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Abstract  14 
Deciphering gene regulatory networks (GRNs) is both a promise and challenge of systems biology. 15 
The promise is identifying key transcription factors (TFs) that enable an organism to react to changes 16 
in its environment. The challenge is constructing GRNs that involve hundreds of TFs and hundreds 17 
of thousands of interactions with their genome-wide target genes validated by high-throughput 18 
sequencing. To address this challenge, we developed ConnecTF, a species-independent web-based 19 
platform for constructing validated GRNs and to refine inferred GRNs via combined analysis of 20 
genome-wide studies of TF-target gene binding, TF-target regulation and other TF-centric omic data. 21 
We demonstrate the functionality of ConnecTF in three case studies, showing how integration within 22 
and across TF-target datasets uncovers biological insights. Case study 1 uses integration of TF-target 23 
gene regulation and binding datasets to uncover mode-of-action and identify potential TF partners for 24 
14 TFs in abscisic acid signaling. Case study 2 demonstrates how genome-wide TF-target data and 25 
automated functions in ConnecTF are used to conduct precision/recall analysis and pruning of an 26 
inferred GRN for nitrogen signaling. In case study 3, we use ConnecTF to chart a network path from 27 
NLP7, a master TF in nitrogen signaling, to direct secondary TF2s, to its indirect targets, in an 28 
approach called Network Walking. The public version of ConnecTF (https://ConnecTF.org) contains 29 
3,738,278 TF-target interactions for 423 TFs in Arabidopsis, and 839,210 TF-target interactions for 30 
139 TFs in maize. The database and tools in ConnecTF should advance the exploration of GRNs in 31 
plant systems biology applications for models and crops.   32 
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Introduction 33 
 34 
Deciphering gene regulatory networks (GRN) is an important task, as it can reveal regulatory loci, 35 
transcription factors (TFs), crucial for development, stress responses, or disease, with potential 36 
applications in agriculture and medicine (Petricka et al., 2012; Chatterjee and Ahituv, 2017; Gupta 37 
and Singh, 2019). However, integrating experimentally validated connections between TFs and their 38 
genome-wide target genes in such GRNs remains a challenge.   39 
 40 
With the advent of next-generation sequencing, there are a growing number of methods to validate 41 
TF-target gene connections within GRNs, each with its own set of benefits and drawbacks. Methods 42 
that provide evidence for where a TF is likely to bind to the genome include; chromatin 43 
immunoprecipitation (ChIP-seq), DNA affinity purification sequencing (DAP-seq) (O'Malley et al., 44 
2016), and cis-motif enrichment. To determine when TF-binding leads to target gene regulation 45 
requires the integration of TF-binding data with TF-regulation datasets. However, large-scale 46 
datasets that validate TF-target gene regulation data are sparse relative to TF-target gene binding 47 
data. This is largely due to the low throughput nature of TF-perturbation approaches in planta (e.g. 48 
overexpression or mutants). Thus, there is a need for higher throughput methods to rapidly identify 49 
direct regulated TF-targets in plants. One such method is the Transient Assay Reporting Genome-50 
wide Effects of Transcription factors (TARGET) which uses temporal controlled TF nuclear entry to 51 
identify direct regulated TF-targets in isolated plant cells (Bargmann et al., 2013; Brooks et al., 52 
2019).  53 
 54 
Such large-scale datasets for TF-target binding or regulation can be used to verify predictions of TF-55 
target gene connections in GRNs (Marbach et al., 2012; Banf and Rhee, 2017; Mochida et al., 2018; 56 
Kulkarni and Vandepoele, 2019). Validated TF-target interactions can also be used as priors (e.g. 57 
“ground truths”) to train machine learning in network inference methods (Greenfield et al., 2013; 58 
Petralia et al., 2015; Cirrone et al., 2020), and/or as a gold standard with which to benchmark/refine 59 
the accuracy of predicted TF-target interactions in learned GRNs (Marbach et al., 2012; Varala et al., 60 
2018; Brooks et al., 2019). We have previously shown how the integration of TF-target binding with 61 
TF-target regulation datasets can reveal distinct modes-of-action of a TF on induced vs. repressed 62 
gene targets (Brooks et al., 2019).  63 
 64 
Platforms that facilitate access to and integration of such large-scale datasets that validate TF-target 65 
gene interactions are crucial to accelerate studies of validated and inferred GRNs. To this end, there 66 
are efforts to aggregate TF-target datasets, largely TF-binding and cis-motif elements, for many 67 
species, including human (Han et al., 2018), yeast (Monteiro et al., 2019), E. coli (Santos-Zavaleta et 68 
al., 2019), and Arabidopsis (Yilmaz et al., 2010; Kulkarni et al., 2018; Tian et al., 2019). There are 69 
also web portals that provide access to specific experimental datasets that support TF-target binding, 70 
for example the Plant Cistrome database for large scale assays of in vitro TF-target binding (DAP-71 
seq) (O'Malley et al., 2016). Primarily, these platforms allow users to query a TF and obtain a list of 72 
TF-bound target genes or vice versa.  73 
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 74 
Despite these advances, few, if any, platforms enable a combined analysis of TF-bound genes, TF-75 
regulated genes, and co-expression data, or the ability to combine such datasets to refine/validate 76 
predicted GRNs. An important feature missing from most available web tools is the ability to 77 
integrate genome-wide targets of a single TF validated by different experimental approaches (e.g. 78 
ChIP-seq, DAP-Seq and RNA-seq), captured under the same or different experimental conditions. A 79 
second feature that is currently lacking is the ability to compare the validated targets of multiple TFs 80 
and determine their hierarchy in a GRN, as they relate to a set of user-defined genes such as a 81 
pathway of interest. Finally, tools are also needed to facilitate the refinement/pruning of predicted 82 
GRNs by using the validated TF-target interactions from genomic studies to perform precision/recall 83 
analysis. 84 
 85 
To meet the need in the plant systems biology community to build, validate and refine GRNs, we 86 
developed ConnecTF, a platform which offers a query interface to access a TF-centric database 87 
consisting of large-scale validated TF-target gene interactions based on TF-target binding (e.g. 88 
ChIP/DAP-Seq) and other gene-to-gene directed (e.g. TF-target regulation,) or undirected (e.g. TF-89 
TF protein-protein interaction) relationships. We are hosting a publicly available instance of 90 
ConnecTF (https://ConnecTF.org) which includes a database of large-scale validated TF-target 91 
interactions containing; TF-binding (in vivo and in vitro), TF-regulation (in planta and in plant cells), 92 
and cis-motif datasets for the model plant Arabidopsis and a crop, maize. The ConnecTF database 93 
currently contains 3,738,278 experimentally validated TF-target edges for 423 TFs in Arabidopsis 94 
(Table 1), and 839,210 experimentally validated TF-target edges for 139 TFs in maize (Supplemental 95 
Table 1). The database also includes the largest TF-target regulation dataset in plants, the direct 96 
regulated targets for 58 TFs in Arabidopsis (Varala et al., 2018; Brooks et al., 2019; Alvarez et al., 97 
2020; this study) 98 
 99 
We demonstrate in three case studies how the features of ConnecTF and its ability to integrate a large 100 
and diverse variety of validated TF-target gene datasets can provide biological insights into GRNs. In 101 
the first case study, we demonstrate how the integration of validated TF-binding and TF-regulation 102 
datasets enabled us to discover how TFs and their TF-TF partner interactions influence the regulation 103 
of genes in the abscisic acid (ABA) pathway. In the second case study, we demonstrate how 104 
ConnecTF can be used to facilitate precision/recall analysis of inferred nitrogen regulatory networks 105 
using gold standard validated TF-target interactions stored in the ConnecTF database. In the third 106 
case study, we demonstrate how the query system of ConnecTF can be used to integrate validated 107 
TF-target datasets from multiple TFs into a unified network path. Specifically, using the query 108 
functions in ConnecTF, we were able to chart a network path from the direct targets of - NIN-LIKE 109 
PROTEIN 7 (NLP7), a key TF in the nitrogen response (Marchive et al., 2013; Alvarez et al., 2020), 110 
to its indirect targets in planta, using an adaptation of a Network Walking approach (Brooks et al., 111 
2019). Overall, the database and analysis/integration tools of ConnecTF can be used to advance the 112 
validation of GRNs involved in any pathway using systems biology approaches in models or crops.  113 
  114 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627


 

