1 Neutrophil extracellular traps impair regeneration.

- 2
- 3 Authors:
- 4 Eric Wier¹, Mayumi Asada¹, Gaofeng Wang^{1,2}, Martin P. Alphonse¹, Ang Li¹, Chase Hintelmann¹,
- 5 Christine Youn¹, Brittany Pielstick³, Roger Ortines¹, Lloyd S. Miller^{1,4}, Nathan K. Archer¹, Luis A.
- 6 Garza¹
- 7

8 Affiliations:

- 9 ¹Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore,
- 10 Maryland, USA.
- 11 ²Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University,
- 12 Guangzhou, Guangdong Province, China.
- 13 ³Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore,
- 14 Maryland, USA.
- ⁴Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA,
- 16 19477, USA (Current affiliation. All work performed at prior affiliation¹)
- 17 * Correspondence to: LAG@jhmi.edu
- 18

19 Abstract

20 Fibrosis is a major health burden across diseases and organs. To remedy, we study wound

- 21 induced hair follicle regeneration (WIHN) as a model of non-fibrotic healing that instead
- 22 recapitulates embryogenesis for de novo hair follicle morphogenesis after wounding. We have
- 23 previously demonstrated that TLR3 promotes WIHN through binding dsRNA, but the source of 24 which is still unclear. Here, we demonstrate that multiple distinct contexts of high WIHN all
- 25 show a strong neutrophil signature, and given the likelihood of nuclear dsRNA release during
- 26 the production of neutrophil extracellular trap (NETs), we hypothesized that neutrophils and
- 27 NETs might promote WIHN. Consistent with this, in addition to the presence of neutrophils
- 28 shortly after wounding, neutrophils remain within the wound after the barrier is reestablished,
- 29 where they produce extracellular traps (NETs) that likely release spliceosomal U1 dsRNA.
- 30 Contrary to our hypothesis, genetic models of neutrophil depletion show enhanced WIHN.
- Pad4 null mice that are defective in NET production also augment WIHN. Finally, using single-
- 32 cell RNA sequencing, we identified a dramatic increase in neutrophil populations in the wound
- 33 beds of low regenerating TIr3-/- mice. Taken together, these results demonstrate that although
- 34 neutrophils are stimulated by a common pro-regenerative cue, their presence and NETs can
- 35 hinder regeneration.
- 36
- 37

38 Introduction

After suffering a wound, the body initiates a well-coordinated physiological process to restore homeostasis and reestablish the barrier. This spontaneous process comprises four

41 discrete phases: hemostasis, inflammation, proliferation, and remodeling¹. Although all of these

- 42 phases have been extensively studied, the molecular details as to why repair tends to result in
- 43 fibrotic scar tissue rather than complete regeneration have not been fully elucidated. This
- 44 tendency of wound repair to lead to fibrosis, and in some cases, hypertrophic scars, contributes
- 45 an enormous burden on human health¹⁻³. Inflammation and different components of the
- 46 immune system have been shown to contribute to regeneration in salamanders and zebrafish,
- 47 as well as to promote healing and maintain barrier function in mammals upon mucosal injury⁴⁻⁶.
- Although the cellular effects of macrophages and T cells are well studied⁷⁻¹⁰, the role of
 neutrophils in modulating regeneration remains elusive.
- 50 Unlike urodele salamanders, complete skin regeneration after wounding in mammals is 51 rare¹¹. It occurs via de novo hair follicle generation in mice and rabbits through a process that mimics skin embryogenesis¹²⁻¹⁵. This process of de novo follicle neogenesis (Wound Induced 52 53 Hair Neogenesis; WIHN) was first fully characterized in mice after receiving full thickness 54 wounds¹⁶. These regenerated follicles establish a distinct stem cell population, express characteristic differentiation markers, produce functional hair shafts, and can complete the hair 55 56 cycle. In addition to the hair follicles, sebaceous glands, specialized vascular and nerve 57 supports, and surrounding fat cells are regenerated^{16,17}.
- 58 Immediately after wounding, a robust inflammatory phase occurs, which allows the 59 ingress of keratinocytes and fibroblasts to proceed afterward. The early stage of wound healing 60 is defined by the dramatic recruitment of neutrophils, which are instrumental in providing defense against microbial pathogens¹⁸⁻²². This is followed by an influx of macrophages (M ϕ 's) 61 that continue the phagocytic processes begun by neutrophils and aid in the transition to the 62 63 proliferative phase of wound healing²³⁻²⁵. While much is known about the importance of this 64 inflammatory phase for preventing and abrogating infections, less is known about how it 65 influences regenerative capacity or WIHN. Increasingly, macrophages have been shown to be essential for WIHN via TNF-induced AKT/ β -catenin signaling⁸⁻¹⁰. However, the role of 66 neutrophils in modeling regeneration or WIHN is unclear. 67
- 68 Toll-like receptors (TLRs) are highly conserved single-pass membrane-spanning receptors that recognize structurally conserved molecular components of invading microbes 69 and activate a cascade of inflammatory signaling pathways²⁶. Rather than simply recognizing 70 71 pathogen associated molecules, they can also initiate "sterile" inflammation upon recognizing 72 damage-associated molecular patterns (DAMPs), which are critical to recruit immune cells and 73 initiate wound healing²⁷. TLR3 is activated by dsRNA and has primarily been studied in the context of viral infection²⁸. Mounting evidence shows that TLR3 also plays an important role in 74 75 wound repair²⁹⁻³⁷. Synthetic double strand RNA (dsRNA) polyriboinosinic-polyribocytidylic acid 76 (poly(I:C)) treatment dramatically increases WIHN in mice. Furthermore, wound-released dsRNA activates TLR3 to promote hair follicle regeneration³⁴. The identity and source of the 77 physiological RNA remains an open and important question in the field. Notably, the dsRNA U1 78 spliceosomal small nuclear RNA (snRNA), may be an important endogenous RNA sensed via 79 TLR3^{32,33,38,39}. Specifically, UV damage releases U1 snRNA that stimulates cytokine production in 80 keratinocytes and increases barrier gene transcription^{32,33}. 81 82 In addition to phagocytosis and degranulation, neutrophils can produce extracellular
- 83 traps (ET), large extracellular web-like structures composed of decondensed chromatin bound
- to various cytosolic and granule proteins^{21,22,40-42}. While originally recognized as a defense

mechanism against pathogens^{21,40,41}, they have also been found to mediate sterile 85 inflammatory processes^{43,44}. In the absence of infection, ETs can be stimulated in sterile tissue 86 environments through various cytokines^{41,45-47} and by activated platelets^{43,44}. Interestingly, ETs 87 are found within sterile wounds of mice and delay wound healing⁴⁸. Mechanistically, ETs are 88 89 formed by the rapid decondensation of the cellular chromatin, followed by the fragmentation 90 of the nuclear membrane and mixing of the nuclear and cytoplasmic compartments, before 91 being expelled from the cell. The ability of neutrophils to rapidly migrate to the wound site and 92 produce ETs, coupled with the nuclear localization of some dsRNA, made us question whether 93 neutrophils were a source of the dsRNA critical for WIHN. Interestingly, while there are extensive studies on the DNA components released during ET formation^{22,42,49}, the RNA 94 95 components are poorly understood.

96 To probe how neutrophils influence wound regeneration and WIHN, we analyzed 97 multiple microarrays from distinct contexts of high regenerating mice and found a common 98 neutrophil signature. Using immunofluorescence and flow cytometry we found that neutrophils 99 remain in the wound bed, albeit at low levels, after the acute inflammatory phase, where they 100 produce NETs that contain the nuclear U1 dsRNA. To define how this influences regeneration, 101 we used antibody mediated neutrophil depletion to eliminate neutrophils from the wound bed 102 at select time points, but discovered that the technique is ineffective in the context of large full-103 thickness wounds, which are necessary to initiate WIHN. However, using a neutrophil-specific 104 diphtheria toxin ablation model, we were able to deplete neutrophils in the wound bed and found that—contrary to our initial hypothesis-- the absence of neutrophils enhances WIHN. 105 Eliminating neutrophil's ability to produce NETs by knocking out Pad4 also boosted WIHN, 106 107 confirming the negative influence of neutrophils on regeneration. Finally, we used single-cell 108 RNA sequencing to characterized WIHN deficient Tlr3-/- mice and found that they have a 109 dramatically increased population of neutrophils in the re-epithelized wound bed, compared to 110 wild-type mice, likely contributing to their diminished regenerative capacity. These results 111 indicate that, while important for preventing infection, neutrophils and their NETs negatively 112 impact regeneration and WIHN. Although a common pro-regenerative signal might increase 113 neutrophil infiltration, neutrophils instead likely contribute to fibrosis.

- 114
- 115 Results
- 116

117 Neutrophil signature present during skin regeneration

118

119 To begin to characterize the role of neutrophils in WIHN, we performed bioinformatic 120 analysis on previous microarrays of multiple distinct high regenerating mouse models, probing 121 for innate immune and neutrophil signatures. First, we analyzed the proteome comparing the 122 center of the re-epithelialized wound bed (high WIHN) to the surrounding periphery/edge (low WIHN) (Fig. 1a)³⁷. Gene ontology analysis revealed that, in the area of high WIHN, neutrophil 123 124 aggregation and other defense pathways against bacterium are enriched, characterized by an 125 abundance of antimicrobial and granular proteins, such as Neutrophil Elastase (Elane), 126 Cathelicidin (Camp), and Myeloperoxidase (Mpo) (Fig. 1b-c). In a second model system, high 127 WIHN Rnasel-/- mice (manuscript in review), at the time of scab detachment, are also enriched 128 in genes associated with neutrophils. Neutrophil chemotaxis is the most significant upregulated 129 gene ontology category, with other chemotactic and inflammatory pathways up as well (Fig.

- 130 1d). Finally, we analyzed the gene expression changes between wounded specific pathogen free
- 131 (SPF) mice, which have increased regeneration and WIHN, when compared to germ free (GF)
- mice (manuscript in review), at the time of scab detachment. Like the other two high
- 133 regeneration models, when compared to GF, SPF mice had elevated neutrophil chemotaxis and
- 134 immune response transcripts (Fig. 1e). Together, these disparate experimental contexts
- demonstrate that neutrophil chemotaxis can correlate with high regeneration and WIHN.
- 136

137 Neutrophils persist in the wound bed after the acute inflammatory phase, producing 138 extracellular traps

139

140 Given the above correlations of high neutrophil infiltration to high WIHN, we first 141 characterized neutrophil infiltration in the wound beds of C57BL/6J mice after a large square 142 wound cut into the center of their backs, to the depth of fascia. As anticipated, neutrophils are 143 abundant in the acute phase of the wound healing process (1-3 days post wounding), as seen 144 by H&E staining (Fig. 2a) and immunofluorescence of Myeloperoxidase (MPO), a major 145 neutrophil granule protein (Fig. 2b). While neutrophils predominate at early time points, they 146 are still present in the wound bed as late as wound day 11, well after re-epithelization has 147 completed (Fig. 2c). In contrast, macrophages only accumulate starting at wound day 3 (Fig. 2b) 148 but remain a major component of the wound even after re-epithelization (Fig. S1). These 149 results show the dynamic changes of immune cell infiltration, but with an underappreciated 150 persistence of some neutrophils late in wound healing, during the time of morphogenesis.

