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Abstract 15 

Background:  Research on the molecular ecology of non-model organisms, while 16 

previously constrained, has now been greatly facilitated by the advent of reduced-17 

representation sequencing protocols. However, tools that allow these large datasets to 18 

be efficiently parsed are often lacking, or if indeed available, then limited by the 19 

necessity of a comparable reference genome as an adjunct. This, of course, can be 20 

difficult when working with non-model organisms. Fortunately, pipelines are currently 21 

available that avoid this prerequisite, thus allowing data to be a priori parsed. An oft-22 

used molecular ecology program (i.e., STRUCTURE), for example, is facilitated by such 23 

pipelines, yet they are surprisingly absent for a second program that is similarly popular 24 

and computationally more efficient (i.e., ADMIXTURE). The two programs differ in that 25 

ADMIXTURE employs a maximum-likelihood framework whereas STRUCTURE uses a 26 

Bayesian approach, yet both produce similar results. Given these issues, there is an 27 

overriding (and recognized) need among researchers in molecular ecology for 28 

bioinformatic software that will not only condense output from replicated ADMIXTURE 29 

runs, but also infer from these data the optimal number of population clusters (K).  30 

 31 

Results: Here we provide such a program (i.e., ADMIXPIPE) that (a) filters SNPs to allow 32 

the delineation of population structure in ADMIXTURE, then (b) parses the output for 33 

summarization and graphical representation via CLUMPAK. Our benchmarks effectively 34 

demonstrate how efficient the pipeline is for processing large, non-model datasets 35 

generated via double digest restriction-site associated DNA sequencing (ddRAD). 36 
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Outputs not only parallel those from STRUCTURE, but also visualize the variation among 37 

individual ADMIXTURE runs, so as to facilitate selection of the most appropriate K-value.  38 

 39 

Conclusions: ADMIXPIPE successfully integrates ADMIXTURE analysis with popular 40 

variant call format (VCF) filtering software to yield file types readily analyzed by 41 

CLUMPAK. Large population genomic datasets derived from non-model organisms are 42 

efficiently analyzed via the parallel-processing capabilities of ADMIXTURE. ADMIXPIPE is 43 

distributed under the GNU Public License and freely available for Mac OSX and Linux 44 

platforms at: https://github.com/stevemussmann/admixturePipeline. 45 

 46 

Keywords: RADseq, SNP analysis, Population Genomics, Population Structure, 47 

ADMIXTURE analysis 48 

  49 

Background  50 

Advances in genomics during the past decade have accelerated research in 51 

molecular ecology by significantly increasing the capacity of researchers to generate 52 

vast quantities of data at relatively low cost. These advances largely represent the 53 

development of reduced representation genomic libraries [1–3] that identify tens of 54 

thousands of SNPs for non-model organisms, coupled with high-throughput sequencing 55 

methods that efficiently genotype fewer SNPs for thousands of individuals [4]. However, 56 

data generation, particularly through these novel and affordable marker-discovery 57 

methods [5], has greatly outpaced analytical capabilities, and especially so with regard 58 

to evolutionary and conservation genomics.  59 
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Here, technological advances have also precipitated a suite of new analytical 60 

issues. The thousands of SNPs generated in a typical RADseq project may exhibit 61 

biases that impact the inferences that can be drawn from these data [6], and which 62 

necessitate careful data filtration to avoid [7]. Yet, the manner by which data are filtered 63 

represents a double-edged sword. While it is certainly mandated (as above), the 64 

procedures involved must be carefully evaluated in the context of each study, in that  65 

downstream analyses can be seriously impacted [8, 9], to include the derivation of 66 

population structure [10]. 67 

For example, the analysis of multilocus codominant markers in evaluation of 68 

population structure is frequently accomplished using methods that make no a priori 69 

assumptions about underlying structure. One of the most popular options to accomplish 70 

this is the program STRUCTURE [11–13]. However, it necessitates that users test specific 71 

clustering values (K), and conduct post hoc evaluation of these results so as to 72 

determine an optimal K [14]. This typically involves searching a complicated parameter 73 

space using heuristic algorithms for Maximum Likelihood (ML) and Bayesian (BA) 74 

methods that, in turn, provide additional complications such as a tendency to sample 75 

local optima [15].  76 

A common strategy to mitigate this is to sample multiple independent replicates 77 

at each K, using different random number seeds for initialization. These results are 78 

subsequently collated and evaluated to assess confidence that global rather than local 79 

optima have indeed been sampled. Clearly, this procedure must be automated so as to 80 

alleviate the onerous task of testing multiple replicates across a range of K-values. 81 

