
 

 

 

Decoding ribosomal RNA modification dynamics 
 at single molecule resolution  

 
 
 

Oguzhan Begik1,2,3,#, Morghan C Lucas1,4,#, Jose Miguel Ramirez1, Ivan 

Milenkovic1,4, Sonia Cruciani1,4, Helaine Graziele Santos Vieira1, Rebeca Medina1, 

Huanle Liu1, Aldema Sas-Chen5, John S Mattick3, Schraga Schwartz5 and Eva Maria 

Novoa1,2,3,4,6* 

 

 

 
1Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. 

Aiguader 88, Barcelona 08003, Spain 
2Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia 

3UNSW Sydney, Darlinghurst, NSW, 2052, Australia 
4Universitat Pompeu Fabra (UPF), Barcelona, Spain 

5 Weizmann Institute of Science, Rehovot, IL   
6 Lead Contact   

# These authors contributed equally 

 

 

 

 

* Correspondence to: Eva Maria Novoa (eva.novoa@crg.eu)  

 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189969


 

SUMMARY 
 
A broad diversity of modifications decorate RNA molecules. Originally conceived as static 

components, evidence is accumulating that some RNA modifications may be dynamic, contributing to 

cellular responses to external signals and environmental circumstances. A major difficulty in studying 

these modifications, however, is the need of tailored protocols to map each modification individually. 

Here, we present a new approach that uses direct RNA nanopore sequencing to identify diverse RNA 

modification types present in native RNA molecules, using rRNA as the exemplar, and show that each 

RNA modification type results in distinct and characteristic base-calling ‘error’ signatures. We 

demonstrate the value of these signatures for de novo prediction of pseudouridine (Y) modifications 

transcriptome-wide, confirming known Y modifications in rRNAs, snRNAs and mRNAs, and 

uncovering a novel Pus4-dependent Y modification in yeast mitochondrial rRNA. Using a machine 

learning classifier, we show that the stoichiometry of modified sites can be quantified by identifying 

current intensity alterations in individual RNA reads. Finally, we explore the dynamics of 

pseudouridylation across a battery of environmental stresses, revealing novel heat-sensitive Y-

modified sites in both snRNAs and snoRNAs. Altogether, our work demonstrates that Y RNA 

modifications can be predicted de novo and in a quantitative manner using native RNA nanopore 

sequencing.  
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INTRODUCTION 
 
RNA modifications are chemical moieties that decorate RNA molecules, expanding their lexicon. By 

coupling antibody immunoprecipitation or chemical probing with next-generation sequencing (NGS), 

transcriptome-wide maps of several RNA modifications have been constructed, including N6-

methyladenosine (m6A) (Dominissini et al., 2012; Meyer et al., 2012), pseudouridine (Y) (Carlile et al., 

2014; Li et al., 2015; Lovejoy et al., 2014; Schwartz et al., 2014), 5-methylcytosine (m5C) (Huang et 

al., 2019; Hussain et al., 2013), 5-hydroxymethylcytosine (hm5C) (Delatte et al., 2016), 1-

methyladenosine (m1A) (Li et al., 2017; Safra et al., 2017), N3-methylcytosine (m3C) (Marchand et al., 

2018), N4-acetylcytosine (ac4C) (Arango et al., 2018; Sas-Chen et al., 2020) and 7-methylguanosine 

(m7G) (Pandolfini et al., 2019; Zhang et al., 2019). These studies have revealed that RNA 

modifications play a pivotal role in a large variety of cellular processes, including regulation of cellular 

fate (Delaunay and Frye, 2019), sex determination (Haussmann et al., 2016) and cellular 

differentiation (Vu et al., 2017), among others. 

Despite these advances, a fundamental challenge in the field is the lack of a generic approach for 

mapping diverse RNA modification types simultaneously (Anreiter et al., 2020; Li et al., 2016; Motorin 

and Helm, 2019; Novoa et al., 2017). Currently, customized protocols must be individually set up and 

optimized for each RNA modification type, leading to experimental designs in which the RNA 

modification type to be studied is chosen beforehand, hindering the ability to characterize the plasticity 

of the epitranscriptome in a systematic and unbiased manner in response to different conditions. 

Moreover, even in those cases where a selective antibody or chemical is available, NGS-based 

methods are often not quantitative (i.e. cannot solve the ‘stoichiometry’ problem), are unable to 

produce maps for highly repetitive regions, cannot provide information regarding the co-occurrence of 

distant modifications in same transcripts, do not provide isoform-specific information, and require 

multiple ligations steps and extensive PCR amplification during the library preparation, introducing 

undesired biases in the sequencing data (Lahens et al., 2014).  

A promising alternative to NGS-based technologies that can, in principle, overcome these limitations 

is the direct RNA sequencing platform developed by Oxford Nanopore Technologies (ONT), which 

has the potential to detect virtually any given RNA modification in native RNA molecules (Garalde et 

al., 2018; Jonkhout et al., 2017; Novoa et al., 2017). Algorithms to detect RNA modifications have 

been made available in the last few months (Leger et al., 2019; Liu et al., 2019; Parker et al., 2020), 

many of which rely on the use of systematic base-calling ‘errors’ caused by the presence of RNA 

modifications. However, to date the vast majority of efforts have been devoted to the detection of m6A 

modifications (Liu et al., 2019; Parker et al., 2020; Pratanwanich et al., 2020; Price et al., 2019). Thus, 

it is largely unknown whether other modifications of RNA bases may be distinguishable from their 

unmodified counterparts using this technology. 

 

In contrast to mRNAs, ribosomal RNA (rRNA) molecules are extensively modified, stabilizing the 

secondary and tertiary structure of the rRNA scaffold (Polikanov et al., 2015). It has been proposed 
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that differential rRNA modifications may constitute a source of ribosomal heterogeneity (Bellodi et al., 

2010; Jack et al., 2011; Yoon et al., 2006), leading to fine tuning of the ribosomal function and 

ultimately proteome output. Previous studies have shown that temperature changes affect rRNA 

pseudouridylation levels at specific sites, suggesting that cells may be able to generate 

compositionally distinct ribosomes in response to environmental cues (Schwartz et al., 2014; Taoka et 

al., 2015; Wu et al., 2011). Similarly, alterations in the stoichiometry of 2’-O-methylation (Am, Cm, 

Gm, Um) (Basu et al., 2011; Belin et al., 2009; Marcel et al., 2013) and pseudouridylation (Y) (Bellodi 

et al., 2010; Jack et al., 2011; Yoon et al., 2006) can affect translation initiation of mRNAs containing 

internal ribosome entry sites (IRES) (Buchhaupt et al., 2014; Chen et al., 2020). While these studies 

have provided valuable insights into the function and dynamics of rRNA modifications, a systematic, 

multiplexed and unbiased approach that can map and quantify all rRNA modifications simultaneously 

in full-length molecules is currently lacking.  

 

Here, we map the S. cerevisiae ribosomal epitranscriptome at single molecule resolution using native 

RNA nanopore sequencing. We find that most RNA modifications are characterized by systematic 

base-calling errors, and that the signature of these base-calling ‘errors’ can be used to identify the 

underlying RNA modification type. For example, pseudouridine typically appears in the form of U-to-C 

mismatches, whereas m5C modifications appear in the form of insertions. We then exploit the 

identified signatures to de novo predict RNA modifications in rRNAs, finding a previously undescribed 

Y854 site in mitochondrial rRNA, which we confirmed using CMC-probing coupled to nanopore 

sequencing (nanoCMC-seq). We demonstrate that the modification at this novel site is placed by the 

enzyme Pus4, which was previously thought to pseudouridylate only mRNAs and tRNAs (Schwartz et 

al., 2014). Moreover, we show that once the Y RNA modifications have been accurately predicted 

using base-calling ‘errors’, the stoichiometry of a given Y-modified site can be estimated by clustering 

per-read current intensities of the modified region.  

 

Finally, we characterize the epitranscriptome dynamics in rRNAs, snRNAs and snoRNAs upon a 

battery of environmental cues, translational repertoires and genetic strains. Contrary to expectations, 

we find that none of the environmental stresses tested lead to significant changes in the ribosomal 

epitranscriptome. By contrast, our method does recapitulate previously reported heat-dependent Y 

snRNA modifications, as well as identifies novel heat-sensitive sites. Altogether, our work establishes 

a framework for the study of RNA modifications using direct RNA sequencing, opening novel avenues 

to study the plasticity of the epitranscriptome at single molecule resolution. 
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RESULTS  
 

Detection of RNA modifications in direct RNA sequencing data is strongly dependent on base-
calling and mapping algorithms  
Previous work has shown that N6-methyladenosine (m6A) RNA modifications can be detected in the 

form of non-random base-calling ‘errors’ in direct RNA sequencing datasets (Liu et al., 2019; Parker et 

al., 2020; Price et al., 2019). However, it is unclear how these ‘errors’ vary with the choice of base-

calling and mapping algorithms, and consequently, affect the ability to detect and identify RNA 

modifications. To systematically determine the accuracy of commonly used algorithms for direct RNA 

base-calling, as well as to assess their ability to detect RNA modifications in the form of base-calling 

‘errors’ (Liu et al., 2019), we compared their performance on in vitro transcribed RNA sequences 

which contained all possible combinations of 5-mers, referred to as ‘curlcakes’ (CCs) (Liu et al., 

2019), that included: (i) unmodified nucleosides (UNM), (ii) N6-methyladenosine (m6A), (iii) 

pseudouridine (Y), (iv) N5-methylcytosine (m5C), and (v) N5-hydroxymethylcytosine (hm5C) (Figure 
1A). In addition, a sixth dataset containing unmodified short RNAs (UNM-S), with median length of 

200 nucleotides, was included in the analysis to assess the effect of input sequence length in base-

calling (see Methods). Each dataset was base-called with two distinct algorithms (Albacore and 

Guppy), and using two different versions for each of them, namely: (i) Albacore version 2.1.7 (AL 

2.1.7); (ii) its latest version, Albacore 2.3.4 (AL 2.3.4); (iii) Guppy 2.3.1 (GU 2.3.1); and (iv) a more 

recent version of the latter base-caller, Guppy 3.0.3 (GU 3.0.3), which employs a flip-flop algorithm. 

We found that the latest version of Albacore (2.3.4) base-called 100% of sequenced reads in all 6 

datasets, whereas its previous version did not (average of 90.8%) (Figure 1B). In contrast, both 

versions of Guppy (2.3.1 and 3.0.3) produced similar results in terms of percentage of base-called 

reads (98.71% and 98.75%, respectively) (Table S1).  

 

We then assessed whether the choice of mapper might affect the ability to detect RNA modifications. 

To this end, we employed two commonly used long-read mappers, minimap2 (Li, 2018) and 

GraphMap (Sović et al., 2016), using either ‘default’ or ‘sensitive’ parameter settings (see Methods for 

detailed parameter settings used). Strikingly, we found that the choice of mapper, as well as the 

parameters used, severely affected the final number of mapped reads for each dataset (Figure 1C, 
see also Table S1). The most extreme case was observed with the Y-modified dataset, where 

minimap2 was unable to map the majority of the reads (0-0.3% mapped reads) (Figure 1C,D, see 

also Figure S1). By contrast, GraphMap ‘sensitive’ was able to map 35.5% of Y-modified base-called 

reads, proving to be a more appropriate choice for highly modified datasets. To ascertain whether an 

increase in the number of base-called and mapped reads was at the expense of decreased accuracy, 

we assessed the sequence identity percentage (as a read-out of accuracy), finding that GraphMap 

outperforms minimap2 with only a minor loss in accuracy (3%) (Figure 1E, see also Table S2).   
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Base-calling ‘error’ signatures can be used to predict RNA modification type, but these may 
vary with the sequence context  
Base-calling ‘errors’ can be used to identify m6A RNA modified sites (Liu et al., 2019; Parker et al., 

2020; Wongsurawat et al., 2018). However, whether this approach is applicable for the detection of 

other RNA modifications is largely unknown. To this end, we systematically characterized the base-

calling errors caused by the presence of m6A, Y, m5C and hm5C. We found that, regardless of the 

base-caller and mapper settings used, modified RNA sequences presented higher mismatch 

frequencies (Figure 2A) and decreased quality scores (Figure S2A,B). In addition, these differences 

were more prominent in Y-modified datasets. Principal component analysis of base-calling ‘errors’ of 

each modified dataset (m6A,Y, m5C and hm5C) -relative to unmodified- showed that this difference 

was greatest in Y-modified datasets (Figure 2B), and maximized in datasets that were base-called 

with GU 3.0.3. Thus, we find that all four RNA modifications can be detected in direct RNA 

sequencing data; however, their detection is severely affected by the choice of both base-calling and 

mapping algorithms, and varies depending on the RNA modification type. 