151 Given the importance of dsRNA to promote WIHN, and the association of neutrophils 152 with high WIHN, we hypothesized that neutrophil extracellular traps (NETs) release of 153 neutrophil nuclear content might release dsRNA, in addition to dsDNA, from the nucleus to 154 promote WIHN. We visualized citrullinated histone H3 (H3Cit) to identify NETS as early as 155 wound day 3 (Fig. 2d). The production of the NETs is mediated by Pad4, an enzyme that 156 modifies the arginine residues on histories to citrulline, which changes their charge, leading to massive chromatin decondensation^{50,51}. Consistent with this, NETs are virtually absent in mice 157 158 lacking Pad4, while abundant in the wound bed after the acute phase of wound healing in WT 159 mice (Fig. 2e). Although NETs are characterized by their extruded DNA, which forms a web-like 160 scaffold containing cytosolic and granular proteins, little is known about the RNA content within 161 them and how that might influence wound healing. Given that U1 small nuclear (sn) RNA is proposed as a TLR3 agonist damage-associated molecular pattern important for skin barrier 162 repair^{32,33}, we visualized it by FISH. U1 snRNA is present throughout the wound beds of 163 164 C57BL/6J mice (Fig. 2f). Rather than the baseline nuclear appearance of unwounded tissue, U1 165 snRNA in the wound bed is markedly cytoplasmic, suggesting that its cellular localizations shifts 166 from the nucleus as a potential step towards cellular release. Consistent with this, we noted a 167 fine haze of signal extracellularly. Taken together, these data suggest a potential model where 168 neutrophils persist to the morphogenesis stage of wound healing and release extracellular traps 169 that contain U1 dsRNA to perhaps modulate WIHN.

- 170
- 171

172 Large full-thickness wounds dramatically reduce antibody-mediated neutrophil depletion

173

174 To functionally assess how neutrophils modulate wound induced hair neogenesis 175 (WIHN), we sought to deplete neutrophils throughout the wound bed at select times. To 176 accomplish this, we adapted a widely used antibody mediated depletion scheme, where we injected neutrophil specific antibodies intraperitoneally (Fig. 3a)⁵². Most experiments were 177 178 completed using a Ly6G positive monoclonal antibody (1A8 clone), which recognizes a 21-25kD 179 glycosylphosphatidylinositol (GPI)-linked differentiation antigen that is expressed by myeloid-180 derived cells. While monocytes transiently express Ly6G during bone marrow development, 181 Ly6G expression in peripheral neutrophils directly correlates its level of differentiation and 182 maturation. The less specific anti-granulocyte receptor-1 (Gr-1) antibody (RB6-8C5 clone), 183 which recognizes both Ly6G and Ly6C and thereby also targets dendritic cells and 184 subpopulations of lymphocytes and monocytes, was also used in select experiments. To 185 prevent confounding flow cytometry measurements caused by epitope masking from the initial 186 Ly6G antibody injected during the antibody mediated neutrophil depletion experiments⁵³, a 187 distinct Ly6G antibody clone was used for analysis via flow cytometry. Injections were done one 188 day before and one day after large full-thickness wounds on the back of mice. The depletion 189 scheme focused on the early time points of the wound healing process because those were 190 shown to be most critical in dsRNA-Tlr3 enhanced WIHN³⁴. 191 Unexpectedly, on wound day 3, after receiving two IP injections of either Ly6G or Gr-1 192 antibodies, using our careful detection strategy, there was no apparent neutrophil depletion in the wound bed, as measured via flow cytometry (Fig. 3b). Depletion was also ineffective in 193 194 other tissues after wounding, including the spleen and liver (Fig. S3). Looking one day earlier 195 (wound day 2), neutrophil depletion was still ineffective in the wound bed, but there was a 196 statistically significant depletion in the blood of the same mice (Fig. 3c). Although significant, 197 the neutrophil depletion was less than 50%, far less efficient than the previous reports^{52,54,55}. 198 An important distinction between ours and previous work is that we employed depletion in the 199 context of large wounds to fascia, prompting us to question whether large area wounding 200 globally modifies neutrophil blood trafficking dynamics to result in depletion failure. Indeed,

- injection of the Ly6G (1A8 clone) antibody 24 hours earlier (Fig. 3d), but this depletion was
 abolished after wounding the mice (Fig. 3e). To explore this further, we repeated the injection
- scheme in Fig. 3a. With and without wounding mice, we examined the neutrophil depletion in

neutrophil depletion was very efficient in the blood of unwounded mice who had received an IP

- 205 the blood and wound bed at wound day 2. Consistent with our previous experiments, in the 206 context of wounding, the Ly6G (1A8) neutralizing antibody achieved less than 50 percent
- 206 context of wounding, the LyoG (1A8) neutralizing antibody achieved less than 50 percent 207 neutrophil depletion in the blood. In contrast, mice that were not wounded, achieved
- substantially more efficient depletion in the blood. (Fig. 3f). Unwounded skin does not typically
- contain neutrophils, so the Ly6G (1A8 clone) antibody injection had no effect (Fig. 3g).
 Wounding caused dramatic recruitment of neutrophils to the wound bed, as shown earlier (Fig.
- 3b-c, e). Ly6G antibody injection could not overcome this to deplete neutrophil from the woundbed (Fig. 3g).

A previous report had success with antibody-mediated neutrophil depletion in a wounding model where small 2cm excisions were made⁵⁵, leading us to question whether Ly6G (1A8 clone) antibody injection was more effective in smaller, full-thickness wounds. To address this, mice were injected with Ly6G (1A8 clone) antibody and then wounded with large wounds

217 (1.25x1.25cm2), like the previous experiments, or smaller wounds (0.6x0.6cm2) (Fig. 3h).

218 Neutrophil depletion efficacy was then assessed at wound day two in the blood and wound

bed. Mice that had been given small wounds had significant neutrophil depletion in both the

blood and wound bed, while those with the large wounds did not (Fig 3i-j). Taken together,

these data suggest that antibody mediated neutrophil depletion, while efficient in certain non-

wounding contexts, is not effective after the large full-thickness wounds necessary to induce

223 WIHN—perhaps because of the unusually robust stimuli of neutrophil recruitment in this 224 context.

224 co 225

226 Neutrophils inhibit wound induced hair neogenesis

227 228 Despite the minimal inhibition of neutrophils using conventional antibody depletion 229 with large wounds, we sought to begin testing how neutrophils might modulate WIHN. We 230 used the same antibody depletion scheme described (Fig 3a) but allowed the mice to recover 231 for 21 days before quantifying WIHN via confocal scanning laser microscopy (CSLM) (Fig 4a)⁵⁶. 232 Antibody injection did not affect wound closure speed (Fig. S4). Despite minimal neutrophil 233 depletion within the wound beds of mice post Ly6G (1A8 clone) injection (Fig 3b, c, e, g), the number of regenerated hair follicles was increased, suggesting that neutrophils may hinder 234 235 WIHN (fold = 3.94) (Fig 4b).

- 236 To surmount the difficulties with meager neutrophil depletion using Ly6G antibodies, we generated a transgenic mouse model for selective and inducible ablation of neutrophils 237 238 upon injection of diphtheria toxin (DT)⁵⁷. MRP8-Cre mice expressing Cre recombinase under the 239 control of the neutrophil-associated human MRP8 promoter⁵⁸⁻⁶⁰ were crossed with ROSA-iDTR^{KI} 240 mice, which have a Cre-inducible simian DT receptor (DTR)⁶¹. This generated mice with DTR 241 expression restricted to neutrophils that suffer cell death selectively after the injection of DT. 242 Two injections, one before wounding and one a day after, had no effect on control mice 243 (PMN^{WT} mice: MRP8-Cre-, ROSA-iDTR^{KI}) but substantially reduced neutrophil numbers in the blood (fold = -4.33) and wound beds (fold = -4.27) of PMN^{DTR} (MRP8-Cre+, ROSA-iDTR^{KI}) mice at 244 wound day 2 (Fig. 4c-d). We next followed the mice after neutrophil ablation in the early phase 245 246 of wounding to find WIHN was substantially elevated (fold = 3.23) (Fig. 4e). The ablation of 247 neutrophils later in the wound healing process yielded the same results (Wound days 6, 8, and 248 10) (Fig. S5). Antibody mediated depletion (1A8 clone) at these later time points had no effect 249 on WIHN, suggesting that although effective in the blood, it is not able to target neutrophils 250 already present within the wound bed (Fig. S6). After overcoming the technical hurdles above, 251 these data suggest that neutrophils have a detrimental effect on the regeneration of hair 252 follicles.
- To further explore this possibility, we sought to try a gain-of-function approach, rather than the loss-of-function approach above. We injected purified neutrophils from the bone marrow of mice into the wound beds of mice during the re-epithelialization process. Although not significant, likely due to the high variability of WIHN, the addition of 200,000 neutrophils reduced the number of regenerated hair follicles (fold = -0.73) (Fig. 4f).
- Finally, given the presence of NETs late in wound healing (Fig 2e), we sought to test the role of NETs in hair follicle neogenesis directly. We, therefore, tested WIHN in NET-deficient Pad4 KO mice, as employed in Figure 2e. In the absence of Pad4 and with dramatically reduced

NETs, WIHN is enhanced (fold = 2.47, p = 0.026) (Fig. 4g). This suggests that NETs play a role in
 reducing the regenerative capacity of mice during the wound healing process. This correlates
 with the capacity of NETs to damage tissue in diseases such as small vessel vasculitis⁶², systemic
 lupus erythematosus⁶³⁻⁶⁷, rheumatoid arthritis⁶⁸, and psoriasis⁶⁹.

265

266 Single-cell RNAseq correlation of neutrophils with poor WIHN

267 Double-stranded RNA sensing, mediated by TIr3 and downstream effector pathways II-6/ Stat3, has been shown to be critical for WIHN, with Tlr3-/- mice having substantially less 268 regenerated hair follicles than their wild-type controls³⁴. Given that TLR3 dsRNA sensing has 269 270 been shown to be critical for neutrophil recruitment and NET production in a model for acute lung injury (ALI) and glomerulonephritis (GN), we wondered if Tlr3-/- mice paradoxically have 271 increased neutrophil levels, contributing to lower WIHN^{70,71}. As anticipated, Tlr3-/- mice had 272 273 substantially less WIHN than their WT controls (fold = -3.75, p = 0.0218) (Fig. 4h, Fig. S7a). We 274 performed single-cell RNA sequencing on wildtype and Tlr3-/- re-epithelialized wound beds of mice 10 days post wounding and prior to morphogenesis. Approximately 8014 sequenced cells 275 276 met standard quality control metrics and were further analyzed in the Seurat R package⁷². 277 Unsupervised clustering and UMAP non-linear dimensional reduction identified 18 cell clusters. 278 Seurat generated conserved and differentially expressed genes to assign cluster identities. We 279 found the neutrophil cluster to be substantially increased in the Tlr3-/- mice (Fig. 4i, Fig. S7b). 280 This disparity is evident when looking at select differentially expressed neutrophil associated 281 genes that are all elevated in Tlr3 -/- mice (Fig. 4j). Together, these data suggest that elevated 282 neutrophil levels within Tlr3-/- mice correlate with their deficiency in WIHN.

