). 83
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Supplementary text

S.1 The intensity matrix for calculating the total branch length
of a sample size of three

S2 and s2 in (10) are the same as the corresponding elements defined in (3).

S3 =

0

BBBBB@

�3M21 � 3
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3M21 0 0
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S.2 The intensity matrix for calculating the SFS for a sample
size of three

The sub-matrices in (10) for the model leading to Table 1 are given below.
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0

BBBBB@

�3M21 � 3
p̂2

3M21 0 0

M12 �M12 � 2M21 � 1
p̂2

2M21 0

0 2M12 �2M12 �M21 � 1
p̂1

M21

0 0 3M12 �3M12 � 3
p̂1

1

CCCCCA
. (S3)

S32 =

0

BBBBB@

3
p̂2

0 0 0

0
1
p̂2

0 0

0 0
1
p̂1

0

0 0 0
3
p̂1

1

CCCCCA
. (S4)

S2 =

0

BBBBB@

�2M21 � 1
p̂2

M21 M21 0

M12 �M12 �M21 0 M21

M12 0 �M12 �M21 M21

0 M12 M12 �2M12 � 1
p̂1

1

CCCCCA
. (S5)

sT2 =
� 1
p̂2

0 0
1
p̂1

�
. (S6)

1

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189837doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189837
http://creativecommons.org/licenses/by-nd/4.0/


S.3 A non-equilibrium phase-type model

Consider a continuous time Markov chain with finite state space {1, 2, ..., K,K+1}, where
states 1, ..., K are transient, and state K + 1 is absorbing. It is assumed that the time

interval [0,1) is subdivided into H non-overlapping epochs. The duration of epoch h is

[th�1, th), where 1  h  H, t0 = 0, and tH = 1. The intensity matrix for epoch h is

constant and takes the form:

⇤h =

✓
Sh sh
~0 0

◆
(S7)

where Sh the K-by-K sub-intensity matrix, and sh is the K-by-1 exit rate vector.

Define

8
><

>:

dh = th � th�1

h(t) = min{h : 1  h  H and th�1  t < th}
dh(t) = t� th(t)�1

(S8)

The transition probability between time 0 and time t is given by:

P (t) =

 h(t)�1Y

h=1

Ph(dh)

�
Ph(t)(dh(t)) (S9)

where Ph(t) is the transition matrix for epoch h. From standard Markov chain theory,

we know that:

Ph(t) =

✓
e
Sht ~1� e

Sht~1

~0 1

◆
. (S10)

Define

S(t) =

 h�1Y

h=1

e
Shdh

�
e
Shdh. (S11)

We can rewrite (S9) in a more compact form:

P (t) =

✓
S(t) ~1� S(t)~1
~0 1

◆
. (S12)

The probability that the process jumps to the absorbing state in the time interval [t, t+dt)

is given by:

f(t)dt =

KX

i=1

↵i

KX

j=1

sij(t)sj(t)dt = ↵S(t)s(t)dt (S13)

where sij(t) are elements of S(t), and sj(t) are elements of sh(t), the exit rate vector at

time t. The Laplace transform of f(t) is defined as:

L(z) =
Z 1

0

e
�zt↵S(t)s(t)dt (S14)
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Noting that sh = �Sh
~1 and substituting (S11) into (S14) leads to:

L(z) = �↵
HX

h=1

 h�1Y

i=1

e
Sidi

� Z
th

th�1

e
�(zI�Sh)tdt

�
e
�Shth�1Sh

~1, (S15)

where I is the identity matrix. To evaluate the integral, we define Ah(z) = Ah =

�(zI � Sh). Because all eigenvalues of Ah have strictly negative real parts (Hobolth

et al., 2019), limt!1 e
Aht = 0. We obtain:

Z
th

th�1

e
Ahtdt = A�1

h

�
e
Ahth � e

Ahth�1
�
. (S16)

Taking the derivative with respect to z, we obtain:

d

dz

Z
th

th�1

e
Ahtdt = A�1

h

⇥
(A�1

h
� thI)e

Ahth � (A�1
h

� th�1I)e
Ahth�1

⇤
. (S17)

Noting that the mean time to absorption is given by �dL(z)
dz

��
z=0

and that Ah(0) = Sh,

we have:

E[T ] = ↵
HX

h=1

 h�1Y

i=1

e
Sidi

�⇥
(S�1

h
� thI)e

Shdh + th�1I � S�1
h

⇤
~1. (S18)

Rearranging the equation, we arrive at Theorem 1. To facilitate further discussion, we

state this Theorem in a slightly di↵erent way:

Corollary 1. Let ↵ = (↵1, ...,↵K), where ↵i is the probability that the initial state is i

and
P

K

i=1 ↵i = 1. Let T be a random variable representing the time to absorption. We
have:

E[T ] = ↵U~1 (S19)

where
(
U =

P
H

h=1

hQ
h�1
i=1 e

Sidi

i
Uh

Uh = e
ShdhS�1

h
� S�1

h

(S20)

and e
Shdh = 0 if dh = 1.