 

We then examined whether the base-called ‘errors’ observed in modified and unmodified datasets 

occured in the modified position. We found that both m6A and Y modifications led to increased 

mismatch frequencies at the modified site (Figure 2C), mainly in the form of U-to-C mismatches in the 

case of Y modifications (Figure S2C). By contrast, m5C and hm5C modifications did not appear in the 

form of increased mismatch frequencies at the modified site; rather, these modifications appeared in 

the form of increased mismatch frequencies in the neighboring residues (position -1 and +1 in the 

case of m5C modifications; position +1 in hm5C) (Figure 2C) Moreover, the observed base-called 

‘error’ signatures of m5C and hm5C were also dependent on the sequence context (Figure S2D). 

Altogether, we find that all four RNA modifications studied (m6A, m5C, hm5C and Y) lead to altered 

base-called features, and that their ‘error’ patterns vary depending both on the RNA modification type 

as well as on the sequence context. 

 

Y modifications can be detected in vivo, in the form of U-to-C mismatches and with single 
nucleotide resolution 
We then examined whether the results obtained using in vitro transcribed constructs would be 

applicable to in vivo RNA sequences. To this end, total RNA from S. cerevisiae was poly(A)-tailed to 

allow for ligation between the RNA molecules and the commercial ONT adapters, and then prepared 

for direct RNA sequencing. The reverse transcription step was performed using Maxima reverse 

transcriptase instead of SuperScript III, which can be used at higher temperatures, thus ensuring 

proper linearization of the RNA molecules (see Methods). Visual inspection of the mapped reads 

revealed that our approach captured a high proportion of full length rRNA molecules, with a high 

proportion of base-calling errors present in 25s and 18s rRNAs, as could be expected from sequences 

that are highly enriched in RNA modifications (Figure 3A). By contrast, 5s and 5.8s rRNAs did not 

show such base-calling errors, in agreement with their low level of modification.  
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Then, we systematically analyzed base-called features (mismatch, deletion, insertion and per-base 

qualities) in rRNAs, comparing the features from rRNA modified sites relative to unmodified ones 

(Figure 3B). We found that all rRNA modification types consistently led to decreased per-base 

qualities at modified sites, suggesting that per-base qualities can be employed to identify RNA 

modifications, but not the underlying RNA modification type. Moreover, we found that Y modifications 

caused significant variations in mismatch frequencies, in agreement with our observations using in 

vitro constructs. By contrast, other RNA modifications, such as 2’-O-methylcytidine (Cm) or 5-

methylcytosine (m5C) did not appear in the form of increased mismatch frequencies at modified sites, 

but rather, in the form of increased insertions. In addition, Y modifications typically appeared in the 

form of U-to-C mismatches (Figure 3C, see also Figure S3), in agreement with our in vitro 

observations, whereas other RNA modifications such as 2’-O-methyladenosine (Am) did not cause 

mismatches with unique directionality. Thus, we conclude that distinct rRNA modification types can be 

detected in the form altered base-called features in vivo, and that their base-calling ‘error’ signature is 

dependent on the RNA modification type.  

 
To confirm that the detected signal (U-to-C mismatches) in Y positions is caused by the presence of 

the Y modification, we compared ribosomal RNA modification profiles from wild type S. cerevisiae to 

those from snoRNA-knockout strains (snR3, snR34 and snR36), which lack Y modifications at known 

rRNA positions (Figure 4A, see also Table S3). Our results show that changes in rRNA modification 

profiles were consistently and exclusively observed in those positions reported as targets of each 

snoRNA. Moreover, the remaining Y-modified positions were not significantly altered by the lack of Y 

modifications guided by snR3, snR34 or snR36 (Figure 4B), suggesting that the modification status of 

Y sites is largely independent from other Y sites, at least in the cases examined.  

 

2’-O-methylations can be detected in vivo in the form of systematic base-calling ‘errors’, but 
their signatures varies across sites 

We then sequenced 3 additional S. cerevisiae strains depleted from snoRNAs (snR60, snR61 and 

snR62 knockouts) guiding 2’-O-methylation (Nm) at specific positions. In contrast to Y modifications, 

we found that 2’-O-methylations often caused increased mismatch and deletion signatures at 

neighboring positions (Figure 4C, see also Figure S4A), in a similar fashion to what we had 

previously observed with m5C and hm5C modifications (Figure 2C). These errors disappeared in the 

knockout strain, suggesting that neighboring base-calling errors were indeed caused by the 2’-O-

methylation (Figure 4C, see also Table S3). In contrast to Y modifications, which mainly affected 

mismatch frequency, we observed that Nm modifications often affected several base-called ‘error’ 

features (mismatch, insertion and deletion frequency) (Figure S4B). Thus, we reasoned that 

combining all three features might improve the signal-to-noise ratio for the detection of 2’-O-

methylated sites (Figure 4D), and found that the combination of features led to improved detection of 

Nm-modified sites, relative to each individual feature. We should note that position 25s:Gm908 was 

poorly detected both wild type and snoRNA-depleted strains (Figure S4A,B) regardless of the feature 
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combination used, likely due to the sequence context in which the site is embedded -an 

homopolymeric GGGG sequence-, which is often troublesome for nanopore base-calling algorithms.  

 
Current intensity variations can be used to detect Y and Nm RNA modifications, but do not 
allow accurate prediction of modified site  
We then wondered whether Y and Nm sites would also be detected at the level of current intensity 

changes. We observed that certain Nm and Y-modified sites, such as 25s:Y2880 and 25s:Am817, 

showed drastic alterations of their current intensity values in the snoRNA-depleted strain (Figure 
4E,F, upper panels). By contrast, the distributions of current intensities in other sites did not 

significantly change in the knockout strain (18s:Y1187) or did not differ in their mean (25s:Y2133).  

 

We hypothesized that deviations current intensity alterations might not always be maximal in the 

modified site, but might sometimes appear in neighbouring sites. To test this, we examined the 

difference in current intensity values along the rRNA molecules for each wild type-knockout pair 

(Figure 5A, see also Figure S5A). As expected, we found that the depletion of snR3 led to two 

regions with altered current intensity values along the 25s rRNA - one comprising the 25s:Y2129 and 

25s:Y2133 sites, and the second comprising the 25s:Y2264 site-. However, the highest deviations in 

current intensity were not observed at the modified site (Figure 5A, lower panel). From all 6 Y sites 

that were depleted in the 3 knockout strains studied, only 2 of them (25s:Y2826 and 25s:Y2880) 

showed a maximal deviation in current intensity in the modified site (Figure 5B). Similarly, depletion 

of Nm sites led to changes in current intensity values, but the largest deviations were not observed at 

the modified site (Figure 5C). Thus, we conclude that current intensity-based methods can detect 

both Y and Nm RNA modifications; however, base-calling errors are a better choice to achieve single 

nucleotide resolution, at least in the case of Y RNA modifications.  

 

Stoichiometry of Y- and Nm-modified sites can be estimated from per-read current intensity 
alterations  
Direct RNA sequencing produces current intensity measurements for each individual native RNA 

molecule. Thus, native RNA sequencing can in principle estimate modification stoichiometries by 

identifying the proportion of reads that contain alterations in their current intensity at a given site. 

However, this requires identifying RNA modifications in individual RNA molecules, which has proven 

so far a challenging task, largely due the low signal-to-noise ratio that single molecule nanopore reads 

have, compared to other sequencing platforms.  

 

Rather than performing prediction of RNA modifications transcriptome-wide at a per-read level, we 

reasoned that a targeted approach might prove more useful to improve the signal-to-noise ratio. 

Considering that Y RNA modifications can be detected in the form of base-calling ‘errors’ with single 

nucleotide resolution, we reasoned that stoichiometry could be predicted at per-read level by using 

the current intensity information of the 15-mer sequences surrounding the modified sites. We first 

examined the per-read current intensity values of wild type and knockout strains at the depleted sites. 
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Although we found that there was a significant variability across reads -even when 100% of the 

positions are unmodified- we were able to observe robust differences in current intensities across 

strains at the per-read level (Figure 5D,E, see also Figure S5B). As a control, we performed the 

same analysis in Y sites unaffected by snoRNA depletion, finding no differences between wild type 

and knockout strains at these positions (Figure 5D, bottom panel).  

 

We then performed Principal Component Analysis (PCA) of the current intensity values corresponding 

to the 15-mer regions that contained the modified site (Figure 5D,E, right panels), for all snoRNA-

depleted strains affecting Y modifications (snR3, snR34, snR36) and Nm modifications (snR60, 

snR61, snR62) as well as for the wild type strain. We observed that the reads clustered into two 

distinct populations: the first cluster mainly comprised unmodified reads from the snoRNA-depleted 

strain, whereas the second comprised reads from the 3 other strains, which are mostly modified. 

Thus, the presence or absence of Y or Nm modification in a read was a sufficiently robust and distinct 

feature at the level of current intensity to bin the reads into two separate populations: modified and 

unmodified. To follow these findings, we built a k-nearest neighbor (KNN) classifier to predict the 

modification status of a given read, previously trained on wild type and knockout-strains (Figure 5F, 
see also Table S4). The algorithm was able to classify reads of both Y and Nm-modified positions 

with a global accuracy of 87% (Figure S5C). Alternative classification algorithms were also tested, 

however they led to decreased performance compared to KNN (Table S4). Overall, our results show 

that stoichiometry of modification can be predicted in individual RNA reads using direct RNA 

sequencing by classifying the current intensity of the 15-mers surrounding the modified site, once the 

site of interest has been first identified in the form of base-calling errors. 

 

De novo prediction of Y modifications reveals a novel Pus4-dependent mitochondrial rRNA 
modification  
The identification of RNA modification-specific signatures allows us to perform de novo prediction of Y 

RNA modifications transcriptome-wide using direct RNA sequencing. In this regard, S. cerevisiae 

mitochondrial rRNAs remain much less characterized than cytosolic rRNAs, with only 3 modified sites 

identified so far in S.cerevisiae LSU (21s) (Pintard et al., 2002), and none in SSU (15s) rRNAs. Thus, 

we hypothesized that direct RNA might reveal previously uncharacterized sites in mitochondrial 

rRNAs. Firstly, we performed mismatch signature analysis in mitochondrial rRNAs, finding one 

candidate Y site (15s:854) that displayed both high modification frequency and U-to-C mismatch 

signature (Figure 6A). This site was located in the P-site of the 15s rRNA (Figure 6B), and 

embedded in a similar sequence context and structure as the t-arm of tRNAs, which contains a 

pseudouridylated (Y55) position placed by Pus4 (Figure 6C). Given the resemblance between these 

two sequences and structures, we hypothesized that Pus4 might be responsible for this modification. 

To validate our hypothesis as well as the candidate Y854 site, we sequenced rRNA from a S. 

cerevisiae Pus4 knockout strain. Mismatch frequency analysis showed that 15s:U854 position loses 

its mismatch signature upon deleting Pus4 gene without altering the base-called feature of any other 

position on the ribosomal RNAs (Figure 6D, see also Figure S6A). IGV coverage track snapshots 
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also show that the signature at 15s:U854 position is completely removed upon the deletion of Pus4, 

whereas at a control site (18s 221) no change is observed (Figure 6E). Additionally, we observed that 

the Pus4 target sites reported (TEF1:239,TEF2:239) (Carlile et al., 2014; Lovejoy et al., 2014; 

Schwartz et al., 2014) completely lost their mismatch signature in Pus4 knockout cells (Figure 
S6B,C).  
 

To further confirm that this position is pseudouridylated, we developed a novel protocol to identify Y 

modifications by using CMC probing coupled with nanopore sequencing, which we term nanoCMC-

seq. This method allows capturing reverse-transcription drop-off information by sequencing only the 

first-strand cDNA molecules of CMC-probed RNAs using direct cDNA sequencing with modified steps 

during the library preparation (Figure 6F, see also Methods). NanoCMC-seq captured known sites 

with a very high signal-to-noise ratio (Figure 6G, see also Figure S6D), and confirmed the existence 

of Y site in position 854, validating our de novo predictions using direct RNA sequencing. (Figure 6G).  

 

rRNA modification profiles do not vary upon exposure to oxidative or thermal stress, whereas 
Y modification levels in several snRNAs and snoRNAs drastically change upon heat exposure 
Ribosomal RNA modifications have recently emerged as an additional regulatory layer to fine-tune 

translation initiation, efficiency and fidelity (reviewed in (Erales et al., 2017; Esguerra et al., 2008; Jack 

et al., 2011; Lafontaine, 2015; Yoon et al., 2006)). Indeed, it has been shown that some 

pseudouridylated and 2′-O-methylated rRNA sites are only partially modified, and that their 

stoichiometry is cell-type dependent, suggesting that rRNAs modifications may be an important 

source of ribosomal heterogeneity (Birkedal et al., 2015; Buchhaupt et al., 2014; Krogh et al., 2016; 

Natchiar et al., 2017; Taoka et al., 2016, 2018). However, a systematic and comprehensive analysis 

of which environmental cues may lead to changes in rRNA modification stoichiometries, and which 

RNA modifications may be subject to this tuning, is largely missing. 