283 Discussion

284 The wound healing process is a careful balance of interconnected steps that must weigh 285 the benefits of quick barrier repair, which leads to fibrous scarring, and more complete 286 regeneration, that restores function and appearance. The role inflammation plays in 287 regeneration and scarring is still being elucidated, but increasing evidence suggests that neither excess nor lack of inflammation supports regeneration. Fgf9-producing γ-δ T cells are critical for 288 289 WIHN, infiltrating into wound bed immediately before re-epithelialization and onset of hair 290 follicle regeneration⁷. Macrophages have also been shown to be important in the process, with their ablation eliminating WIHN⁸⁻¹⁰. Additionally, the injection of the dsRNA mimic poly(I:C), as 291 292 early as 3 days after wound, dramatically enhances WIHN³⁴. Intriguingly, spiny mice (*Acomys*) 293 have a dramatically reduced inflammatory response post wounding, with less cytokines and 294 virtually no macrophages until late in the process, when compared to laboratory mice (Mus), despite having substantially improved regeneration^{73,74}. Consistent with this idea of a complex 295 network of inflammatory cells influencing regeneration, we show that neutrophils persist in the 296 297 wound bed after the acute inflammatory phase and—despite multiple correlations to the 298 contrary-- have a detrimental effect on regeneration.

Using histological and flow cytometry techniques, we show that while abundantimmediately after wounding, neutrophils remain in low levels within the wound bed after re-

epithelization. These late stage neutrophils produce NETs, which are eliminated in mice that are 301 302 deficient in Pad4, an enzyme critical for chromatin decondensation and NET formation^{50,51}. 303 Critically, Pad4-/- mice have increased WIHN, when compared with WT mice. Furthermore, 304 antibody mediated and selective genetic neutrophil ablation dramatically boost WIHN. Single-305 cell RNA sequencing also revealed that mice deficient in dsRNA sensing TIr3, who have severely 306 reduced WIHN, have substantially more neutrophils present in the re-epithelized wound bed, 307 immediately preceding regeneration. All these data suggest a model where neutrophils play an 308 important role in defense against bacterial pathogens, but if they persist within the wound bed 309 too long after barrier repair, regeneration is hindered. In the future, it will be interesting to see 310 if selectively targeting NETs (e.g., PAD4 inhibitors, DNase I, N-acetylcysteine) enhance 311 regenerative wound repair.

312 When attempting to deplete neutrophils to assess their effects on WIHN, we also discovered that the commonly used antibody depletion methods were not effective. Two 313 314 neutrophil-specific antibodies, which recognize different epitopes of the GPI-linked 315 differentiation antigen Ly6G, are commonly injected to rapidly deplete circulating neutrophils. 316 The most widely used clone (1A8) specifically recognizes Ly6G, while the anti-granulocyte 317 receptor-1 (Gr-1) antibody (RB6-8C5 clone) recognizes a heterodimer of Ly6G and Ly6C, making 318 it partially target monocytes. Both antibodies efficiently depleted neutrophils in unwounded 319 animals. When large full-thickness wounds (1.25x1.25cm²) were used, which are necessary to 320 initiate WIHN, depletion levels in the blood were drastically reduced, while having negligible 321 effects on neutrophils within the wound bed. Depletion efficacy was restored if smaller wounds were used $(0.6x0.6cm^2)$, albeit at reduced levels when compared to unwounded mice. These 322 323 results suggest that wounding has a dramatic effect on recruiting neutrophil precursors for 324 mobilization and release, overwhelming the standard ability of depletion antibodies to work 325 effectively. This highlights the importance of rigorously testing antibody mediated depletion 326 methods in mouse models, to ensure they are achieving appreciable depletion. Furthermore, it 327 is important to carefully design neutrophil detection methods to assess depletion efficacy, 328 particularly with flow cytometry. Robust depletion can be erroneously detected if similar Ly6G 329 clones are used for both depletion and detection, due to epitope masking⁵³. This can occur 330 since identical monoclonal clones are sometimes given different clone numbers. Antibody 331 manufacturers are increasingly manipulating antibodies to reduce undesirable features like 332 non-specific binding, without affecting the epitope-binding variable region, yet renaming the 333 clones, necessitating substantial effort to ensure non-overlapping epitope binding by both 334 depletion and analytical flow antibodies.

335 Our work generates important areas of future investigation. One question is unraveling 336 the paradox of why neutrophil infiltration signatures correlate with high WIHN, but neutrophils 337 inhibit WIHN. One possible model is that a common upstream cue or factor both promotes 338 WIHN and promotes neutrophil infiltration, but the latter serves to limit WIHN in favor of 339 decreasing infection risk. Defining this common upstream signal will be important for future 340 work. It will also be interesting to define the function of neutrophils within the re-epithelized 341 wound since the barrier has been restored. Another important guestion is whether nuclear 342 RNAs released in NETs have any function besides the general theorized one for released DNA. 343 Though NETs inhibit WIHN, nuclear RNA release in NETs might have functions in separate

344 physiological processes that will yield important insights. A final question is the identity of the

345 neutrophil mobilization factor whose strength correlates to wound size. Potential signals

include products of complement activation (C5a) or a number of small molecular weight C-X-C

- 347 chemokines, which are recognized by Cxcr1 and Cxcr2^{75,76}.
- 348 In summary, we here demonstrate a novel role for NETs and neutrophils to inhibit
- regeneration. Future studies will be important to further understand the biology of
- 350 regeneration and test the capacity for neutrophil inhibition to promote regenerative healing.
- 351

Acknowledgments: The authors also thank Conover Talbot Jr. (JHMI Deep Sequencing and
 Microarray Core) for assistance with microarray analysis.

354

Competing financial interests: L.S.M. is a full-time employee of Janssen Pharmaceuticals and may hold Johnson & Johnson stock and stock options. L.S.M. performed all work at his prior affiliation at Johns Hopkins University School of Medicine and he has received prior grant support from AstraZeneca, Pfizer, Boehringer Ingelheim, Regeneron Pharmaceuticals, and

359 Moderna Therapeutics, was a paid consultant for Armirall and Janssen Research and

360 Development, was on the scientific advisory board of Integrated Biotherapeutics and is a

361 shareholder of Noveome Biotherapeutics, which are all developing therapeutics against

- 362 infections and/or inflammatory conditions.
- 363

Funding: Research reported in this publication was supported by the National Institute of
 Arthritis, Musculoskeletal, and Skin Diseases, part of the National Institutes of Health, under
 1F32AR074865-01 to EW and R01AR064297/AR068280 to LAG.

367

368 Methods

369 Mouse Lines

³⁷⁰ All wild-type and control mice used for in vivo experiments were on the C57BL/6J background.

- All mice were age-matched and co-housed until 3-weeks of age. *Pad4* knockout mice were
- ³⁷² purchased from the Jackson Laboratory (B6.Cg-Padi4^{tm1.1Kmow}/J, 030315). The diphtheria toxin
- 373 (DT) mediated neutrophil ablative mice were generated by crossing ROSA26iDTR (C57BL/6-
- 374 Gt(ROSA)26Sor^{tm1(HBEGF)Awai}/J, 007900) and MRP8-Cre-ires/GFP (B6.Cg-Tg(S100A8-cre,-
- ³⁷⁵ EGFP)1IIw/J, 021614) from the Jackson Laboratory to get heterogeneous mice and genotyped
- according to their specifications. Mice who genotyped positive for Cre (MRP8-Cre+; ROSA-
- iDTR^{KI}) were considered PMN^{DTR} mice, while those that were negative for Cre (MRP8- Cre-;
- ROSA-iDTR^{KI}) were PMN^{WT} littermate controls⁵⁷. Tlr3 knockout mice (B6N.129S1-Tlr3^{tm1Flv}/J,
- 009675) and C57BL/6NJ controls (005304) were purchased from the Jackson Laboratory. All
- mice were bred and housed at an American Association for the Accreditation of Laboratory
- ³⁸¹ Animal Care (AAALAC)-compliant facility, and all experimental procedures were reviewed and

- ³⁸² approved by the Johns Hopkins University Institutional Animal Care and Use Committee
- ³⁸³ (IACUC).
- 384
- 385 Wound Induced Hair Neogenesis (WIHN) Assay
- 386 All in vivo experimental surgical procedures were performed as previously
- 387 characterized^{7,16,34,37,77}. Briefly, after exposure to anesthesia (Baxter, Isoflurane), the dorsal side
- of 3-week-old (21 days) male and female mice were shaved. Surgical scissors were used to
- excise 1.25x1.25cm² of skin, creating wounds deep into the fascia. Approximately 3 weeks after
- 390 wounding (~21 days), neogenic hair follicles in the re-epithelialized skin tissue were quantified
- using reflectance confocal scanning laser microscopy (CSLM) as previously published^{34,37}.
- 392
- 393 Neutrophil Depletion
- C57BL/6J mice were depleted with 100 or 500µg of anti-Ly6G (Bio-X-Cell, 1A8 clone, BP0075-1)
- via intraperitoneal injection (IP) injection one day prior to and one day after wounding mice^{52,54}.
- 396 Select experiments also used 200µg of anti-Gr1 (Bio-X-Cell, RB6-8C5 clone, BP0075). LgG2a (Bio-
- 397 X-Cell, BE0089) and IgG2b (Bio-X-Cell, BP0090) isotype controls were used for Ly6G or Gr1
- 398 experiments, respectively. DT depletion was done with PMN^{DTR} and PMN^{WT} littermate control
- 399 mice that were IP injected with 250ng DT (Sigma-Aldrich). The injections were primarily done
- 400 one day before and after wounding, or at wound days 6, 8, and 10.
- 401
- 402 Flow Cytometry
- 403 Flow cytometry was used to access neutrophil depletion. Blood was collected via retro-orbital
- 404 sinus bleeds, and red blood cells were lysed RBC lysis buffer (BioLegend, 420301). Wound beds
- 405 were surgically removed, and cell suspensions were prepared by digesting the tissue in a
- 406 cocktail consisting of Liberase TL (Roche, 5401020001) and DNase I (Sigma, DN25) in RPMI 1640
- 407 (Gibco, 11875093). Cells were washed and then Fc blocked (BioLegend, 101320), before
- 408 staining with an antibody cocktail (Extended Table 1). Finally, cells were washed and
- resuspended in FACs buffer containing Propidium Iodide (Miltenyi, 130-093-233). All flow
- 410 cytometry experiments were performed on a BD LSR II, and downstream analysis of data was
- 411 performed using FlowJo.
- 412
- 413 Neutrophil Extracellular Trap measurement
- 414 Wound beds were surgically removed at wound days 2 and 7, using a 6mm biopsy punch to
- 415 remove excess tissue. Cell suspensions were prepared by digesting the tissue in a cocktail
- 416 consisting of Liberase TL (Roche, 5401020001) and DNase I (Sigma, DN25) in RPMI 1640 (Gibco,
- 417 11875093). Cells were washed, and then Fc blocked (BioLegend, 101320), before staining with
- 418 an antibody cocktail containing anti-MPO (Abcam, ab208670, 1:500) or respective isotype
- 419 control (Abcam, ab172730, 1:500). Cells were then stained with a secondary Alexa Fluor 647
- 420 antibody (Abcam, ab150083, 1:2000). On the final wash, SYTOX green was added
- 421 (ThermoFisher, S7020, 1:1000). This was performed on a BD LSR II, and downstream analysis of
- 422 data was performed using FlowJo.
- 423
- 424 3'-end single-cell RNA-sequencing:

425 The re-epithelialized wounds beds (wound day 10) of a Tlr3-/- and a C57BL/6NJ control mouse

- 426 were excised, and cell suspensions were prepared by digesting the mouse skin tissue in a
- 427 cocktail consisting of Liberase TL (Roche, 5401020001) and DNase I (Sigma, DN25) in RPMI 1640
- 428 (Gibco, 11875093). Propidium iodide and DAPI positive dead cells were removed via cell sorting
- 429 with a BD FACSAria II. Single-cell libraries were prepared via a 10× Genomics Chromium Single-
- 430 Cell Platform, followed by sequencing using Illumina NovaSeq 6000. The results were run
- 431 through Cell Ranger pipeline software for sequence alignment and basic filtering. GEM
- 432 generation, barcoding, cDNA amplification, library preparation, quality control, and sequencing
- 433 were performed at the Genomics High Throughput Sequencing facility at Johns Hopkins School
- 434 of Medicine.
- 435
- 436 Downstream analysis, after the Cell Ranger pipeline, was done using the Seurat R package. A
- 437 standard pre-processing workflow was done, removing low quality cells or doublets, filtering
- 438 unique feature count over 3750 and below 200, as well as filtering out cells with higher than 5%
- 439 mitochondrial counts. This resulted in 4150 WT and 5648 Tlr3-/- cells for downstream
- 440 bioinformatics. Expression matrices then underwent normalization, scaling, principal
- 441 components analysis, and subsequent t-SNE analysis using Seurat packages. Seurat was then
- 442 used to generate conserved genes, differentially expressed genes, feature plots, dot plots, and
- ridge plots. Cell clusters were then defined querying conserved genes and differentially
- 444 expressed genes against the Immgen gene expression database (www.immgen.org) using the
- 445 interactive tool "My Gene Set."
- 446
- 447 Histology
- Biopsies from mouse skin tissue were removed and fixed in 4% paraformaldehyde overnight
- and then transferred to 70% ethanol. Samples were then submitted to the Johns Hopkins
- 450 Oncology Tissue Services Core facility where they were embedded in paraffin. Tissue sections
- $\label{eq:451} \mbox{were obtained at $4 \mu m$ thickness and mounted onto glass slides, followed by hematoxylin and$
- 452 eosin (H&E) staining.
- 453
- 454 Immunofluorescence and immunohistochemistry
- 455 Immunofluorescence microscopy was performed on de-paraffinized tissue sections that
- 456 received heat-induced antigen retrieval using Target Retrieval Solution (Agilent Dako, S169984-
- 457 2). After washing and permeabilization in TBS-T universal buffer (0.2% Triton X-100 in tris-
- 458 buffered saline), sections were blocked at room temperature in 5% goat, donkey, or fetal
- 459 bovine serum with 1% bovine serum albumin. Tissue sections were then incubated overnight at
- 460 4°C with primary antibodies (Extended Table 2) in Antibody Diluent (Agilent Dako, S080983-2).
- 461 Following a wash step, sections were incubated in fluorescent-dye conjugated secondary
- antibodies diluted in antibody diluent for 1 hour at room temperature. After final washing,
- sections were mounted with VECTASHIELD[®] Hardset[™] Antifade Mounting Medium with DAPI
- 464 (Vector Laboratories, H-1500) for nuclear staining. All imaging was done on a DFC365FX (Leica)
- 465 at 20x and 40x magnifications.
- 466
- 467
- 468 U1 in situ hybridization

U1 in situ probes were designed and ordered in the Stellaris Probe Designer (Biosearch 469

- 470 Technologies) (Extended Table 3). Tissue sections were de-parafinized and stained following
- Biosearch Technologies Stellaris RNA FISH protocol for Formalin-Fixed Paraffin-Embedded 471
- 472 Tissue. Briefly, tissue sections were washed in Wash Buffer A (Biosearch Technologies, SMF-
- 473 WA1-60), before adding 200µl hybridization buffer (Biosearch Technologies, SMF-HB1-10)
- 474 containing the U1 probe and covering the tissue with a glass coverslip. The slides were then
- 475 incubated overnight in a humid box at 37°C. Slides were then immersed in Wash Buffer A in the 476 dark at 37°C for 30 minutes, allowing the coverslips to float off. Slides were then washed for 5
- 477 minutes with Wash Buffer B (Biosearch Technologies, SMF-WB1-20), before sections were
- 478 mounted with VECTASHIELD[®] Hardset[™] Antifade Mounting Medium with DAPI (Vector
- Laboratories, H-1500) for nuclear staining. All imaging was done on a DFC365FX (Leica) at 63x
- 479 480 magnifications.
- 481
- 482 Microarray, RNA-seg and proteomic analysis
- 483 Proteins from the wound center and wound edges were analyzed by proteomics, as previously
- 484 described³⁷. Briefly, we used Orbitrap Fusion Tribrid mass spectrometer (Thermo Scientific) for
- 485 protein profiling and obtained the protein expression level by the MS Amanda algorithm.
- 486 Standard bioinformatics procedures were performed, including standardization of gene
- 487 expression, the definition of differentially expressed genes, and GO enrichment analysis. For
- 488 both Rnasel-/- and WT mice, total RNA was isolated from mouse tissue at the time of scab
- 489 detachment from the wound (~10 days post-wounding). RNA was submitted to the JHMI Deep
- 490 Sequencing & Microarray core facility and profiled using the Affymetrix Clariom[™] S mouse array platform, according to the manufacturer's protocols. Gene chips were scanned, generating CEL
- 491 492 pixel intensity files, which were processed and analyzed using Partek[®] Genomics Suite™
- 493 software, and the Robust Multichip Analysis (RMA) algorithm was used for normalization.
- 494 For SPF and GF analysis, total RNA from early wound bed skin (~WD12) was submitted to the
- 495 JHMI Transcriptomics and Deep Sequencing Core. The 1.0ST exon sequencing of mouse RNA
- 496 was performed according to the manufacturer's standard protocol. The raw affymetrix CEL data
- 497 was standardized using Robust Multichip Analysis (RMA) algorithm for comparison.
- 498
- 499 Quantification and Statistical Analysis
- 500 All in vivo and in vitro experiments were performed in at least individual instances. Univariate
- 501 statistical analysis was performed using Student's t-test, and multivariate analysis was
- 502 performed using ANOVA. All statistical analyses and graphical representations were generated
- 503 using GraphPad Prism software. Statistical significance is defined as p-values <0.05 derived
- 504 from the standard error of mean calculations.
- 505
- 506

507 **Extended Table 1**

Name	Host	Fluorophore	Manufacturer/Product #
MHCII (IA/IE)	Rat	BV421/Pacific Blue	BioLegend/107631

CD3	Rat	BV510/AmCyan	BD/740147
Ly6C	Rat	FITC	BD/553104
Ly6G	Rat	PE	BioLegend/127607
CD45	Rat	PE-Cy5.5	Invitrogen/35-0451-82
CD115	Rat	PE-Vio770	BioLegend/135523
CD11c	Hamster	APC	BioLegend/117310
CD11b	Rat	АРС-Су7	BD/557657

508

509 Extended Table 2

Name	Host	Dilution	Company/ Product #
MPO	Goat	1:200	Abcam/ab208670
F4/80	Rat	1:200	Abcam/ab6640
Ly6G	Rat	1:200	BioXCell/BP0075-1
H3Cit	Rabbit	1:500	Abcam/ab5103
Alexa Fluor [®] 488	Rabbit	1:1000	Invitrogen/A27012
Anti-Goat IgG (H+L)			
Alexa Fluor [®] 488	Goat	1:1000	Invitrogen/A-11008
Anti-Rabbit Ig (H+L)			
Alexa Fluor [®] 594	Goat	1:1000	Invitrogen/A-11037
Anti-Rabbit IgG (H+L)			

Alexa Fluor [®] 488	Goat	1:1000	Invitrogen/A-11006
Anti-Rat Ig (H+L)			
Alexa Fluor [®] 594	Donkey	1:1000	Invitrogen/ A-21209
Anti-Rat Ig (H+L)			

510

511 Extended Table 3

Sequence Name	Sequence
U1 snRNA_1	cccctgccaggtaagtat
U1 snRNA_2	caccttcgtgatcatggt
U1 snRNA_3	aagcctcgccctgggaaa
U1 snRNA_4	acatccggagtgcaatgg
U1 snRNA_5	gggaaatcgcaggggtca
U1 snRNA_6	cagtcgagtttcccacat
U1 snRNA_7	ccccactaccacaaatta
U1 snRNA_8	aggggaaagcgcgaacgc

512

513

514 Figure Legends

515

516 Figure 1: Neutrophil signature correlates with high skin regeneration in multiple models

a. Schematic of hair neogenesis preferential localization to wound center (high WIHN) rather

than wound edge (low WIHN). **b.** Proteomic gene ontology (GO) analysis of the top 100 genes

519 wound center versus wound edge in wild type mice (at scab detachment) shows a

520 predominance in innate immune response pathways and neutrophil signatures. **c.** Abundance

521 ratios of genes from select GO terms highlighted in b. show enrichment of antimicrobial and

522 granular proteins, labeled in red. **d.** GO analysis of the top 200 genes from high WIHN Rnasel-/-

523 versus wild-type mice at scab detachment shows a predominance of neutrophil and innate

524 immune cell chemotaxis pathways. Inset graphs show the gene fold expression changes for

525 genes present in that category. **e.** Neutrophil chemotaxis and innate immune categories are 526 included in Gene Ontology (GO) enrichment analysis of the top versus bottom 500 differentially

527 expressed genes between Specific pathogen-free (SPF; high WIHN) and germ-free (GF; low

528 WIHN) mice on ~WD12 (scab detachment) wound beds. (n=3 independent animals per group).

529 Inset graphs show the gene fold expression changes for genes present in that category.

530

Figure 2: Neutrophils persist in wound bed after the acute inflammatory phase, producing extracellular traps

534 a. Neutrophils are present in the wound beds of C57BL/6J mice at early time points, visible in 535 representative hematoxylin and eosin [H&E] staining. Red arrows show select neutrophils, 536 evident by their multilobular nuclei. The black dashed line signifies the migrating epithelial 537 front. Black scale bar = 50 μ m. **b.** Neutrophils predominate throughout the wound beds of 538 C57BL/6J mice on wound days 1 and 3, visible in prominent MPO immunofluorescence (green). 539 Few macrophages are present (Red, F4/80). Red arrows show select neutrophils. The white 540 dashed line signifies the dorsal edge of the wound bed. White scale bar = 200 μ m. c. Percent 541 neutrophil (Ly6G+ cells from total CD45+ cells) levels are consistent in the blood throughout the 542 wound time course, but drop in the wound bed at wound day 11, as measured by FACS. ****p 543 < 0.0001, as calculated by two-way ANOVA. n.s., not significant. N = 2 vs 4. Results are 544 representative of at least two independent experiments. d. Citrullinated histone H3 (H3Cit, red) 545 co-localized with Ly6G+ neutrophils (green), beginning at wound day 3 in the wound beds of 546 immunofluorescence stained C57BL/6J mice, indicating the formation of extracellular traps. Red 547 arrows show select neutrophils. The white dashed line signifies the dorsal edge of the wound 548 bed. White scale bar = 200 μ m. e. Neutrophil extracellular trap positive cells (MPO+, SYTOX 549 green +) are present at late wound time points, but are absent in the wound beds of PAD4-/mice, as measured by FACs ****p < 0.0001, as calculated by two-way ANOVA. n.s., not 550 551 significant. N = 7 vs 4. Results are representative of at least two independent experiments. f. 552 Cytoplasmic U1 snRNA is present in the wound bed of C57BL/6J mice, while it localized 553 exclusively in the nuclei of unwounded controls, as visualized by representative FISH. White 554 arrows show select cells with nuclear or cytoplasmic U1 snRNA. The white dashed line signifies 555 the dorsal edge of the wound bed. The solid white line delineates a hair follicle. White scale bar

- 556 = 80 μm
- 557 558

559 Figure 3: Large full-thickness wounds dramatically reduce antibody-mediated neutrophil560 depletion

561 a. Schematic of neutrophil depletion via intraperitoneal injection (IP) of Ly6G antibody (1A8 562 clone, 500µg), Gr1 (Ly6G/Ly6C, RB6-8C5 clone, 200ng), or isotype control. IP injections are done 563 one day before and one day after wounding C57BL/J6 mice with 1.25cm² square wounds. Mice 564 were then sacrificed wound day 2 or 2 for FACs analysis of blood or wound bed (WB). b. 565 Antibody mediated depletion is not successful in the wound bed. Representative flow plots 566 from the wound beds (wound day 3) of mice treated as in a. The percent neutrophils (CD11b+, 567 Ly6c+) present in these samples are presented to the right. The difference between samples is 568 statistically insignificant, as calculated by the two-tailed Student's t-test. N = 2. Results are 569 representative of at least two independent experiments. c. Antibody mediated. Neutrophil 570 depletion is marginally successful in the blood, but not the wound bed, two days after 571 wounding. The percent neutrophils (CD11b+, Ly6c+), at wound day 2, present in the blood and 572 wound beds of mice treated as in **a.** (Ly6G, 1A8). **p < 0.0011, as calculated by two-way 573 ANOVA. n.s., not significant. N = 4. Results are representative of at least two independent 574 experiments. d. Neutrophil depletion from the blood is successful 1-day post injection (Ly6G, 575 1A8), in the absence of wounding, via FACs. The neutrophil depletion is statistically significant.