 4

Results 115 
ConnecTF: A query interface and database to integrate TF-target gene interactions of different 116 
data types.  117 
The ConnecTF platform and database enables researchers to access, analyze and integrate large-scale 118 
experimentally determined datasets on TF-target gene interactions including TF-binding, TF-119 
regulation, TF-TF protein interactions, and cis-motifs (Table 1 and Supplemental Table 1). An 120 
important feature of ConnecTF is that it not only provides researchers access to the large-scale 121 
validated TF-target datasets housed in the database, but also offers a user-friendly interface to 122 
perform analyses to combine these various datasets for one or many TFs. This includes the ability for 123 
users to provide their own target gene lists or predicted networks and identify the TFs that regulate 124 
their pathway/network of interest. Users can also provide their own inferred networks and use the 125 
validated TF-target data in the ConnecTF database as a gold standard to perform precision/recall 126 
analysis using automated functions in ConnecTF.  These applications are described in the three case 127 
studies below. 128 
 129 
The backend structure and tools available in ConnecTF are species-independent and built using 130 
common software (Supplemental Figure 1). The source code and detailed instructions on how to 131 
setup a personal version of ConnecTF are available on GitHub 132 
(https://github.com/coruzzilab/connectf_server). This will enable others to setup their own instance 133 
of ConnecTF for public or private sharing of TF-centric genomic data. We are hosting public 134 
versions of ConnecTF with large-scale TF-target validation datasets from Arabidopsis 135 
(https://ConnecTF.org/) or maize (https://Maize.ConnecTF.org/). The current version of the 136 
Arabidopsis ConnecTF database primarily houses TF-binding or TF-regulation datasets that have 137 
been performed at scale (Table 1), enabling direct comparisons of TF-target interactions. This 138 
database includes; 388 Arabidopsis TFs for which TF-target binding was identified in vitro by DAP-139 
seq (O'Malley et al., 2016), 21 TF-target binding datasets identified in planta by ChIP-seq (Song et 140 
al., 2016), and 58 TFs for which direct regulated TF-target genes were identified in isolated plant 141 
cells (Varala et al., 2018; Brooks et al., 2019; Alvarez et al., 2020), including 14 TFs from this study 142 
(Supplemental Table 3). For maize, the ConnecTF datasets include the recently reported ChIP-seq 143 
data for 103 TFs performed in isolated maize cells (Tu et al., 2020), TF perturbation and ChIP 144 
binding datasets collected from the literature (Bolduc et al., 2012; Morohashi et al., 2012; Eveland et 145 
al., 2014; Li et al., 2015), as well as in vitro TF-target binding identified by DAP-seq for 32 maize 146 
TFs (Ricci et al., 2019). In addition, for both Arabidopsis and maize, we have included in the 147 
database ATAC-seq  (Lu et al., 2019) and DNA Hypersensitivity (DHS) (Sullivan et al., 2014) 148 
datasets, which enables users to filter TF-target interactions (e.g. TF-target gene binding) for those 149 
occurring in open chromatin regions of the different tissues from those studies. 150 
 151 
A key feature of ConnecTF is its logic-based query system. A query in ConnecTF is built by 152 
constructing a series of constraints to restrict the set of TFs, the set of target genes, the type of 153 
interaction (e.g. TF-target edge type), or other attributes associated with the data. The result of the 154 
query is the network (or subnetwork) of interactions for the selected set of TFs and their targets. This 155 
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query system allows users to select a single TF or multiple TFs of interest, filter the TF-targets based 156 
on different criteria (e.g. regulation by a signal of interest, e.g. ABA), and integrate validated TF-157 
target data across multiple TFs. This includes the ability to search for targets of all TFs in the 158 
database, or a selected subset of TFs of interest. The query system also allows users to perform 159 
analyses based on the experimental type of validated TF-target interaction (e.g. TF-binding) or any 160 
other criteria in the metadata (e.g. TF-target assays performed in leaf vs. root). Queries can be built 161 
using the graphical Query Builder interface or by typing queries into the search text box. This makes 162 
the query system easy to use both for researchers new to the ConnecTF site, and for those who wish 163 
to build complex queries to parse multiple types of experimentally verified TF-target datasets for the 164 
TFs available in the database. 165 
 166 
ConnecTF includes several analysis and visualization tools for data integration (Figure 1), whose 167 
utility we demonstrate in three case studies. Once a query has been submitted and is processed, the 168 
Summary tab is loaded and gives an overview of the total number of validated TF-target genes for 169 
each experiment that was queried, grouped by individual TFs. The validated TF-target interactions 170 
are then made available in the Table tab, which provides an interactive table that can be downloaded 171 
for offline use in either Excel or CSV formats. The five remaining tabs in ConnecTF, allow users to 172 
analyze the queried data in various ways (Figure 1): 1) Network tab – provides access to TF-target 173 
network as JSON or SIF files or visualized using Cytoscape,js (Franz et al., 2015) (Figure 1A), 2) 174 
Target List Enrichment tab – displays the overlap between user-submitted gene list(s) and validated 175 
TF-targets bound and/or regulated by the queried TF(s) and calculates statistical enrichment 3) Motif 176 
Enrichment tab – performs statistical tests for cis-motif enrichment of TF-binding sites in the 177 
validated targets of queried TFs (Figure 1E), 4) Gene Set Enrichment tab – calculates the significance 178 
of overlap between the validated targets of each TF analysis, when compared pairwise (Figure 1C), 179 
and 5) Sungear tab –compares the overlaps between TF-targets from multiple gene lists, comparable 180 
to a Venn diagram, but better suited to analyzing more than three lists (Figure 1D) (Poultney et al., 181 
2006). The Network tab also enables users to upload a predicted network and use validated TF-target 182 
datasets housed in the ConnecTF database to perform an automated precision/recall analysis. This 183 
function generates an area under precision recall (AUPR) curve with an interactive sliding-window 184 
feature that can be used to select a precision cutoff with which to prune/refine the predicted network 185 
(Figure 1B) (Marchive et al., 2013; Banf and Rhee, 2017). The three case studies below provide use 186 
examples for ConnecTF by combining each of these features. 187 
 188 
Getting Started: Basic queries in ConnecTF.  189 
The most basic query in ConnecTF is to enter a TF name/symbol or Gene ID, which will return all of 190 
the experiments that validate TF-target gene interactions for that TF in the database. To demonstrate, 191 
we submitted a query for NLP7 (AT4G24020),  a master regulator in the nitrogen signaling pathway, 192 
and the results returned from the ConnecTF database include seven experiments for NLP7: four 193 
ChIP-seq experiments performed in isolated root cells (Alvarez et al., 2020), one in vitro TF-target 194 
binding experiment using DAP-seq (O'Malley et al., 2016), one TF overexpression experiment that 195 
identifies direct regulated targets of NLP7 in isolated root cells (Alvarez et al., 2020), and one 196 
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experiment identifying NLP7-regulated targets based on analysis of an nlp7 mutant in planta 197 
(Marchive et al., 2013). These results can be viewed in the Table tab on the ConnecTF site or 198 
downloaded as an Excel file (Supplemental Table 2), and list the validated NLP7 target genes from 199 
any one of these experiments. This list includes descriptions of the validated NLP7 target genes 200 
(where available) and other details such as edge count (e.g. number of experiments where an 201 
interaction between the TF and this target are validated), P-value and log2 fold change, if available.  202 
 203 
Determining the validated TF-target genes within a pathway or network of interest for one TF, or a 204 
set of TFs, is another common task that can be readily performed using ConnecTF. When a query is 205 
submitted in ConnecTF, the user can limit the target genes to one or more lists of genes using the 206 
Target Gene List box located below the Query Builder. We demonstrate this feature using the same 207 
NLP7 query as above, but in this example, from the Target Gene List box we select the  predefined 208 
list of nitrogen response genes from shoot and root (Varala et al., 2018) named “Nitrogen_by_Time”. 209 
By selecting this list, the validated targets of NLP7 retrieved from the ConnecTF database are now 210 
restricted to the genes that are in one of these two pre-defined sets of genes (N-response in roots or 211 
shoots). In the results Table tab for this query, there are two additional columns that indicate each 212 
gene list (e.g. roots or shoots) to which the validated NLP7 targets belong (Supplemental Table 2). 213 
Uploading a Target Gene List also allows the user to determine the enrichment of gene targets of the 214 
TF in that pathway viewed in the Target List Enrichment tab. 215 
 216 
Case Study 1: Uncovering mechanisms of TF action and TF-TF interactions by integrating TF-217 
target binding, TF-regulation and cis-element datasets. 218 
In this case study, we demonstrate how to use the query functions and data housed in ConnecTF to 219 
integrate TF-target gene regulation and TF-binding data to elucidate TF mode-of-action, including its 220 
potential TF partners. In our previous study of 33 TFs, we showed that a single TF can either induce 221 
or repress target genes (Brooks et al., 2019). Moreover, we showed examples where direct TF-target 222 
binding (e.g. via cis-motif enrichment and DAP-seq binding) was associated with TF-mediated target 223 
gene induction, while indirect binding via TF partner(s) (e.g. only captured by ChIP) could account 224 
for TF-mediated repression of a target gene (Brooks et al., 2019). However, we were unable to 225 
generalize this discovery, as only 3/33 TFs in that study had both vitro and in vivo TF-binding data. 226 
To expand and generalize our discoveries of these distinct TF modes-of-action, we used ConnecTF to 227 
integrate TF-regulation data (Supplemental Table 3), and TF-binding data (Song et al., 2016) for 14 228 
TFs in the ABA signaling pathway. We did this by using functions in ConnecTF to integrate; i) the 229 
direct regulated TF targets of these 14 TFs identified in root cells (Supplemental Table 3) using the 230 
TARGET system (Bargmann et al., 2013; Brooks et al., 2019), ii) in planta TF-binding (e.g. ChIP-231 
seq) (Song et al., 2016), iii) at least one cis-binding motif available on Cis-BP (Weirauch et al., 232 
2014), and iv) validated in vitro TF-binding data obtained by DAP-seq (O'Malley et al., 2016) for 233 
5/14 of the ABA responsive TFs.  234 
 235 
Validated targets of 14 TFs are specifically enriched in ABA-responsive genes 236 
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First, we demonstrate how the validated TF-target gene datasets for these 14 ABA responsive TFs 237 
housed in the ConnecTF database can be integrated to understand how they regulate ABA signaling. 238 
To do this, we first used the Target List Enrichment tool in ConnecTF to determine for each of the 14 239 
TFs whether the validated TF-regulated target genes identified by controlled TF-nuclear import in 240 
root cells using the TARGET assay (Bargmann et al., 2013; Brooks et al., 2019) were significantly 241 
enriched in a list of ABA responsive genes identified in Song et al. (Song et al., 2016). This 242 
integrated analysis showed that the direct regulated targets of these 14 TFs are each significantly 243 
enriched for ABA responsive genes (Fisher’s Exact test, P-value<0.05) (Figure 2, see Supplemental 244 
Data for query used to generate this figure). This analysis enabled us to address whether each of the 245 
14 TFs are involved in regulating genes that are induced or repressed in response to ABA (Figure 2). 246 
Moreover, this analysis revealed that two known regulators of ABA signaling, ABF1 and ABF3 247 
(Choi et al., 2000), are at the top of the list for having targets that are highly enriched for the ABA 248 
induced genes (Figure 2). Next, we further separated the TF-regulated targets of each of the 14 TFs 249 
into TF-induced or TF-repressed target sets using the Query function of ConnecTF. This analysis 250 
enabled us to determine the TF-target specificity (e.g. percent of TF-regulated targets that are ABA 251 
responsive), TF-target influence (e.g. percent of ABA responsive genes regulated by each TF), and 252 
P-value of the overlap of TF-target genes with induced and repressed ABA responsive genes 253 
(Supplemental Table 4). This analysis revealed that for the majority of the 14 TFs, the TF-induced 254 