We have also derived an expression for the second moment of T in Theorem 2 in Supple-

mentary Text S.4.

Let uij,h represent the elements of Uh. uij,h is the amount of time the process spends

in state j during [th�1, th) given that it is in state i at time th�1. That is, Uh is the Green’s

matrix for the h-th epoch. Also note that element i in the vector ↵
Q

h�1
j=1 e

Sjdj gives the

probability that the process is in state i at time th�1. Thus, Corollary 1 shows that,

under this stepwise model, the Green’s matrix for the entire process U is the weighted

average of the Green’s matrices of all the constituent epochs.

As noted in the main text, the expectation of both Ln1,n2 and �(n1,n2) can be written

in the form ↵UD. Let Y represent either of these two random variables. Corollary 1

tells us that:

E[Y ] =

HX

h=1

E[Yh] (S21)
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where

E[Yh] = ↵

 h�1Y

i=1

e
Sidi

�
UhD (S22)

which is the expected contribution from epoch h.

We have so far assumed that the state space is the same across epochs. This restriction

can be relaxed. Let the size of the state space in epoch h be Kh. Let Eh�1,h be a

Kh�1-by-Kh matrix that defines the mapping of the states from epoch h � 1 to epoch

h (h = 1, ..., H and E01 = I, the identity matrix). Corollary 1 holds if we replaceQ
h�1
i=1 e

Sidi by (
Q

h�1
i=1 Ei�1,ie

Sidi)Eh�1,h. For (S21), we additionally need to replace D by

an epoch-specific Dh.

S.4 The second moment of the mean time to absorption

The second moment of T is given by
d2L(z)
dz2

��
z=0

. The second derivative with respect to z

for the integral in (S16) reads:

d
2

dz2

Z
th

th�1

e
Ahtdt = A�1

h

1X

k=0

(�1)
k
e
Ahth�k

⇥
A�2

h
+
�
A�1

h
� th�kI

�2⇤
(S23)

Substituting (S23) into (S15) leads to the following result.

Theorem 2. The second moment of the mean time to absorption, E[T 2
], is given by:

↵
HX

h=1

 h�1Y

i=1

e
Sidi

� 1X

k=0

(�1)
k+1

e
Sh(th�k�th�1)

⇥
S�2

h
+
�
S�1

h
� th�kI

�2⇤
~1. (S24)

S.5 Approximating the expected pairwise coalescence time un-
der the model of recent balancing selection

As in the main text, we assume that a new allele A2 has arisen by mutation, and has

spread to a frequency p̃2 that is close to its equilibrium value under balancing selection,

which is p̂2 = s1/(s1+s2) with heterozygote advantage. Providing that the recombination

rate is not too high relative to the strength of selection, the expected coalescence time for

a pair of A2 alleles sampled at frequency p̃2 can be obtained from Equations 9, 10, 11a

and A1-A3 of Charlesworth (under review), where �⇡ in his Equation 11a is equivalent

to the reduction in the mean pairwise coalescence time relative to the neutral value of 2Ne

generations. To obtain �⇡, p̃2 replaces q2 in Equations 9, 10 and A1-A3 of Charlesworth

(under review), where the selection parameters in Equations A1-A3 are � = 2Nes1, a = 1,

and b = –(s1+s2)/s1. At the time when p̃2 is reached, the values of the expected coalescent

times (on the timescale of 2Ne generations) for a pair of A1 alleles is approximately equal

to 1.

In addition, the possibility that a recombination event introduces the neutral site from

an A1 allele onto an A2 background, thereby reducing the initial divergence at the neutral

site between an A1 and A2 pair, is modelled by using Equation A3a of Charlesworth

(under review) with q2 replaced with 1–p2 and q with 1� ✏, to yield a probability of an
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A1 to A2 recombination event of Pr1. In addition, the selection parameters a and b should

be replaced with a + b, and –b, respectively. It is assumed that such a recombination

event is followed by coalescence with a non-recombined neutral site associated with A2,

with a coalescence time equal to the duration of sweep, ts, as given by 21 with p2 = p̃2.

The divergence between an A1 and A2 pair at the time of sampling is then given by

1–Pr1(1–ts).