576 ****p < 0.0001, as calculated by two-tailed Student's t-test. N = 4 vs 6. **e.** The efficacy of 577 neutrophil depletion from the blood diminishes after 1.25X1.25cm² wounds are inflicted. The 578 percent neutrophils (Gr1+, Ly6c+) in the blood at wound day 2, via FACs. The neutrophil 579 depletion is statistically insignificant. n.s., not significant. N = 2 vs 3. Results are representative 580 of at least three independent experiments. f. Neutrophil depletion from the blood is more 581 pronounced in unwounded mice. The percent neutrophils (Gr1+, Ly6c+) present in the blood at wound day 2 of mice IP injected with Ly6G antibody (1A8, 500 µg), with or without wounding, 582 via FACs. ****p < 0.0001 vs **p=0.0038 as calculated by two-way ANOVA. N = 6 vs 7. g. 583 584 Neutrophil depletion from the skin is ineffective, regardless of wound status. The percent 585 neutrophils (Gr1+, Ly6c+) present in the wound bed or skin at wound day 2 of mice IP injected 586 with Ly6G antibody (1A8, 500ug), with or without wounding. The neutrophil depletion is insignificant in both cases, as calculated by two-way ANOVA. n.s., not significant. N = 6 vs 7. h. 587 588 C57BL/6J mice were given full thickness wounds on the center of their backs. The normal large wound (LW) is 1.25x1.25cm², while the smaller wound (SW) is 0.6x0.6cm². i. Neutrophil 589 590 depletion from the blood is successful on small, but not large wounded mice. Mice wounded 591 with small or large wounds (h.) were IP injected with Ly6G antibody (1A8, 500µg) one day 592 before and after wounding. Blood was extracted on wound day 2 and analyzed by flow 593 cytometry for percent neutrophils (Gr1+, Ly6c+). *p = 0.0362 as calculated by two-way ANOVA. 594 n.s., not significant. N = 2 vs 3 and 2 vs 2. Results are representative of at least two independent 595 experiments. j. Neutrophil depletion from the wound bed is successful on small, but not large 596 wounded mice. Mice wounded with small or large wounds (h.) were IP injected with Ly6G 597 antibody (1A8, 500µg) one day before and after wounding. Wound beds were collected on 598 wound day 2 and analyzed by flow cytometry for percent neutrophils (Gr1+, Ly6c+). Depletion 599 was significant in the small wound, but not the large wound setting. *p = 0.0458 as calculated 600 by two-way ANOVA. n.s., not significant. N = 2 vs 3 and 2 vs 2. Results are representative of at 601 least two independent experiments.

602

603

604 Figure 4: Neutrophils inhibit wound induced hair neogenesis

605 **a.** Schematic of neutrophil depletion via IP of Ly6G antibody ($100\mu g$) or isotype control. IP 606 injections are done one day before and one day after wounding C57BL/J6 mice with 607 1.25x1.25cm² square wounds. Wound induced hair neogenesis (WIHN) was measured 21 days 608 after wounding via confocal scanning laser microscopy (CSLM). b. Neutrophil targeted Ly6G 609 antibody injected mice exhibit increased WIHN (CSLM, images; fold = 3.94, p = 0.011, N = 10 vs 610 9). In each image, the dash red box indicates the area of hair follicle regeneration. c. Diphtheria 611 toxin (DT, 250ng) injection in heterozygous ROSA26iDTR/MRP8-Cre-ires mice (PMN^{DTR} and PMN^{WT}), following the injection scheme in **a.**, successfully depletes neutrophils from the blood 612 in mice with large wounds. Fold = -4.33. **p = 0.0098. N = 2 vs. 3. Results are representative of 613 614 at least two independent experiments. d. Mice treated as in c. are depleted of neutrophils in their wound beds at wound day 2. Fold = -4.27. **p = 0.0069. N = 2 vs. 3. Results are 615 616 representative of at least two independent experiments. e. PMN^{DTR} mice IP injected with 617 diphtheria toxin (DT, 250ng) on wound days -1 and 1 exhibit increased WIHN (CSLM, images; fold = 3.23, ***p = 0.0010, N = 14 vs 6). In each image, the dash red box indicates the area of 618 619 hair follicle regeneration. f. Regenerated hair follicles after the injection of 50k-200k purified

neutrophils underneath the scab at WD7-8. (CSLM, images; n.s., not significant, N = 9 vs 3 vs 6). 620 621 In each image, the dash red box indicates the area of hair follicle regeneration. g. Pad4^{-/-} mice 622 defective in extracellular traps exhibit increased WIHN (CSLM, images; fold = 2.47, p = 0.026, N 623 = 10 vs 19). In each image, the dash red box indicates the area of hair follicle regeneration. h. 624 TIr3^{-/-} mice exhibit decreased WIHN (fold = -3.75 p = 0.0218, N = 8 vs 10). i. The presence of increased neutrophils correlates with decreased WIHN in TLR3^{-/-} mice. scRNA-seg t-SNE plot 625 shows differences between WT (red, 4150 cells) and Tlr3-/- (blue, 5648 cells) wound beds at 626 627 wound day 10. The plots were generated via Seurat. The neutrophil cluster is circled in red. 628 Percent of neutrophils are graphed to the right. j. Neutrophil associated gene expression is 629 more pronounced within the neutrophils of Tlr3-/- mice, compared to WT. Generated in Seurat 630 with RidgePlot function.

- 631
- 632 Supplementary Figure Legends
- 633

634 S1: Macrophage (F4/80) levels are largely absent from the blood and low in the wound bed
635 during the early phase of healing, but increase dramatically at wound day 11, as measured by
636 FACS. ***p < 0.004, as calculated by two-way ANOVA. n.s., not significant. N = 2 vs 4. Results
637 are representative of at least two independent experiments.

638

639 **S2:** Ly6G 1A8 antibody clone (Bio-X-Cell) masks the Ly6G epitope, preventing detection by the Ly6G REA526 clone (Miltenyi, engineered 1A8 clone) and partially preventing detection by the 640 641 Gr1 RB6-8C5 clone (Bio-X-Cell) antibodies. Blood was extracted from a single C57BL/6J and 642 stained sequentially with combinations of two antibodies, to test Ly6G epitope masking, before 643 detecting by flow cytometry. If only stained with the Ly6G (REA526) or Gr1 (RB6-8C5), the 644 neutrophil population is detected normally (13.7% or 13.2%, respectively). If you first stain with 645 Ly6G (1A8 clone), followed by Ly6G (REA526) or Gr1 (RB6-8C5), you get varying degrees of Ly6G 646 antibody masking. Being a derivative of the 1A8 clone, the REA526 Ly6G binding site is almost 647 completely blocked by the prior incubation with the Ly6G 1A8 clone (1.10%), making the pair 648 unusable for neutrophil depletion experiments. Prior incubation with the Ly6G 1A8 clone 649 followed by Gr1 (recognized an epitope of Ly6G/Ly6C) shifts the neutrophil population to the 650 left, but they remain distinct from the negatively stained cells (12.7%). With careful gating, this 651 makes depletion with the Ly6G (1A8 clone) antibody and detection with the Gr1 (RB6-8C5) 652 antibody possible. The neutrophil population is boxed in red. 653

654 S3: Antibody mediated Neutrophil depletion is not efficient in the blood, spleen, liver, or wound
655 bed, two days after wounding. The percent neutrophils (CD11b+, Ly6c+), at wound day 2,
656 present in the blood, spleen, liver, and wound beds of mice IP injected with Ly6G antibody

(500μ, 1A8) one day before and one day after given 1.25x1.25cm² full thickness wounds. The
 neutrophil depletion is statistically insignificant, as calculated by two-way ANOVA. n.s., not

659 significant. N = 4 vs 4, except for the Blood and Wound bed samples, which were 7 vs. 7.

660

661 **S4:** The wound closure rate was not affected by neutrophil depletion via IP of Ly6G antibody
662 (100μg) or isotype control. IP injections were done one day before and one day after wounding

663 C57BL/J6 mice with $1.25 \times 1.25 \text{ cm}^2$ square wounds. N = 4 vs 4. Results are representative of 664 three independent experiments.

- 665
- 666
 667 **S5.** PMN^{DTR} mice IP injected with diphtheria toxin (DT, 250ng) on wound days 6, 8, and 10 exhibit increased WIHN (CSLM, images; fold = 3.28, **p = 0.0085, N = 13 vs 5).
- 668

S6: a. Schematic of neutrophil depletion via IP of Ly6G antibody (500μg) or isotype control. IP
injections are done on wound day 8 and 10, after wounding C57BL/J6 mice with 1.25x1.25cm²
square wounds. Wound induced hair neogenesis (WIHN) was measured 21 days after wounding
via confocal scanning laser microscopy (CSLM). b. Neutrophil depletion in the blood is
successful on wound day 9, one day after antibody injection (Ly6G, 1A8), via FACs. The
neutrophil depletion is statistically significant. ****p < 0.0001, as calculated by two-tailed
Student's t-test. Fold = -87.9. N = 2 vs 3. c. Late stage Ly6G antibody injected mice exhibit

- 676 normal WIHN (CSLM, images; n.s., not significant, N = 3 vs 3). In each image, the dash red box
- 677 indicates the area of hair follicle regeneration.
- 678

679 **S7: a.** Tlr3^{-/-} mice exhibit decreased WIHN (representative CSLM images, N = 8 vs. 10). In each 680 image, the dash red box indicates the area of hair follicle regeneration. **b.** Neutrophil associated

- 681 genes used to identify the neutrophil cluster in UMAP non-linear dimensional reduction, via
- 682 Seurat R package, of WT and Tlr3-/- mice.