targets overlap significantly with genes induced by the ABA signal, while TF-repressed targets 255 
overlap significantly with the genes repressed by ABA treatment. 256 
 257 
Distinct cis-motifs are enriched in the TF-induced vs. TF-repressed targets of 14 TFs in ABA 258 
signaling. 259 
We next sought to use the TF-target gene binding and TF-target gene regulation data for these 14 TFs 260 
to determine whether the TFs act alone, or in combination, to regulate the target genes in the ABA 261 
response pathway. To this end, we first asked whether the validated cis-binding motif for each TF 262 
(collected from Cis-BP) (Weirauch et al., 2014) showed specific enrichment in either the TF-induced 263 
or the TF-repressed target gene lists, as we found in a previous study of 33 TFs (Brooks et al., 2019). 264 
To do this, we first made a query in ConnecTF that returns the TF-induced or TF-repressed targets 265 
for each TF as separate gene lists. Next, we selected the Individual Motifs tab from within the Motif 266 
Enrichment results page. The default setting returns the cis-element enrichment in the 500 bp 267 
promoter region of the validated target genes of a TF for any cis-motif for that TF. Users can also 268 
define other genic regions of target genes (2000 bp promoter, 1000 bp promoter, 5’ untranslated 269 
region (UTR), coding sequence (CDS), introns, 3’ UTR and exons), or choose a cis-motif for another 270 
TF, e.g. a putative partner, and ConnecTF will calculate enrichment for the selected motif(s) in the 271 
selected genic region(s).  272 
 273 
For the 14 TFs in the ABA pathway, we examined their TF-induced vs TF-repressed gene target lists 274 
for enrichment of their own cis-motif and show examples for the TFs HB7, MYB3 and ZAT6, 275 
(Figure 3, see Supplemental Data for query used to generate this figure). We found that a majority of 276 
the 14 TFs tested have enrichment of their known cis-element in either their induced or repressed 277 
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targets that we identified as directly regulated TF-targets in root cells (Supplemental Table 5). Of 278 
these, 7/14 TFs (including HB7, Figure 3A) show enrichment of at least one known cis-motif for that 279 
TF exclusively in the TF-induced targets, while 2/14 (MYBR1 and MYB3, Figure 3B) show specific 280 
enrichment of cis-motif for that TF exclusively in the TF-repressed targets (Supplemental Table 5). 281 
For 5/14 TFs (including ZAT6, Figure 3C), there was no enrichment of their known cis-binding 282 
motif in either the TF-induced or TF-repressed targets. 283 
 284 
While cis-motif enrichment indicates where a TF is likely to directly bind in the genome, validated 285 
direct binding to specific genomic loci is available from in vitro TF-target gene binding (e.g. DAP-286 
seq experiments) housed in the ConnecTF database (O'Malley et al., 2016). For the 5/14 ABA 287 
responsive TFs for which DAP-seq data is available (FBH3, GBF3, HB6, HB7, and MYBR1), our 288 
comparison of TF-induced or TF-repressed targets with in vitro TF-bound targets supported the cis-289 
motif enrichment results. That is, for FBH3, HB7 and HB6, only the TF-induced target gene lists 290 
were enriched for genes that were bound in vitro to that TF, while for MYBR1, only TF-repressed 291 
targets were enriched in genes that were bound in vitro to that TF (Supplemental Table 6). GBF3, 292 
which had no cis-motif enrichment in either the TF-induced or TF-repressed directly regulated 293 
targets, also had no enrichment of TF-binding in vitro in either set of TF-regulated targets 294 
(Supplemental Table 6).  295 
 296 
TF-regulated genes are largely TF-bound, while TF-bound genes are infrequently TF-regulated. 297 
An outstanding question related to TF-target validation datasets, is when and whether TF-binding 298 
results in gene regulation. To answer this question, we asked whether genes that are bound by each of 299 
the 14 ABA responsive TFs in planta, based on ChIP-seq experiments (Song et al., 2016), 300 
significantly overlap with either TF-induced or TF-repressed genes identified in root cells 301 
(Supplemental Table 3). To do this, we used the Gene Set Enrichment tool in ConnecTF, which 302 
reports whether the pairwise overlap between any two queried experimental analyses is greater or 303 
less than expected by chance (Fisher’s Exact test) (Figure 4D). This Gene Set Enrichment function is 304 
based on the Genesect tool in VirtualPlant (Katari et al., 2010) and described in Krouk et al. (Krouk 305 
et al., 2010). As an example, for three TFs - HB7, MYB3 and ZAT6 -  the Gene Set Enrichment 306 
results show that both the TF-induced and TF-repressed target gene lists significantly overlap with 307 
the TF-bound targets of that TF (P-value<0.05, Fisher’s exact test) (Figure 4, see Supplemental Data 308 
for query used to generate this figure). Extending this analysis to all 14 ABA responsive TFs, we find 309 
that 9/14 TFs have a significant overlap of TF-bound genes in planta with both the list of TF-induced 310 
and TF-repressed targets of that TF, as validated in root cells (P-value<0.05, Fisher’s exact test) 311 
(Supplemental Table 7). For 4/14 of the TFs - ABF1, ABF3, DREB2A and HSFA6A - we found a 312 
significant overlap of the TF-bound targets only with the TF-induced targets (P-value<0.05, Fisher’s 313 
exact test). By contrast, only 1/16 TFs (GBF2) had a significant overlap of TF-bound targets only 314 
with the list of TF-regulated targets that are repressed (P-value<0.05, Fisher’s exact test) 315 
(Supplemental Table 7).    316 
 317 
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Finally, we used ConnecTF to evaluate the relationship of TF-binding vs. TF-regulation datasets. 318 
Overall, our integrated analysis of TF-binding and TF-regulation data showed that for 11/14 of the 319 
ABA responsive TFs, greater than 50%, and as much as 75%, of TF-target genes that were TF-320 
regulated in root cells were also bound by that TF in planta (Figure 4D). By contrast, for all 14 TFs, 321 
the number of TF-bound targets in planta that were regulated by that TF never exceeded 25% (Figure 322 
4D).  323 
 324 
Identifying partner TF2-binding motifs in TF1-regulated genes. 325 
Next, for each set of TF1-regulated targets (either induced or repressed) that showed no enrichment 326 
of the known cis-binding motif for TF1 (Supplemental Table 5), we used ConnecTF to search for 327 
overrepresentation of cis-motifs for potential partner TF2s in those sets of TF1-regulated genes. 328 
Rather than searching for all 1,310 cis-motifs available for Arabidopsis from CIS-BP (Weirauch et 329 
al., 2014), we limited our search to the 80 cis-motif clusters generated from all available Arabidopsis 330 
thaliana cis-motifs (Brooks et al., 2019), now housed in the ConnectTF database. 331 
 332 
First, we performed cis-motif enrichment analysis on the validated target gene lists of three TFs - 333 
HB7, MYB3 and ZAT6 (Figure 5). For each of these TFs, we hypothesized that they could act 334 
directly on gene targets, or through a TF2 partners, based on our analysis of TF-regulation, TF-335 
binding and cis-motif enrichment. For HB7, while both HB7-induced and HB7-repressed targets 336 
identified in root cells are each bound by HB7 in planta (by ChIP-seq) (Figure 4A), the known HB7 337 
cis-motif is only enriched in the HB7-induced targets (Figure 3A). Using ConnecTF cis-analysis 338 
functions, we found that the HB7-repressed target gene list is enriched in a cis-motif (cis-cluster 13) 339 
for a WRKY TFs (P-value<0.05, Fisher’s exact test) (Figure 5A). This finding suggests HB7-340 
repression of gene targets is mediated by one or more TF2 partners in the WRKY TF family. For 341 
MYB3, while both MYB3 induced and repressed target gene lists identified in root cells are each 342 
enriched in genes bound by MYB3 in planta (e.g. ChIP-seq) (Figure 4B), the MYB3 cis-motif is only 343 
enriched in the list of MYB3-repressed targets (Figure 3B). By contrast, the list of MYB3-induced 344 
targets are enriched in cis-motifs (cis-clusters 6, 39, 68) for TF2s in the bZIP/bHLH/BZR and 345 
CAMTA/FAR1 TF families (P-value<0.05, Fisher’s exact test) (Figure 5B). This result suggests that 346 
MYB3 induces target genes via an indirect interaction with TF2(s) from the bZIP1/bHLH/BZR, or 347 
CAMTA/FAR1 families. Lastly, although the list of ZAT6-induced and ZAT6-repressed targets in 348 
root cells are enriched in genes bound by ZAT6 in planta (e.g. ChIP-seq) (Figure 4C), there is no 349 
enrichment of the known ZAT6 cis-element in either set of ZAT6-regulated genes (Figure 3C). 350 
Instead, the list of ZAT6 induced genes are enriched is cis-elements for cis-clusters 6 and 39 from the 351 
bZIP/bHLH/BZR TF families, while the list of ZAT6-repressed genes are enriched in cis-cluster 13 352 
for WRKY TFs (P-value<0.05, Fisher’s exact test) (Figure 5C). This suggests that ZAT6 regulates 353 
both its induced and repressed targets via TF2(s) in these families.  354 
 355 
When we analyzed all 14 TFs using this approach, we observed that cis-motif clusters 6 and 39 are 356 
enriched (P-value<0.05, Fisher’s exact test) in the lists of TF-induced or TF-bound gene targets of 357 
7/14 of the ABA-responsive TFs (Supplemental Table 8). Furthermore, we found that cis-motif 358 
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Clusters 6 and 39 are enriched in the list of genes induced by ABA (P-value<0.05, Fisher’s exact 359 
test), but not in the list of ABA-repressed genes (Supplemental Table 8). This result suggests that 360 
partner TF2s from the bHLH/bZIP/BZR TF family/families work with MYB3, ZAT6, and other 361 
ABA-responsive TFs to regulate these ABA-responsive targets. Likewise, cis-motif cluster 13 which 362 
represents WRKY TFs, is enriched in the list of the TF-repressed or TF-bound targets of 7/14 TFs, as 363 
well as in the list of genes that are repressed in response to ABA (P-value<0.05, Fisher’s exact test) 364 
(Supplemental Table 8). Thus, these studies uncovered potential TF2 partners of 14 TFs involved in 365 
the ABA response. 366 
 367 
Case Study 2: Refining/pruning inferred gene regulatory networks using validated TF-target data. 368 
In this case study, we show how ConnecTF can be used to readily evaluate the relevance of, and 369 
combine gold-standard TF-target gene validation data for refining network predictions using 370 
automated precison/recall analysis. This feature will advance the systems biology cycle of network 371 
prediction, validation, and refinement. 372 
 373 
Automated precision/recall analysis and refinement of a nitrogen response GRN 374 
As an example, we show how ConnecTF can automate a precision/recall analysis on a GRN inferred 375 
from time-series transcriptome data of the nitrogen response in Arabidopsis roots (Brooks et al., 376 
2019). As a gold standard validation data, we selected the TF-target regulation data based on TF-377 
perturbation experiments in root cells using the TARGET system (Bargmann et al., 2013). This set of 378 
55 TFs includes the 33 nitrogen response TFs from Brooks et al. (Brooks et al., 2019), 8 TFs from 379 
Alvarez et al. (Alvarez et al., 2020), and the 14 ABA response TF-target regulation datasets 380 
generated in root cells in this study (Supplemental Table 3). To initiate this precision/recall analysis 381 
of the inferred nitrogen response GRN in ConnecTF, we first queried the 55 TF-target gene 382 
regulation datasets performed in root cells using the Query page. To determine which of these 55 TFs 383 
were relevant to our GRN analysis, we used the Target Network box to select the “Root Predicted 384 
Nitrogen Network” from Brooks et al. (Brooks et al., 2019). This query returned a total of 32 TFs 385 
and 1,349 validated TF-target genes in the predicted nitrogen-regulatory network. This query 386 
automatically generates a precision/recall curve, which is seen in the AUPR section at the bottom 387 
half of the Network tab (Figure 6, see Supplemental Data for query used to generate this figure). The 388 
slider or textbox above the AUPR plot can be used to select a precision cutoff score, which will 389 
update the interactive AUPR graph and table with details of a pruned/refined network, e.g. the 390 
predicted TF-target edges whose score equals or exceeds the selected precision score threshold. In 391 
this example, the selected cutoff of 0.32 reduced the size of the predicted N-regulatory GRN from 392 
240,410 interactions between 145 TFs and 1,658 targets to a refined high-confidence GRN of 4,343 393 
interactions between 143 TFs and 215 target genes whose predicted interactions passed the threshold 394 
set by the precision/recall analysis of the validated TF-target gene interactions.    395 
 396 
GRNs constructed based on co-expression data can also be validated in a similar manner. To this 397 
end, we provide a precision/recall example for a GRN built from the co-expression network available 398 
in the Atted-II database (Obayashi et al., 2018). We pruned this co-expression GRN using all TF-399 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627