Pipelines to do so are available for STRUCTURE, and have been deployed on high-82 
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performance computing systems via integrated parallelization (STRAUTO, 83 

PARALLELSTRUCTURE) [16, 17]. Multiple programs have likewise been developed for 84 

handling STRUCTURE output (i.e., CLUMPP, DISTRUCT) [18, 19]; and pipelines constructed 85 

to assess the most appropriate K-values (i.e., STRUCTUREHARVESTER, CLUMPAK) [20, 21].  86 

Despite the considerable focus on STRUCTURE, few such resources have been 87 

developed for a popular alternative program (i.e., ADMIXTURE [22]). The Web of Science 88 

indexing service indicates that (as of January, 2020) it has been cited 1,812 times since 89 

initial publication (September, 2009). This includes 479 (26.4%) in 2019 alone. Despite 90 

its popularity, it has just a single option that promotes the program as part of a pipeline 91 

(i.e., SNIPLAY3 [23]), and unfortunately it requires a reference genome as an adjunct for 92 

its application. Needless to say, its applicability is thus limited for those laboratories that 93 

employ non-model organisms as study species. 94 

Options for post-processing of ADMIXTURE results are similarly deficit. However, 95 

one positive is that CLUMPAK is flexible enough in its implementation to allow for the 96 

incorporation of ADMIXTURE output, as well as that of STRUCTURE. Furthermore, no 97 

available software currently exists that can summarize the variation in cross-validation 98 

(CV) values, the preferred method for selecting an optimal K-value in ADMIXTURE [24].  99 

Here we describe a novel software package that integrates ADMIXTURE as the 100 

primary component of an analytical pipeline that also incorporates the filtering of data as 101 

part of its procedure. This, in turn, provides a high-throughput capability that not only 102 

generates input for ADMIXTURE but also evaluates the impact of filtering on population 103 

structure. ADMIXPIPE also automates the process of testing multiple K-values, conducts 104 

replicates at each K, and automatically formats these results as input for the CLUMPAK 105 
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pipeline. Optional post-processing scripts are also provided as a part of the toolkit to 106 

process CLUMPAK output, and to visualize the variability among CV values for 107 

independent ADMIXTURE runs. Sections of the pipeline are specifically designed for use 108 

with non-model organisms, as these are increasingly common study species in 109 

evolutionary and conservation genomic investigations.  110 

 111 

Implementation 112 

 ADMIXPIPE requires two input files: a population map and a standard VCF file. 113 

The population map is a tab-delimited text file with each row representing a sample 114 

name/ population pair. The VCF file is filtered according to user-specified command line 115 

options that include the following: minor allele frequency (MAF) filter, biallelic filtering, 116 

data thinning measured in basepairs (bp), and missing data filtering (for both individuals 117 

and loci). Users may also remove specific samples from their analysis by specifying a 118 

file of sample names to be ignored. All filtering and the initial conversion to PLINK 119 

(PED/MAP) format [25] is handled by VCFTOOLS [26].  120 

 ADMIXPIPE is intended for use with non-model organisms that lack genomic 121 

reference data, and given this, additional conversions are required before the PLINK-122 

formatted files will be accepted by ADMIXTURE. Popular software packages for de novo 123 

assembly of RADseq data, such as pyRAD [27, 28] produce VCF files with each locus 124 

as an individual “chromosome.” This, in turn, yields output that exceeds the number of 125 

chromosomes in those model organisms for which PLINK was originally designed. The 126 

initial MAP file is therefore modified to append a letter at the start of each “chromosome” 127 
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number. PLINK is then executed using the “–allow-extra-chr 0” option that treats loci as 128 

unplaced contigs in the final PED/ MAP files submitted to ADMIXTURE. 129 

 The main element of the pipeline executes ADMIXTURE on the filtered data. The 130 

assessment of multiple K values and multiple replicates is automated based upon user-131 

specified command line input. The user defines minimum and maximum K values to be 132 

tested, in addition to the number of replicates for each K. Users may also specify the 133 

number of processor cores to be utilized by ADMIXTURE, and the cross-validation number 134 

which is utilized in determining optimal K. The final outputs of the pipeline include a 135 

compressed results file and a population file that are submitted as-is to CLUMPAK for 136 

processing and visualization. 137 

 The pipeline also offers two accessory scripts for processing of CLUMPAK output. 138 