684		
685		
686	Work	s Cited:
687		
688		
689	1.	Diegelmann, R.F. & Evans, M.C. Wound healing: an overview of acute, fibrotic and
690		delayed healing. Frontiers in bioscience : a journal and virtual library 9 , 283-289 (2004).
691	2.	O'Connell, J.B. The economic burden of heart failure. Clinical cardiology 23, III6-10
692		(2000).
693	3.	Chung, F., et al. Assessing the burden of respiratory disease in the UK. Respiratory
694		medicine 96 , 963-975 (2002).
695	4.	Godwin, J.W., Pinto, A.R. & Rosenthal, N.A. Macrophages are required for adult
696		salamander limb regeneration. Proceedings of the National Academy of Sciences of the
697		United States of America 110 , 9415-9420 (2013).
698	5.	Kyritsis, N., et al. Acute inflammation initiates the regenerative response in the adult
699		zebrafish brain. Science 338 , 1353-1356 (2012).
700	6.	Taniguchi, K., et al. A gp130-Src-YAP module links inflammation to epithelial
701		regeneration. <i>Nature</i> 519 , 57-62 (2015).
702	7.	Gay, D., et al. Fgf9 from dermal gammadelta T cells induces hair follicle neogenesis after
703		wounding. <i>Nature medicine</i> 19 , 916-923 (2013).

704	8.	Kasuya, A., Ito, T. & Tokura, Y. M2 macrophages promote wound-induced hair
705		neogenesis. <i>Journal of dermatological science</i> 91 , 250-255 (2018).
706	9.	Rahmani, W., et al. Macrophages Promote Wound-Induced Hair Follicle Regeneration in
707		a CX3CR1- and TGF-beta1-Dependent Manner. The Journal of investigative dermatology
708		138 , 2111-2122 (2018).
709	10.	Wang, X., et al. Macrophages induce AKT/beta-catenin-dependent Lgr5(+) stem cell
710		activation and hair follicle regeneration through TNF. <i>Nature communications</i> 8 , 14091
711		(2017).
712	11.	Seifert, A.W., <i>et al.</i> Skin shedding and tissue regeneration in African spiny mice
713		(Acomys). <i>Nature</i> 489 , 561-565 (2012).
714	12.	Billingham, R.E. & Russell, P.S. Incomplete wound contracture and the phenomenon of
715		hair neogenesis in rabbits' skin. <i>Nature</i> 177 , 791-792 (1956).
716	13.	Breedis, C. Regeneration of hair follicles and sebaceous glands from the epithelium of
717	10.	scars in the rabbit. <i>Cancer research</i> 14 , 575-579 (1954).
718	14.	Kligman, A.M. & Strauss, J.S. The formation of vellus hair follicles from human adult
719	1 -7.	epidermis. The Journal of investigative dermatology 27 , 19-23 (1956).
720	15.	Lacassagne, A. & Latarjet, R. Action of methylcholanthrene on certain scars of the skin in
721	10.	mice. Cancer research 6, 183-188 (1946).
722	16.	Ito, M., et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after
723	10.	wounding. <i>Nature</i> 447 , 316-320 (2007).
724	17.	Plikus, M.V., <i>et al.</i> Regeneration of fat cells from myofibroblasts during wound healing.
725	±7.	Science 355 , 748-752 (2017).
726	18.	Kim, M.H., et al. Dynamics of neutrophil infiltration during cutaneous wound healing
727	20.	and infection using fluorescence imaging. <i>The Journal of investigative dermatology</i> 128 ,
728		1812-1820 (2008).
729	19.	Guo, S. & Dipietro, L.A. Factors affecting wound healing. <i>Journal of dental research</i> 89,
730		219-229 (2010).
731	20.	Segal, A.W. How neutrophils kill microbes. Annual review of immunology 23 , 197-223
732		(2005).
733	21.	Brinkmann, V., <i>et al.</i> Neutrophil extracellular traps kill bacteria. <i>Science</i> 303 , 1532-1535
734		(2004).
735	22.	Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nature
736		reviews. Immunology 18 , 134-147 (2018).
737	23.	Acosta, J.B., et al. The pro-inflammatory environment in recalcitrant diabetic foot
738		wounds. International wound journal 5 , 530-539 (2008).
739	24.	Singer, A.J. & Clark, R.A. Cutaneous wound healing. The New England journal of
740		medicine 341 , 738-746 (1999).
741	25.	DiPietro, L.A. Wound healing: the role of the macrophage and other immune cells. Shock
742		4 , 233-240 (1995).
743	26.	Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-
744		820 (2010).
745	27.	Huebener, P. & Schwabe, R.F. Regulation of wound healing and organ fibrosis by toll-like
746		receptors. <i>Biochimica et biophysica acta</i> 1832 , 1005-1017 (2013).

747	28.	Kawai, T. & Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Annals of the
748	20.	New York Academy of Sciences 1143 , 1-20 (2008).
749	29.	Cavassani, K.A., <i>et al.</i> TLR3 is an endogenous sensor of tissue necrosis during acute
750		inflammatory events. The Journal of experimental medicine 205 , 2609-2621 (2008).
751	30.	Lin, Q., et al. Impaired wound healing with defective expression of chemokines and
752	50.	recruitment of myeloid cells in TLR3-deficient mice. <i>Journal of immunology</i> 186 , 3710-
753		3717 (2011).
754	31.	Lin, Q., et al. Toll-like receptor 3 ligand polyinosinic:polycytidylic acid promotes wound
755		healing in human and murine skin. <i>The Journal of investigative dermatology</i> 132 , 2085-
756		2092 (2012).
757	32.	Bernard, J.J., et al. Ultraviolet radiation damages self noncoding RNA and is detected by
758		TLR3. Nature medicine 18 , 1286-1290 (2012).
759	33.	Borkowski, A.W., et al. Toll-like receptor 3 activation is required for normal skin barrier
760		repair following UV damage. The Journal of investigative dermatology 135, 569-578
761		(2015).
762	34.	Nelson, A.M., et al. dsRNA Released by Tissue Damage Activates TLR3 to Drive Skin
763		Regeneration. <i>Cell stem cell</i> 17 , 139-151 (2015).
764	35.	Zhu, A.S., Li, A., Ratliff, T.S., Melsom, M. & Garza, L.A. After Skin Wounding, Noncoding
765		dsRNA Coordinates Prostaglandins and Wnts to Promote Regeneration. The Journal of
766		investigative dermatology 137 , 1562-1568 (2017).
767	36.	Lai, Y., et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation
768		after skin injury. Nature medicine 15, 1377-1382 (2009).
769	37.	Kim, D., et al. Noncoding dsRNA induces retinoic acid synthesis to stimulate hair follicle
770		regeneration via TLR3. Nature communications 10, 2811 (2019).
771	38.	Liu, Y., et al. Tumor Exosomal RNAs Promote Lung Pre-metastatic Niche Formation by
772		Activating Alveolar Epithelial TLR3 to Recruit Neutrophils. Cancer cell 30, 243-256
773		(2016).
774	39.	Zhang, L.J., et al. Antimicrobial Peptide LL37 and MAVS Signaling Drive Interferon-beta
775		Production by Epidermal Keratinocytes during Skin Injury. <i>Immunity</i> 45 , 119-130 (2016).
776	40.	Chow, O.A., et al. Statins enhance formation of phagocyte extracellular traps. Cell host &
777		microbe 8 , 445-454 (2010).
778	41.	Mohanan, S., Horibata, S., McElwee, J.L., Dannenberg, A.J. & Coonrod, S.A. Identification
779		of macrophage extracellular trap-like structures in mammary gland adipose tissue: a
780		preliminary study. Frontiers in immunology 4 , 67 (2013).
781	42.	Boe, D.M., Curtis, B.J., Chen, M.M., Ippolito, J.A. & Kovacs, E.J. Extracellular traps and
782		macrophages: new roles for the versatile phagocyte. Journal of leukocyte biology 97,
783		1023-1035 (2015).
784	43.	Rossaint, J., et al. Synchronized integrin engagement and chemokine activation is crucial
785		in neutrophil extracellular trap-mediated sterile inflammation. <i>Blood</i> 123 , 2573-2584
786		(2014).
787	44.	Maugeri, N., <i>et al.</i> Activated platelets present high mobility group box 1 to neutrophils,
788		inducing autophagy and promoting the extrusion of neutrophil extracellular traps.
789		Journal of thrombosis and haemostasis : JTH 12 , 2074-2088 (2014).

790	45.	Keshari, R.S., et al. Cytokines induced neutrophil extracellular traps formation:
791		implication for the inflammatory disease condition. <i>PloS one</i> 7, e48111 (2012).
792	46.	Gupta, A.K., Giaglis, S., Hasler, P. & Hahn, S. Efficient neutrophil extracellular trap
793		induction requires mobilization of both intracellular and extracellular calcium pools and
794		is modulated by cyclosporine A. <i>PloS one</i> 9 , e97088 (2014).
795	47.	Wong, K.W. & Jacobs, W.R., Jr. Mycobacterium tuberculosis exploits human interferon
796		gamma to stimulate macrophage extracellular trap formation and necrosis. The Journal
797		of infectious diseases 208 , 109-119 (2013).
798	48.	Wong, S.L., et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound
799		healing. <i>Nature medicine</i> 21 , 815-819 (2015).
800	49.	Delgado-Rizo, V., et al. Neutrophil Extracellular Traps and Its Implications in
801	-	Inflammation: An Overview. <i>Frontiers in immunology</i> 8 , 81 (2017).
802	50.	Wang, Y., <i>et al.</i> Histone hypercitrullination mediates chromatin decondensation and
803	50.	neutrophil extracellular trap formation. <i>The Journal of cell biology</i> 184 , 205-213 (2009).
804	51.	Wang, Y., <i>et al.</i> Human PAD4 regulates histone arginine methylation levels via
805	51.	demethylimination. <i>Science</i> 306 , 279-283 (2004).
806	52.	Daley, J.M., Thomay, A.A., Connolly, M.D., Reichner, J.S. & Albina, J.E. Use of Ly6G-
807	52.	specific monoclonal antibody to deplete neutrophils in mice. <i>Journal of leukocyte</i>
808		<i>biology</i> 83 , 64-70 (2008).
809	53.	Ribechini, E., Leenen, P.J. & Lutz, M.B. Gr-1 antibody induces STAT signaling,
810	55.	macrophage marker expression and abrogation of myeloid-derived suppressor cell
810		activity in BM cells. <i>European journal of immunology</i> 39 , 3538-3551 (2009).
812	54.	Carr, K.D., <i>et al.</i> Specific depletion reveals a novel role for neutrophil-mediated
813	54.	protection in the liver during Listeria monocytogenes infection. <i>European journal of</i>
815 814		
	FF	immunology 41 , 2666-2676 (2011).
815 816	55.	Dovi, J.V., He, L.K. & DiPietro, L.A. Accelerated wound closure in neutrophil-depleted
816	БС	mice. <i>Journal of leukocyte biology</i> 73 , 448-455 (2003).
817	56.	Fan, C., et al. Characterization and quantification of wound-induced hair follicle
818		neogenesis using in vivo confocal scanning laser microscopy. Skin research and
819		technology : official journal of International Society for Bioengineering and the Skin 17 ,
820	F7	387-397 (2011).
821	57.	Reber, L.L., <i>et al.</i> Neutrophil myeloperoxidase diminishes the toxic effects and mortality
822		induced by lipopolysaccharide. <i>The Journal of experimental medicine</i> 214 , 1249-1258
823		(2017).
824	58.	Passegue, E., Wagner, E.F. & Weissman, I.L. JunB deficiency leads to a myeloproliferative
825		disorder arising from hematopoietic stem cells. <i>Cell</i> 119 , 431-443 (2004).
826	59.	Elliott, E.R., et al. Deletion of Syk in neutrophils prevents immune complex arthritis.
827		Journal of immunology 187 , 4319-4330 (2011).
828	60.	Abram, C.L., Roberge, G.L., Pao, L.I., Neel, B.G. & Lowell, C.A. Distinct roles for
829		neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice.
830		Immunity 38 , 489-501 (2013).
831	61.	Buch, T., et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation
832		after toxin administration. Nature methods 2, 419-426 (2005).