 

 11

regulation data in the ConnecTF database (Supplemental Figure 2, see Supplemental Data for query 400 
used to generate this figure).  401 
  402 
Using the appropriate buttons at the top of the Network page, the user can download the 403 
pruned/refined network as a network file (in JSON or SIF formats) or visualize the network in the 404 
browser (Open Network). The precision cutoff can be further modified while viewing the network in 405 
the browser using the slider or text box in the Additional Edges menu. Edges within the network can 406 
be hidden to highlight a specific interaction type of interest (e.g. time-based edge predictions) or 407 
additional edges can be added from a file the user uploads. The resulting pruned network can be 408 
saved as a JSON file or an image exported.  409 
 410 
TF-regulation data outperforms in vitro TF-binding as a gold-standard for precision/recall analysis 411 
Next, we demonstrate how ConnecTF can be used to evaluate which TF-target validation datasets are 412 
most effective for use as gold standards for network refinement. As an example, the automated 413 
functions in ConnecTF enabled us to rapidly evaluate and compare the relative AUPR performance 414 
of different TF-target validated datasets (e.g. TF-binding (DAP-seq) vs. TF-regulation) in 415 
precision/recall analysis of a GRN inferred from time-series nitrogen response in Arabidopsis roots 416 
(Brooks et al., 2019). The TF-target validated datasets we tested are; 1) TF-Regulated gene sets: TF-417 
target sets regulated in root cells (e.g. TARGET assay) (Brooks et al., 2019; Alvarez et al., 2020), 2) 418 
TF-Bound gene sets: TF-target sets bound in vitro (DAP-seq) (O'Malley et al., 2016), or 3) TF-419 
regulated and TF-bound gene sets: TF-target sets regulated in root cells (TARGET assay) and bound 420 
in vitro (DAP-seq) (Table 2). For the gene sets that involved TF-target binding (i.e. 2 and 3 above), 421 
we also used the  DHS data (Sullivan et al., 2014) housed in the ConnecTF database to filter for 422 
DAP-seq peaks that occur in open chromatin regions in root tissue. 423 
 424 
By comparing the precision/recall results on networks refined using these three validated TF-target 425 
gene datasets, we found that using TF-regulated target data identified in root cells as “gold standard” 426 
resulted in a higher AUPR, and greater improvement in AUPR relative to the randomized predicted 427 
network, compared to using in vitro TF-binding target data alone (DAP-Seq) (Table 2). Also, we 428 
found that combining TF-target regulated and TF-target bound datasets reduced the AUPR, however, 429 
it resulted in a greater improvement relative to the randomized network, compared to using TF-430 
regulation datasets only. Finally, we found that applying the DHS filter to DAP-seq peaks reduced 431 
the AUPR, and had only a small effect on the improvement of the AUPR relative to the randomized 432 
network, compared to the same set of edges without the DHS filter (Table 2). Thus, the ability to test 433 
and combine TF-target datasets in an automated AUPR analysis enabled us to rapidly determine 434 
which datasets were most effective for use in network refinement.  435 
 436 
Case Study 3: Charting a network path by combining validated TF-target data for multiple TFs 437 
An important feature that distinguishes ConnecTF from most other available analysis tools/platforms 438 
concerning TFs, is its Query building function. The Query builder allows users to readily select, 439 
parse, and combine TF-target gene validation data from different TF experiments and research 440 
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groups. For example, below we demonstrate how ConnecTF can be used to chart a network path 441 
from the direct targets of a TF1 to its indirect targets via secondary TFs (TF2s). We initially 442 
conceived of this Network Walking approach which we manually executed in Brooks et al. (Brooks 443 
et al., 2019). As an example, we show how ConnecTF can be used to chart a network path from TF1 - 444 
NLP7, a master TF in the nitrogen signaling pathway – to its direct TF1-targets to its indirect targets, 445 
by combining TF-target regulation and TF-target binding datasets from two different NLP7 studies 446 
(Marchive et al., 2013; Alvarez et al., 2020). 447 
 448 
Step 1. Identify direct vs. indirect targets of TF1 449 
The first step in charting a network path is to identify the direct vs. indirect targets of TF1. To this 450 
end, we used the Query function in ConnecTF to identify direct NLP7 (TF1) targets as genes that are 451 
both NLP7-regulated and NLP7-bound (Marchive et al., 2013; Alvarez et al., 2020). Next, we 452 
identified indirect NLP7 targets as genes that are regulated, but not bound by NLP7 in ChIP 453 
experiments (Marchive et al., 2013; Alvarez et al., 2020). We executed two simple queries in 454 
ConnecTF to produce these lists of direct targets of NLP7 (Figure 7A, Query 1, see Supplemental 455 
Data for details of Query 1) and indirect targets of NLP7 (Figure 7A, Query 2, see Supplemental 456 
Data for details of Query 2). The list of genes resulting from these queries can be saved within 457 
ConnecTF, to be used as direct vs. indirect target gene lists of the TF1 (NLP7) for further analyses in 458 
the following steps, or downloaded by the user. 459 
 460 
Step 2. Connect TF1 to its indirect targets via its direct intermediate TF2s 461 
With the lists of direct vs. indirect targets of a TF1 (NLP7), we can now perform the second step of 462 
charting a network path in the Network Walking approach. In Step 2, we used ConnecTF to connect 463 
the indirect targets of NLP7 via TF2s that are themselves direct targets of NLP7. To do this, we 464 
queried all the TF-target regulation datasets performed in root cells (55 TFs) in the ConnecTF 465 
database, restricting the results returned to the indirect targets of TF1 (e.g. NLP7 regulated, but not 466 
bound) using the Target Genes filter on the query page. For this query, we also restricted the TF2s to 467 
the direct targets of NLP7, as identified in Step 1, using the Filter TFs option (Figure 7A, Query 3, 468 
see Supplemental Data for details of Query 3). The resulting Table tab shows the complete set of 469 
validated TF-target edges from 8 TF2s  that are direct targets of NLP7 (e.g. TF2s: ASR3, NF-YA3, 470 
DREB2A, ZAT6, ERF060, HB6, LBD37 and LBD38)  to NLP7 indirect targets. From the Target 471 
Enrichment tab, we see that all 8 TF2s are enriched for NLP7 indirect targets (P-value<0.05, Fisher’s 472 
exact test), with NF-YA3, LBD37 and LBD38 being the most important based on TF-influence, 473 
target specificity and P-value of the overlap (Supplemental Figure 3, see Supplemental Data for 474 
query used to generate this figure).  475 
 476 
Step 3. Visualizing the Network Path from TF1  direct TF2(s)  indirect targets of TF1: 477 
Finally, we can visualize the resulting Network path from TF1 (NLP7)  8 direct TF2 targets  478 
indirect TF1 targets. We can do this in ConnecTF by going to the Network tab and clicking Open 479 
Network which will launch Cytoscape.js (Franz et al., 2015). Basic Cytoscape functionality is 480 
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available within ConnecTF for viewing and adding additional edges to the network (Figure 7B), or 481 
the network can be downloaded as a JSON file and further modified by the user.    482 
 483 
  484 
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Discussion 485 
As the cost of Next-generation sequencing technologies declines and new methods are developed to 486 
identify/validate TF targets, computational tools to integrate the increasing amount and types of 487 
experimental data that relate TFs with their target genes are becoming increasingly important 488 
(Grossman, 2019). Enabling researchers not only to access these various types of TF-target validation 489 
datasets, but to perform analyses that integrates multiple datasets and multiple types of data, will 490 
further our understanding of the mechanisms by which TFs function alone and together in a GRN 491 
that affects a biological pathways of interest. 492 
  493 
To this end, we developed ConnecTF (https://ConnecTF.org) to facilitate these types of research 494 
questions in GRN analysis/validation. Moreover, we have designed ConnecTF to be accessible to 495 
biologists with a wide-range of computational skills. As a resource for the plant research community, 496 
we are hosting two versions of ConnecTF for Arabidopsis and maize, with a combined 4,577,488 497 
edges for 562 TFs (Table 1 and Supplemental Table 1). In our three case studies, we provide 498 
examples of how ConnecTF can enable an integrated analysis of TF-target gene interactions that lead 499 
to biological insights of TF modes-of-action, using GRNs involved in the ABA and nitrogen 500 
response pathways. 501 
 502 
The ConnecTF database was designed to specifically house large-scale datasets for TF-binding and 503 
TF-regulation. For Arabidopsis, the vast majority of data for TF-target binding is in vitro (387 TFs) 504 
(O'Malley et al., 2016), and a more limited set of large-scale TF-target binding datasets in vivo (26 505 
TFs) (See Table 1). The ConnecTF database houses the largest set of TF-target regulation data based 506 
on a high throughput TF-assay performed in isolated plant cells (58 TFs) (Varala et al., 2018; Brooks 507 
et al., 2019; Alvarez et al., 2020), which also includes new data on TF-target regulation for 14 TFs 508 
identified in this study (Table 1). The ConnecTF database also houses cis-motif data for 730 509 
Arabidopsis TFs (Weirauch et al., 2014). Finally, the database contains information on TF-TF protein 510 
interactions (Yazaki et al., 2016; Trigg et al., 2017), and the ability for users to filter in vitro TF-511 
binding data for peaks occurring in open chromatin regions from different tissues identified using 512 
ATAC-seq  (Lu et al., 2019) or DHS (Sullivan et al., 2014).  513 
 514 
In Case Study 1, we used ConnecTF to combine TF-target gene validation data for 14 TFs in the 515 
ABA signaling pathway for which we have datasets for TF-binding in vivo (14/14 TFs) (Song et al., 516 
2016), TF-regulation in root cells (14/14 TFs) (Supplemental Table 3), TF-binding in vitro (DAP 517 
seq) (5/14 TFs) (O'Malley et al., 2016), and cis-motif data (14/14 TFs) (Weirauch et al., 2014). Our 518 
integrated analysis of this TF-regulation and TF-binding data using ConnecTF allowed us to discover 519 
that TF-regulation is a good indicator of TF-binding, but TF-binding is a poor indicator of TF-520 
regulation. Specifically, up to 78% of the direct TF-regulated genes were TF-bound in planta (Figure 521 
4D and Supplemental Table 7). However, the reverse is not the case, as for these 14 TFs, at most 522 
24% of TF-targets bound in planta were TF-regulated in root cells (Figure 4D and Supplemental 523 
Table 7). While this could be due to the different systems used in this study, TF-binding is known to 524 
be a poor indicator of TF-regulation across many organisms, even when TF regulation and TF 525 
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binding are compared from the same tissue (Phuc Le et al., 2005; Bolduc et al., 2012; Arenhart et al., 526 
2014), or even the same cell samples (Para et al., 2014).  527 
 528 
Using ConnecTF to readily intersect TF-bound and TF-regulated gene targets for a large number of 529 
TFs also allowed us to develop mode-of-action models for how TF binding might lead to induction 530 
or repression of target genes by the TF.  For this analysis, we use the direct regulated TF-targets 531 
validated in a plant cell-based system comprising 58 TFs, including 14 TFs from this current study 532 
(Supplemental Table 3) and 44 TFs from our previous work (Varala et al., 2018; Brooks et al., 2019; 533 
Alvarez et al., 2020). Combined, these TF-target regulation datasets have shown that 57/58 TFs can 534 
act as both an inducer and repressor, depending on the target genes. The one exception is HSFA6A, 535 
which acted primarily as an inducer (127 genes), and down-regulated only two targets (Supplemental 536 
Table 3). We also observed that the known cis-binding motif for a TF is most often significantly 537 
enriched in either the induced or repressed targets of that TF (Figure 3 and Supplemental Table 5), as 538 
we saw previously for 11 TFs (Brooks et al., 2019). This broader finding indicates that direct binding 539 
of a TF to its targets most often has a specific effect on target gene expression (e.g. either induction 540 
or repression, depending on the TF). Importantly, our integrated data analysis showed that TF-TF 541 
interactions likely play a role in the “switch” of a TF from an activator or repressor, depending on the 542 
target gene (Figure 5), as described below.  543 
 544 
The simplest model for TF-target regulation is through direct interaction of a TF via DNA-binding to 545 
cis-regulatory regions in its target genes. However, it has been observed that cellular and genomic 546 
context, including TF-TF cooperativity, can play an essential role in how a TF controls target gene 547 
expression (Yáñez-Cuna et al., 2012; Para et al., 2014; Slattery et al., 2014; Alvarez et al., 2020; de 548 
Boer et al., 2020). Indeed, we found examples of regulation of TF-target gene expression in the 549 
absence of evidence for direct TF-binding (Figures 3-5, Supplemental Tables 5-7). In these cases, TF 550 
regulation of the target gene could occur by indirect TF1 binding to a target via its association with 551 
partner TF2s, sometimes referred to as “tethering” (Stender et al., 2010). Previous studies have 552 
compared ChIP and DHS foot-printing to distinguish between direct and indirect TF-target binding 553 
(Gordân et al., 2009; Neph et al., 2012). In case study 1, we demonstrate that using ConnecTF to 554 
integrate TF-target binding and TF-target regulation data enabled us to discover that for a majority of 555 
the 14 TFs in the ABA signaling pathway, both their TF-induced and TF-repressed target gene sets 556 
overlap significantly with in planta bound targets (Figure 4 and Supplemental Table 7). This occurs 557 
even when evidence for direct TF-binding, in the form of cis-motif enrichment or in vitro TF-558 
binding, is absent (Supplemental Tables 5 and 6). Moreover, we used ConnecTF to identify potential 559 
partner TF2s involved in the indirect target binding of TF1, by enrichment of cis-binding motif 560 
clusters for other TF families (Brooks et al., 2019) in the direct regulated targets of the TF1s (Figure 561 
5).  562 
 563 
To do this, we looked for cis-motifs enriched in sets of TF1-regulated targets that are likely indirectly 564 
bound, i.e. those that are TF1-regulated (induced or repressed) and lack enrichment of the cis-motif 565 
for that TF1, but are bound to the TF1 in planta (e.g. by ChIP-seq) (Figure 5). For HB7, we found 566 
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evidence for direct TF-binding leading to activation, while indirect binding leads to repression of its 567 
targets (Figure 5A). For MYB3, direct binding leads to target gene repression, while indirect binding 568 
leads to activation (Figure 5B). For ZAT6, we only found evidence for indirect binding to either its 569 
induced targets or repressed targets (Figure 5C). For the induced targets of ZAT6 (Figure 5C), we 570 
identified the enrichment of cis-motif clusters containing a core G-box motif, known to be bound by 571 
bZIP and bHLH TFs (de Vetten and Ferl, 1994; Toledo-Ortiz et al., 2003). Validation of this 572 
predicted TF-TF interaction leading to induction of ZAT6 indirect targets via a TF1-TF2 interaction 573 
comes from a known ZAT6 interaction with UPB1, an ABA-responsive bHLH TF (Trigg et al., 574 
2017). This finding, uncovered using ConnecTF, suggests a simple explanation for how ZAT6 may 575 
induce target genes indirectly via a TF1-TF2 interaction (e.g.  ZAT6-UPB1 complexes) (Figure 5). By 576 
contrast, cis-element analysis of the repressed targets of ZAT6 and other TFs (e.g. HB7) reveals an 577 
enrichment of cis-motif cluster 13 (Figure 5 and Supplemental Table 8), a core W-box motif known 578 
to be bound by WRKY TFs (Rushton et al., 1995). 579 
 580 
A remaining question is how do 3/14 TFs tested in the ABA signaling pathway (ABF1, ABF3, and 581 
DREB2A) regulate target gene transcription without binding to those targets either directly or 582 
indirectly (Supplemental Tables 5 and 7)? These three TFs show no cis-enrichment in their repressed 583 
regulated targets of their own known cis-motif(s), nor do their TF-repressed target genes show 584 
enrichment of TF-bound targets in planta (Supplemental Tables 5 and 7). Other regulatory 585 
mechanisms for transcriptional control have been reported that do not involve TF binding, either 586 
direct or indirect, to target genes. This includes the destabilizing of transcriptional complexes by a 587 
TF, as seen for SPL9 repression of anthocyanin biosynthesis (Gou et al., 2011), and TFs sequestering 588 
components of a transcriptional activating complex (Nemie-Feyissa et al., 2014). While it is not 589 
possible to directly determine whether these types of mechanisms apply to the 14 TFs in ABA 590 
signaling used in our analysis, the results demonstrate how ConnecTF can be used to generate 591 
testable hypotheses by integrating TF-regulation and binding datasets.  592 
 593 
In case study 2, we demonstrate how ConnecTF can be used to readily compare a predicted GRN 594 
against a set of validated TF-target gold standard interactions. With the large amount of TF-target 595 
validation data being generated, many sophisticated methods are being developed that use machine 596 
learning to predict GRNs from TF-target regulation and binding datasets (Marbach et al., 2012; Banf 597 
and Rhee, 2017; Mochida et al., 2018). However, a major bottleneck to this effort is the limited 598 
availability of validated TF-target edges, along with a clear understanding of what types of 599 
experimentally validated TF-target interactions are most useful to use as a gold standard for 600 
benchmarking inferred networks (Marbach et al., 2012; Banf and Rhee, 2017). The automated 601 
precision/recall analysis features of ConnecTF will contribute to overcoming this systems biology 602 
bottle neck by providing a resource for users to readily select and rapidly test which gold standard 603 
validated TF-target interactions are most useful to refine/prune or train their predicted networks.  604 
 605 
We demonstrate how ConnecTF allows users to readily subset their gold standard validated TF-target 606 
edges based on specific criteria (e.g. edge type, P-value, fold change etc.), and compare how each 607 
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subset affects the precision/recall analyses used to prune/refine inferred networks using automated 608 
functions in ConnecTF. We have incorporated features into ConnecTF that facilitate this 609 
functionality, including the ability to perform automated precision/recall analysis of user-provided 610 
ranked lists of inferred TF-target interactions in GRNs (Figure 6). In case study 2, we used these 611 
automated precision/recall analysis features to determine that TF-target regulation datasets are 612 
superior as gold-standard data, compared to in vitro TF-binding datasets. Specifically, we show that 613 
TF-target regulation datasets generated for 55 TFs using the TARGET cell-based TF-perturbation 614 
system (Bargmann et al., 2013; Varala et al., 2018; Brooks et al., 2019; Alvarez et al., 2020), results 615 
in a higher AUPR and statistical improvement relative to randomized networks, compared to using 616 
TF-target binding data from in vitro assays (i.e. DAP-seq), even when the same set of TFs are used 617 
(Table 2). Furthermore, the inferred network pruned with TF-targets that were both TF-regulated and 618 
TF-bound also resulted in a lower AUPR, compared to using all regulated targets for those TFs 619 
(Table 2). These results are unsurprising given what we observed in case study 1, that is, in vitro 620 
binding is extensive in the genome, but often represents only a subset of TF-regulated targets (Figure 621 
4D). This is likely related to the observation that a majority of TF-binding in the genome does not 622 
result in gene regulation (Supplemental Table 6), and/or TF-TF interactions (i.e. indirect binding) 623 
which are not captured in this in vitro DNA binding assay. 624 
 625 
In case study 3, we show how the ConnecTF platform enables users to integrate validated TF-target 626 
interactions from multiple TF datasets into a unified network path within a GRN, facilitating systems 627 
biology studies. To demonstrate this, we used ConnecTF to chart a network path that defined how 628 
NLP7, a master regulator of nitrogen signaling (Marchive et al., 2013; Alvarez et al., 2020), controls 629 
downstream genes through intermediate TF2s, following the Network Walking approach (Brooks et 630 
al., 2019). To do this, we showed how simple queries in ConnecTF can identify specific sets of 631 
targets of a TF1 (i.e. direct vs. indirect targets of TF1) and how these results can be combined with 632 
TF1 direct TF2 targets in an iterative process to chart network paths from TF1 (NLP7)  direct TF2s 633 
 direct targets of TF2s, which include indirect targets of TF1. Using ConnecTF allowed us to 634 
identify eight direct TF2 targets of NLP7 that are able to directly regulate 68% of NLP7 indirect 635 
targets (Figure 7). This network path shows that LBD37 and LBD39, which are known to be 636 
important in nitrogen uptake and assimilation in planta (Rubin et al., 2009), are the TF2s that are 637 
most influential on NLP7 indirect targets (Supplemental Figure 3). Thus, ConnecTF offers a way for 638 
users to identify the sequential action of TFs in a network path to regulate a pathway or set of genes 639 
of interest.  640 
 641 
These three case studies are just some examples of the many ways that ConnecTF will be able to 642 
facilitate genomics and systems biology research in the plant community. We will host and maintain 643 
databases for the plant species Arabidopsis and maize.  However, as we built the ConnecTF 644 
framework with common software packages and a species-independent structure, it is possible for 645 
users to easily set up an instance for any species of interest, and/or add new features and analysis 646 
tools. We provide detailed instructions on how to build private and/or public versions of ConnecTF 647 
for users interested in creating a database with their own data, and encourage other researchers to do 648 
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so. As more TF-centric data is generated, we expect ConnecTF to be a powerful and easy to use tool 649 
to integrate validated interactions into transcriptional regulatory networks in plants and other species.  650 