 

To assess whether rRNA modification profiles change in response to environmental stimuli, as well as 

which rRNA modifications may vary with each different exposure, we treated S. cerevisiae cells with 

diverse environmental cues (oxidative, cold and heat stress) and sequenced their RNA, in biological 

duplicates. We find that none of the stresses tested lead to significant changes in the base-calling 

‘errors’ observed in rRNAs (Figure 7A). By contrast, we recapitulate previously reported changes in 

snRNA Y modifications whose stoichiometry has been reported to change upon exposure to 

environmental cues (Figure 7B) (Schwartz et al., 2014), as well as 24 additional Y modification sites 

in snRNAs and snoRNAs whose stoichiometry varies upon heat exposure, which had not been 

previously described (Figure 7C-D, see also Figure S7A and Table S5) (Carlile et al., 2014; van der 

Feltz et al., 2018; Schwartz et al., 2014; Wu et al., 2011). Overall, our approach confirms previous 

reports and predicts novel sites whose Y modification levels vary upon heat shock exposure (Figure 
7B-D), but does not identify any rRNA modified site to be varying in its stoichiometry upon any of the 

tested stress conditions. 
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Next we questioned whether pseudouridylation changes during translation may be more nuanced, in 

that Y levels may differ between rRNAs from different translational fractions, which would not be 

detected when examining ribosome-bound rRNAs as a whole. To test this, we sequenced both total 

(input) and polysomal rRNAs from untreated and H2O2-treated yeast cells (Figure 7D). However, we 

observed no significant changes in Y rRNA modification profiles when comparing rRNAs from actively 

translating ribosomes from untreated and H2O2-treated cells (Figure 7E). Finally, in an attempt to 

further dissect the different translational repertoires into a higher number of rRNA pools, we 

sequenced: i) rRNAs from unassembled free rRNA fractions (F1), ii) rRNAs from 40s and 60s 

subunits (F2), iii) rRNAs from monosomal fractions (F3) and iv) rRNAs from polysomal fractions (F4) 

(Figure 7F). While two positions showed slightly decreased levels of Y (5.8s:Y73 and 25s:YY776) in 

the free rRNA fraction (F1) compared to assembled ribosomes, no significant changes were observed 

across the other translational fractions (Figure 7G, see also Figure S7B). Globally, these results 

indicate that differential rRNA modification is likely not a mechanism employed by yeast cells to adapt 

to environmental stress conditions, in agreement with previous observations measuring Y rRNA 

modification changes (Carlile et al., 2014).  

 
DISCUSSION 
 
RNA modifications are key regulators of a wide range of biological processes (Frye et al., 2018; Li and 

Mason, 2014; Roundtree et al., 2017). They can modulate the fate of RNA molecules, such as mRNA 

splicing (Louloupi et al., 2018; Wang et al., 2020; Zhou et al., 2019) or mRNA decay (Guo et al., 2017; 

Lee et al., 2020), as well as affect major cell and organism-level decisions, including cellular 

differentiation (Geula et al., 2015; Weng et al., 2018) and sex determination (Haussmann et al., 2016; 

Kan et al., 2017; Lence et al., 2016). While the biological relevance of RNA modifications is out of 

question, a major difficulty in studying them is the need for tailored protocols to map each modification 

individually (Novoa et al., 2017; Schaefer et al., 2017). The lack of a systematic, quantitative and 

multiplexed approach that can map and quantify all RNA modifications simultaneously is limiting our 

ability to functionally dissect the role that RNA modifications play in diverse biological conditions and 

in disease contexts. 

 

Ribosomal RNA are extensively modified as part of their normal maturation, and their modification 

landscape is relatively well-defined for a series of organisms (Fischer et al., 2015; Sergeeva et al., 

2015; Sharma and Lafontaine, 2015; Taoka et al., 2015, 2018), Typically placed by either stand-alone 

enzymes or snoRNA-guided mechanisms, rRNA modifications tend to cluster in functionally important 

sites of the ribosome, stabilizing its structure and fine-tuning its decoding capacities (Sloan et al., 

2017). Despite the central role that rRNA molecules play in protein translation, recent evidence has 

shown that rRNA modifications are in fact dynamically regulated (Hebras et al., 2019; Higa-Nakamine 

et al., 2012), and that their alterations can lead to disease states (Belin et al., 2009; Bortolin-Cavaille 

et al., 2012; Erales et al., 2017; Heiss et al., 1998; Knight et al., 1999; Liao et al., 2010; Marcel et al., 

2013; Mei et al., 2012; Sahoo et al., 2008). However, the extent of the regulatory potential of rRNA 
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modifications upon environmental exposures has been unclear. For example, previous studies have 

shown that yeast cells maintain a consistent pattern and level of rRNA modifications regardless of the 

logarithmic and stationary growth phases (Taoka et al., 2016), the ploidy state (Taoka et al., 2016) or 

upon post-diauxic growth (Carlile et al., 2014). By contrast, recent studies have shown that rRNA 

modification levels can be drastically upregulated in hyperthermophilic archaeal species upon 

temperature stress (Sas-Chen et al., 2020). Thus, whether rRNA modification plasticity is a 

generalized cellular response to confronting external cues, or whether it is only observed under very 

specific stress types, species and RNA modifications is yet to be deciphered.  

 

To address these questions and overcome these limitations, we employed direct RNA nanopore 

sequencing to obtain comprehensive maps of RNA modifications with single molecule resolution, in 

full-length rRNA molecules. First, we performed systematic analyses of base-calling ‘errors’ both in in 

vitro transcribed constructs (Figure 1 and 2) and in vivo rRNA sequences (Figure 3 and 4), showing 

that each RNA modification type studied results in distinct ‘error’ signatures, which can be employed 

to distinguish different RNA modification types without the need of coupling wild type and knockout 

strains. Second, we exploited these findings to predict Y RNA modifications de novo, revealing a 

novel mitochondrial Y rRNA modification in S. cerevisiae that was not reported to date, as well as 

confirming previously reported Y-modified sites in rRNAs, snRNAs and mRNAs (Figure 6). Moreover, 

we showed that Pus4, previously thought to modify only tRNAs and mRNAs, is the enzyme 

responsible for the Y854 modification in mitochondrial rRNA. Third, we characterized the dynamics of 

Y modifications in rRNAs, snRNAs and snoRNAs upon a battery of environmental cues and 

translational fractions. We confirmed previously heat-sensitive snRNAs modifications, as well as 

revealed novel snRNA and snoRNA modifications that appear upon heat stress exposure (Figure 7). 

By contrast, we found no dynamic changes in the ribosomal epitranscriptome, suggesting that 

ribosome heterogeneity mediated via rRNA modification dynamics is not a generalized response to 

stress, neither globally, nor in the pool of rRNAs that are present in actively translating ribosomes. 

Fourth, we developed a novel method, which we termed nanoCMC-seq, which allowed us to 

orthogonally validate the novel predicted Y-modified sites. NanoCMC-seq provides a cost-effective 

strategy to validate Y modifications transcriptome-wide, and is not affected by PCR bias. Fifth, we 

developed a novel approach to predict stoichiometry of modification using direct RNA sequencing 

data at the level of individual reads, and showed that it can be applied both to pseudouridylated as 

well as 2’-O-methylated sites.  

 

Previous studies employing direct RNA sequencing to map RNA modifications transcriptome-wide 

have been largely focused on m6A modifications, and have mainly approached the problem of RNA 

modification detection by comparing wild type and knockout conditions (Leger et al., 2019; Liu et al., 

2019; Parker et al., 2020; Price et al., 2019). However, here we show that different RNA modification 

types (e.g. Y versus m5C) produce distinct base-calling ‘error’ signatures (Figure 2B,C). 

Consequently, base-calling errors can be used not only to predict whether a given site is modified or 

not, but also to identify the underlying RNA modification type, without the need of coupling the direct 
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RNA sequencing run to a knockout strain. While we should note that base-calling signatures depend 

to some extent on the surrounding sequence context, we find that Y modifications lead to robust U-to-

C mismatch signatures, which can be exploited for de novo prediction of Y modifications 

transcriptome-wide (Figure 6). Through this approach, we identified a novel Y modification in the P-

site of yeast 15s mitochondrial rRNA (15s:Y854), and show that Pus4 is the enzyme responsible for 

placing this modification. Finally, we validate our findings using nanoCMC-seq, a novel orthogonal 

method that can detect Y modifications with single nucleotide resolution by coupling CMC probing to 

nanopore cDNA sequencing (Figure 6F,G).   

 

While we find that Y modifications can be detected both in the form of base-calling ‘errors’ and altered 

current intensities (Figure 4), we observe that the latter does not provide single nucleotide resolution, 

and that the maximal current intensity shifts are often seen a few nucleotides away from the real 

modified site. Thus, we propose that the combination of base-called features and current intensity 

values can provide stoichiometric information of Y-modified sites with single nucleotide resolution. 

Specifically, we show that once the site has been located using base-calling error features, binning 

the per-read current intensity values of the 15-mer regions surrounding Y-modified site into 2 separate 

clusters (Y-modified and unmodified), provides reasonable estimates of Y modification stoichiometry 

in all 5 sites analyzed (Figure 5F). We should note that while the KNN algorithm shows higher 

accuracy than the K-means algorithm in terms of stoichiometry prediction (Figure S5D), the latter 

does not require previous training of the model, and thus could be, in principle, applicable to any given 

site that contains two populations of reads (modified and unmodified). 

 

NGS-based technologies can be used to detect RNA modifications that affect the Watson-Crick base-

pairing, such as m1A, m3C or m2,2G, which become apparent in the form of increased mismatch 

frequencies at the modified site (Novoa et al., 2020; Ryvkin et al., 2013; Safra et al., 2017). These 

mismatches reflect nucleotide misincorporations that occur during the reverse transcription step, and 

are thought to be indicative of the stoichiometry of the modified site. By contrast, here we find that in 

nanopore direct RNA sequencing data, mismatch frequencies do not reflect the stoichiometry of the 

site (Figure 4). Rather, we propose that the mismatch frequency is in fact a consequence of the 

deviation of the current intensity of the modified k-mer relative to unmodified counterparts. For 

example, in the case of Y, the current intensity distribution of the Y-centered k-mers is shifted towards 

C-centered k-mers, and consequently, it is typically detected in the form of U-to-C mismatch 

signatures (Figure S7C). However, the shift will vary depending on the sequence context, leading to 

differences in mismatch frequencies (e.g. 25s:Y2826 compared to 25s:Y2880), despite having similar 

stoichiometries (Table S3). 

 

We should note that while our approach allows studying the ribosomal epitranscriptome in a 

comprehensive manner, there are caveats and limitations, leaving open room for future 

improvements. First, not all RNA modifications lead to strong alterations in the base-calling features 

and/or current intensity patterns, such as 2'-O-methylcytosine (Cm), which is poorly detected in direct 
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RNA sequencing datasets, compared to other RNA modifications (Figure 3B). Newer versions of 

protein nanopores, which are actively being developed, might lead to increased differences in current 

intensities when these RNA modifications pass through the nanopores. Second, the detection of RNA 

modifications is dependent on the sequence context; for example, we were unable to detect 

18s:Gm908 (Figure S4). Similarly, some Y-modified sites, such as 18s:Y1187, caused weaker 

alterations in base-calling features than other Y-modified positions (Figure 4). Third, not all RNA 

modifications lead to base-calling errors with single nucleotide resolution -such as pseudouridine-. For 

example, 2'-O-methylations often affect neighboring bases (Figure 4C and S4A), making it 

challenging to de novo predict modified sites without any prior information. Fourth, stoichiometry could 

not be accurately predicted in all sites. Specifically, we were unable to predict stoichiometry in 

25s:Y2264 due to the low number of reads that the Nanopolish algorithm was able to resquiggle 

(Figure S5B). Future algorithms that improve the current intensity-to-base relationship will be greatly 

needed to maximize our ability to extract information from direct RNA nanopore sequencing datasets.  

 

Despite these challenges and limitations, our work provides a novel framework for the systematic and 

comprehensive analysis of the ribosomal epitranscriptome with single molecule resolution, showing 

that direct RNA sequencing can be employed to estimate modification stoichiometry as well as to de 

novo predict Y RNA modifications transcriptome-wide, without the need of coupling the analysis to a 

knockout strain. Future work will be needed to functionally dissect the biological roles and dynamics of 

RNA modifications across further biological conditions and in disease states, to better comprehend 

how and when the epitranscriptome is tuned to regulate protein translation. 
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MATERIALS AND METHODS 
 

Yeast culturing  
Saccharomyces cerevisiae (strain BY4741) was grown at 30ºC in standard YPD medium (1% yeast 

extract, 2% Bacto Peptone and 2% dextrose). The deletion strains snR3Δ, snR34Δ and snR36Δ were 

generated on the background of the BY4741 strain by replacing the genomic snoRNA sequence with 

a kanMX4 cassette as detailed in Parker et al. (Parker et al., 2017). After 10 minutes incubation, cells 

were then quickly transferred into 50 mL pre-chilled falcon tubes, and centrifuged for 5 minutes at 

3,000 g in a 4ºC pre-chilled centrifuge. Supernatant was discarded, and cells were flash frozen. For 

thermal stress, Saccharomyces cerevisiae BY4741 cultures were grown in 4 mL of YPD overnight at 

30ºC. The next day, cultures were diluted to 0.0001 OD600 in 200 mL of YPD and grown overnight at 

30ºC shaking (250 rpm). When the cultures reached an OD600 of 0.4-0.5, the cultures were divided 

into 3 x 50 mL subcultures, which were then incubated at 30ºC (control), 45ºC (heat shock) or 4ºC 

(cold shock) for 1 hour. Cells were collected by pelleting and snap freezing. For the analysis of rRNAs 

modifications across polysomal fractions, yeast BY4741 starter cultures were grown in 6 mL YPD 

medium at 30ºC with shaking (250 rpm) overnight. 100 mL of fresh YPD medium was inoculated with 

10 µL of the stationary culture in a 250 mL erlenmeyer flask, in biological duplicates. Cells were 

incubated at 30ºC with shaking (250 rpm) until the cultures reached mid-exponential growth phase 

(O.D660.~ 0.4-0.6). Yeast cells were then treated with 1 mM H202 or left without treatment (control) for 

30 minutes. 1 mL of cycloheximide stock solution (10 mg/mL) was added to each culture. Pus4 

knockout strains (BY4741 MATa pus4::KAN) and its parental strain were obtained from the Yeast 

Knockout Collection (Dharmacon) and grown under standard conditions in YPD (1% [w/v] yeast 

extract, 2% [w/v] peptone supplemented with 2% glucose) at 30°C unless stated otherwise.  

