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 2 

ABSTRACT 1 

Determining which genes are targeted by miRNAs is crucial to elucidate their 2 

contributions to diverse biological processes in health and disease. Most 3 

miRNA target prediction tools rely on the identification of complementary 4 

regions between transcripts and miRNAs. Whereas important for target 5 

recognition, the presence of complementary sites is not sufficient to identify 6 

transcripts targeted by miRNAs.  7 

Here, we describe an unbiased statistical genomics approach that explores 8 

genetically driven changes in gene expression between human individuals. 9 

Using this approach, we identified transcripts that respond to physiological 10 

changes in miRNA levels. We found that a much smaller fraction of mRNAs 11 

expressed in lymphoblastoid cell lines (LCLs) than what is predicted by other 12 

tools is targeted by miRNAs. We estimate that each miRNA has a relatively 13 

small number of targets. The transcripts we predict to be miRNA targets are 14 

enriched in AGO-binding and previously validated miRNAs target interactions, 15 

supporting the reliability of our predictions. Consistent with previous analysis, 16 

these targets are also enriched among dosage sensitive and highly controlled 17 

genes.  18 

Almost a third of genes we predict to be miRNA targets lack sequence 19 

complementarity to the miRNA seed region (noncanonical targets). These 20 

noncanonical targets have higher complementary with the miRNA 3’ end. The 21 

impact of miRNAs on the levels of their canonical or noncanonical targets is 22 

identical supporting the relevance of this poorly explored mechanism of 23 

targeting. 24 

25 
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 3 

INTRODUCTION 1 

 2 

Post-transcriptional regulation by microRNAs (miRNAs) is widespread in 3 

eukaryotes (Bartel 2004). These small (20-22 nucleotide) noncoding RNAs 4 

guide target recognition by the miRNA-Induced Silencing Complex (miRISC), 5 

which in turn leads to transcript degradation or translational repression (Bartel 6 

2004). In animals, loss of function mutations in miRISC proteins (Kataoka et al. 7 

2001; Alisch et al. 2007; Morita et al. 2007; Vasquez-Rifo et al. 2012) or proteins 8 

involved in miRNA maturation (Bernstein et al. 2003; Wienholds et al. 2003; 9 

Giraldez et al. 2005; Wang et al. 2008) are embryonically lethal. This highlights 10 

the importance of post-transcriptional regulation by miRNAs, particularly during 11 

early development. In contrast, the phenotypes associated with loss of function 12 

mutations in individual miRNAs are often cell/tissue specific, consistent with the 13 

spatial and temporally restricted expression of most miRNAs (reviewed in 14 

(Bartel 2018)). The penetrance and impact of miRNA loss of function mutations 15 

is also highly heterogenous, ranging for example from postnatal lethality 16 

(Heidersbach et al. 2013) to increased susceptibility to genetic or environmental 17 

stressors (Stadthagen et al. 2013). This heterogeneity is likely a consequence 18 

of the diverse functions of genes whose expression is regulated by miRNAs. 19 

Given the importance of miRNAs in diverse biological processes in health and 20 

disease (Bartel 2018), significant efforts have gone into determining the 21 

mechanisms of miRNA targeting and identifying the repertoire of individual 22 

miRNA targets (Eulalio and Mano 2015).  23 

In animals, miRNA target recognition often relies on the base pairing between 24 

the miRNA seed region (nucleotides 2-8) and target miRNA recognition 25 

elements (MREs), frequently found at the target 3’ untranslated regions (UTRs) 26 

(Bartel 2004). We refer to this miRNA targeting architecture as “canonical”. 27 

Over the past decades, a wide array of prediction methods were developed to 28 

establish the miRNA targetome (Peterson et al. 2014). These softwares 29 

primarily rely on identifying well-established canonical signatures of 30 
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 4 

miRNA:target interactions, including sequence complementarity, accessibility, 1 

location and conservation of MREs, as well as favourable binding energy 2 

between miRNA and target (Peterson et al. 2014). Notably, the overlap 3 

between predictions made by different softwares is often small (Sethupathy et 4 

al. 2006) and fewer than 1% of predicted miRNA targets are supported by 5 

experimental evidence for miRISC binding (Fridrich et al. 2019). These 6 

analyses highlight the extent of false predictions and our poor understanding of 7 

the properties that underlie efficient targeting and regulation by miRNAs. 8 

Machine learning approaches, in particular those guided by well-defined 9 

interactions between miRNA and target (McGeary et al. 2019), have the 10 

potential to improve computational prediction of miRNA targets (Schafer and 11 

Ciaudo 2020). But given the scarcity of large and comprehensive sets of true 12 

miRNA targets, the development of such tools is currently restricted.  13 

Alternatively, miRNAs targets can be experimentally identified based on the 14 

evidence of their interaction with miRISC or that their expression levels change 15 

in response to genetic miRNA perturbations. Given the ease to measure the 16 

impact of miRNA level changes on gene expression levels transcriptome-wide, 17 

the latter approach has been extensively used (Bartel 2018). However, the 18 

impact of miRNA perturbation on gene expression is 1) often smaller than the 19 

inter-individual variation in transcript levels, suggesting many of these changes 20 

are inconsequential (Pinzon et al. 2017); and 2) this approach does not allow 21 

the distinction between changes due to miRNA targeting (direct) or miRNA-22 

driven changes in the levels of gene expression regulators, including 23 

transcription factors or RNA binding proteins (indirect) (Thomas et al. 2010).   24 

Cross-liking Immunoprecipitation (CLIP) based approaches have been used to 25 

identify transcripts bound by miRISC (reviewed in (Lin and Miles 2019)) in vitro 26 

(i.e. (Hafner et al. 2010)) and in vivo (i.e. (Li et al. 2019)). Experimental evidence 27 

for AGO-binding greatly increases the accuracy of miRNA target predictions. 28 

However not all transcripts bound by miRISC are miRNA targets (Agarwal et al. 29 

2015). Furthermore, whereas, as expected, transcripts with reproducible 30 

binding are enriched among true targets, they are depleted in lowly abundant 31 

transcripts leading to false negative predictions (Wessels et al. 2019).  32 
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 5 