Materials and Methods 651 

Validation of regulated TF targets in isolated plant cells 652 

To identify the direct regulated targets of the 14 TFs in the ABA pathway that had both in planta 653 
ChIP (Song et al., 2016) and cis-binding motifs available (Weirauch et al., 2014), we expressed the 654 
TFs in isolated root cells using the TARGET system described in Brooks et al (Brooks et al., 2019) 655 
as follows. Arabidopsis Col-0 plants were grown in 1% w/v sucrose, 0.5 g per L MES, 0.5x MS basal 656 
salts (-CN), 2% agar, pH 5.7 for 10 days. Light conditions were 120 μmol m-2s-1 at constant 657 
temperature at 22⁰C, 16 h light, 8 h dark. Roots were harvested stirred with cellulase and 658 
macerozyme (Yakult, Japan) for 3 hours to remove the cell wall. Root protoplasts were filtered 659 
through 70 µm and then 40 µm cell strainers (BD Falcon, USA) and pelleted at 500 x g. Filtered root 660 
cells were washed with 15mL MMg buffer (400 mM mannitol, 10 mM MgCl2, 4mM MES pH 5.7) 661 
and resuspended to between 2-3 x 106 cells per mL. Transfections of root cells were performed in a 662 
50 mL conical tube by mixing 1 mL of root cell suspension with 120 μg of plasmid DNA, 1mL of 663 
PEG solution (40% polyethylene glycol 4000 (Millipore Sigma, USA),  400 mM mannitol, and 50 664 
mM CaCl2) and vortexed gently for 5 seconds. After mixing, 50 mL of W5 buffer (154 mM NaCl, 665 
125 mM CaCl2, 5 mM KCl, 5 mM MES, 5 mM glucose, pH 5.7) was added to the tube. Root cells 666 
were pelleted at 1,200 x g, and washed 3 times with W5 buffer. Cells transfected with a single TF in 667 
the RFP vector (pBOB11, available at https://gatewayvectors.vib.be/collection (Bargmann et al., 668 
2013)) and another batch of cells transfected with a single TF in the GFP vector (pBOB11-GFP, 669 
available at https://gatewayvectors.vib.be/collection (Brooks et al., 2019)) were aliquoted into 3 670 
replicate wells of a 24 well plate. The following day (18 hours) after TF expression and translation, 671 
transfected root protoplasts were treated with 35 µM CHX for 20 min before a 10 µM DEX treatment 672 
to induce TF nuclear import. Transfected root cells expressing the TF were sorted into GFP and RFP-673 
expressing root cell populations by FACS 3 hours after DEX treatment. 674 