 
Total RNA extraction from yeast cultures 

Saccharomyces cerevisiae BY4741 cells (strains: snR3Δ, snR34Δ snR36Δ, snR60∆, snR61∆, 

snR62∆ and WT) were harvested via centrifugation at 3000 rpm for 1 minute, followed by two washes 

with water. RNA was purified from pelleted cells using a MasterPure Yeast RNA extraction kit 

(Lucigen, MPY03100), according to manufacturer’s instructions. Total RNA was then treated with 
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Turbo DNase (Thermo, #AM2238) with a subsequent RNAClean XP bead cleanup prior to starting the 

library preparation. For stress conditions and Pus4KO strain, flash frozen pellets were resuspended in 

700 µl Trizol with 350 µl acid washed and autoclaved glass beads (425-600 µm, Sigma G8772). The 

cells were disrupted using a vortex on top speed for 7 cycles of 15 seconds (the samples were chilled 

on ice for 30 seconds between cycles). Afterwards, the samples were incubated at room temperature 

for 5 minutes and 200 µll chloroform was added. After briefly vortexing the suspension, the samples 

were incubated for 5 minutes at room temperature. Then they were centrifuged at 14,000 g for 15 

minutes at 4ºC and subsequently the upper aqueous phase was transferred to a new tube. RNA was 

precipitated with 2X volume Molecular Grade Absolute ethanol and 0.1X volume Sodium Acetate. The 

samples were then incubated for 1 hour at -20ºC and centrifuged at 14,000 g for 15 minutes at 4ºC. 

Then the pellet was washed with 70% ethanol and resuspended with nuclease-free water after air 

drying for 5 minutes on the benchtop. Purity of the total RNA was measured with the NanoDrop 2000 

Spectrophotometer. Total RNA was then treated with Turbo DNase (Thermo, #AM2238) with a 

subsequent RNAClean XP bead cleanup.  

 

Polysome gradient fractionation and rRNA extraction 

Yeast pellets from 100 mL cultures were washed with 6 mL of ice-cold Polysome Extraction Buffer 

(PEB), which contained 20 mM Tris-HCl pH 7.4, 100 mM KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 mg/mL 

cycloheximide and 100 U/mL RNAse inhibitors (RNaseOUT, Invitrogen, #18080051). Cells were 

centrifuged for 5 minutes at 3,000 g at 4ºC. Washing was repeated by adding 6 mL of ice-cold PEB, 

followed by centrifugation. Cells were then resuspended in 700 µl of ice-cold PEB, and transferred 

into pre-chilled 2 ml Eppendorf tubes containing 450 µl of pre-chilled RNAse-free 425-600 μm 

diameter glass beads (Sigma G8772). Cells were lysed by vortexing at maximum speed for 5 minutes 

at 4ºC, followed by centrifugation also at maximum speed at bench centrifuge for 5 minutes at 4ºC. 

10% of the supernatant was aliquoted into Trizol for total RNA isolation, and kept at -80ºC, which was 

later used as input. The remaining volume, corresponding approximately to 8 x 108 cells, was 

subsequently loaded onto the sucrose gradient. Linear sucrose gradients of 10-50% were prepared 

using the Gradient Station (BioComp). Briefly, SW41 centrifugation tubes (Beckman, Ultra-ClearTM 

344059) were filled with Gradient Solution 1 (GS1), which consisted of 20 mM Tris-HCl pH 7.4, 100 

mM KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 mg/mL cycloheximide and 10% w/v RNAse-free sucrose. 

Solutions GS1 and GS2 were prepared with RNase-DNase free UltraPure water and filtered with a 

0.22 µM filter. The tube was then filled with 6.3 mL of Gradient Solution 2 (GS2) layered at the bottom 

of the tube, which consisted of 20 mM Tris-HCl pH 7.4, 100 mM KCl, 10 mM MgCl2, 0.5 mM DTT, 0.1 

mg/mL cycloheximide and 50% w/v RNAse-free sucrose. The linear gradient was formed using the 

tilted methodology, with the Gradient Station Maker (Biocomp). Once the gradients were formed, 350 

µL of each lysate was carefully loaded on top of the gradients, and tubes were balanced in pairs, 

placed into pre-chilled SW41Ti buckets and centrifuged at 4ºC for 150 minutes at 35,000 rpm. 

Gradients were then immediately fractionated using the Gradient Station, and 20 x 500 µl fractions 

were collected in 1.5 mL Eppendorf tubes, while absorbance was monitored at 260 nm continuously. 

Fractions were combined in the following way: the free rRNA (F1, fractions 1 and 2), the unassembled 
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subunits (F2, fractions 3-6), the lowly-translating monosomes (F3, fractions 7-10) and the highly-

translating polysomes (F4, fractions 12-17). The pooled fractions were then concentrated using 

Amicon-Ultra 100K columns (Millipore), and washed two times with cold PEB. The final volume was 

brought down to 200 µL, and RNA was extracted using TRIzol reagent. Purity of the RNA was 

measured with NanoDrop 2000 Spectrophotometer.  

 

In vitro transcription of modified and unmodified RNAs  
The synthetic ‘curlcake’ sequences (Liu et al., 2019) used in this study are designed to include all 

possible 5-mers while minimizing the secondary RNA structure, and consist in 4 in vitro transcribed 

constructs: (i) Curlcake 1, 2244 bp; (ii) Curlcake 2, 2459 bp; (iii) Curlcake 3, 2595 bp, and (iv) 

Curlcake 4, 2709. The ‘curlcake’ constructs were in vitro transcribed using Ampliscribe™ T7-Flash™ 

Transcription Kit (Lucigen-ASF3507) with either unmodified rNTPs (UNM), N6-methyladenosine 

triphosphate (m6ATP), 5-methylcytosine triphosphate (m5CTP), 5-hydroxymethylcytosine triphosphate 

(hm5CTP) or pseudouridine triphosphate (YTP). All modified NTPs were purchased from TriLink. The 

sequences included in the short unmodified dataset (UNM-S), which included B. subtilis guanine 

riboswitch, B. subtilis lysine riboswitch and Tetrahymena ribozyme were also produced by in vitro 

transcription using Ampliscribe™ T7-Flash™ Transcription Kit (Lucigen-ASF3507). All constructs 

were 5’ capped using vaccinia capping enzyme (NEB-M2080S) and polyadenylated using E. coli 

Poly(A) Polymerase (NEB-M0276S). Poly(A)-tailed RNAs were purified using RNAClean XP beads, 

and the addition of poly(A)-tail was confirmed using Agilent 4200 Tapestation. Concentration was 

determined using Qubit Fluorometric Quantitation. Purity of the IVT product was measured with 

NanoDrop 2000 Spectrophotometer. 

 

Direct RNA library preparation and sequencing of in vitro transcribed constructs 
The RNA libraries for direct RNA Sequencing (SQK-RNA001) were prepared following the ONT Direct 

RNA Sequencing protocol version DRS_9026_v1_revP_15Dec2016, which corresponds to the 

flowcell FLO-MIN106. Briefly, 800 nanograms of Poly(A)-tailed and capped RNA – 200 ng per 

construct – was ligated to ONT RT Adaptor (RTA) using concentrated T4 DNA Ligase (NEB-M0202T), 

and was reverse transcribed using SuperScript III RT (Thermo Fisher Scientific-18080044). The 

products were purified using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-NC0068576), 

washing with 70% freshly prepared ethanol. RNA Adapter (RMX) was ligated onto the RNA:DNA 

hybrid, and the mix was purified using 1X Agencourt RNAClean XP beads, washing with Wash buffer 

(WSB) twice. The sample was then eluted in Elution Buffer (ELB) and mixed with RNA running buffer 

(RRB) prior to loading onto a primed R9.4.1 flowcell, and ran on a MinION sequencer with MinKNOW 

acquisition software version 1.15.1. The sequencing was performed in independent days and using a 

different flowcell for each sample (UNM, m6A, m5C, hm5C, Y, UNM-S).  

 

Direct RNA library preparation and sequencing of yeast total RNAs 

Yeast total RNA was first treated with T4 Polynucleotide Kinase (PNK) (NEB M0201S) in order to 

remove possible phosphorylated 3’ends before polyA tailing. Briefly, we mixed 1 µl PNK enzyme with 
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RNAs in a 50 µl reaction with T4 PNK Buffer (10X) and incubated at 37°C for 30 minutes. The 

products were purified using 1.8X Agencourt RNAClean XP beads (Fisher Scientific-NC0068576), 

washing with 70% freshly prepared ethanol. Dephosphorylated RNAs were then polyadenylated using 

E.coli Poly(A) Polymerase, following the commercial protocol. Four different direct RNA libraries were 

barcoded according to the recent protocol that our lab has recently published (Smith et al., 2019). 

Custom RT adaptors (IDT) were annealed using following conditions: custom Oligo A and B (Table 
S6) were mixed in annealing buffer (0.01M Tris-Cl pH 7.5, 0.05M NaCl) to the final concentration of 

1.4 µM each in a total volume of 75 µL. The mixture was incubated at 94°C for 5 minutes and slowly 

cooled down (-0.1°C/s) to room temperature. RNA library for direct RNA Sequencing (SQK-RNA002) 

was prepared following the ONT Direct RNA Sequencing protocol version 

DRS_9080_v2_revI_14Aug2019 with half reaction for each library until the RNA Adapter (RMX) 

ligation step. Per reaction (half), 250 ng total of polyA tailed yeast RNAs were ligated to pre-annealed 

custom RT adaptors (IDT) (Smith et al., 2019) using concentrated T4 DNA Ligase (NEB-M0202T), and 

was reverse transcribed using Maxima H Minus RT (Thermo Scientific, EP0752), without heat 

inactivation step. The products were purified using 1.8X Agencourt RNAClean XP beads (Fisher 

Scientific-NC0068576), washing with 70% freshly prepared ethanol. 50 ng of reverse transcribed RNA 

from each reaction was pooled and RMX adapter, composed of sequencing adapters with motor 

protein, was ligated onto the RNA:DNA hybrid and the mix was purified using 1X Agencourt 

RNAClean XP beads, washing with Wash Buffer (WSB) twice. The sample was then eluted in Elution 

Buffer (EB) and mixed with RNA Running Buffer (RRB) prior to loading onto a primed R9.4.1 flowcell, 

and ran on a MinION sequencer with MinKNOW acquisition software version v.3.5.5. 

 
nanoCMC-seq 
CMC treatment was adapted from Schwartz et al (Schwartz et al., 2014) with minor changes. Briefly, 

20 ug total RNA was incubated in NEBNext® Magnesium RNA Fragmentation Module at 94°C for 1.5 

minutes. The fragmented RNA was then incubated with either 0.3M CMC dissolved in 100 µl TEU 

buffer (50 mM Tris pH8.5, 4 mM EDTA, 7M Urea) or 100 µl TEU buffer (no CMC) for 20 minutes at 

37°C. Reaction was stopped with 100 µL of  Buffer A (0.3M NaOAc and 0.1mM EDTA, pH 5.6), 700 

µL absolute ethanol, and 1 µl GlycoBlue (Thermo Scientific, AM9515). RNA in the stop solution was 

chilled on dry ice for 5 minutes, and then centrifuged at maximum speed for 15 minutes at 4°C. 