Despite their low sensitivity, methods like CLASH (Helwak et al. 2013) or miR-1 

CLIP (Imig et al. 2015) have experimentally detected direct miRNA:target 2 

interactions and revealed that a sizable fraction of these interactions occurs at 3 

regions outside of the 3’UTRs or rely on noncanonical or mismatch containing 4 

seed sites (Helwak et al. 2013). High-throughput analysis of affinity binding also 5 

supports that some miRNAs can recognize their targets through noncanonical 6 

configurations (Becker et al. 2019; McGeary et al. 2019). The extent of 7 

noncanonical targeting cannot be assessed using most of the currently 8 

available computational prediction tools, further highlighting their limitations. 9 

To overcome some of limitations of the current miRNA target prediction 10 

methods, we developed an approach that explores genetically driven changes 11 

in gene expression between human individuals. This approach allowed us to 12 

identify canonical and noncanonical targets that respond to physiological  13 

changes in miRNA levels.  14 

 15 

16 
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 6 

RESULTS 1 

 2 

Identification of miRNA targets in LCLs 3 

To identify physiologically relevant miRNA-target interactions, we leveraged 4 

small RNA sequencing for a panel of 360 lymphoblastoid cell lines (LCLs), 5 

derived from healthy individuals of European descent with known genotype 6 

(Lappalainen et al. 2013; 1000 Genomes Project et al. 2015). For 62% (n=444) 7 

of all LCL expressed miRNAs, we identified at least one single nucleotide 8 

polymorphisms (SNPs) in the vicinity of their corresponding miRNA gene whose 9 

changes were significantly (FDR<0.05, Methods) associated with mature 10 

miRNA levels (Figure 1A, Supplementary S1A). We refer to these variants as 11 

miRNA quantitative trait loci (mirQTLs). We reasoned that targets of these 12 

miRNAs should be inversely associated with these mirQTLs in trans (Methods), 13 

consistent with miRNAs being negative regulators of gene expression. We used 14 

polyA-selected RNA-sequencing data in these cells and identified 6325 mRNAs 15 

(42.6% of the 14847 LCL-expressed genes) associated in trans in the inverse 16 

direction with at least one miRNA mirQTL (n=6430 joint eQTLs, Methods, 17 

Figure 1B,C, Supplementary S1B).  18 

The association between a mirQTL and a mRNA can be a consequence of 1) 19 

the mRNA levels being regulated by the miRNA (causal model); 2) the miRNA 20 

and mRNA being independently associated with the same variant, for example 21 

if the same transcription factor regulates transcription of both the miRNA and 22 

mRNA (independent model); 3) the miRNA being regulated by the mRNA 23 

(reactive model); or 4) an undetermined mode of regulation (undecided model, 24 

Figure 1D)(Wang and Michoel 2017). We used causal inference analysis to 25 

distinguish between these different possibilities for each joint eQTL-miRNA-26 

mRNA trio. We found that with a false discovery rate of 10%, a tenth (10.3%, 27 

n=665) of all associations are mediated by changes in miRNA levels (Figure 28 

1E). In total, we identified around 4% of all LCL-expressed genes (593 out of 29 

14847) to be causal targets for 143 miRNAs. This corresponds to an average 30 
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 7 

of 5 targets per miRNA (median 2 targets, ranging between 1 and 44) (Figure 1 

1F) and 1-2 miRNAs targeting each transcript (Figure 1G, Supplementary Table 2 

ST1).  3 

 4 

Figure 1. GenVar approach detects physiologically relevant miRNA targets. (A) 5 
Distribution of miR-30d-5p expression (Y-axis, CPMs) in individuals with different 6 
genotypes of the SNP variant (rs7818560, X-axis, mirQTL). (B) Distribution of GLIS3 7 

Figure 1. 
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 8 

(ENSG00000107249) expression (RPKM, Y-axis) in individuals with different 1 
genotypes of the SNP variant (rs7818560, X-axis, trans-eQTL). Beta slope and pvalue 2 
of eQTL associations are shown in the inset. (C) The distribution of co-expression 3 
(Spearman’s correlation) between levels of miRNAs and genes that are jointly (green) 4 
or not jointly (grey) associated to the same SNP variant. Differences between groups 5 
were tested using a two-tailed Mann-Whitney U test.  *** p < 0.001. (D) Schematic 6 
representation of the four models of causal inference testing that predict the 7 
relationship between joint eQTL variant (black box) associations with the miRNA levels 8 
(mirQTL) (blue) and target gene expression level (trans-eQTL) (green): (1) direct 9 
association between the variant and miRNA levels mediates the indirect association 10 
between that and target gene expression (causal model); (1) the variant is 11 
independently associated with miRNA and target levels (independent model); (3) direct 12 
association between the variant with target expression mediates the indirect 13 
association between that and miRNA levels (reactive model); and (4) the interaction 14 
between miRNA levels and target expression is complex (undecided model). Direct 15 
associations are depicted as solid lines and indirect associations as dash lines. (E) 16 
Scatterplot depicting causal inference testing local FDR associated with each the four 17 
models (as illustrated in D). The likelihood of target regulating miRNA levels is plotted 18 
on the x-axis and the likelihood of miRNA regulation target expression is plotted on the 19 
y-axis. Number and proportion of joint eQTLs are provided in brackets for each model. 20 
Dotted red lines denote significance threshold at local FDR < 0.1. Frequency 21 
distribution of the (F) number of predicted targets per miRNA and (G) number of 22 
targeting miRNAs per gene. 23 