To identify TF-regulated genes transcriptome analysis was performed. For this, cells expressing the 675 
candidate TF vs. EV were collected in triplicate and RNA-Seq libraries were prepared from their 676 
mRNA using the NEBNext® Ultra™ RNA Library Prep Kit for Illumina®. The RNA-Seq libraries 677 
were pooled and sequenced on the Illumina NextSeq 500 platform. The RNA-Seq reads were aligned 678 
to the TAIR10 genome assembly using HISAT2 (Kim et al., 2019) and gene expression estimated 679 
using the GenomicFeatures/GenomicAlignments packages (Lawrence et al., 2013). Gene counts were 680 
combined for each TF sample and the EV and differentially expressed genes in the TF transfected 681 
samples vs the EV samples were identified using the DESeq2 package (Love et al., 2014) with a 682 
TF+Batch model and an FDR adjusted p-value < 0.05. We filtered out genes that respond more than 683 
5-fold to CHX treatment in transfected protoplasts (Brooks et al., 2019) from the lists of TF targets. 684 
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Genes that are expressed in any of the protoplast experiments were used as the background for 685 
subsequent enrichment analyses in ConnecTF (Supplemental Table 9).  686 

TF-Target List Enrichment 687 

Target list enrichment calculates the significance of the overlap between TF-targets in each queried 688 
TF analysis and each user-uploaded gene list. The p-values are calculated using the Fisher’s Exact 689 
Test adjusted with the Bonferroni correction. The background set of genes used for the calculation, 690 
which is by default all protein coding genes for both the Arabidopsis or maize instances of 691 
ConnecTF, can be manually set by the user by using the Background Genes option in the query page. 692 

Cis-motif Enrichment 693 

Arabidopsis and maize cis-binding motif PWMs were collected from Cis-BP (Weirauch et al., 2014) 694 
(Build 2.0) and the 80 cis-motif clusters from Brooks et al. (Brooks et al., 2019) and converted to 695 
MEME format. The FIMO (Grant et al., 2011) tool within the MEME (Bailey et al., 2009) package 696 
was used to identify every occurrence of each cis-binding motif in the nuclear genome (i.e. excluding 697 
mitochondrial and chloroplast chromosomes) at a p-value < 0.0001 using the base frequency in the 698 
nuclear genome as the background model.  699 

We chose to remove overlapping sites for the same cis-binding motifs, which are particularly 700 
common for repetitive motifs. For each cis-binding motif, when two sites overlap, the match with the 701 
lowest p-value is kept, and the other is removed until only non-overlapping matches remain. The 702 
number of matches for each cis-binding motif is tallied for each individual gene region, subdivided 703 
into 2000, 1000, and 500 bp upstream of transcription start site, the 5’ and 3’ untranslated regions 704 
(UTRs), coding sequence (CDS), intron, exon and the full region transcribed into mRNA (cDNA). If 705 
a match is found to be within a region shared by more than one gene, it is counted for all the genes 706 
that it is associated with. 707 

To calculate enrichment of a cis-binding motif or cis-motif cluster for a particular individual TF 708 
within a given region in a target gene of a queried analysis, the Fisher’s Exact Test was used with a 709 
background of all individual cis-binding motifs or cis-motif clusters within that gene region, 710 
respectively. As in Target list enrichment, a user can upload a list of genes to use as the background, 711 
or use the default of all protein coding genes. The P-values are adjusted with the Bonferroni 712 
correction method. 713 

If a Target Gene list (e.g. genes in a pathway of interest) is provided by the user, ConnecTF can also 714 
calculate the cis-binding motif enrichment for that gene list(s), separately. The p-values of motif 715 
enrichment on gene lists is adjusted with the Bonferroni correction as a group, independent of the 716 
correction performed on the queried analyses. 717 
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Gene Set Enrichment 718 

The Gene set enrichment tool calculates the significance of overlap between all possible pairwise 719 
combinations of target gene lists identified for any TF-targets queried. Significance of overlap is 720 
calculated using the Fisher’s exact test, using the default background of all protein coding genes, or 721 
the user uploaded background. Both the p-values for overlaps greater or equal to and lesser or equal 722 
to the one observed is calculated and displayed. All The p-values are then adjusted with the 723 
Bonferroni correction.  724 

Sungear 725 

Sungear (Poultney et al., 2006) is a tool to display/visual overlaps between gene lists resulting from 726 
different queries, similar to a Venn diagram or UpSet plot (Lex et al., 2014). The vertices on the 727 
outer polygon are anchor points, vertices, containing gene lists for each TF-analysis queried. Circular 728 
nodes within the polygon represents gene sets that are in common between the indicated analyses. 729 
Each node has one or more arrows pointing to the vertices corresponding to the analyses which 730 
contains the genes. The gene sets exclusively found in that node represents the specific combination 731 
of analyses. The position of the node is approximately the midway point between the combination of 732 
analyses it represents.  733 

In our implementation of Sungear, we enhanced the graph by calculating a p-value which indicates 734 
whether a node contains greater or fewer genes than expected given the total number of targets 735 
regulated by each of the queried analyses. Calculation was performed using the following method: 736 

Let’s say there are n lists, each containing x1, x2 … xn number of genes, with a total of x genes. 737 

𝑥 =  𝑥  

 If a node 𝐴 , ,  indicates genes that are exclusively in common with lists 1, 2, and 4. Then the 738 
expectation value, 𝑒, of a gene being in that node can be calculated from multiplying probability of 739 
being in the gene list and not being in the gene list respectively and x.  740 

𝑒 , , = ∙ ∙ ∙ 1 −  ∙ 1 −   ∙ … ∙ 1 −   𝑥  .  741 

This will be a binomial distribution, where success is defined as the number of genes in the node A, 742 
and the failure is the number of genes not in node A (total genes - number of genes in node A). The 743 
p-value is calculated for each node by comparing the observed value to the expected value using the 744 
binomial test and adjusted using the Bonferroni correction. 745 
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Code Availability 746 

The source code including instructions for setting up a public or private instance of ConnecTF is 747 
available at https://github.com/coruzzilab/connectf_server. 748 

Data Availability 749 

All raw sequencing data from this project have been deposited in the Gene Expression Omnibus 750 
(GEO) database, https://www.ncbi.nlm.nih.gov/geo (accession no. GSE152405). 751 
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 760 
Tables 761 
Interaction 

Type 
Experiment Type No. of TFs # of edges Reference 

TF-Binding 
ChIP-seq 26 257,400 (Song et al., 2016) 

(Birkenbihl et al., 2017) 

DAP-seq 382 3,335,595 (O'Malley et al., 2016) 

TF-
Regulation 

in planta 
perturbation 3 7,894 (Marchive et al., 2013) 

(Varala et al., 2018) 

TARGET  
(plant cells) 58 137,389 

(Brooks et al., 2019) 
(Alvarez et al., 2020) 

(Brooks et al., 2020 this study)
TF-TF 
protein-
protein 

interactions 

HaloTag-NAPPA 
CrY2H 1,221 6,555 (Yazaki et al., 2016) 

(Trigg et al., 2017) 

Cis-binding 
motifs 

TF cis-binding 
motifs 

1310 cis-motifs for 730 TFs 
collected from Cis-BP (Weirauch et al., 2014) 

Cis-motif clusters 80 clusters from 1,282 
individual cis-binding motifs (Brooks et al., 2019) 

 Table 1 – Overview of the validated Arabidopsis TF-target datasets in the ConnecTF database762 
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Validated Edges Used AUPR AUPR randomized 
network p-value Percent improvement 

vs. random 
TF-Regulated only 

(TARGET) 0.2025 0.1595 <0.001 27% 

TF- bound only (in vitro) 
(DAP-seq) 0.3257 0.2967 <0.001 10% 

TF-Regulated and TF- bound 
(in vitro) 

(TARGET ⋂ DAP-seq) 
0.0863 0.0614 <0.001 41% 

TF-bound only (in vitro) 
(DAP-seq)/ 

DHS filtered (root) 
0.1908 0.1682 <0.001 13% 

TF-Regulated and TF-bound 
(in vitro)/ 

DHS filtered (root) 
(TARGET ⋂ DAP-seq) 

0.0555 0.0398 <0.001 39% 

 Table 2 – Precision/recall analysis of a GRN inferred network from time-series nitrogen response 763 
data in Arabidopsis roots (Brooks et al., 2019) performed using automated precision/recall functions 764 
in ConnecTF using different sets of experimentally validated edges in the ConnecTF database.765 
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Figures and Figure Legends 766 

 767 
Figure 1 – Analysis and visualization tools in ConnecTF for the integration of data supporting 768 
TF-target gene interactions to build/validate gene regulatory networks. ConnecTF contains TF-769 
target interactions for 707 experiments from Arabidopsis and 158 experiments in maize for a total of 770 
4.58 million TF-target interactions for 590 TFs (Table 1 and Supplemental Table 1). The distinct 771 
types of validated TF-target data within each species can be filtered and integrated using 772 
analysis/visualization tools within ConnecTF to; A) build and visualize validated gene regulatory 773 
networks, B) use validated TF-target data to perform precision/recall analysis and prune predicted 774 
networks (user uploaded or predefined in database), C) compare whether the TF-targets in common 775 
between two experiments/TFs are over-represented or under-represented, D) determine how TF-776 
targets are distributed between TF experiments, and E) identify enriched cis-binding motifs in 777 
validated TF targets. 778 
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 779 
Figure 2 – Case Study 1: Ranking significance of 14 TFs in regulation of ABA responsive genes.  780 
ConnecTF was used to address whether the direct regulated targets of 14 ABA responsive TFs 781 
identified in isolated root cells using the TARGET assay (Supplemental Table 3) are enriched for 782 
ABA responsive genes identified in Song et al. (Song et al., 2016). This screenshot from the 783 
ConnecTF website shows the results of the Target List Enrichment tool. We observed that the 784 
validated regulated targets of each of the 14 TFs are enriched for ABA responsive genes, including 785 
either ABA induced genes or ABA repressed genes (P-value < 0.05, Fisher’s exact test). Known 786 
ABA regulators ABF1 and ABF3 (Choi et al., 2000) are among the most enriched and are primarily 787 
involved in regulating targets that are induced in response to ABA treatment.   788 
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 789 
Figure 3 – Case Study 1: Known cis-binding motifs for a TF are enriched in specific subsets of 790 
TF-regulated genes (induced vs. repressed). The ConnecTF database houses 1,310 experimentally 791 
determined cis-binding motifs for 730 Arabidopsis TFs and 37 cis-binding motifs for 26 maize TFs 792 
(Table 1 and Supplemental Table 1). Users can use this resource determine if any of these cis-motifs 793 
are enriched in the targets of the queried TF(s) using the Individual Motifs section of the Motif 794 
Enrichment tab. Here, we present a screenshot demonstrating how ConnecTF can be used to 795 
determine the enrichment of cis-motifs within the subset of targets of a TF (e.g. TF-induced or TF-796 
repressed targets). The results show that the A) the HB7 cis-motif is enriched only in the TF-targets 797 
induced by HB7 in a root cell-based TF-assay, but not in the targets whose expression is repressed by 798 
HB7, B) the MYB3 cis-motif is enriched only in the TF-targets repressed by MYB3, but not the 799 
MYB3-induced targets, and C) the known motif for ZAT6 is not found to be enriched in either the 800 
induced or repressed targets of ZAT6. P-values were calculated using the Fisher’s exact test.   801 