Supernatant was removed and the pellet was washed with 70% ethanol. After air drying for a few 

minutes, the pellet was dissolved in 100 µl Buffer A and mixed with 300 µl absolute ethanol and 1 µl 
GlycoBlue. After chilling on dry ice for 5 minutes, the solution was then centrifuged at maximum speed 

for 15 minutes at 4°C. Supernatant was removed, and the pellet was washed with 70% ethanol. After 

washing, the pellet was air dried, and resuspended in 40 µl of 50 mM sodium bicarbonate, pH 10.4, 

and incubated at 37°C for 3 hours. Furthermore, RNA was mixed with 100 µl Buffer A, 700 µl ethanol, 

and 1 µl Glycoblue overnight at -20°C. The next day, the solution was centrifuged at maximum speed 

for 15 minutes at 4°C and the pellet was washed with 70% ethanol and dissolved in the appropriate 

amount of water after air drying. Unprobed and probed RNAs were treated with T4 Polynucleotide 
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Kinase (PNK) (NEB, M0201S) as described above before proceeding with ONT Direct cDNA 

sequencing.  

 

Before starting the library preparation, 9 µl of 100 µM Reverse-transcription primer (Original ONT 

VNP: 5’ /5Phos/ACTTGCCTGTCGCTCTATCTTCTTTTTTTTTTTTTTTTTTTTVN 3’) and 9 µl of 100 

µM complementary oligo (CompA: 5’ GAAGATAGAGCGACAGGCAAGTA 3’ ) were mixed with 1 µ 0.2 

M Tris pH 7.5 and 1 µl 1 M NaCl. The mix was incubated at 94°C for 1 minute and the temperature 

was ramped down to 25°C (-0.1°C/s) in order to pre-anneal the oligos. Then, 100 ng polyA-tailed RNA 

was mixed with 1 µl pre-annealed VNP+CompA, 1 µl 10 mM dNTP mix, 4 µl 5X RT Buffer, 1 µl 

RNasin® Ribonuclease Inhibitor (Promega, N2511), 1 µl Maxima H Minus RT (Thermo Scientific. 

EP0742) and nuclease-free water up to 20 µl. The reverse-transcription mix was incubated at 60°C for 

60 minutes and inactivated by heating at 85°C for 5 minutes before moving into the ice. Furthermore, 

RNAse Cocktail (Thermo Scientific, AM2286) was added to the mix in order to digest the RNA and the 

mix was incubated at 37°C for 10 minutes. Then the reaction was cleaned up using 1.2X AMPure XP 

Beads (Agencourt, A63881). In order to be able to ligate the sequencing adapters the the first strand, 

1 µl 100 µM CompA was again annealed to the 15 µl cDNA in a tube with 2.25 µl 0.1 M Tris pH 7.5, 

2.25 µl 0.5 M NaCl and 2 µ nuclease-free water. The mix was incubated at 94°C for 1 minute and the 

temperature was ramped down to 25 °C (-0.1°C/s) in order to anneal the complementary to the first 

strand cDNA. Furthermore, 22.5 µl first strand cDNA was mixed with 2.5 µl Native Barcode (EXP-

NBD104) and 25 µl Blunt/TA Ligase Mix (NEB, M0367S) and incubated in room temperature for 10 

minutes. The reaction was cleaned up using 1X AMPure XP beads and the libraries were pooled into 

one tube that finally contains 200 fmol library. The pooled library was then ligated to the sequencing 

adapter (AMII) using Quick T4 DNA Ligase (NEB, M2200S) in room temperature for 10 minutes, 

followed with 0.65X AMPure XP Bead cleanup using ABB Buffer for washing. The sample was then 

eluted in Elution Buffer (EB) and mixed with Sequencing Buffer (SQB) and Loading Beads (LB) prior to 

loading onto a primed R9.4.1 flowcell, and ran on a MinION sequencer with MinKNOW acquisition 

software version v.3.5.5. 

 

Analysis of nanoCMC-seq 
Reads were base-called with stand-alone Guppy version 3.6.1 with default parameters running in 

GPU, with built-in demultiplexing tool of Guppy. Unclassified reads were then demultiplexed further 

using Porechop with --barcode_threshold 50 option (https://github.com/rrwick/Porechop). Then all the 

merged classified reads were mapped to cytosolic and mitochondrial ribosomal RNA sequences in S. 

cerevisiae using minimap2 default. Furthermore, a custom script was used to extract RT-drop 

signatures and the RT-drop scores were plotted using ggplot2. All scripts used to process nanoCMC-

seq data with RT-Drop information have been made available in GitHub 

(https://github.com/novoalab/yeast_RNA_Mod). Notably, due to the 5’end truncation of the nanopore 

sequencing reads by ~13 nt, RT-drop positions were shifted by 13 nt to accurately determine the exact 

RT-drop positions. 
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Demultiplexing direct RNA sequencing  
Demultiplexing of the barcoded direct RNA sequencing libraries was performed using DeePlexiCon 

with default parameters (Smith et al., 2019). Reads with demultiplexing confidence scores greater 

than 0.95 were kept for downstream analyses . We used a lower score in the case of polysomal 

fractions (0.8), due to the low read coverage of some fractions. We should note that the dataset was 

also analyzed using 0.95 threshold, and results and conclusions of the analysis did not change, 

compared to those obtained using 0.80 threshold.  

 
Base-calling direct RNA sequencing 
Reads were base-called with stand-alone Albacore versions 2.1.7 and 2.3.4 with the --disable_filtering 

parameter, and stand-alone Guppy versions 2.3.1 and 3.0.3 with default parameters running in CPU. 

In-house scripts were used for computing the number of unique and common base-called reads 

between the different approaches, as well as to compare the tendency of each base-caller regarding 

read lengths and qualities. Both Albacore and Guppy are available to ONT customers via their 

community site (https://community.nanoporetech.com/). Differences between the base-called features 

using distinct base-callers were determined using Kruskal-Wallis test with Bonferroni correction for 

pairwise comparisons, whereas differences between unmodified and modified sites were assessed 

using Mann-Whitney-Wilcoxon test. 

 

Mapping algorithms and parameters 
Reads were mapped using either Minimap2 (Li, 2018) or GraphMap (Sović et al., 2016). Minimap2 

version 2.14 was run with two different parameter settings: (i) minimap2 -ax map-ont, which is the 

recommended setting for direct RNA sequencing mapping, and thus we refer to as ‘default’, and (ii) 

minimap2 -ax map-ont -k 5, which we refer to as ‘sensitive’. GraphMap version 0.5.2 was also run 

with two different parameter settings, for comparison, (i) graphmap align, using default parameters, 

and (ii) graphmap align --rebuild-index -v 1 --double-index --mapq -1 -x sensitive -z 1 -K fastq --min-

read-len 0 -A 7 -k 5, which is expected to increase the tolerance to errors that may occur under the 

presence of RNA modifications, and thus we refer to as ‘sensitive’. For the yeast RNA runs, we used 

graphmap with default settings to map the reads to different references based on the analysis 

(ribosomal RNAs, non-coding RNAs and genome supplemented with ribosomal RNAs), which can be 

found in the github repository https://github.com/novoalab/yeast_RNA_Mod.  

 

Analysis of base-called features in curlcakes 
Sam files were transformed into bam files using Samtools version 1.9 (Li et al., 2009), and were then 

sorted and indexed in order to visualize the data using the Integrative Genomics Viewer (IGV) version 

2.4.16 (Robinson et al., 2011). For extracting the mismatch frequencies we first used samtools 

mpileup and then in-house scripts, available in https://github.com/novoalab/Best_Practices. Principal 

Component Analysis (PCA) was used to reduce the dimensionality of the base-calling error data to 

visually inspect for base-calling differences, using as input the base-called features (mismatch 
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frequency, deletion frequency and per-base quality) from all 5 positions of each k-mer. Only k-mers 

that contained a given modification once in the 5-mer were included in the analysis.  

 

Analysis of base-called features in yeast RNAs 
Sam files were transformed into bam files using Samtools version 1.9 (Li et al., 2009), and we then 

sorted and indexed them in order to visualize the data using the Integrative Genomics Viewer (IGV) 

version 2.4.16 (Robinson et al., 2011). Base-called features were extracted using Epinano version 

1.1. R package ggplot2 was used for data visualization (scripts available in 

https://github.com/novoalab/yeast_RNA_Mod). Sequencing statistics can be found in Table S7.  

 

Analysis of current intensity  
Nanopolish (Loman et al., 2015) was used to extract the aligned current intensity values per read and 

position, using the option --scale-events. Mean current intensity per-position was computed by 

summing the current intensities of all reads aligned to the same position, divided by the total number 

of reads mapping at a given position. All scripts used to process Nanopolish event align output, 

including scripts to display mean current intensity values along transcripts have been made available 

in GitHub (https://github.com/novoalab/yeast_RNA_Mod).   

 

Per-read classification prediction of Y stoichiometry  
Nanopolish output was processed to extract the current intensity values corresponding to the 15-mer 

regions centered in the modified pseudouridine sites, for the 6 sites for which knockout data was 

available (25s:2133, 25s:2129; 25s:2826, 25s:2880, 25s:2264, 18s:1187), and for all 4 sequencing 

datasets (wild type, snR3-KO, snR34-KO, snR36-KO). Reads with empty values in the 15-mer region 

were omitted from the analysis. The reads were then subdivided into training (50%) and testing (50%), 

and the training set reads for a given pair of wild type-knockout were fed to the K-nearest neighbor 

algorithm (caTools package in R). The performance of the algorithm was assessed both in the test set 

reads that were not used in the training step, as well as on reads from independent datasets (the 

other two snoRNA-depleted strains). As an alternative to KNN, k-means clustering was also tested 

using the built-in kmeans function in R, both on scaled current intensity values (KMEANS) as well as 

on the two first principal component loadings of the current intensity values of the 15-mer 

(KMEANS_PCA). Predictions by each clustering algorithm, and for each individual site, are shown in 

Table S4.  

 

DATA AVAILABILITY 
For in vitro transcribed datasets, Fast5 files used in this work were already publicly available (UNM 

and m6A: PRJNA521324), or have been made publicly available in SRA (m5C:PRJNA563591; hm5C: 

PRJNA548268; Y:PRJNA511582, UNM-S: PRJNA575545). Base-called and demultiplexed FASTQ 

from all yeast total RNA direct RNA sequencing data runs have been made publicly available in GEO, 

under the accession number GSE148603, including processed EpiNano outputs and Nanopolish 
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outputs. FAST5 files for yeast total RNA direct RNA sequencing are available in ENA under accession 

PRJEB37798.  

 

CODE AVAILABILITY 
All scripts and code used in this work are available at: https://github.com/novoalab/Best_Practices 

(analysis of in vitro curlcake datasets) and https://github.com/novoalab/yeast_RNA_Mod (analysis of 

in vivo datasets). The reference fasta sequences used in this work can be found in 

https://github.com/novoalab/Best_Practices/reference_fasta and . 

https://github.com/novoalab/yeast_RNA_Mod/reference_fasta, respectively.  

 

REFERENCES 

Anreiter, I., Mir, Q., Simpson, J.T., Janga, S.C., and Soller, M. (2020). New Twists in Detecting mRNA 
Modification Dynamics. Trends Biotechnol. 0. 

Arango, D., Sturgill, D., Alhusaini, N., Dillman, A.A., Sweet, T.J., Hanson, G., Hosogane, M., Sinclair, 
W.R., Nanan, K.K., Mandler, M.D., et al. (2018). Acetylation of Cytidine in mRNA Promotes 
Translation Efficiency. Cell 175, 1872–1886.e24. 

Basu, A., Das, P., Chaudhuri, S., Bevilacqua, E., Andrews, J., Barik, S., Hatzoglou, M., Komar, A.A., 
and Mazumder, B. (2011). Requirement of rRNA methylation for 80S ribosome assembly on a cohort 
of cellular internal ribosome entry sites. Mol. Cell. Biol. 31, 4482–4499. 

Belin, S., Beghin, A., Solano-Gonzàlez, E., Bezin, L., Brunet-Manquat, S., Textoris, J., Prats, A.-C., 
Mertani, H.C., Dumontet, C., and Diaz, J.-J. (2009). Dysregulation of Ribosome Biogenesis and 
Translational Capacity Is Associated with Tumor Progression of Human Breast Cancer Cells. PLoS 
ONE 4, e7147. 

Bellodi, C., Krasnykh, O., Haynes, N., Theodoropoulou, M., Peng, G., Montanaro, L., and Ruggero, D. 
(2010). Loss of Function of the Tumor Suppressor DKC1 Perturbs p27 Translation Control and 
Contributes to Pituitary Tumorigenesis. Cancer Research 70, 6026–6035. 

Birkedal, U., Christensen-Dalsgaard, M., Krogh, N., Sabarinathan, R., Gorodkin, J., and Nielsen, H. 
(2015). Profiling of ribose methylations in RNA by high-throughput sequencing. Angew. Chem. Int. Ed 
Engl. 54, 451–455. 

Bortolin-Cavaille, M.-L., -L. Bortolin-Cavaille, M., and Cavaille, J. (2012). The SNORD115 (H/MBII-52) 
and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader-Willi locus generate canonical box 
C/D snoRNAs. Nucleic Acids Research 40, 6800–6807. 

Buchhaupt, M., Sharma, S., Kellner, S., Oswald, S., Paetzold, M., Peifer, C., Watzinger, P., Schrader, 
J., Helm, M., and Entian, K.-D. (2014). Partial methylation at Am100 in 18S rRNA of baker’s yeast 
reveals ribosome heterogeneity on the level of eukaryotic rRNA modification. PLoS One 9, e89640. 