 24 

Given stronger mirQTL associations might bias towards detecting cases where 25 

miRNA levels causally mediate the association between the variant and target 26 

expression, we compared the overall strength of associations between 27 

mirQTLs and target trans-eQTLs and found no evidence that stronger mirQTLs 28 

would favour causal model predictions (Supplementary Figure S1C). Hereafter 29 

we refer to transcripts predicted to be targeted by miRNAs based on their 30 

genetic variations in humans as GenVar-targets. 31 

 32 

Limitations of GenVar-target identification approach 33 

It is well established that the power to detect quantitative trait loci for relatively 34 

lowly expressed genes is limited (GTEx Consortium et al. 2017). We assessed 35 

the extent by which this hampered our ability to use the GenVar approach to 36 

predict miRNA targets. miRNAs with predicted GenVar-targets (n=143) are 37 

among the most highly expressed in LCLs (n=716, p=9.4x10-7, two-tailed Mann-38 
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 9 

Whitney U test, Figure 2A). Similarly, we found GenVar-targets are more highly 1 

expressed than non-targets (p=6.57x10-5, two-tailed Mann-Whitney U test, 2 

Figure 2B). These findings possibly reflect the approach’s limitation to predict 3 

lowly expressed miRNAs and target transcripts. 4 

 5 

Figure 2. Limitations of the GenVar approach. (A) Distribution of subsets of LCL-6 
expressed miRNA levels with mirQTL associations, whose mirQTLs are jointly 7 
associated with target expression (joint-eQTLs), and with predicted GenVar-targets 8 
(blue). (B) Distribution of subsets LCL-expressed gene expression levels with those 9 
that are jointly associated with a mirQTL (joint-eQTL), and those that are predicted 10 
GenVar-targets (green). (C) In blood samples, distribution of trans-eQTL associations 11 
(Zscore) between validated GenVar-targets (dark green), putative targets (light green) 12 
or nontargets (grey) with mirQTLs. Differences between groups were tested using a 13 
two-tailed Mann-Whitney U test. * p < 0.05; ** p < 0.01; *** p < 0.001; NS p > 0.05. 14 

 15 

Cohort size is also a well-established contributor to the power of quantitative 16 

trait analysis (Beavis 1998). To assess whether our predictions were limited by 17 

this, we used a dataset that is almost 100 times larger (31,684 blood samples, 18 

eQTLGen consortium (Võsa et al. 2018)) than the one used to identify GenVar-19 

targets (360 LCLs (Lappalainen et al. 2013)). As the expression levels for 20 

mature miRNAs is unavailable for these blood samples and most blood 21 

expressed miRNAs are also detected in LCLs (Juzenas et al. 2017), we 22 

assumed mirQTLs are conserved between the two cohorts. We used publicly 23 

available trans-eQTL data from eQTLgen to assess miRNA-target associations 24 

in the blood samples. This data is available for a subset of human variants 25 

(GWAS-associated SNPs, n=10,317) and includes 101 miRQTL variants 26 

associated for 23 miRNAs with at least one GenVar-targets in LCLs (total 137 27 

Figure 2. 
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 10 

targets). In eQTLgen blood samples, 66% of GenVar-targets (90/137) were also 1 

significantly associated in trans and in the same direction with their respective 2 

miRNA, supporting the interaction between them. This high replication rate 3 

support robustness of the association between miRNAs and GenVar-targets. 4 

Consistent with this, replicated trans-eQTL associations between GenVar-5 

targets and mirQTLs in blood are significantly stronger compared to non-targets 6 

in LCLs (p<2.2x10-16, two-tailed Mann-Whitney U test, Supplementary Figure 7 

S2A). Compared to replicated associations between mirQTLs and GenVar-8 

targets, those only found in LCLs (34%) were similarly associated in blood 9 

(p=0.335, two-tailed Mann-Whitney U test, Supplementary Figure S2A), 10 

suggesting some of these are likely explained by LCL-specific miRNA 11 

regulation. 12 

In addition to the GenVar-targets we validated in blood (validated GenVar-13 

targets), we found the expression levels of another 48 genes are also correlated 14 

in trans with mirQTLs for 9 of the 23 miRNAs (median 1 target per miRNA, 15 

ranging from 1 to 22). Moreover, we also detected 470 putative targets for 23 16 

miRNAs with no predicted GenVar-targets in LCLs (median 4 targets per 17 

miRNA, ranging from 1 to 53). We refer to these 518 genes as putative targets. 18 

However, despite their trans-association with mirQTLs, since miRNA levels are 19 

not available in eQTLgen, we could not infer the causal relationship between 20 

miRNAs and these putative targets. Given in LCLs, GenVar-targets only 21 

accounted for a tenth of all genes associated with mirQTLs (Causal model, 22 

Figure 1E), we predict only a small portion of these putative targets are 23 

regulated by miRNAs. This hypothesis is supported by the significantly stronger 24 

trans-associations, in blood, between mirQTLs and validated GenVar-targets 25 

compared to putative targets (p<2.2x10-16, two-tailed Mann-Whitney U test, 26 

Figure 2C).  Nevertheless, our findings suggest that the small LCL cohort size 27 

likely limited our power in comprehensively detecting all miRNA targets. 28 

 29 
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 11 

miRNA GenVar-targets are enriched in AGO-binding and experimentally 1 

validated targets 2 

Using three widely-used miRNA prediction softwares: TargetScan (Agarwal et 3 

al. 2015), RNA22 (Miranda et al. 2006) and miRWalk (Sticht et al. 2018), we 4 

estimated between 88% and 93% of mRNAs to be targeted by at least 1 of the 5 

143 GenVar miRNAs (Supplementary Figure S3A). The proportion of genes 6 

(n=593) we predicted to be targeted by these miRNAs in LCLs is at least 20 7 

times smaller (Supplementary Figure S3A). The small number of miRNA targets 8 

might not be surprising given the low fraction of miRNA-target predictions 9 

common to all the 3 tools (11-21%, n=92812 out of 474,114, 825,295, 448,787 10 

total predictions from TargetScan, RNA22, and miRWalk, respectively, 11 

Supplementary Figure S3B) and the previously described high rate of false 12 

positives associated with the different prediction methods (Fridrich et al. 2019).  13 