802 
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 803 
Figure 4 – Case Study 1: TF-regulated gene targets are largely TF-bound, while TF-bound 804 
genes are infrequently TF-regulated. The Gene Set Enrichment tool in ConnecTF can be used to 805 
determine if the pairwise overlap of the target gene lists of two TF analyses is significant (Fisher’s 806 
exact test). This feature enables users to answer common questions such as “What is the overlap 807 
between ChIP and TF perturbation of the same TF? Or, how significant is the overlap of the targets 808 
of two different TFs?” To demonstrate this feature, for A) HB7, B) MYB3 and C) ZAT6, we show 809 
screenshots from the ConnecTF site of the overlap between bound targets as determined by in planta 810 
ChIP (Song et al., 2016) and the induced and repressed TF-targets that we determined in isolated root 811 
cells in this study using the TARGET assay. For each TF, the bound targets significantly overlap 812 
with both the TF-induced and TF-repressed targets identified in cells. D) When we performed this 813 
overlap of TF-regulation and TF-binding for all 14 TFs (Supplemental Tables 6 and 7), we  observed 814 
that the percent of TF-regulated genes that are TF bound is much greater than the percent of TF-815 
bound genes that are TF-regulated , regardless of whether the binding data is in vivo or in vitro. This 816 
suggests that TF-biding is a poor indicator of gene regulation in the absence of complimentary TF-817 
regulation data for each TF.  818 
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 819 
Figure 5 – Case Study 1: Putative cis-motifs for TF2 partners are identified in indirectly bound 820 
TF1-targets. ConnecTF was used to combine the new TF-regulation data generated in this study for 821 
14 ABA responsive TFs with existing TF-binding data in planta (Song et al., 2016), and to reveal 822 
mode-of-action for how these TFs function to regulate target genes in the ABA signaling pathway. 823 
Here we summarize these results for 3/14 TFs; A) HB7, B) MYB3, and C) ZAT6. For both HB7 and 824 
ZAT6, we found that TF-repressed and TF-bound targets, which lack enrichment of the known cis-825 
motif for that TF (see Figure 3), had enrichment of the cis-motif cluster representing WRKY TFs 826 
(Brooks et al., 2019). Similarly, for MYB3 and ZAT6, the TF-induced and TF-bound targets that 827 
were not enriched in the cis-motif for these TFs, were each enriched for cis-motif clusters 6 and 39 828 
which represents the bZIP/bHLH/BZR families of TFs (Brooks et al., 2019). This cis-analysis 829 
allowed us to derive a model for each TF (e.g. HB7, MYB3 and ZAT6) which describes how 830 
physical interactions with putative partner TFs (TF2s) enable the TF to regulate subsets of its target 831 
genes, even in the absence of direct binding.   832 
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 833 
Figure 6 – Case Study 2: Performing an automated precision/recall analysis on an inferred 834 
network uploaded by the user. Users are able to perform an automated precision/recall analysis on 835 
a predicted network. To do this, the user first uploads a ranked list of TF-target interactions in a 836 
predicted networks into ConnecTF from the Query page using the Target Network box. Next, they 837 
can validate the predicted network using TF-target gene validated data in the ConnecTF database.  838 
Once they do this, within the Network tab, a precision/recall analysis (AUPR) section will be 839 
automatically generated for the predicted network, using selected TF-target validation datasets in the 840 
ConnecTF database, and display a precision/recall plot and summary table. The user can then select a 841 
precision cutoff using the sliding bar above the plot, which will interactively update the AUPR graph, 842 
summary table, and the network that is visualized or exported. Query filters enable the user to select 843 
which TFs and the specific types of edges that should be used as the “gold standard” to perform 844 
precision/recall analysis of the predicted network. Here we show a screenshot for an example where 845 
we used the time-based inferred network from Arabidopsis roots (Brooks et al., 2019), and all 846 
validated edges from TFs whose TF-regulated targets were identified in root cells (39 experiments) 847 
to demonstrate this AUPR feature of ConnecTF.  848 
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 849 

850 
Figure 7 – Case Study 3: Network Walking: Using ConnecTF to chart a network path from 851 
TF1  TF2s  indirect targets of TF1. The query system of ConnecTF can be used in an iterative 852 
process, with the results of one query being used to filter the TFs and/or target genes of other queries. 853 
This facilitates the building of more complex GRNs, such as charting a network path from TF1 to its 854 
downstream TF2s and indirect targets. A) ConnecTF can be used to chart a network path from a TF1 855 
via its direct TF2s to its indirect targets using the Network Walking approach described in Brooks et 856 
al. (Brooks et al 2019). Simple queries can be used in ConnecTF to integrate TF-target binding and 857 
TF-target regulation datasets to identify TF1 direct targets (TF1-regulated and TF1-bound, query 1) 858 
and TF1 indirect targets (TF1-regulated but not TF1-bound, query 2). The results of a query can also 859 
be saved and used to filter subsequent user queries, as in query 3. B) We demonstrate the process of 860 
Network walking using NLP7, a master TF1 involved in nitrogen signaling, identifying a set of 8 861 
direct intermediate TF2s targets acting downstream of NLP7 that control 68% of the NLP7 indirect 862 
targets. 863 

 864 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627


Parsed Citations
Alvarez JM, Schinke AL, Brooks MD, Pasquino A, Leonelli L, Varala K, Safi A, Krouk G, Krapp A, Coruzzi GM (2020) Transient genome-
wide interactions of the master transcription factor NLP7 initiate a rapid nitrogen-response cascade. Nat Commun 11: 1157

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Arenhart RA, Bai Y, Valter de Oliveira LF, Bucker Neto L, Schunemann M, Maraschin FdS, Mariath J, Silverio A, Sachetto-Martins G,
Margis R, Wang Z-Y, Margis-Pinheiro M (2014) New Insights into Aluminum Tolerance in Rice: The ASR5 Protein Binds the STAR1
Promoter and Other Aluminum-Responsive Genes. Molecular Plant 7: 709-721

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery
and searching. Nucleic Acids Res 37: W202-208

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Banf M, Rhee SY (2017) Computational inference of gene regulatory networks: Approaches, limitations and opportunities. Biochimica
et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1860: 41-52

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bargmann BO, Marshall-Colon A, Efroni I, Ruffel S, Birnbaum KD, Coruzzi GM, Krouk G (2013) TARGET: a transient transformation
system for genome-wide transcription factor target discovery. Mol Plant 6: 978-980

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Birkenbihl RP, Kracher B, Roccaro M, Somssich IE (2017) Induced Genome-Wide Binding of Three Arabidopsis WRKY Transcription
Factors during Early MAMP-Triggered Immunity. The Plant Cell 29: 20-38

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O'Connor D, Grotewold E, Hake S (2012) Unraveling the KNOTTED1 regulatory
network in maize meristems. Genes & Development 26: 1685-1690

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Brooks MD, Cirrone J, Pasquino AV, Alvarez JM, Swift J, Mittal S, Juang C-L, Varala K, Gutiérrez RA, Krouk G, Shasha D, Coruzzi GM
(2019) Network Walking charts transcriptional dynamics of nitrogen signaling by integrating validated and predicted genome-wide
interactions. Nature Communications 10: 1569

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Chatterjee S, Ahituv N (2017) Gene Regulatory Elements, Major Drivers of Human Disease. Annual Review of Genomics and Human
Genetics 18: 45-63

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Choi H-i, Hong J-h, Ha J-o, Kang J-y, Kim SY (2000) ABFs, a Family of ABA-responsive Element Binding Factors. Journal of Biological
Chemistry 275: 1723-1730

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Cirrone J, Brooks MD, Bonneau R, Coruzzi GM, Shasha DE (2020) OutPredict: multiple datasets can improve prediction of expression
and inference of causality. Scientific Reports 10: 6804

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

de Boer CG, Vaishnav ED, Sadeh R, Abeyta EL, Friedman N, Regev A (2020) Deciphering eukaryotic gene-regulatory logic with 100
million random promoters. Nature Biotechnology 38: 56-65

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

de Vetten NC, Ferl RJ (1994) Transcriptional regulation of environmentally inducible genes in plants by an evolutionary conserved
family of G-box binding factors. Int J Biochem 26: 1055-1068

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Eveland AL, Goldshmidt A, Pautler M, Morohashi K, Liseron-Monfils C, Lewis MW, Kumari S, Hiraga S, Yang F, Unger-Wallace E, Olson
A, Hake S, Vollbrecht E, Grotewold E, Ware D, Jackson D (2014) Regulatory modules controlling maize inflorescence architecture.
Genome Res 24: 431-443

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627


Google Scholar: Author Only Title Only Author and Title

Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD (2015) Cytoscape.js: a graph theory library for visualisation and analysis.
Bioinformatics 32: 309-311

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Gordân R, Hartemink AJ, Bulyk ML (2009) Distinguishing direct versus indirect transcription factor–DNA interactions. Genome
Research 19: 2090-2100

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Gou J-Y, Felippes FF, Liu C-J, Weigel D, Wang J-W (2011) Negative Regulation of Anthocyanin Biosynthesis in Arabidopsis by a
miR156-Targeted SPL Transcription Factor. The Plant Cell 23: 1512-1522

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a given motif. Bioinformatics 27: 1017-1018
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Greenfield A, Hafemeister C, Bonneau R (2013) Robust data-driven incorporation of prior knowledge into the inference of dynamic
regulatory networks. Bioinformatics 29: 1060-1067

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Grossman RL (2019) Data Lakes, Clouds, and Commons: A Review of Platforms for Analyzing and Sharing Genomic Data. Trends in
Genetics 35: 223-234

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Gupta P, Singh SK (2019) Gene Regulatory Networks: Current Updates and Applications in Plant Biology. In SP Singh, SK Upadhyay, A
Pandey, S Kumar, eds, Molecular Approaches in Plant Biology and Environmental Challenges. Springer Singapore, Singapore, pp 395-
417

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, Yang S, Kim CY, Lee M, Kim E, Lee S, Kang B, Jeong D, Kim Y, Jeon H-N, Jung H, Nam S,
Chung M, Kim J-H, Lee I (2018) TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory
interactions. Nucleic Acids Research 46: D380-D386