833	62.	Kessenbrock, K., et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nature
834		medicine 15 , 623-625 (2009).
835	63.	Hakkim, A., et al. Impairment of neutrophil extracellular trap degradation is associated
836		with lupus nephritis. Proceedings of the National Academy of Sciences of the United
837		States of America 107 , 9813-9818 (2010).
838	64.	Lande, R., et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-
839		peptide complexes in systemic lupus erythematosus. Science translational medicine 3,
840		73ra19 (2011).
841	65.	Garcia-Romo, G.S., et al. Netting neutrophils are major inducers of type I IFN production
842		in pediatric systemic lupus erythematosus. Science translational medicine 3 , 73ra20
843		(2011).
844	66.	Villanueva, E., et al. Netting neutrophils induce endothelial damage, infiltrate tissues,
845		and expose immunostimulatory molecules in systemic lupus erythematosus. Journal of
846		immunology 187 , 538-552 (2011).
847	67.	Leffler, J., et al. Neutrophil extracellular traps that are not degraded in systemic lupus
848		erythematosus activate complement exacerbating the disease. Journal of immunology
849		188 , 3522-3531 (2012).
850	68.	Khandpur, R., et al. NETs are a source of citrullinated autoantigens and stimulate
851		inflammatory responses in rheumatoid arthritis. <i>Science translational medicine</i> 5 ,
852		178ra140 (2013).
853	69.	Hu, S.C., <i>et al.</i> Neutrophil extracellular trap formation is increased in psoriasis and
854		induces human beta-defensin-2 production in epidermal keratinocytes. Scientific reports
855		6 , 31119 (2016).
856	70.	Gan, T., et al. TLR3 Regulated Poly I:C-Induced Neutrophil Extracellular Traps and Acute
857	, 0.	Lung Injury Partly Through p38 MAP Kinase. <i>Frontiers in microbiology</i> 9 , 3174 (2018).
858	71.	Liu, Q., <i>et al.</i> Toll-Like Receptor 3 Signaling Contributes to Regional Neutrophil
859	, 1.	Recruitment in Cultured Human Glomerular Endothelial Cells. <i>Nephron</i> 139 , 349-358
860		(2018).
861	72.	Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of
862	72.	single-cell gene expression data. <i>Nature biotechnology</i> 33 , 495-502 (2015).
863	73.	Jiang, T.X., Harn, H.I., Ou, K.L., Lei, M. & Chuong, C.M. Comparative regenerative biology
864	75.	of spiny (Acomys cahirinus) and laboratory (Mus musculus) mouse skin. <i>Exp Dermatol</i>
865		28 , 442-449 (2019).
	74.	
866 867	74.	Brant, J.O., Yoon, J.H., Polvadore, T., Barbazuk, W.B. & Maden, M. Cellular events during
867 868		scar-free skin regeneration in the spiny mouse, Acomys. <i>Wound Repair Regen</i> 24 , 75-88
868	75	(2016).
869	75.	Trujillo, G., et al. Neutrophil recruitment to the lung in both C5a- and CXCL1-induced
870		alveolitis is impaired in vitamin D-binding protein-deficient mice. <i>Journal of immunology</i>
871	70	191 , 848-856 (2013).
872	76.	Metzemaekers, M., Gouwy, M. & Proost, P. Neutrophil chemoattractant receptors in
873		health and disease: double-edged swords. <i>Cell Mol Immunol</i> 17 , 433-450 (2020).
874	77.	Lim, C.H., et al. Hedgehog stimulates hair follicle neogenesis by creating inductive
875		dermis during murine skin wound healing. <i>Nature communications</i> 9 , 4903 (2018).

- 876 78. Kim, S., et al. Simple cell culture media expansion of primary mouse keratinocytes.
- 877 Journal of dermatological science **93**, 135-138 (2019).

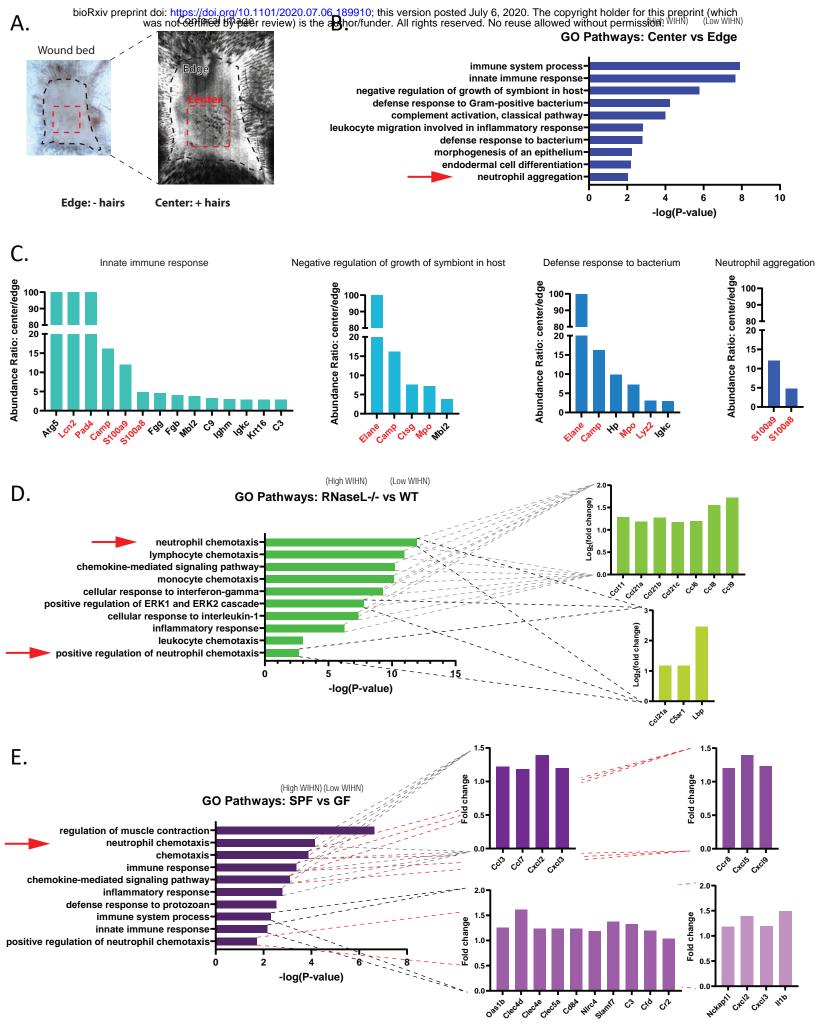
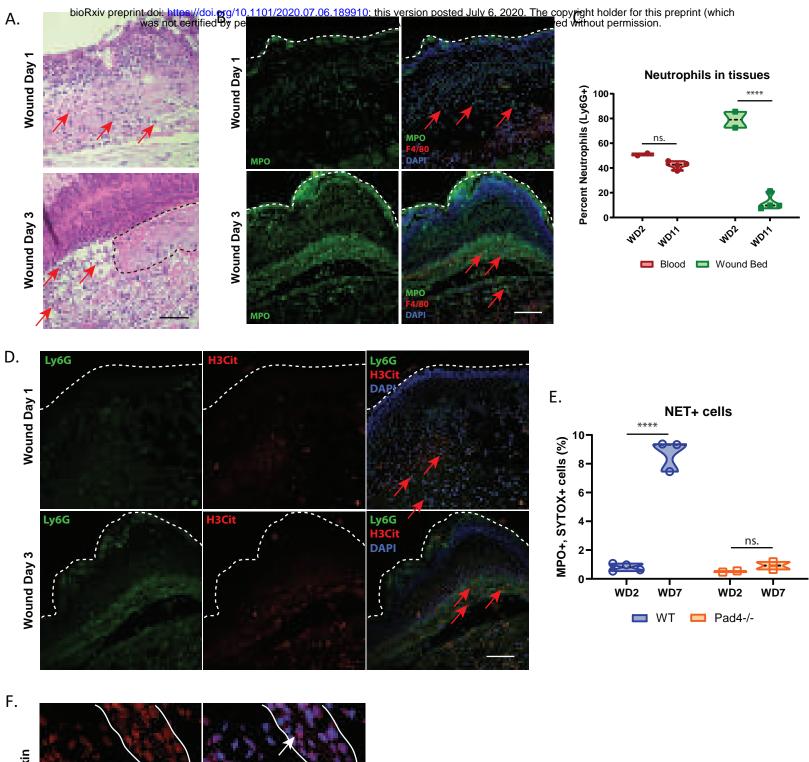



Figure 1: Neutrophil signature correlates with high skin regeneration in multiple models

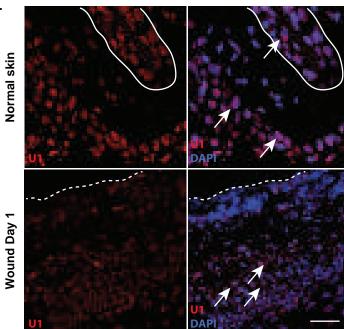


Figure 2: Neutrophils persist in wound bed after the acute inflammatory phase, producing extracellular traps