The extent of these differences and our approach’s limitations probed us to 14 

investigate how different target prediction sets associate with properties of true 15 

miRNA targets. We found that the expression of GenVar-targets is more 16 

strongly inversely correlated with the levels of their targeting miRNAs compared 17 

to targets predicted by other computational tools in human LCLs (Figure 3A).  18 

Using publicly available iCLIP data in LCLs (Wan et al. 2014), we determined 19 

the extent by which the transcripts predicted by the different approaches were 20 

bound by AGO2. To minimize the impact of unspecific AGO2 binding in these 21 

analyses, we only considered transcripts with experimental evidence of binding 22 

across at least two thirds (4 out of 6) of the sequenced LCL samples (Methods). 23 

We found that GenVar-targets are significantly more often bound by AGO2 24 

(26.6%) than genes predicted by the other 3 tools (<17.9%, p<2.8x10-7, two-25 

tailed Fisher's exact test, Figure 3B). AGO2-binding density is also significantly 26 

higher at GenVar-targets compared to other predicted targets (p<0.02, two-27 

tailed Mann-Whitney U test, Figure 3C), supporting the enrichment of GenVar-28 

targets in miRISC binding and miRNA regulation.  29 

 30 
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 1 

Figure 3. GenVar targets are a reliable set of miRNA targets. (A) Distribution of co-2 
expression (Spearman’s correlation) between miRNA levels and their GenVar-targets 3 
(green) or targets predicted by three other tools (TargetScan, RNA22, and miRWalk, 4 
grey). (B) Table of the number and proportion of GenVar-targets or targets predicted 5 
by other tools to be bound by AGO2. (C) Distribution AGO2 binding density (length of 6 
AGO2 binding site/target 3’ UTR length) of GenVar-targets (green) and targets 7 
predicted by other tools. (D) Distribution of the number of AGO2-bound genes within 8 
1000 sets of randomly sampled genes from other predicted targets with matching 9 
expression levels and 3’ UTR length as GenVar-targets. Green arrow represent the 10 
number of AGO2-bound GenVar-targets. (E) Of all predictions by each of the three 11 
prediction tools, the enrichment in the proportion of experimentally validated (using 12 
direct Luciferase assays) GenVar-target predictions over nonGenVar-target 13 
predictions. (F) Distribution of the coefficient of variation (CV) in expression levels of 14 
GenVar-targets (green) and targets predicted by other tools (grey). (G) Table of the 15 
number and proportion of target predictions that are annotated as haplo-insufficient. 16 
Differences between groups were tested using a two-tailed Mann-Whitney U or two-17 
tailed Fisher’s exact test. * p < 0.05; ** p < 0.01; *** p < 0.001; NS p > 0.05. 18 
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As expected, transcripts with detectable AGO2 binding in iCLIP data are in 1 

general more highly expressed (p<2.4x10-10, two-tailed Mann-Whitney U test, 2 

Supplementary Figure S4A), reflecting the technical limitations of the 3 

technology (Wessels et al. 2019). More than 75% (n=447/593) of GenVar-4 

targets are less abundant than the median expression level of transcripts with 5 

experimental evidence of AGO2-binding (n=1101/14847, Supplementary 6 

Figure S4B), suggesting that AGO2-binding at many GenVar-targets may have 7 

escaped detection due to their relatively low expression. To account for this 8 

bias, we compared the extent of AGO2 binding at GenVar-targets relative to 9 

randomly sampled expression-matched genes predicted by the other 3 tools 10 

and we found that GenVar-targets are significantly more often bound by AGO2 11 

than their counterparts from other prediction methods (1.17-1.19 fold 12 

enrichment, p<0.024, permutation test, Figure 3D, Supplementary Figure S4C-13 

F).  14 

We tested the proportion of GenVar-targets that have been experimentally 15 

validated. Given the known ascertainment bias to experimentally validate 16 

previously computationally predicted miRNA targets, we compared the 17 

proportion of experimentally validated predictions by each of the three tools 18 

which are also detected using the GenVar approach to those not predicted by 19 

GenVar. We found a significantly higher fraction of GenVar-targets (p<0.05, 20 

two-tailed Fisher's exact test) has been experimentally validated using direct 21 

luciferase assays (1.5-1.9 fold-enrichment, Figure 3E, Supplementary Figure 22 

S4G) and in all catalogued experiments (1.4-1.7 fold-enrichment, 23 

Supplementary Figure S4H,I) relative to targets predicted by other tools 24 

(Karagkouni et al. 2018), further corroborating that our approach enriches for 25 

real miRNA targets. 26 

miRNA-mediated repression on most genes is frequently lower than the inter-27 

individual variability in their expression levels (Pinzon et al. 2017). This 28 

observation led to the proposal that only the levels of genes whose expression 29 

is under tight control, such as haplo-insufficient genes, can be effectively 30 
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regulated by miRNAs. Consistent with this, we found that the variation in 1 

GenVar-target expression across individuals in the human population are 2 

significantly lower compared to target predicted made by other tools (p<9.6x10-3 
5, two-tailed, Mann-Whitney U test, Figure 3F). We also found that GenVar-4 

targets are enriched in haplo-insufficient genes (p<3.0x10-3, two-tailed Fisher's 5 

exact test, Figure 3G), supporting the notion that miRNA-mediated 6 

phenotypical changes are likely due to their ability to regulate a relatively small 7 

set of dose-sensitive genes (Pinzon et al. 2017; Seitz 2017). 8 

 9 

Cancer-disrupted miRNA abundance is associated with causal target 10 

expression changes 11 

Given the limitations in iCLIP technique and the ascertainment bias in reporting 12 