The first (i.e., distructRerun.py) compiles the major clusters identified by CLUMPAK, 139 

generates DISTRUCT input files, executes DISTRUCT, and extracts CV-values for all major 140 

cluster runs. The second script (i.e., cvSum.py) plots the boxplots of CV-values against 141 

each K so as to summarize the distribution of CV-values for multiple ADMIXTURE runs. 142 

This permits the user to make an informed decision on the optimal K by graphing how 143 

these values vary according to independent ADMIXTURE runs.  144 

ADMIXTURE is the only component of the pipeline that is natively parallelized. 145 

Therefore, we performed benchmarking to confirm that processing steps did not 146 

significantly increase runtime relative to that expected for ADMIXTURE. Data for 147 

benchmarking were selected from a recently published paper that utilized ADMIXPIPE for 148 

data processing [29]. The test data contained 343 individuals and 61,910 SNPs. Four 149 

data thinning intervals (i.e.,1, 25, 50, and 100) yielded SNP datasets of variable size for 150 
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performance testing. All filtering intervals were repeated with variable numbers of 151 

processor cores (i.e.,1, 2, 4, 8, and 16). Sixteen replicates of ADMIXTURE were first 152 

conducted for each K=1-8 at each combination of thinning interval and number of 153 

processor cores, for a total of 20 executions of the pipeline. The process was then 154 

repeated for each K=9-16, for an additional 20 runs of the pipeline. Memory profiling 155 

was conducted through the python3 ‘mprof’ package at K=16, with a thinning interval of 156 

1 as a final test of performance. All tests were completed on a computer equipped with 157 

dual Intel Xeon E5-4627 3.30GHz processors, 256GB RAM, and with a 64-bit Linux 158 

environment.  159 

 160 

Results 161 

 The filtering intervals resulted in datasets containing 61,910 (interval = 1bp), 162 

25,851 (interval = 25bp), 19,140 (interval = 50bp), and 12,527 SNPs (interval = 100bp). 163 

Runtime increased linearly with the number of SNPs analyzed, regardless of the 164 

number of processors utilized (Figure 1: R2 = 0.975, df = 58). For example, increasing 165 

the number of SNPs from 12,527 to 61,910 (494% increase) produced an average 166 

increase of 519% in ADMIXPIPE runtime (SD = 41.6%).  167 

Little change was observed in response to increasing the numbers of processor 168 

cores from K=1-8 (Figure 2A). A slight decrease in performance was observed in some 169 

cases, particularly for the largest dataset. This trend changed at higher K-values, as 170 

substantial gains were observed at K=9-16 when processors were increased from 1 to 171 

4. The most dramatic performance increase was observed for the 61,910 SNP dataset, 172 

where a 24.3-hour (34.5%) reduction in computation time occurred when processors 173 
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increased from 1 to 4. However, only marginal improvements occurred when processors 174 

were increased from 1 to 8 (24.5 hours; 34.7%) or 16 (26.2 hours; 37.7%).  175 

Profiling also revealed efficient and consistent memory usage. The greatest 176 

memory spike occurred during the initial filtering steps, when peak memory usage 177 

reached approximately 120 MB. All subsequent usage held constant at ~60 MB as 178 

ADMIXTURE runs progressed.  179 

 180 

Discussion 181 

The performance of ADMIXPIPE improved with the number of processor cores 182 

utilized at higher K-values. However, it did not scale at the rate suggested in the original 183 

ADMIXTURE publication. We have been unable to attribute the difference in performance 184 

to any inherent property of our pipeline. Filtering and file conversion steps at the 185 

initiation of ADMIXPIPE are non-parallel sections. Reported times for completion of these 186 

steps were approximately constant across runs, with the maximum reported time being 187 

eight seconds. This indicates that ADMIXTURE itself is the main driver of performance, as 188 

it comprises the vast majority of system calls made by ADMIXPIPE. 189 

The original performance increase documented for ADMIXTURE was 392% at K=3, 190 

utilizing four processor cores [24]. Unfortunately, we could not replicate this result with 191 

our benchmarking data [29], or the original test data (i.e.,324 samples; 13,928 SNPs) 192 