Carlile, T.M., Rojas-Duran, M.F., Zinshteyn, B., Shin, H., Bartoli, K.M., and Gilbert, W.V. (2014). 
Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 
515, 143–146. 

Chen, H., Liu, Q., Yu, D., Natchiar, K., Zhou, C., Hsu, C.-H., Hsu, P.-H., Zhang, X., Klaholz, B., 
Gregory, R.I., et al. (2020). METTL5, an 18S rRNA-specific m6A methyltransferase, modulates 
expression of stress response genes. BioRxiv. 

Delatte, B., Wang, F., Ngoc, L.V., Collignon, E., Bonvin, E., Deplus, R., Calonne, E., Hassabi, B., 
Putmans, P., Awe, S., et al. (2016). RNA biochemistry. Transcriptome-wide distribution and function 
of RNA hydroxymethylcytosine. Science 351, 282–285. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189969


 

Delaunay, S., and Frye, M. (2019). RNA modifications regulating cell fate in cancer. Nat. Cell Biol. 21, 
552–559. 

Dominissini, D., Moshitch-Moshkovitz, S., Schwartz, S., Salmon-Divon, M., Ungar, L., Osenberg, S., 
Cesarkas, K., Jacob-Hirsch, J., Amariglio, N., Kupiec, M., et al. (2012). Topology of the human and 
mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206. 

Erales, J., Marchand, V., Panthu, B., Gillot, S., Belin, S., Ghayad, S.E., Garcia, M., Laforêts, F., 
Marcel, V., Baudin-Baillieu, A., et al. (2017). Evidence for rRNA 2’-O-methylation plasticity: Control of 
intrinsic translational capabilities of human ribosomes. Proc. Natl. Acad. Sci. U. S. A. 114, 12934–
12939. 

Esguerra, J., Warringer, J., and Blomberg, A. (2008). Functional importance of individual rRNA 2’-O-
ribose methylations revealed by high-resolution phenotyping. RNA 14, 649–656. 

van der Feltz, C., DeHaven, A.C., and Hoskins, A.A. (2018). Stress-induced Pseudouridylation Alters 
the Structural Equilibrium of Yeast U2 snRNA Stem II. J. Mol. Biol. 430, 524–536. 

Fischer, N., Neumann, P., Konevega, A.L., Bock, L.V., Ficner, R., Rodnina, M.V., and Stark, H. 
(2015). Structure of the E. coli ribosome--EF-Tu complex at< 3 Å resolution by C s-corrected cryo-EM. 
Nature 520, 567–570. 

Frye, M., Harada, B.T., Behm, M., and He, C. (2018). RNA modifications modulate gene expression 
during development. Science 361, 1346–1349. 

Garalde, D.R., Snell, E.A., Jachimowicz, D., Sipos, B., Lloyd, J.H., Bruce, M., Pantic, N., Admassu, T., 
James, P., Warland, A., et al. (2018). Highly parallel direct RNA sequencing on an array of 
nanopores. Nat. Methods 15, 201–206. 

Geula, S., Moshitch-Moshkovitz, S., Dominissini, D., Mansour, A.A., Kol, N., Salmon-Divon, M., 
Hershkovitz, V., Peer, E., Mor, N., Manor, Y.S., et al. (2015). Stem cells. m6A mRNA methylation 
facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006. 

Guo, M., Liu, X., Zheng, X., Huang, Y., and Chen, X. (2017). m6A RNA Modification Determines Cell 
Fate by Regulating mRNA Degradation. Cellular Reprogramming 19, 225–231. 

Haussmann, I.U., Bodi, Z., Sanchez-Moran, E., Mongan, N.P., Archer, N., Fray, R.G., and Soller, M. 
(2016). m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. 
Nature 540, 301–304. 

Hebras, J., Krogh, N., Marty, V., Nielsen, H., and Cavaillé, J. (2019). Developmental changes of rRNA 
ribose methylations in the mouse. RNA Biol. 1–15. 

Heiss, N.S., Knight, S.W., Vulliamy, T.J., Klauck, S.M., Wiemann, S., Mason, P.J., Poustka, A., and 
Dokal, I. (1998). X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene 
with putative nucleolar functions. Nat. Genet. 19, 32–38. 

Higa-Nakamine, S., Suzuki, T., Uechi, T., Chakraborty, A., Nakajima, Y., Nakamura, M., Hirano, N., 
Suzuki, T., and Kenmochi, N. (2012). Loss of ribosomal RNA modification causes developmental 
defects in zebrafish. Nucleic Acids Res. 40, 391–398. 

Huang, T., Chen, W., Liu, J., Gu, N., and Zhang, R. (2019). Genome-wide identification of mRNA 5-
methylcytosine in mammals. Nat. Struct. Mol. Biol. 26, 380–388. 

Hussain, S., Aleksic, J., Blanco, S., Dietmann, S., and Frye, M. (2013). Characterizing 5-
methylcytosine in the mammalian epitranscriptome. Genome Biol. 14, 215. 

Jack, K., Bellodi, C., Landry, D.M., Niederer, R.O., Meskauskas, A., Musalgaonkar, S., Kopmar, N., 
Krasnykh, O., Dean, A.M., Thompson, S.R., et al. (2011). rRNA pseudouridylation defects affect 
ribosomal ligand binding and translational fidelity from yeast to human cells. Mol. Cell 44, 660–666. 

Jonkhout, N., Tran, J., Smith, M.A., Schonrock, N., Mattick, J.S., and Novoa, E.M. (2017). The RNA 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189969


 

modification landscape in human disease. RNA 23, 1754–1769. 

Kan, L., Grozhik, A.V., Vedanayagam, J., Patil, D.P., Pang, N., Lim, K.-S., Huang, Y.-C., Joseph, B., 
Lin, C.-J., Despic, V., et al. (2017). The m6A pathway facilitates sex determination in Drosophila. Nat. 
Commun. 8, 15737. 

Knight, S.W., Heiss, N.S., Vulliamy, T.J., Greschner, S., Stavrides, G., Pai, G.S., Lestringant, G., 
Varma, N., Mason, P.J., Dokal, I., et al. (1999). X-Linked Dyskeratosis Congenita Is Predominantly 
Caused by Missense Mutations in the DKC1 Gene. The American Journal of Human Genetics 65, 50–
58. 

Krogh, N., Jansson, M.D., Häfner, S.J., Tehler, D., Birkedal, U., Christensen-Dalsgaard, M., Lund, 
A.H., and Nielsen, H. (2016). Profiling of 2′-O-Me in human rRNA reveals a subset of fractionally 
modified positions and provides evidence for ribosome heterogeneity. Nucleic Acids Research 44, 
7884–7895. 

Lafontaine, D.L.J. (2015). Noncoding RNAs in eukaryotic ribosome biogenesis and function. Nat. 
Struct. Mol. Biol. 22, 11–19. 

Lahens, N.F., Kavakli, I.H., Zhang, R., Hayer, K., Black, M.B., Dueck, H., Pizarro, A., Kim, J., Irizarry, 
R., Thomas, R.S., et al. (2014). IVT-seq reveals extreme bias in RNA sequencing. Genome Biol. 15, 
R86. 

Lee, Y., Choe, J., Park, O.H., and Kim, Y.K. (2020). Molecular Mechanisms Driving mRNA 
Degradation by m6A Modification. Trends Genet. 36, 177–188. 

Leger, A., Amaral, P.P., Pandolfini, L., and Capitanchik, C. (2019). RNA modifications detection by 
comparative Nanopore direct RNA sequencing. BioRxiv. 

Lence, T., Akhtar, J., Bayer, M., Schmid, K., Spindler, L., Ho, C.H., Kreim, N., Andrade-Navarro, M.A., 
Poeck, B., Helm, M., et al. (2016). m6A modulates neuronal functions and sex determination in 
Drosophila. Nature 540, 242–247. 

Li, H. (2018). Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. 

Li, S., and Mason, C.E. (2014). The pivotal regulatory landscape of RNA modifications. Annu. Rev. 
Genomics Hum. Genet. 15, 127–150. 

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, 
R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map 
format and SAMtools. Bioinformatics 25, 2078–2079. 

Li, X., Zhu, P., Ma, S., Song, J., Bai, J., Sun, F., and Yi, C. (2015). Chemical pulldown reveals 
dynamic pseudouridylation of the mammalian transcriptome. Nat. Chem. Biol. 11, 592–597. 

Li, X., Xiong, X., and Yi, C. (2016). Epitranscriptome sequencing technologies: decoding RNA 
modifications. Nat. Methods 14, 23–31. 

Li, X., Xiong, X., Zhang, M., Wang, K., Chen, Y., Zhou, J., Mao, Y., Lv, J., Yi, D., Chen, X.-W., et al. 
(2017). Base-Resolution Mapping Reveals Distinct mA Methylome in Nuclear- and Mitochondrial-
Encoded Transcripts. Mol. Cell 68, 993–1005.e9. 

Liao, J., Yu, L., Mei, Y., Guarnera, M., Shen, J., Li, R., Liu, Z., and Jiang, F. (2010). Small nucleolar 
RNA signatures as biomarkers for non-small-cell lung cancer. Mol. Cancer 9, 198. 

Liu, H., Begik, O., Lucas, M.C., Ramirez, J.M., Mason, C.E., Wiener, D., Schwartz, S., Mattick, J.S., 
Smith, M.A., and Novoa, E.M. (2019). Accurate detection of m6A RNA modifications in native RNA 
sequences. Nat. Commun. 10, 4079. 

Loman, N.J., Quick, J., and Simpson, J.T. (2015). A complete bacterial genome assembled de novo 
using only nanopore sequencing data. Nat. Methods 12, 733–735. 

Louloupi, A., Ntini, E., Conrad, T., and Ørom, U.A.V. (2018). Transient N-6-Methyladenosine 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189969


 

Transcriptome Sequencing Reveals a Regulatory Role of m6A in Splicing Efficiency. Cell Reports 23, 
3429–3437. 

Lovejoy, A.F., Riordan, D.P., and Brown, P.O. (2014). Transcriptome-wide mapping of 
pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One 9, 
e110799. 

Marcel, V., Ghayad, S.E., Belin, S., Therizols, G., Morel, A.-P., Solano-Gonzàlez, E., Vendrell, J.A., 
Hacot, S., Mertani, H.C., Albaret, M.A., et al. (2013). p53 acts as a safeguard of translational control 
by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell 24, 318–330. 

Marchand, V., Ayadi, L., Ernst, F.G.M., Hertler, J., Bourguignon-Igel, V., Galvanin, A., Kotter, A., 
Helm, M., Lafontaine, D.L.J., and Motorin, Y. (2018). AlkAniline-Seq: Profiling of m7G and m3C RNA 
Modifications at Single Nucleotide Resolution. Angew. Chem. Int. Ed. 57, 16785–16790. 

Mei, Y.-P., Liao, J.-P., Shen, J., Yu, L., Liu, B.-L., Liu, L., Li, R.-Y., Ji, L., Dorsey, S.G., Jiang, Z.-R., et 
al. (2012). Small nucleolar RNA 42 acts as an oncogene in lung tumorigenesis. Oncogene 31, 2794–
2804. 

Meyer, K.D., Saletore, Y., Zumbo, P., Elemento, O., Mason, C.E., and Jaffrey, S.R. (2012). 
Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3′ UTRs and near Stop 
Codons. Cell 149, 1635–1646. 

Motorin, Y., and Helm, M. (2019). Methods for RNA Modification Mapping Using Deep Sequencing: 
Established and New Emerging Technologies. Genes 10. 

Natchiar, S.K., Myasnikov, A.G., Kratzat, H., Hazemann, I., and Klaholz, B.P. (2017). Visualization of 
chemical modifications in the human 80S ribosome structure. Nature 551, 472–477. 

Novoa, E.M., Mason, C.E., and Mattick, J.S. (2017). Charting the unknown epitranscriptome. Nat. 
Rev. Mol. Cell Biol. 18, 339–340. 

Novoa, E.M., Beaudoin, J.-D., Giraldez, A.J., Mattick, J.S., and Kellis, M. (2020). Best practices for 
genome-wide RNA structure analysis: combination of mutational profiles and drop-off information. 
BioRxiv. 

Pandolfini, L., Barbieri, I., Bannister, A.J., Hendrick, A., Andrews, B., Webster, N., Murat, P., Mach, P., 
Brandi, R., Robson, S.C., et al. (2019). METTL1 Promotes let-7 MicroRNA Processing via m7G 
Methylation. Mol. Cell 74, 1278–1290.e9. 

Parker, M.T., Knop, K., Sherwood, A.V., Schurch, N.J., Mackinnon, K., Gould, P.D., Hall, A.J.W., 
Barton, G.J., and Simpson, G.G. (2020). Nanopore direct RNA sequencing maps the complexity of 
Arabidopsis mRNA processing and m6A modification. eLife 9. 