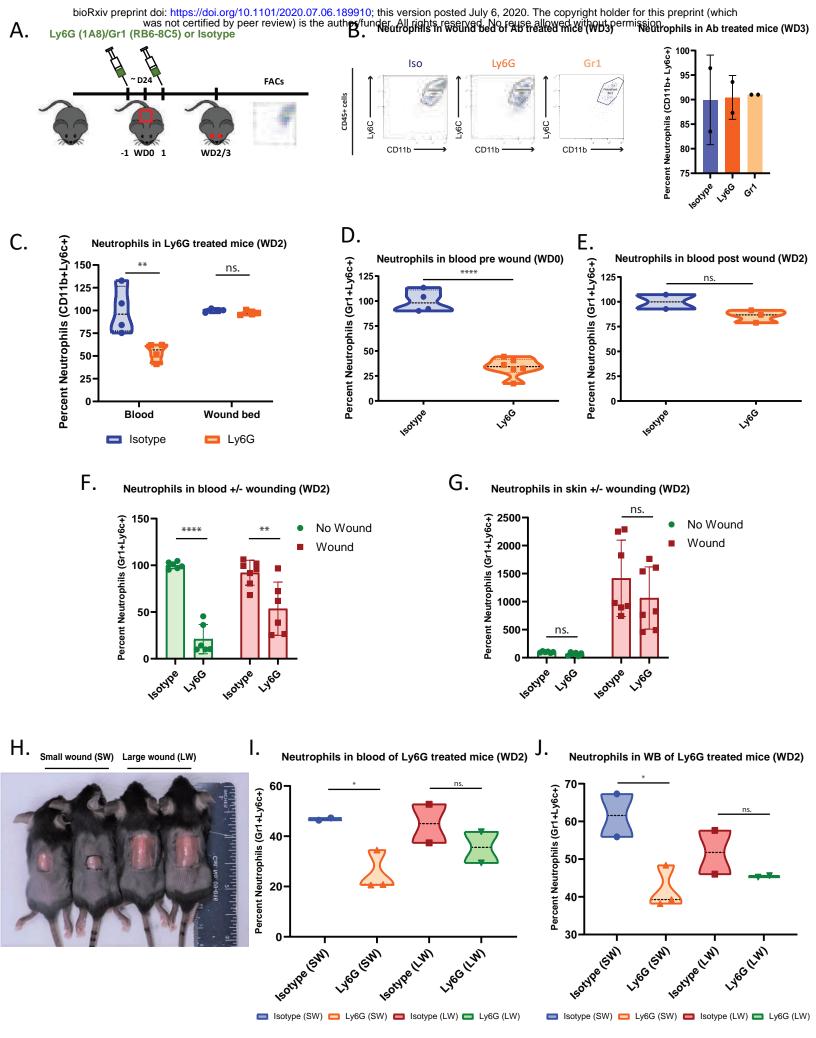
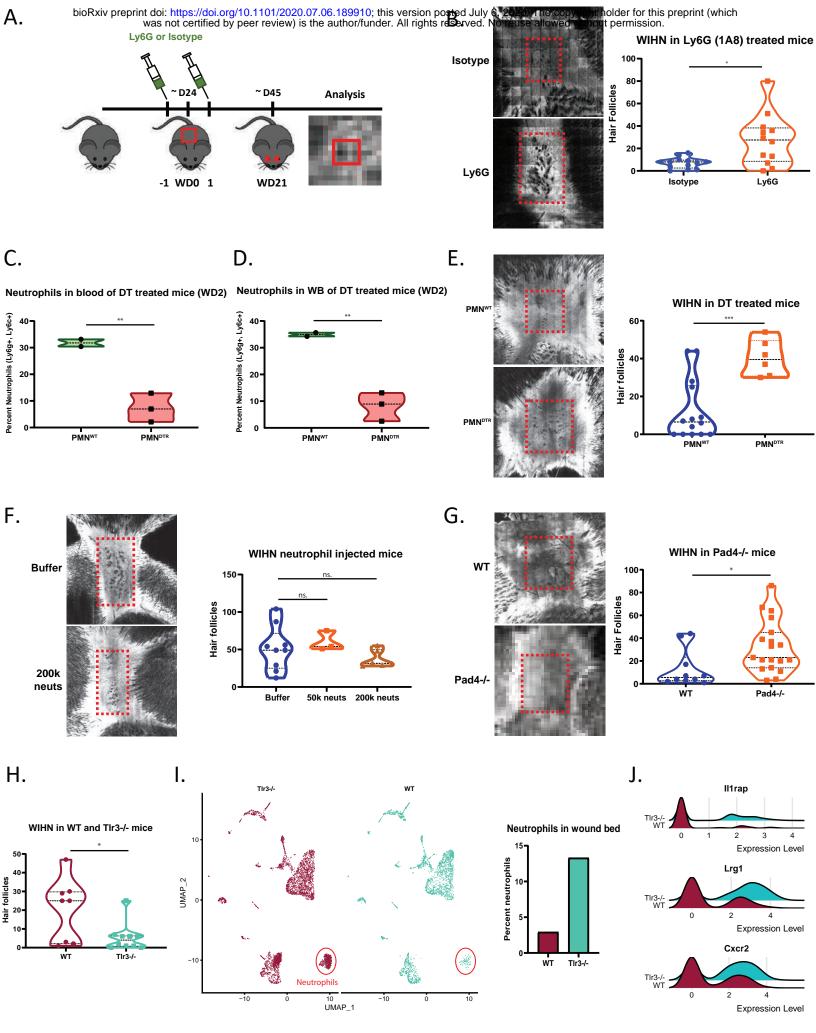
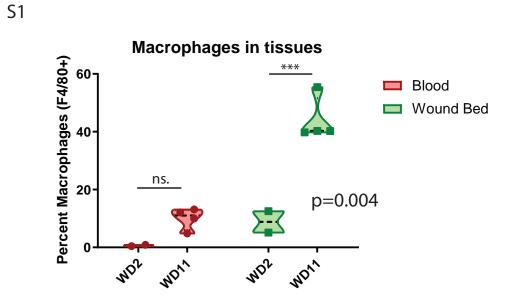
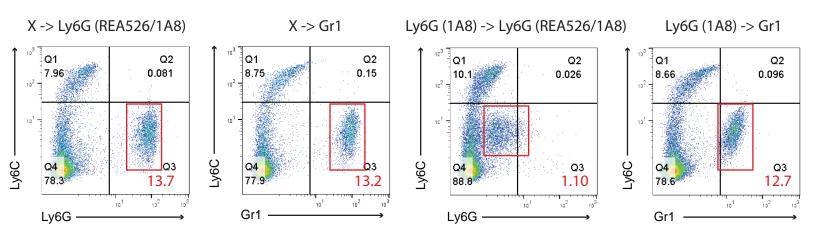
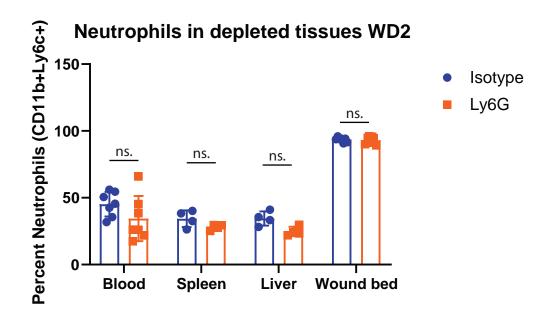


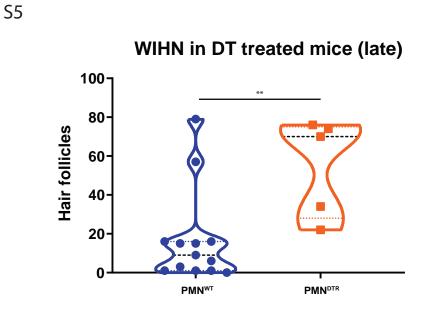
Figure 3: Large full-thickness wounds dramatically reduce antibody-mediated neutrophil depletion


Figure 4: Neutrophils inhibit wound induced hair neogenesis

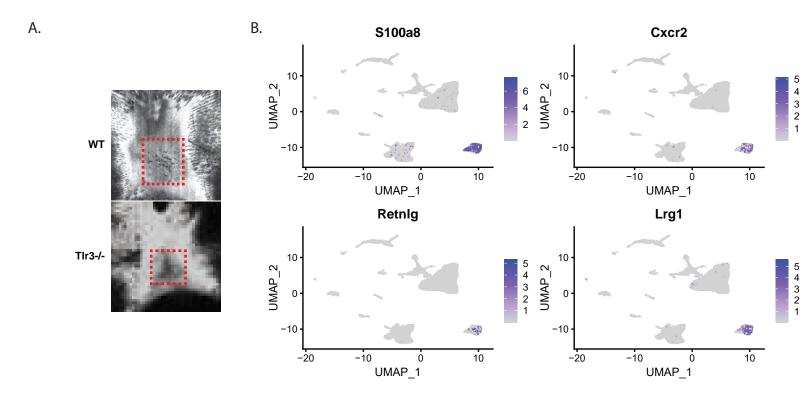
S1: Macrophage (F4/80) levels are largely absent from the blood and low in the wound bed during the early phase of healing, but increase dramatically at wound day 11, as measured by FACS. ***p < 0.004, as calculated by two-way ANOVA. n.s., not significant. N = 2 vs 4. Results are representative of at least two independent experiments.

S2: Ly6G 1A8 antibody clone (Bio-X-Cell) masks the Ly6G epitope, preventing detection by the Ly6G REA526 clone (Miltenyi, engineered 1A8 clone) and partially preventing detection by the Gr1 RB6-8C5 clone (Bio-X-Cell) antibodies. Blood was extracted from a single C57BL/6J and stained sequentially with combinations of two antibodies, to test Ly6G epitope masking, before detecting by flow cytometry. If only stained with the Ly6G (REA526) or Gr1 (RB6-8C5), the neutrophil population is detected normally (13.7% or 13.2% respectively). If you first stain with Ly6G (1A8 clone), followed by Ly6G (REA526) or Gr1 (RB6-8C5), you get varying degrees of Ly6G antibody masking. Being a derivative of the 1A8 clone, the REA526 Ly6G binding site is almost completely blocked by the prior incubation with the Ly6G 1A8 clone (1.10%), making the pair unusable for neutrophil depletion experiments. Prior incubation with the Ly6G 1A8 clone followed by Gr1 (recognized an epitope of Ly6G/Ly6C) shifts the neutrophil population to the left, but they remain distinct from the negatively stained cells (12.7%). With careful gating, this makes depletion with the Ly6G (1A8 clone) antibody and detection with the Gr1 (RB6-8C5) antibody possible. The neutrophil population is boxed out in red.



S3: Antibody mediated Neutrophil depletion is not efficient in the blood, spleen, liver, or wound bed, two days after wounding. The percent neutrophils (CD11b+, Ly6c+), at wound day 2, present in the blood, spleen, liver, and wound beds of mice IP injected with Ly6G antibody (500 μ , 1A8) one day before and one day after given 1.25x1.25cm2 full thickness wounds. The neutrophil depletion is statistically insignificant, as calculated by two-way ANOVA. n.s., not significant. N = 4 vs 4, except for the Blood a nd Wound bed samples, which were 7 vs 7. S3: Antibody mediated Neutrophil depletion is not efficient in the blood, spleen, liver, or wound bed, two days after wounding. The percent neutrophils (CD11b+, Ly6c+), at wound day 2, present in the blood, spleen, liver, and wound beds of mice IP injected with Ly6G antibody (500 μ , 1A8) one day before and one day after given 1.25x1.25cm2 full thickness wounds. The neutrophil depletion is statistically insignificant, as calculated by two-way ANOVA. n.s., not significant and wound beds of mice IP injected with Ly6G antibody (500 μ , 1A8) one day before and one day after given 1.25x1.25cm2 full thickness wounds. The neutrophil depletion is statistically insignificant, as calculated by two-way ANOVA. n.s., not significant. N = 4 vs 4, except for the Blood and Wound bed samples, which were 7 vs 7.


S4: The wound closure rate was not affected by neutrophil depletion via IP of Ly6G antibody (100 μ g) or isotype control. IP injections were done one day before and one day after wounding C57BL/J6 mice with 1.25x1.25cm2 square wounds. N = 4 vs 4. Results are representative of three independent experiments.



S5. PMN^{DTR} mice IP injected with diphtheria toxin (DT, 250ng) on wound days 6, 8, and 10 exhibit increased WIHN (CSLM, images; fold = 3.28, **p = 0.0085, N = 13 vs 5).

S6: a. Schematic of neutrophil depletion via IP of Ly6G antibody (500µg) or isotype control. IP injections are done on wound day 8 and 10, after wounding C57BL/J6 mice with 1.25x1.25cm2 square wounds. Wound induced hair neogenesis (WIHN) was measured 21 days after wounding via confocal scanning laser microscopy (CSLM). b. Neutrophil depletion in the blood is successful on wound day 9, one day after antibody injection (Ly6G, 1A8), via FACs. The neutrophil depletion is statistically significant. ****p < 0.0001, as calculated by two-tailed Student's t test. Fold = -87.9. N = 2 vs 3. c. Late stage Ly6G antibody injected mice exhibit normal WIHN (CSLM, images; n.s., not significant, N = 3 vs 3). In each image, the dash red box indicates the area of hair follicle regeneration.

S7: a. Tlr3-/- mice exhibit decreased WIHN (representative CSLM images, N = 8 vs 10). In each image, the dash red box indicates the area of hair follicle regeneration. b. Neutrophil associated genes used to identify the neutrophil cluster in UMAP non-linear dimensional reduction, via Seurat R package, of WT and Tlr3-/- mice.