[24] which parallels our own. When we attempted to replicate the original benchmark 193 

scores, we found that it also failed to scale as the number of processor cores increased 194 

(1-core �� = 40.63 seconds, � = 0.90; 4-core �� = 47.46 seconds, � = 4.71). Furthermore, 195 

we verified that performance did increase with up to four processor cores at higher K 196 
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values (K≥9). We therefore view this as ‘expected behavior’ for ADMIXTURE, and find no 197 

reason to believe that ADMIXPIPE has negatively impacted the performance of any 198 

individual program.  199 

Results of ADMIXPIPE were similar to those found by STRUCTURE for the test 200 

dataset, as evaluated in an earlier publication [29], and gauged for the optimum K=8. 201 

This is not surprising, given that ADMIXTURE implements the same likelihood model as 202 

does STRUCTURE [22]. However, minor differences have previously been noted for both 203 

programs in the assignment probabilities [29, 30].  204 

Memory usage was efficient and constant, with the greatest increase occurring 205 

when PLINK was executed. Thus, users will be able to execute ADMIXPIPE on their 206 

desktop machines for datasets sized similarly to that evaluated herein. Performance 207 

gains were minimal with >4 processors, and this (again) reduces the necessity for 208 

supercomputer access, since desktop computers with ≥4 processor cores are now 209 

commonplace. However, given the built-in parallelization capabilities of ADMIXPIPE, its 210 

application on dedicated high-performance computing clusters will be beneficial when 211 

runtime considerations are necessary, such as when evaluating K>8, or SNPs≥20,000.  212 

Finally, our integration of common SNP filtering options provides the flexibility to 213 

quickly filter data and assess the manner by which various filtering decisions impact 214 

results. A byproduct of the filtering process is the production of a STRUCTURE-formatted 215 

file that will facilitate comparisons with other popular algorithms that assess population 216 

structure. These options are important tools, particularly given recent documentation 217 

regarding of the impacts of filtering on downstream analyses. We thus suggest that 218 
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users implement existing recommendations on filtering RAD data, and use these to 219 

investigate subsequent impacts on their own data [7–10].  220 

 221 

Conclusions 222 

Benchmarking has demonstrated that the benefits of ADMIXPIPE (e.g., low 223 

memory usage and performance scaling with low numbers of processor cores at high K-224 

values) will prove useful for researchers with limited access to advanced computing 225 

resources. ADMIXPIPE also allows the effects of common filtering options to be assessed 226 

on population structure of study species by coupling this process with the determination 227 

of population structure. Integration with CLUMPAK, and our custom options that allow 228 

plotting of data, to include variability in CV-values and customization of population-229 

assignment plots, will facilitate the selection of appropriate K-values and allow variability 230 

to be assessed across runs. These benefits thus allow researchers to implement 231 

recommendations regarding assignment of population structure in their studies, and to 232 

accurately report the variability found in their results [31]. In conclusion, ADMIXPIPE is a 233 

new tool that successfully fills a contemporary gap found in pipelines that assess 234 

population structure. It is our hope that ADMIXPIPE, and its subsequent improvements 235 

will greatly facilitate the analysis of SNP data in non-model organisms. 236 

 237 

 238 
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 365 

Figure 1. The percent increase in runtime for ADMIXPIPE exhibits a nearly 1:1 ratio with 366 
respect to percent increase in the number of SNPs. Data is based upon pairwise 367 
comparisons in runtime and input size increases for four datasets of varying size 368 
(61,910 SNPs, 25,851 SNPs,, 19,140 SNPs, and 12,527 SNPs). R2 = 0.975, degrees of 369 
freedom=58.  370 
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Figure 2. Results of benchmarking ADMIXPIPE for two ranges of population clustering 372 
(K) values. Time is presented in hours on the Y-axis. Plot A shows total runtime for 20 373 
replicates each of K=1-8. Plot B shows total runtime for 16 replicates each of K=9-16. 374 
The number of processor cores (CPU=1, 2, 4, 8, and 16) was varied across runs. Four 375 
data thinning intervals (1, 25, 50, and 100) produced variable numbers of SNPs 376 
(61,910, 25,851, 19,140, and 12,527 respectively).  377 
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