of miRNA validation experiments, we sought an alternative unbiased approach 13 

to assess the reliability of GenVar-target predictions. We took advantage of 14 

extensive genotyping and transcriptomic data from blood-derived cancer 15 

samples to assess the impact of changes in miRNA expression on GenVar-16 

target levels. Specifically, we identified individuals that carry copy number 17 

variants (CNVs) that overlap primary miRNA loci in Lymphoid Neoplasm Diffuse 18 

Large B-cell Lymphoma (DLBC, Figure 4A)(Cancer Genome Atlas Research et 19 

al. 2013). These CNVs resulted in homozygous loss or multiple amplifications 20 

of 35 miRNAs (48 samples in total, median 1 samples per CNV, Supplementary 21 

Table ST2). 22 
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 1 

Figure 4. GenVar-target levels are impacted by change in miRNA copy number. 2 
(A) Copy number variations in DBLC cancer samples can result in duplications or 3 
deletions of primary miRNA loci. (B) Distribution of the fold difference in miRNA levels 4 
(CPM, blue), relative to the median of diploid samples, of individuals that carry 5 
homozygous deletions, diploid genotype, or multiple duplications at primary miRNA 6 
loci. (C) Distribution of fold difference in gene expression levels (RPKM) of GenVar-7 
targets (green) or targets predicted by other tools (grey), relative to the median of 8 
diploid samples, between individuals that carry homozygous deletions, diploid 9 
genotype, or multiple duplications at their targeting miRNAs. Differences between 10 
groups were tested using a two-tailed Mann-Whitney U test.  * p < 0.05; ** p < 0.01; 11 
*** p < 0.001; NS p > 0.05. 12 

 13 

Mature miRNA expression levels corroborated that, as expected, these CNVs 14 

led to decreased or increased miRNA expression by at least 9 and 12%, 15 

respectively (Figure 4B) relative to individuals that are diploid for the miRNA 16 

gene. The relative small impact of copy number changes on miRNA expression 17 

are likely a consequence of samples containing mixed normal and tumor cells 18 

(Cancer Genome Atlas Research et al. 2013). Changes in miRNA abundance 19 

were significantly negatively associated with expression levels of predicted 20 

GenVar-targets (p<0.05, two-tailed Mann-Whitney U test) but not with the levels 21 

of targets predicted by other tools (Figure 4B,C), substantiating direct miRNA 22 

post-transcriptional regulation of GenVar-targets.  23 

In summary, our results support  that  GenVar-targets are enriched 1) for 24 
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AGO2-binding, 2) for experimentally validated miRNA-target interactions, and 1 

3) are inversely impacted by changes in disrupted miRNA levels in cancer 2 

samples. These observations support that GenVar-targets represent a reliable 3 

catalogue of biologically relevant miRNA targets. 4 

 5 

miRNA targeting is enriched in canonical binding at 3'UTRs 6 

Given that our approach does not rely on the identification of perfectly 7 

complementary regions to the miRNA seed within transcripts, we next sought 8 

to estimate the extent of canonical and noncanonical miRNA targeting (Hausser 9 

and Zavolan 2014). Consistent with previous reports (Lewis et al. 2005), we 10 

found the majority of GenVar-targets (404 out of 593, 68.1%) harbour perfect 11 

seed matches for their targeting miRNAs at their 3’ UTRs (canonical 12 

targets)(Figure 5A). This proportion is significantly higher than randomly 13 

sampled genes with matching expression level and 3’ UTR length (p=0.001, 14 

permutation test, Supplementary Figure S5A). Compared to other predicted 15 

targets that also contain complementary seed regions, alignment profiles of 16 

canonical miRNA GenVar-target interactions showed these transcripts bear 17 

longer sequence complementary binding sites to miRNA seed region (p=0.039, 18 

two-tailed Mann Whitney test, Supplementary Figure S5B,C). This is consistent 19 

with significantly higher number of 8-mer and 7-mer binding sites found within 20 

GenVar-targets (52.5% 6-mer, 30.2% 7-mer, and 17.3% 8-mer) compared to 21 

other predicted targets (p<4.3x10-3, two-tailed Fisher’s exact test, 22 

Supplementary Figure S5D). 23 

In addition, some miRNAs have also been found to interact with regions in their 24 

target’s 5' UTRs or coding sequences (CDSs) (Chi et al. 2009; Helwak et al. 25 

2013). Of the 31.9% of GenVar-targets (n=189) with no canonical miRNA 26 

binding sites in their 3’ UTR targets, seed-matching sites were found at their 5’ 27 

UTR and CDS for 9.0% (n=17) and 31.2% (n=59), respectively. Unlike 28 

canonical GenVar-targets (Supplementary Figure S5A), these proportions are 29 

not significantly different from randomly sampled genes with matching 30 
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expression level and length of 5’ UTR or CDS (p>0.09, permutation test, 1 

Supplementary Figure S5E,F). Our findings are in line with the current 2 

understanding that miRNA targeting at 3' UTR is more likely to lead to 3 

physiological changes in target abundance (Gu et al. 2009).  4 

 5 

Noncanonical targets bear extensive complementarity to miRNA 3’ end 6 

Apart from perfect matches to the miRNA seed region that form canonical 7 

miRNA binding sites, sequence complementarity sites outside the seed region 8 

have also been shown to contribute to guiding miRNA target interactions 9 

(Becker et al. 2019; McGeary et al. 2019). To investigate binding architecture 10 

that underlie noncanonical miRNA targeting, we focused on the 31.9% of 11 

GenVar-targets that lack seed matching miRNA binding sites at 3’ UTRs (Figure 12 

5A, Supplementary Table ST3). In LCLs, the correlation between miRNAs and 13 

their canonical or noncanonical targets is statistically indistinguishable (p=0.81, 14 

two-tailed Mann-Whitney U test, Figure 5B). Similar impact on canonical and 15 

noncanonical GenVar-target expression was also observed as a result of 16 

disrupted miRNA levels by CNVs in blood cancer samples (p>0.29, two-tailed 17 

Mann-Whitney U test, CNVs disrupted the levels of 34 and 21 miRNA canonical 18 

and noncanonical GenVar-targets, respectively, Supplementary Figure S6). 19 

These findings support that other features may contribute to determining 20 

miRNA-mediated regulation for some miRNAs. Compared to randomly 21 

sampled genes with matching expression level and length, noncanonical 22 

GenVar-targets were not enriched to contain seed-matching MREs at 5’ UTR 23 

or CDS (p>0.05, permutation test, Supplementary Figure S7A,B). 24 
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 1 