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Katari MS, Nowicki SD, Aceituno FF, Nero D, Kelfer J, Thompson LP, Cabello JM, Davidson RS, Goldberg AP, Shasha DE, Coruzzi GM,
Gutierrez RA (2010) VirtualPlant: a software platform to support systems biology research. Plant Physiol 152: 500-515

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-
genotype. Nature Biotechnology 37: 907-915

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Krouk G, Mirowski P, LeCun Y, Shasha DE, Coruzzi GM (2010) Predictive network modeling of the high-resolution dynamic plant
transcriptome in response to nitrate. Genome Biol 11: R123

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Kulkarni SR, Vandepoele K (2019) Inference of plant gene regulatory networks using data-driven methods: A practical overview.
Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms: 194447

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Kulkarni SR, Vaneechoutte D, Van de Velde J, Vandepoele K (2018) TF2Network: predicting transcription factor regulators and gene
regulatory networks in Arabidopsis using publicly available binding site information. Nucleic Acids Res 46: e31

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ (2013) Software for computing and
annotating genomic ranges. PLoS computational biology 9: e1003118

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Lex A, Gehlenborg N, Strobelt H, Vuillemot R, Pfister H (2014) UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph
20: 1983-1992

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627


Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Li C, Qiao Z, Qi W, Wang Q, Yuan Y, Yang X, Tang Y, Mei B, Lv Y, Zhao H, Xiao H, Song R (2015) Genome-wide characterization of cis-
acting DNA targets reveals the transcriptional regulatory framework of opaque2 in maize. Plant Cell 27: 532-545

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol
15: 550

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ (2019) The prevalence, evolution and chromatin signatures of plant
regulatory elements. Nature Plants 5: 1250-1259

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Marbach D, Costello JC, Küffner R, Vega NM, Prill RJ, Camacho DM, Allison KR, Aderhold A, Bonneau R, Chen Y (2012) Wisdom of
crowds for robust gene network inference. Nature methods 9: 796

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Marchive C, Roudier F, Castaings L, Bréhaut V, Blondet E, Colot V, Meyer C, Krapp A (2013) Nuclear retention of the transcription
factor NLP7 orchestrates the early response to nitrate in plants. Nature Communications 4: 1713

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Mochida K, Koda S, Inoue K, Nishii R (2018) Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From
Transcriptome Datasets. Frontiers in Plant Science 9: 1770

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Monteiro PT, Oliveira J, Pais P, Antunes M, Palma M, Cavalheiro M, Galocha M, Godinho CP, Martins LC, Bourbon N, Mota MN, Ribeiro
RA, Viana R, Sá-Correia I, Teixeira MC (2019) YEASTRACT+: a portal for cross-species comparative genomics of transcription
regulation in yeasts. Nucleic Acids Research 48: D642-D649

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Morohashi K, Casas MI, Falcone Ferreyra ML, Falcone Ferreyra L, Mejia-Guerra MK, Pourcel L, Yilmaz A, Feller A, Carvalho B, Emiliani
J, Rodriguez E, Pellegrinet S, McMullen M, Casati P, Grotewold E (2012) A genome-wide regulatory framework identifies maize
pericarp color1 controlled genes. Plant Cell 24: 2745-2764

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Nemie-Feyissa D, Olafsdottir SM, Heidari B, Lillo C (2014) Nitrogen depletion and small R3-MYB transcription factors affecting
anthocyanin accumulation in Arabidopsis leaves. Phytochemistry 98: 34-40

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E, Vernot B, Thurman RE, John S, Sandstrom R, Johnson AK, Maurano MT,
Humbert R, Rynes E, Wang H, Vong S, Lee K, Bates D, Diegel M, Roach V, Dunn D, Neri J, Schafer A, Hansen RS, Kutyavin T, Giste E,
Weaver M, Canfield T, Sabo P, Zhang M, Balasundaram G, Byron R, MacCoss MJ, Akey JM, Bender MA, Groudine M, Kaul R,
Stamatoyannopoulos JA (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489: 83-90

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

O'Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR, Galli M, Gallavotti A, Ecker JR (2016) Cistrome and Epicistrome
Features Shape the Regulatory DNA Landscape. Cell 166: 1598

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Obayashi T, Aoki Y, Tadaka S, Kagaya Y, Kinoshita K (2018) ATTED-II in 2018: A Plant Coexpression Database Based on Investigation of
the Statistical Property of the Mutual Rank Index. Plant Cell Physiol 59: e3

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Para A, Li Y, Marshall-Colon A, Varala K, Francoeur NJ, Moran TM, Edwards MB, Hackley C, Bargmann BO, Birnbaum KD, McCombie
WR, Krouk G, Coruzzi GM (2014) Hit-and-run transcriptional control by bZIP1 mediates rapid nutrient signaling in Arabidopsis. Proc
Natl Acad Sci U S A 111: 10371-10376

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Petralia F, Wang P, Yang J, Tu Z (2015) Integrative random forest for gene regulatory network inference. Bioinformatics 31: i197-205
Pubmed: Author and Title

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627


Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Petricka JJ, Winter CM, Benfey PN (2012) Control of Arabidopsis Root Development. Annual Review of Plant Biology 63: 563-590
Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Phuc Le P, Friedman JR, Schug J, Brestelli JE, Parker JB, Bochkis IM, Kaestner KH (2005) Glucocorticoid receptor-dependent gene
regulatory networks. PLoS Genet 1: e16

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Poultney CS, Gutiérrez RA, Katari MS, Gifford ML, Paley WB, Coruzzi GM, Shasha DE (2006) Sungear: interactive visualization and
functional analysis of genomic datasets. Bioinformatics 23: 259-261

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Ricci WA, Lu Z, Ji L, Marand AP, Ethridge CL, Murphy NG, Noshay JM, Galli M, Mejia-Guerra MK, Colome-Tatche M, Johannes F,
Rowley MJ, Corces VG, Zhai J, Scanlon MJ, Buckler ES, Gallavotti A, Springer NM, Schmitz RJ, Zhang X (2019) Widespread long-range
cis-regulatory elements in the maize genome. Nat Plants 5: 1237-1249

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Rubin G, Tohge T, Matsuda F, Saito K, Scheible WR (2009) Members of the LBD family of transcription factors repress anthocyanin
synthesis and affect additional nitrogen responses in Arabidopsis. Plant Cell 21: 3567-3584

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R (1995) Members of a new family of DNA-binding proteins bind to a
conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29: 691-702

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Santos-Zavaleta A, Salgado H, Gama-Castro S, Sanchez-Perez M, Gomez-Romero L, Ledezma-Tejeida D, Garcia-Sotelo JS, Alquicira-
Hernandez K, Muniz-Rascado LJ, Pena-Loredo P, Ishida-Gutierrez C, Velazquez-Ramirez DA, Del Moral-Chavez V, Bonavides-
Martinez C, Mendez-Cruz CF, Galagan J, Collado-Vides J (2019) RegulonDB v 10.5: tackling challenges to unify classic and high
throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res 47: D212-D220

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Slattery M, Zhou T, Yang L, Dantas Machado AC, Gordân R, Rohs R (2014) Absence of a simple code: how transcription factors read the
genome. Trends in Biochemical Sciences 39: 381-399

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Song L, Huang S-sC, Wise A, Castanon R, Nery JR, Chen H, Watanabe M, Thomas J, Bar-Joseph Z, Ecker JR (2016) A transcription
factor hierarchy defines an environmental stress response network. Science 354: aag1550

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Stender JD, Kim K, Charn TH, Komm B, Chang KCN, Kraus WL, Benner C, Glass CK, Katzenellenbogen BS (2010) Genome-Wide
Analysis of Estrogen Receptor α DNA Binding and Tethering Mechanisms Identifies Runx1 as a Novel Tethering Factor in Receptor-
Mediated Transcriptional Activation. Molecular and Cellular Biology 30: 3943-3955

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Sullivan Alessandra M, Arsovski Andrej A, Lempe J, Bubb Kerry L, Weirauch Matthew T, Sabo Peter J, Sandstrom R, Thurman Robert
E, Neph S, Reynolds Alex P, Stergachis Andrew B, Vernot B, Johnson Audra K, Haugen E, Sullivan Shawn T, Thompson A, Neri
Fidencio V, III, Weaver M, Diegel M, Mnaimneh S, Yang A, Hughes Timothy R, Nemhauser Jennifer L, Queitsch C, Stamatoyannopoulos
John A (2014) Mapping and Dynamics of Regulatory DNA and Transcription Factor Networks in A. thaliana. Cell Reports 8: 2015-2030

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Tian F, Yang D-C, Meng Y-Q, Jin J, Gao G (2019) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Research
48: D1104-D1113

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Toledo-Ortiz G, Huq E, Quail PH (2003) The Arabidopsis Basic/Helix-Loop-Helix Transcription Factor Family. The Plant Cell 15: 1749-
1770

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Trigg SA, Garza RM, MacWilliams A, Nery JR, Bartlett A, Castanon R, Goubil A, Feeney J, O'Malley R, Huang SC, Zhang ZZ, Galli M,
Ecker JR (2017) CrY2H-seq: a massively multiplexed assay for deep-coverage interactome mapping. Nat Methods 14: 819-825

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627


Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Tu X, Mejía-Guerra MK, Franco JAV, Tzeng D, Chu P-Y, Dai X, Li P, Buckler ES, Zhong S (2020) The transcription regulatory code of a
plant leaf. bioRxiv: 2020.2001.2007.898056

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Varala K, Marshall-Colón A, Cirrone J, Brooks MD, Pasquino AV, Léran S, Mittal S, Rock TM, Edwards MB, Kim GJ, Ruffel S, McCombie
WR, Shasha D, Coruzzi GM (2018) Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use
in plants. Proceedings of the National Academy of Sciences 115: 6494-6499

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Weirauch MT, Yang A, Albu M, Cote AG, Montenegro-Montero A, Drewe P, Najafabadi HS, Lambert SA, Mann I, Cook K, Zheng H, Goity
A, van Bakel H, Lozano JC, Galli M, Lewsey MG, Huang E, Mukherjee T, Chen X, Reece-Hoyes JS, Govindarajan S, Shaulsky G,
Walhout AJM, Bouget FY, Ratsch G, Larrondo LF, Ecker JR, Hughes TR (2014) Determination and inference of eukaryotic transcription
factor sequence specificity. Cell 158: 1431-1443

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Yáñez-Cuna JO, Dinh HQ, Kvon EZ, Shlyueva D, Stark A (2012) Uncovering cis-regulatory sequence requirements for context-specific
transcription factor binding. Genome research 22: 2018-2030

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Yazaki J, Galli M, Kim AY, Nito K, Aleman F, Chang KN, Carvunis A-R, Quan R, Nguyen H, Song L, Alvarez JM, Huang S-sC, Chen H,
Ramachandran N, Altmann S, Gutiérrez RA, Hill DE, Schroeder JI, Chory J, LaBaer J, Vidal M, Braun P, Ecker JR (2016) Mapping
transcription factor interactome networks using HaloTag protein arrays. Proceedings of the National Academy of Sciences 113: E4238-
E4247

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2010) AGRIS: the Arabidopsis Gene Regulatory Information Server,
an update. Nucleic Acids Research 39: D1118-D1122

Pubmed: Author and Title
Google Scholar: Author Only Title Only Author and Title

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.07.191627doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191627