Parker, S., Fraczek, M.G., Wu, J., Shamsah, S., Manousaki, A., Dungrattanalert, K., de Almeida, R.A., 
Estrada-Rivadeneyra, D., Omara, W., Delneri, D., et al. (2017). A resource for functional profiling of 
noncoding RNA in the yeast Saccharomyces cerevisiae. RNA 23, 1166–1171. 

Pintard, L., Bujnicki, J.M., Lapeyre, B., and Bonnerot, C. (2002). MRM2 encodes a novel yeast 
mitochondrial 21S rRNA methyltransferase. EMBO J. 21, 1139–1147. 

Polikanov, Y.S., Melnikov, S.V., Söll, D., and Steitz, T.A. (2015). Structural insights into the role of 
rRNA modifications in protein synthesis and ribosome assembly. Nat. Struct. Mol. Biol. 22, 342–344. 

Pratanwanich, P.N., Yao, F., Chen, Y., Koh, C.W.Q., Hendra, C., Poon, P., Goh, Y.T., Yap, P.M.L., 
Yuan, C.J., Chng, W.J., et al. (2020). Detection of differential RNA modifications from direct RNA 
sequencing of human cell lines. BioRxiv. 

Price, A.M., Hayer, K.E., McIntyre, A.B.R., Gokhale, N.S., Della Fera, A.N., Mason, C.E., Horner, 
S.M., Wilson, A.C., Depledge, D.P., and Weitzman, M.D. (2019). Direct RNA sequencing reveals m6A 
modifications on adenovirus RNA are necessary for efficient splicing. BioRxiv. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189969


 

Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., and Mesirov, 
J.P. (2011). Integrative genomics viewer. Nat. Biotechnol. 29, 24–26. 

Roundtree, I.A., Evans, M.E., Pan, T., and He, C. (2017). Dynamic RNA Modifications in Gene 
Expression Regulation. Cell 169, 1187–1200. 

Ryvkin, P., Leung, Y.Y., Silverman, I.M., Childress, M., Valladares, O., Dragomir, I., Gregory, B.D., 
and Wang, L.-S. (2013). HAMR: high-throughput annotation of modified ribonucleotides. RNA 19, 
1684–1692. 

Safra, M., Sas-Chen, A., Nir, R., Winkler, R., Nachshon, A., Bar-Yaacov, D., Erlacher, M., 
Rossmanith, W., Stern-Ginossar, N., and Schwartz, S. (2017). The m1A landscape on cytosolic and 
mitochondrial mRNA at single-base resolution. Nature 551, 251–255. 

Sahoo, T., del Gaudio, D., German, J.R., Shinawi, M., Peters, S.U., Person, R.E., Garnica, A., 
Cheung, S.W., and Beaudet, A.L. (2008). Prader-Willi phenotype caused by paternal deficiency for 
the HBII-85 C/D box small nucleolar RNA cluster. Nat. Genet. 40, 719–721. 

Sas-Chen, A., Thomas, J.M., Matzov, D., Taoka, M., Nance, K.D., Nir, R., Bryson, K.M., Shachar, R., 
Liman, G.L.S., Burkhart, B.W., et al. (2020). Dynamic RNA acetylation revealed by quantitative cross-
evolutionary mapping. Nature. 

Schaefer, M., Kapoor, U., and Jantsch, M.F. (2017). Understanding RNA modifications: the promises 
and technological bottlenecks of the “epitranscriptome.” Open Biology 7, 170077. 

Schwartz, S., Bernstein, D.A., Mumbach, M.R., Jovanovic, M., Herbst, R.H., León-Ricardo, B.X., 
Engreitz, J.M., Guttman, M., Satija, R., Lander, E.S., et al. (2014). Transcriptome-wide mapping 
reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162. 

Sergeeva, O.V., Bogdanov, A.A., and Sergiev, P.V. (2015). What do we know about ribosomal RNA 
methylation in Escherichia coli? Biochimie 117, 110–118. 

Sharma, S., and Lafontaine, D.L.J. (2015). “View From A Bridge”: A New Perspective on Eukaryotic 
rRNA Base Modification. Trends Biochem. Sci. 40, 560–575. 

Sloan, K.E., Warda, A.S., Sharma, S., Entian, K.-D., Lafontaine, D.L.J., and Bohnsack, M.T. (2017). 
Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and 
function. RNA Biol. 14, 1138–1152. 

Smith, M.A., Ersavas, T., Ferguson, J.M., Liu, H., Lucas, M.C., Begik, O., Bojarski, L., Barton, K., and 
Novoa, E.M. (2019). Barcoding and demultiplexing Oxford Nanopore native RNA sequencing reads 
with deep residual learning. BioRxiv. 

Sović, I., Šikić, M., Wilm, A., Fenlon, S.N., Chen, S., and Nagarajan, N. (2016). Fast and sensitive 
mapping of nanopore sequencing reads with GraphMap. Nat. Commun. 7, 11307. 

Taoka, M., Nobe, Y., Hori, M., and Takeuchi, A. (2015). A mass spectrometry-based method for 
comprehensive quantitative determination of post-transcriptional RNA modifications: the complete 
chemical structure of …. Nucleic Acids. 

Taoka, M., Nobe, Y., Yamaki, Y., Yamauchi, Y., Ishikawa, H., Takahashi, N., Nakayama, H., and 
Isobe, T. (2016). The complete chemical structure of Saccharomyces cerevisiae rRNA: partial 
pseudouridylation of U2345 in 25S rRNA by snoRNA snR9. Nucleic Acids Res. 44, 8951–8961. 

Taoka, M., Nobe, Y., Yamaki, Y., Sato, K., Ishikawa, H., Izumikawa, K., Yamauchi, Y., Hirota, K., 
Nakayama, H., Takahashi, N., et al. (2018). Landscape of the complete RNA chemical modifications 
in the human 80S ribosome. Nucleic Acids Res. 46, 9289–9298. 

Vu, L.P., Pickering, B.F., Cheng, Y., Zaccara, S., Nguyen, D., Minuesa, G., Chou, T., Chow, A., 
Saletore, Y., MacKay, M., et al. (2017). The N6-methyladenosine (m6A)-forming enzyme METTL3 
controls myeloid differentiation of normal hematopoietic and leukemia cells. Nature Medicine 23, 
1369–1376. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189969


 

Wang, X., Li, Z.-T., Yan, Y., Lin, P., Tang, W., Hasler, D., Meduri, R., Li, Y., Hua, M.-M., Qi, H.-T., et 
al. (2020). LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Spermatogenesis 
in Mice. Mol. Cell 77, 999–1013.e6. 

Weng, H., Huang, H., Wu, H., Qin, X., Zhao, B.S., Dong, L., Shi, H., Skibbe, J., Shen, C., Hu, C., et al. 
(2018). METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes 
Leukemogenesis via mRNA m6A Modification. Cell Stem Cell 22, 191–205.e9. 

Wongsurawat, T., Jenjaroenpun, P., Wassenaar, T.M., Wadley, T.D., Wanchai, V., Akel, N.S., Franco, 
A.T., Jennings, M.L., Ussery, D.W., and Nookaew, I. (2018). Decoding the Epitranscriptional 
Landscape from Native RNA Sequences. BioRxiv.  

Wu, G., Xiao, M., Yang, C., and Yu, Y.-T. (2011). U2 snRNA is inducibly pseudouridylated at novel 
sites by Pus7p and snR81 RNP. EMBO J. 30, 79–89. 

Yoon, A., Peng, G., Brandenburger, Y., Zollo, O., Xu, W., Rego, E., and Ruggero, D. (2006). Impaired 
control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906. 

Zhang, L.-S., Liu, C., Ma, H., Dai, Q., Sun, H.-L., Luo, G., Zhang, Z., Zhang, L., Hu, L., Dong, X., et al. 
(2019). Transcriptome-wide Mapping of Internal N7-Methylguanosine Methylome in Mammalian 
mRNA. Mol. Cell 74, 1304–1316.e8. 

Zhou, K.I., Shi, H., Lyu, R., Wylder, A.C., Matuszek, Ż., Pan, J.N., He, C., Parisien, M., and Pan, T. 
(2019). Regulation of Co-transcriptional Pre-mRNA Splicing by m6A through the Low-Complexity 
Protein hnRNPG. Mol. Cell 76, 70–81.e9. 

 

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.06.189969doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.06.189969


 