Figure 5. A sizeable fraction of GenVar-targets is noncanonical. (A) Table (Upper 2 
panel)  and pie chart (lower panel)  illustrating the number and proportion of canonical 3 
and noncanonical GenVar-targets. (B) Distribution of co-expression (Spearman’s 4 
correlation) between miRNA levels and their canonical (green) and noncanonical 5 
(yellow) GenVar-targets, as well as targets predicted by other tools (grey). (C) Binding 6 
profile illustrating the average fraction of complementary sequence alignment between 7 
target and miRNA at each nucleotide position across the mature miRNA (5’ to 3’) for 8 
canonical and noncanonical GenVar-targets (green and yellow, respectively), as well 9 
as targets predicted other tools that contain canonical and noncanonical binding sites 10 
(light and dark grey, respectively). (D) Distribution of the number of complementary 11 
sequence alignments (nt) between canonical (green) or noncanonical (yellow) 12 
GenVar-targets with 3’ end of miRNAs. Differences between groups were tested using 13 
a two-tailed Mann-Whitney U test. * p < 0.05; ** p < 0.01; *** p < 0.001; NS p > 0.05. 14 

 15 

We assessed the alignment between noncanonical GenVar-targets and their 16 

associated miRNAs. Using adequate alignments between 68% of target 3’ UTR 17 

and their respective miRNAs, we found each miRNA have on average between 18 

2-3 noncanonical targets (ranging from 1 to 20, Supplementary Figure S7C). Of 19 
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all miRNAs with GenVar-targets, 43.3% regulate gene expression only through 1 

the canonical mode of binding, whereas 20.3% have only noncanonical targets, 2 

and 36.4% have a mixture of both (Supplementary Figure S7D). Alignment 3 

profiles of noncanonical miRNA GenVar-target interactions showed that, as 4 

expected, complementarity to miRNA seed regions is significantly less frequent 5 

than that found for canonical targets (p<2.2x10-16, two-tailed Mann Whitney test, 6 

Figure 5C, Supplementary Figure S7E). In contrast, extensive nucleotide 7 

complementarity was observed between noncanonical targets and 3’ end of 8 

miRNA (p<2.2x10-16, two-tailed Mann-Whitney test, Figure 5C,D), suggesting 9 

imperfect seed interaction may be compensated by additional binding outside 10 

of miRNA seed region.  11 

12 
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DISCUSSION 1 

Target identification remains one of the biggest challenges when trying to 2 

understand the contribution of miRNAs to post-transcriptional regulation of 3 

gene expression.  4 

Here we propose a target prediction method that leverages genetically driven 5 

changes in miRNA and transcript expression levels within humans to identify 6 

miRNA targets (GenVar-targets). Compared to targets predicted by other 7 

approaches, GenVar-targets are enriched in AGO2 binding, supporting their 8 

frequent association with the miRISC. As expected, given their established role 9 

in post-transcriptional repression, miRNA copy number changes in cancer, are 10 

inversely correlated with GenVar-target expression. This is in contrast to what 11 

we observe for miRNA targets predicted using other approaches, whose 12 

expression remain unchanged. Finally, a sizable fraction of GenVar-targets are 13 

validated in an independent dataset. These observations support the 14 

physiological relevance of our miRNA target predictions and the high specificity, 15 

especially relative to available alternatives, of the GenVar approach. 16 

GenVar-targets account for 4% of mRNAs expressed in lymphoblastoid cell 17 

lines (LCLs). The proportion of transcripts we predict to respond to physiological 18 

changes in miRNA levels is significantly smaller than what is estimated by other 19 

tools. This discrepancy between ours and other estimates is in part explained 20 

by the relatively high rate of false positive predictions of other methods [(Fridrich 21 

et al. 2019) and supported by our own analysis]. We also analyzed how different 22 

factors, including the expression levels of miRNAs, mRNAs and size of the 23 

human cohort, impact the sensitivity of the GenVar approach and likely increase 24 

false negative predictions. We found that, as expected, miRNA target 25 

associations are significantly stronger in larger cohorts. The large cohort size 26 

also allowed us to identify an additional set of putative targets not detected 27 

using the smaller set of LCL samples. We therefore anticipate that the ongoing 28 

trend to expand population cohort size will result in increased prediction 29 
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sensitivity and has the potential to extend the repertoire of physiologically 1 

relevant miRNA targets.  2 

In summary, our analysis supports the functional relevance of GenVar-targets 3 

with relatively low false positive predictions. High specificity of GenVar 4 

predictions is accompanied by decreased sensitivity that we anticipate can be 5 

minimized with increased cohort size. Furthermore, given most miRNAs are 6 

tissue specifically expressed, GenVar-targets identified in LCLs are therefore 7 

most likely relevant for this and closely related cells/tissues. The application of 8 

this approach to other cells or tissues has the potential to uncover the miRNA 9 

targetome in different tissues and to reveal potential tissue-specific features of 10 

miRNA targeting. 11 

We further investigated the miRNA target binding architecture of GenVar 12 

predictions. Specifically and given that the GenVar approach does not require 13 

prior knowledge of miRNAs binding features, it provides an unbiased target set 14 

to investigate the extent of noncanonical targeting by miRNAs. Consistent with 15 

previous studies (Chi et al. 2009; Hafner et al. 2010; Helwak et al. 2013), we 16 

found a sizable fraction (around 32%) of miRNA targets are noncanonical. The 17 

impact of miRNA on target expression is independent of binding architecture 18 

since variation in miRNA levels was similarly associated with changes in the 19 

expression of their canonical or noncanonical targets. Our observations are in 20 

line with recent high-throughput binding affinity experiments (Becker et al. 2019; 21 