A simple way to obtain the pairwise coalescence times at an arbitrary time after

the allele frequency p̃2 has been reached is to consider the recursion relations for the

corresponding pairwise expected diversity measures with a neutral mutation rate of u

under the infinite sites mutation model and assuming that the frequency of A2 remains

close to its equilibrium value. The scaled mutation rate in the absence of selection,

✓ = 2Neu, is su�ciently small that second-order terms in ✓ can be neglected (Malécot,

1969, p. 40; Wiehe and Stephan, 1993, Equation 6a). Writing ⇡ij for the expected

diversity for a pair of alleles Ai and Aj, and using primes for their values in a new

generation, and neglecting second-order terms, we have:

⇡
0
11 =


1�

✓
2u+ 2rp̂2 +

1

2Nep̂1

◆�
⇡11 + rp̂1⇡12 + 2u (S25a)

⇡
0
12 = 2rp̂2⇡11 + [1� (2u+ r)] ⇡12 + 2rp̂1⇡22 + 2u (S25b)

⇡
0
22 = rp̂2⇡12 +


1�

✓
2u+ 2rp̂1 +

1

2Nep̂2

◆�
⇡22 + 2u (S25c)

The coe�cients of the ⇡ij in these equations provide the corresponding coe�cients

for the recursions of the deviations of the ⇡ij from their equilibrium values, thereby

eliminating the term in 2u on the right-hand sides of the equations. If the ⇡ij are scaled

relative to their expected value 2✓ in the absence of selection, and u is set arbitrarily

close to zero, solving for equilibrium gives ⇡ij values relative to 2✓ that are equivalent to

the equilibrium coalescent times given by (6), as can be verified by direct calculation.

By setting u to zero in (S25), and using the scaled the ⇡ij, we thus obtain a recursion

for the deviations from equilibrium of the corresponding expected pairwise coalescence

times on the timescale of 2Ne generations. While it is possible in principle to diagonalize

the relevant matrix, and express the solution for an arbitrary time after reaching p̃2 in

term of its eigenvalues and eigenvectors, in practice it is simpler to iterate the matrix

with assigned numerical values of the parameters. In order to save computation time,

a relatively small value of Ne can be used, and the recombination parameters rescaled

accordingly to represent a much larger Ne with the same value of ⇢ = 2Ner. The initial

relative values of ⇡11, ⇡12, and ⇡22 are 1, 1, and 1 – �⇡.
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Supplementary figures
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Figure S1: Expected coalescence time for a pair of alleles as a function of ⇢. The
selected alleles A1 and A2 are at equilibrium frequencies p̂1 and 1� p̂1. “No mut” means
µij = 0 (i.e., (6)). “Eq mut” means µij = 0.02. “A1 bias” means µ12 = 0.01 and
µ21 = 0.05. “A2 bias” means µ12 = 0.05 and µ21 = 0.01. The scales of the axes are
di↵erent.
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Figure S2: Expected coalescence time for a pair of alleles as a function of ⇢. The selected
alleles A1 and A2 are at equilibrium frequencies p̂1 and 1 � p̂1. “Equal mutation rate”
means µij = 0.02. “A1 bias” means µ12 = 0.01 and µ21 = 0.05. “A2 bias” means
µ12 = 0.05 and µ21 = 0.01.
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Figure S3: The level of LD between the selected and neutral loci as a function of ⇢. In
(a), the mutation rates between A1 and A2 are µ12 = µ21 = 0.02. In (b) - (d), for a given
p̂1, di↵erent mutation rates are considered. “No mut” means µij = 0. “Eq mut” means
µij = 0.02. “A1 bias” means µ12 = 0.01 and µ21 = 0.05. “A2 bias” means µ12 = 0.05 and
µ21 = 0.01.
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Figure S4: Transition rates between the states of the equilibrium balancing selection
model for a sample of size three. Time is scaled in units of 2Ne generations. The
neutral locus is represented by a black dot.
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Figure S5: The approach to equilibrium diversity level. The parameters are the same as
those used in Figures 6 and 8. The sample size is 20. p̂2 = 0.75 in (a) and 0.5 in (b).
Note that the curves are based on a model without reversible mutation between the two
selected variants A1 and A2. They overestimate the increase in diversity when ⇢ is very
small.
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Figure S6: Neutral diversity in genomic regions surrounding a recently-emerged variant
under balancing selection. The parameters are the same as in Figure 8 in the main text,
except that the sample size is n = 20.
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Figure S7: Neutral diversity level in genomic regions surrounding a recently-emerged
balanced polymorphism. These figures are analogous to that in Figure 8, except that in
(a) p̂2 = 0.5 and in (b) p̂2 = 0.25. The sample size is two.
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Figure S8: Comparing recent balancing selection with the corresponding sweep model
with respect to their e↵ects on diversity levels in surrounding genomic regions. The
models and their parameters are the same as those in Figure 9, expect that n = 20.
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Figure S9: The SFS for the balancing selection models considered in Figure S7. In (a)
p̂2 = 0.5 and in (b) p̂2 = 0.25.
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Figure S10: �✓W as a function of ⇢ and t for the balancing selection models considered
in Figure S7. The sample size is 10. In (a) p̂2 = 0.5 and in (b) p̂2 = 0.25.
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