FIGURES 
 
Figure 1. Systematic analysis of base-calling and mapping algorithms for the detection of RNA 
modifications in direct RNA sequencing datasets (A) Overview of the synthetic constructs used to 
benchmark the algorithms, which included both unmodified (UNM and UNM-S) and modified (m6A, 
m5C, hm5C and Y) sequences. For each dataset, we performed: i) comparison of base-calling 
algorithms, ii) comparison of mapping algorithms, iii) detection of RNA modifications using base-called 
features and iv) comparative analysis of features to distinguish similar RNA modifications. (B) 
Barplots comparing the percentage of base-called reads using 4 different base-calling algorithms in 6 
different unmodified and modified datasets. (C) Relative proportion of base-called and mapped reads 
using all possible combinations (16) of base-callers and mappers included in this study, for each of 
the 6 datasets analyzed. (D) IGV snapshots illustrating the differences in mapping for 3 distinct 
datasets: UNM, m6A-modified and Y-modified when base-called with GU 3.0.3. (E) Mean sequence 
identity of different combinations of base-calling and mapping algorithms, for each of the 6 datasets 
analyzed.  
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Figure 2. RNA modifications can be detected in the form of systematic base-calling ‘errors’. (A) 
Comparison of global mismatch frequencies using different base-calling algorithms, for the 6 datasets 
analyzed. (B) Principal Component Analysis (PCA) using as input the base-calling error features of 
quality, mismatch frequency and deletion frequency in positions -2, -1, 0, 1 and 2, for all datasets 
base-called with GU 3.0.3 and AL 2.1.7 and mapped with GraphMap and minimap2 on sensitive 
settings. Only k-mers that contained a modification at position 0 were included in the analysis, and the 
equivalent set of unmodified k-mers was used as a control. (C) Per-nucleotide mismatch frequency 
illustrating which is the reference base where the increased base-calling errors are occurring, for each 
dataset and base-caller mapper (GraphMap sensitive or minimap2 sensitive).  
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Figure 3. RNA modifications can be detected in yeast ribosomal RNA using base-calling 
errors. (A) IGV snapshots of yeast ribosomal subunits 5s, 5.8s, 18s and 25s. Known modification 
sites are indicated below each snapshot and nucleotides with mismatch frequencies greater than >0.1 
have been colored. (B) Comparison of base-calling features (base quality, mismatch, deletion and 
insertion frequency) from distinct RNA modification types present in yeast ribosomal RNA. The most 
descriptive base-calling error per modification is outlined in red. Only RNA modification sites without 
additional neighboring RNA modifications in the 5-mer were included in the analysis: Y (n=37), Am 
(n=14), Cm (n=8), Gm (n=8), Um (n=7), ac4C (n=2), m1A (n=2), m3U (n=2), m5C (n=2), m1acp3Y 
(n=1), m5U (n=1), m7G (n=1). (C) Ternary plots and barplots depicting the mismatch directionality for 
selected rRNA modifications (Y, Am, Cm, Gm). Y rRNA modifications tend towards U-to-C 
mismatches while Am, Cm and Gm modifications did not show specific mismatch directionality 
patterns. 
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Figure 4. Pseudouridylation and 2’-O-methylations cause systematic base-calling ‘errors’ as 
well as altered current intensities, and their signature disappears upon depletion of snoRNAs 
guiding the modification. (A) IGV snapshots of wild type and three snoRNA-depleted strains with 
zoomed subsets depicting the site-specific loss of base-called errors at known Y target positions 
(indicated by asterisks). Nucleotides with mismatch frequencies greater than >0.1 have been colored. 
(B) Comparison of snoRNA knockout mismatch frequencies for each base, relative to wild type, with 
snoRNA targets sites indicated in red, and non-target sites in gray. (C) IGV snapshots of wild type and 
three snoRNA knockout yeast strains depicting the site-specific loss of base-called errors at known 
Nm target positions. Nucleotides with mismatch frequencies greater than >0.1 have been colored. (D) 
Comparison of snoRNA knockout summed error frequencies for each base, relative to wild type, with 
snoRNA targets sites indicated in red, neighboring sites in blue and non-target sites in gray. (E) 
Changes in per-read current intensity distributions at known Y-modified sites were altered upon 
deletion of specific snoRNAs relative to wild type and control Y-modified sites that were not targeted 
by the depleted snoRNAs. (F) Distributions of per-read current intensity at known 2’-O-methylated 
sites were altered upon deletion of specific snoRNAs relative to wild type and control 2-O-methyl-
modified sites that were not targeted by the depleted snoRNAs.  
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Figure 5. Loss of specific Y rRNA modifications causes deviations in current intensity in 
regions surrounding the Y sites. (A) Current intensity changes along the 25s rRNA molecule upon 
snR3 depletion, relative to the wild type strain. In the bottom panel, a zoomed version focusing on the 
two regions with the most significant current intensity deviations is shown; the first one comprising the 
25s:Y2129 and 25s:Y2133 sites, and the second one comprising the 25s:Y2264 site. (B) Comparison 
of current intensity changes for Y knockout sites across each of the snoRNA knockout strains, and 
two control sites (25s:Y986 and 25s:Y1004), which are not affected by snoRNA depletion. The dotted 
line indicates the modification position. Of the 6 Y sites that were targeted in the 3 knockout strains 
studied, only 2 (25s:Y2826 and 25s:Y2880) show a significant deviation in current intensity in the 
expected position relative to wild type. (C) Comparison of current intensity changes for 2’-O-methyl 
knockout sites across each of the snoRNA knockout strains, as well as of a control site (25s:Am867), 
which is not affected by snoRNA depletion. The dotted line indicates the modification position. (D) 
Per-read analysis of current intensities centered at the Y-modified sites targeted by each of the 3 
knockout strains. In each panel, the per-read current intensities centered in the modified site are 
shown, both for the wild type (purple) and knockout strain (red: snR3, first panel; green: snR34, 
second panel; cyan: snR36, third panel). As a control, the same analysis was performed at a control 
site (25s:Y1004), using reads from wild type (purple) and snR34 knockout strain (green) showing no 
differences between the read populations. For each site, Principal Component Analysis was 
performed using 15-mer current intensity values, and the corresponding scatterplot of the two first 
principal components (PC1 and PC2) is shown on the right, using as input the same read populations 
as in the left panels. Each dot corresponds to a different read, and is colored according to the strain 
(snR3:red; snR34:green; snR36:cyan;wt:purple) . (E) Per-read analysis of current intensities centered 
at 2’-O-methylated sites targeted by snR60 and snR61. In each panel, the per-read current intensities 
centered in the modified site are shown, both for the wild type (purple) and knockout strain 
(snR60:salmon; snR61:navy; snR62: light blue). On the right side of each current intensity panel, 
scatterplots of the two first principal components (PC1 and PC2) of the 15-mer current intensity values 
are shown. Each dot corresponds to a different read, and is colored according to the strain. (F) 
Predicted stoichiometry of Y- and Nm-modified sites using a k-nearest neighbors (KNN) classification 
algorithm to cluster reads into Y-modified and unmodified.  
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Figure 6. De novo prediction of Y modifications reveals a novel Pus4-dependent mitochondrial 
rRNA modification. (A) Ternary plot of mismatch signatures of U positions in mitochondrial 15s 
rRNA. Each position has been colored according to its mismatch frequency. Position 15s:854 shows 
high mismatch frequency and a U-to-C mismatch signature, which is highly similar to the signatures 
generated by Y modifications. In the right panel, IGV coverage tracks of the 15s mitochondrial rRNA, 
including a zoomed version showing the tracks centered at the 15s:854 site, in two biological 
replicates. (B) Location of the putative Y854 modified site in the yeast mitochondrial ribosome. The 
LSU has been colored in cyan, whereas the SSU has been colored in gray. The tRNA is located in the 
P-site of the ribosome. The PDB structure shown corresponds to 5MRC. (C) The candidate Y site is 
located at the 852-860 loop of the 15s rRNA, which resembles the t-arm of the tRNAs that is modified 
by Pus4. The binding motif of Pus4 (RRUUCNA) matches with the motif surrounding the 854U site 
(Schwartz et al., 2014). (D) IGV coverage tracks showing that Pus4 knockout leads to depletion of the 
mismatch signature in the 15s:854 position. (E) Scatterplot of mismatch frequencies in WT and 
Pus4KO cells, showing that the only significant position affected by the knockout of Pus4 is 15sU854. 
(F) Validation of the 15s:Y854 with nanoCMC-Seq, which combines CMC treatment with Nanopore 
cDNA sequencing in order to capture RT-drops that occur at Y-modified sites upon CMC probing. RT-
drops are defined by counting the number of reads ending (3’) at a given position. CMC-probed 
samples will cause accumulation of reads with same 3’ ends at positions neighboring the Y site (red), 
whereas untreated samples will show random distribution of 3’ ends of their reads (teal) (G) 854U 
position in 15s rRNA gives the most significant RT-stop signal in CMC-probed conditions (red), 
whereas this peak is not observed in untreated samples (teal). As a control, we analyzed the 
nanoCMC-seq results in other rRNA molecules, finding that all detected RT-stop peaks correspond to 
known Y rRNA modification sites.  
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Figure 7. Comparative analysis of yeast rRNA and snRNA Y modifications upon distinct 
environmental stresses identifies previously known and novel heat-sensitive snRNA and 
snoRNA Y-modified sites. (A) Comparison of mismatch frequencies for all rRNA bases from 
untreated or yeast exposed to oxidative stress (H2O2, left panel), cold stress (4ºC middle panel) or 
heat stress (45ºC, right panel), across two biological replicates. Each dot represents a base. All rRNA 
bases from cytosolic rRNAs are included in the analysis and plots. (B) Untreated vs stressed 
mismatch scores, for all three stress conditions, in previously reported ncRNA Y sites (Schwartz et al., 
2014). (C) Ternary plots showing the mismatch frequency and distribution of the known sn/snoRNA 
pseudouridylation positions in normal condition and heat shock. Positions are grouped in three, 
positions reported to be heat responsive (Schwartz et al, 2014); novel positions discovered to be heat 
responsive; non-heat responsive positions. (D) IGV snapshots of normal condition (rep1 and rep2) 
and heat shock condition (rep1 and rep2) yeast strains zoomed into the known sn/snoRNA 
pseudouridylation positions (Labeled with a blue star). Nucleotides with mismatch frequencies greater 
than >0.1 have been colored. Coverage for each position/condition is given on the top left of each 
row. (E) Polysome profiles of ribosomal-bound RNA fractions isolated from untreated and stressed 
H2O2-treated yeast cells. (F) Comparison of mismatch frequency for untreated vs H202-treated input 
RNA (left) and untreated vs H2O2-treated ribosome-bound RNA (right). (G) Profiles of ribosomal 
fractions isolated from yeast grown under normal conditions, using polysome gradient fractionation, 
including free rRNAs which are not part of ribosomal subunit (F1), rRNAs from 40s and 60s subunits 
(F2), rRNAs extracted from monosomal fractions (F3) and polysome fractions (F4). (H) IGV snapshots 
of the two Y sites that change stoichiometry between translational fractions and four representative Y 
sites that show no significant change. Nucleotides with mismatch frequencies greater than >0.1 have 
been colored.      
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SUPPLEMENTARY FIGURES 
 
Figure S1. IGV snapshots illustrate the differences in mapping results when using distinct 
base-calling and mapping algorithm combinations. The algorithms have been benchmarked using 
four in vitro transcribed sequences (‘curlcakes’), which were either unmodified (UNM), m6A-modified 
(m6A), m5C-modified (m5C), hm5C-modified (hm5C) or Ѱ-modified (Ѱ). Reads were base-called using 
either Albacore 2.1.7 (AL 2.1.7) or Guppy 3.0.3 (GU 3.0.3), and then mapped using minimap2 or 
GraphMap in ‘sensitive’ mode.  
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Figure S2. RNA modifications have distinct base-calling ‘error’ signatures and are sequence 
context-dependent. (A) Comparison of read lengths and mean quality scores in different in vitro 
transcribed datasets (UNM, m6A, Ѱ, m5C, hm5C and UNM-S) when base-called using different 
algorithms (AL 2.1.7, AL 2.3.4, GU 2.3.1 or GU 3.0.3). Results show that read lengths do not largely 
vary across base-callers. By contrast, per-base quality strongly varies depending on the choice of 
base-calling algorithm. (B) Barplots of mean per-base quality show that per-base qualities are slightly 
decreased in all modified datasets, relative to unmodified ones, being this different most evident when 
the data has been base-called with GU 3.0.3. (C) Ternary plots depicting the mismatch distribution of 
the unmodified (left) and modified (right) positions colored by log coverage, in 5 different in vitro 
datasets: unmodified (all left panels), m6A-modified (m6A), Ѱ-modified (Ѱ), m5C-modified (m5C), 
hm5C-modified (hm5C). Only modified nucleotides, and their relative unmodified counterparts in the 
UNM dataset, are shown. Each dot represents a different nucleotide in the reference. (D) Logo 
representations of the mismatch signatures generated by m5C and hm5C. Results show that the 
signatures are different depending on the modification; however, these also vary depending on the 5-
mer sequence. Mismatch mostly occurs in neighboring positions.  
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Figure S3. Ribosomal RNA modifications present in yeast rRNAs show distinct base-calling 
‘error’ signatures. (A) IGV snapshots centered in distinct yeast ribosomal RNA modifications. Known 
rRNA modification sites are indicated below each snapshot. Nucleotides with mismatch frequencies 
greater than >0.15 have been colored. (B) Dotplots of base-calling errors (deletion frequency, 
insertion frequency, mismatch Frequency, and per-base quality) observed in modified 5-mers, 
centered in the modified position. Each dot corresponds to a different 5-mer. The total number of 5-
mers included in the analysis varies depending on the abundance of each rRNA modification type in 
yeast rRNAs: Ѱ (n=46), Am (n=14), Cm (n=10), Gm (n=15) and Um (n=9). 5-mers that contain more 
than one modification in the 5-mer region were excluded from the analysis. 
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Figure S4. Base-calling signature of 2’-O-methylations often alter the neighboring positions, 
whereas Ѱ modifications mainly affect the modified site. (A) IGV snapshots centered in distinct 
yeast rRNA modified sites: Ѱ-modified sites are shown in the upper panels, whereas 2’-O-methylated 
sites are shown in the bottom panels. (B) Comparison of base-calling ‘errors’ (mismatch, deletion and 
insertion frequency) observed in snoRNA-depleted strains (snR60, top panels; snR61, middle panels, 
snR62, bottom panels) relative to wild type, with snoRNA targets sites indicated in red, neighboring 
sites indicated in blue and non-target sites in gray.   
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Figure S5. Pseudouridylations and 2’-O-methylations can be detected and quantified in the 
form of altered current intensities. (A) Absolute differences in current intensity along the 25s rRNA 
and 18s rRNAs upon depletion of snR34 and snR36, respectively, relative to the wild type strain. Red 
vertical lines indicate the KO pseudouridylation positions. (B) Per-read analysis of current intensities 
centered at the Ѱ modified sites targeted by each of the 3 knockout strains. In each panel, the per-
read current intensities centered in the modified site are shown, both for the wild type (purple) and 
knockout strain (red: snR3; green: snR34; cyan: snR36). As a control, the same analysis was 
performed at two control sites (25s:Ѱ986), using reads from wild-type (purple) and snR34 knockout 
strain (green) showing no differences between the read populations. Each line indicates a single read. 
(C) Accuracy barplots of stoichiometry predictions using different algorithms at pseudouridylation and 
2’-O-methylation positions.   
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Figure S6. De novo prediction of Ѱ modifications reveals a novel Pus4-dependent modification 
(15s:Ѱ854) in yeast mitochondrial rRNAs, and captures previously reported Pus4-dependent 
mRNA modifications. (A) Comparison of base-calling errors (deletion and Insertion frequency) in 
Pus4-depleted strains, relative to wild type, both in cytosolic (left panels) and mitochondrial rRNAs 
(right panels). See also main Figure 6 for comparison of mismatch frequencies between the strains. 
(B) Comparison of mismatch frequency for each base, relative to wild type in positions mapped to 
yeast genome and rRNA. Top plot is replicate 1 and bottom plot is replicate 2. (C) IGV snapshots of 
wild type (rep1 and rep2) and Pus4 knockout (rep1 and rep2) yeast strains with zoomed subsets 
depicting the site-specific loss of mismatch at known target positions. Nucleotides with mismatch 
frequencies greater than >0.1 have been colored. (D) RT-stop signal on 25s rRNA in CMC-probed 
conditions (green), whereas this peak is not observed in untreated samples (red). All detected RT-
stop peaks correspond to known Ѱ rRNA modification sites indicated with a dashed line. 
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Figure S7. Comparative analysis of mismatch frequencies can be employed to identify 
differentially modified Ѱ sites across strains and conditions, but the mismatch frequencies at 
Ѱ positions do not correspond to Ѱ modification stoichiometries. (A) Mismatch scores in 
individual known sn/snoRNA pseudouridylation positions calculated by delta mismatch frequency 
between heat shock and normal conditions. (B) Comparison of mismatch frequencies for different 
fractions of ribosomal RNAs (F1: Free, F2: Subunit, F3: Monosome, F4: Polysome). Each dot 
represents a base, with significantly altered Ѱ sites highlighted in red. The remaining Ѱ sites are 
shown in black and the rest of the sites in gray. All rRNA bases from cytosolic rRNAs are included in 
the analysis and plots. (C) Current intensity density plots showing altered current intensity distribution 
in positions 25s:Ѱ2826 (left) and 25s:Ѱ2880 (right), in the wild-type-strain strain (which will 
correspond to a Ѱ-centered k-mers) and snR34 knockout strain (which will correspond to U-centered 
k-mers). Current intensity distribution of the equivalent 5-mers with C in the middle position are shown 
in blue (C). 
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