McGeary et al. 2019) and earlier studies (Vella et al. 2004; Didiano and Hobert 22 

2006), and support the functional relevance of noncanonical targeting by 23 

miRNAs and the diversity of their binding architecture.  24 

This mode of targeting, which we predict accounts for around a third of miRNA 25 

target interactions, is missed by most prediction methods and thus remains 26 

poorly understood. Specifically, we found that most noncanonical targets sites 27 

that lack perfect seed matches contained additional sequence complementarity 28 

with 3’ ends of the miRNA, suggesting mismatches between target and miRNA 29 

seed regions can be compensated by additional matches outside the seed. 30 
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The availability of this high confidence set of transcripts regulated by miRNAs 1 

opens avenue to study the role of additional molecular entities in miRNA 2 

regulation.  3 

4 
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MATERIAL AND METHODS 1 

 2 

Mapping of molecular quantitative trait loci (QTLs) 3 

We used miRNA abundance and processed genotype for human EBV-4 

transformed lymphoblastoid cell lines (LCLs) derived from 360 healthy 5 

individuals of European descent (CEU, GBR, FIN and TSI) (downloaded from 6 

EBI ArrayExpress, accession E-GEUV-1)(Lappalainen et al. 2013). We tested 7 

the association between single nucleotide polymorphisms (SNPs) located 8 

within the 1Mb of primary miRNA transcript loci for each of the 715 miRNAs 9 

expressed in LCLs with available expression data (Lappalainen et al. 2013). 10 

Only SNPs with minor allele frequency (MAF) greater than 5% were considered 11 

in the QTL analyses. miRNA eQTL associations were estimated using FastQTL 12 

(version 2.184) (Ongen et al. 2016). To assess the significance of the 13 

correlations globally, we first applied multiple testing correction on FastQTL 14 

estimated associations by permuting the expression levels of each miRNA 1000 15 

times and noted the maximum permuted absolute regression coefficient (rmax). 16 

We considered only miRNA eQTLs with an observed absolute regression 17 

coefficient (robs) greater than 95% of all permuted rmax values to be significant 18 

(Lappalainen et al. 2013). We further performed Benjamini-Hochberg multiple 19 

testing correction to estimate FDR (<5%) for all SNPs within the 1Mb vicinity of 20 

pri-miRNAs. We identified significant miRNA-eQTLs (mirQTLs) for 62% (n=444) 21 

of LCL-expressed miRNAs. 22 

The expression levels (RPKM) of protein-coding genes (n=14,847) in the same 23 

360 LCL samples were downloaded from a previous study (as described in (Tan 24 

et al. 2017)). We identified trans-eQTLs between all expressed genes and 25 

mirQTLs using the same approach as described above with the exception that 26 

multiple-testing correction was applied for all trans-eQTL tested. Genes in the 27 

vicinity (within 1Mb) of pri-miRNAs were not considered in the analysis. Of the 28 

14,847 protein-coding genes expressed in LCLs, we found 6325 genes (42.6%) 29 
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to be associated in trans and in the inverse direction with mirQTLs for 444 1 

miRNA (6430 joint eQTLs). 2 

Causality inference between miRNA abundance and target protein-coding 3 

gene expression 4 

To infer the causal relationship between miRNA levels and putative target gene 5 

expression, we considered joint-eQTLs that are associated with both miRNA 6 

levels (mirQTL) and their putative target gene abundance (trans-eQTL) (6430 7 

joint eQTLs associated with 444 miRNAs and 6325 protein-coding genes). For 8 

all such triplets of joint-eQTL – miRNA – target gene expression, we performed 9 

causal inference testing using a Bayesian approach as implemented by Findr 10 

(Wang and Michoel 2017) by testing the models: (1) the causal model with 11 

miRNA where regulates gene expression; (2) the independent model where 12 

joint-eQTL variants are independently associated with miRNA levels and gene 13 

expression; (3) the reactive model where gene expression mediates miRNA 14 

abundance; and (4) the undecided model where causative relationship between 15 

miRNA and gene is more complex (Wang and Michoel 2017). Findr was run 16 

using the recommended test (findr.pijs_gassist) with default parameters as 17 

described in (Wang and Michoel 2017) and significant associations (FDR<10%) 18 

were considered in the analysis.  19 

Assessing sensitivity and replication rate of the GenVar approach 20 

To assess sensitivity of the GenVar approach, we estimated the number of 21 

GenVar-targets undetected using LCL samples (n=360, 22 

Geuvadis)(Lappalainen et al. 2013) in a considerably larger cohort of blood 23 

samples (n=31,684 (Võsa et al. 2018)). Given mature miRNA levels are not 24 

available in the blood samples, for LCL-identified mirQTL with trans-eQTL data 25 

available in blood (64 miRNA, 101 mirQTLs), we considered trans-eQTL 26 

associations between all protein-coding genes and these mirQTL to identify 27 

additional miRNA targets that are missed in LCLs in blood. We applied multiple 28 

testing correction (Benjamini-Hochberg) for the number of trans-eQTL variants 29 
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tested and identified additional miRNA GenVar-targets as those with FDR<5% 1 

and are undetected in LCLs. 2 

Robustness of trans-eQTL associations identified in LCLs was also assessed 3 

in the large cohort of blood samples (Võsa et al. 2018). We considered all trans-4 

eQTL associations between GenVar-targets and mirQTLs tested in blood 5 

(association data is available in blood for 23 mirQTL variants for 39 miRNAs 6 

with GenVar-targets identified in LCLs). For these trans-eQTLs, we applied 7 

multiple testing correction (Benjamini-Hochberg adjusted p-value <5%) for the 8 

number of variants tested. We considered associations found in the same 9 

direction in eQTLgen blood samples as that found in Geuvadis LCLs to be 10 

replicated. 11 

Comparison with existing miRNA target prediction tools 12 

We downloaded predictions from TargetScan (version 7) (Agarwal et al. 2015), 13 

RNA22 (version 2) (Miranda et al. 2006), miRWalk (version 3) (Sticht et al. 2018) 14 

and filtered for miRNAs and protein-coding genes expressed in LCLs.  15 

Enrichment in AGO2 binding 16 

We assessed the interaction of GenVar-targets with the miRISC complex using 17 

publicly available iCLIP data to identify regions bound by AGO (Wan et al. 2014) 18 

(GSE50676). AGO-bound transcripts were downloaded from GSE50676. We 19 

only considered AGO binding sites consistently detected in at least two thirds 20 

of all replicates (4 out of 6 samples). In total, out of all LCL-expressed genes 21 

considered in our analysis (n=14,847), 18% (n=2,669) were considered to be 22 

robustly bound by AGO. 23 

To account for differences in expression levels, LCL-expressed genes 24 

predicted as miRNA targets by other tools were divided into two sets of 4 25 

equally sized bins based on their expression levels. For each GenVar-target, a 26 

gene is randomly selected without replacement from their expression-match 27 

gene bins. 28 
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Overlap with experimental validated targets 1 

We used a database containing experimentally validated miRNA target 2 

interactions (DIANA-TarBase v8) (Karagkouni et al. 2018) to evaluate the 3 

proportion of validated GenVar-targets. We filtered for interactions between 4 

LCL-expressed miRNAs and target genes and we considered only interactions 5 

validated using all validation experiments (n=386,278 interactions) or direct 6 

luciferase assays (n=190,334 interactions). To avoid ascertainment bias 7 

towards enriched experimental validation of previously computationally 8 

predicted targets, when assessing the experimentally validated fraction of 9 

GenVar-targets, we considered GenVar-targets that overlapped predictions 10 

from other tools and compared these to predictions from other tools that were 11 

not detected by GenVar. 463, 171 and 219 GenVar-targets were also predicted 12 

by TargetScan, RNA22, and miRWalk, respectively. Most predictions from 13 

other tools were not predicted by GenVar as targets (474,069, 825,124 and 14 

448,568 for TargetScan, RNA22, and miRWalk, respectively). 15 

Overlap with haplo-insufficient genes 16 

Haplo-insufficient genes were downloaded from the DECIPHER database 17 

(v10)(Firth et al. 2009) and from (Dang et al. 2008). We merged annotations 18 

from the two studies. In total, 1754 LCL-expressed genes were found to be 19 

haplo-insufficient (1577 from DECIPHER and 288 from Dang et al. 2008). 20 

Impact of genetic variation at miRNA loci on GenVar-target expression 21 

We considered all copy number variations (CNVs) that overlap primary miRNA 22 

transcript loci from blood-derived cancer samples (Lymphoid Neoplasm Diffuse 23 

Large B-cell Lymphoma, DLBC) with available genotyping and transcriptomic 24 

data (Cancer Genome Atlas Research et al. 2013). We identified CNVs within 25 

48 individuals that led to homozygous loss or multiple amplifications of 35 26 

miRNAs predicted to have at least one GenVar-target  (each deep gain or loss 27 

event is found in a median of 1/48 samples). CNV data was downloaded from 28 

the TCGA Pan-Cancer cohort on the Xena Functional Genomics Explorer 29 
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(Goldman et al. 2019). For miRNAs disrupted by CNV, we plotted the average 1 

distribution of the fold difference in miRNA levels and their respective target 2 

gene expression for each DLBC sample, relative to the median expression of 3 

individuals that are diploid for the miRNA gene. 4 

Identification of noncanonical miRNA targets 5 

We considered all GenVar-targets with seed-matching (including all 8mer, 7mer 6 

and 6mer sites) miRNA recognition elements (MREs) at their 3’ UTR, as 7 

predicted by the standalone version of TargetScan (version 7) (Agarwal et al. 8 

2015), as canonical targets. Comparisons of seed-matching MREs were made 9 

to other canonical MRE-containing targets predicted by TargetScan. Seed-10 

matching MREs located at transcript 5’ UTR and CDS were predicted using the 11 

standalone version of TargetScan (version 7) (Agarwal et al. 2015). Ensembl 12 

annotated transcript sequences were used in the analysis (version 98). We 13 

tested the enrichment of MRE frequency found at 5’ UTR/CDS/3’ UTR against 14 

that found at 1000 sets of randomly sampled LCL-expressed genes with 15 

matching expression level and respective transcript segment length. LCL-16 

expressed genes were divided into two sets of 4 equally sized bins based on 17 

their expression levels or length (5’ UTR, CDS, or 3’ UTR), independently. For 18 

each canonical GenVar-target, a gene is randomly selected without 19 

replacement from the intersection of their expression-match and length-match 20 

gene bins. 21 

For noncanonical GenVar-targets, we predicted miRNA binding sites by 22 

aligning the full sequence of their targeting mature miRNA with the 3’ UTR of 23 

target genes using RNAduplex using default parameters with added 24 

parameters allowing all alignments within 5kcal/mol of the optimal structure to 25 

be considered for downstream filtering and GU pairs not considered in the 26 

analysis (RNAduplex -e 5 --noGU) (ViennaRNA Package 2.0 (Lorenz et al. 27 

2011)). Alignments that contained consecutive gaps in miRNA sequence or 28 

multiple gap openings in target sequence were discarded given the miRISC is 29 

unlikely to bind to targets that would result in consecutive bulges in binding 30 
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(Brennecke et al. 2005). No restriction was set on the number of mismatches 1 

in alignment. 2 

Statistical tests 3 

All statistical analyses were performed using the R software environment for 4 

statistical computing and graphics (R Development Core Team 2008). When 5 

multiple comparisons were made, we reported the highest p-value of all 6 

comparisons. 7 

Data Access 8 

Analyses were performed using publicly available command-line tools. 9 

Versions and deviations from parameters used are as detailed in the Methods. 10 

All scripts used to parse the results are available upon request. 11 
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Figure 4. 
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Figure 5. 
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