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Abstract

The number of offspring an organism can produce is a key component of its evolutionary fitness and life-
history. Here we perform a test of the hypothesized trade off between the number and size of offspring using
thousands of descriptions of the number of egg-producing compartments in the insect ovary (ovarioles), a
common proxy for potential offspring number in insects. In contrast to prior claims, we find that ovariole
number is not generally negatively correlated with the size of insect eggs, and we highlight several factors
that may have contributed to this size-number trade off being strongly asserted in previous studies. We
reconstruct the evolutionary history of the nurse cell arrangement within the ovariole, and show that the
diversification of ovariole number and egg size have both been largely independent of nurse cell presence
or position within the ovariole. Instead we show that ovariole number evolution has been shaped by a
series of transitions between variable and invariant states, with multiple independent lineages evolving to
have almost no variation in ovariole number. We highlight the implications of these invariant lineages on
our understanding of the specification of ovariole number during development, as well as the importance of
considering developmental processes in theories of life-history evolution.

Introduction

Offspring number is a fundamental parameter in the study of life-history1. This number differs widely
between organisms1, and its variation is the foundation for several hypotheses about life-history evolution,
including the prediction that there is an evolutionary trade off between the number of offspring and their
size (e.g. egg size)1–3. In insects, the number of egg-producing compartments in the ovary, called ovarioles,
has been used as a proxy for potential offspring number in the study of life-history4–6. However, without an
understanding of the phylogenetic distribution of ovariole number, this hypothesized relationship cannot be
assessed across insects. Here we tested for the presence of a general trade off between ovariole number and
egg size by collecting thousands of records of ovariole number from the published literature, placing them in
a phylogenetic context, and comparing them to other datasets of insect reproductive morphology.

The insect female reproductive system includes a pair of ovaries, each of which contains a number of ovarioles7
(Fig 1a). Each ovariole consists of an anterior germarium containing the stem cell niche or resting oogonia,
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developing oocytes arranged in an ontogenic series from anterior to posterior, and a posterior connection
to a common oviduct. The number of ovarioles varies across species6, and can vary across individuals in a
population4, as well as between the left and right ovary within a single individual8. Therefore total ovariole
number may be an even or odd integer for an individual female insect. In addition to variation in the number
of ovarioles, the tissue morphology within ovarioles varies across insects, and has been classified into several
modes of oogenesis based on the presence and position of special nutritive cells called nurse cells7.

Here we compiled 3355 records of ovariole number from across 28 orders, 301 families, and 2103 species
of insects. We combined these data with published datasets of egg size9, fecundity10, body size11, and
mode of oogenesis7 to test hypotheses about reproductive evolution. In these analyses we used an existing
phylogeny of insects12 to analyze evolutionary patterns in ovariole number, and found that hypotheses
about reproductive trait evolution do not hold generally true across insects. Instead we observe that the
phylogenetic distribution of ovariole number suggests a model where the developmental mechanisms that
govern ovariole number have shifted between variable and invariant states several times over the course
of insect evolution. We propose that the developmental mechanisms used to establish ovariole number in
well-studied insects such as Drosophila melanogaster are unlikely to regulate ovariole number in all insects.

Methods

Gathering trait data

We searched the published literature for references to insect ovariole number using a predetermined set of
131 search terms, entered into Google Scholar (scholar.google.com) between June and October of 2019. Each
search term consisted of an insect taxonomic group and the words “ovariole number”. This list was created
to include all insect orders, many large insect families, and groups well-represented in the insect egg dataset9.
For each search term, we evaluated all publications in the first page of results (ten publications). For 61
search terms that had a large number of informative hits, significant representation in the egg dataset, or
that corresponded to very speciose groups, we evaluated an additional 20 publications. The list of search
terms is available in the supplementary file ‘ovariole_number_search_terms.tsv’.

Using this approach, we gathered 3355 records for ovariole number from 448 publications, listed in the
supplementary file ‘ovariole_number_bibliography.pdf’. We matched these records to additional taxonomic
information using the software TaxReformer13. For all subsequent analyses, we excluded observations made
in non-reproductive individuals from eusocial species (workers), as well as two observations that represented
significant outliers and could not be validated using additional sources14,15. See supplementary methods
section 1 for details.

We combined the data we collected on total ovariole number with existing datasets of egg size and shape9,
insect lifetime fecundity and dry adult body weight10, average adult body length per insect family11, several
lineage-specific measures of adult body size16–20, and the mode of oogensis7. See supplementary methods
section 3.1 for details.

All continuous traits (ovariole number, egg volume, lifetime fecundity, and all measures of body size) were
log10 transformed for subsequent analyses.

Phylogenetic analyses

The analyses in this manuscript were performed using the insect phylogeny published in Church et al.,
201912, unless otherwise specified. Analyses of insect family-level ovariole number, egg size, and body size
were performed using the insect phylogeny published in Rainford et. al, 201421. Analyses of Drosophilidae
ovariole number, egg size, and body size were performed using a phylogeny newly assembled for this study.
See supplementary methods section 2 for details.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.07.191940doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191940
http://creativecommons.org/licenses/by-nc-nd/4.0/


To evaluate the robustness of our results to uncertainty in the phylogenetic relationships, all Phylogenetic
Generalized Least Squares (PGLS) analyses were performed 1000 times over a posterior distribution of trees,
using a Brownian Motion based covariance matrix in the R package ape (version 5.3)22 and nlme (version
3.1.145)23. For regressions at the species and genus level, we reshuffled and matched records for each iteration
to account for variation across records for the same taxon. For regressions at the family level we recalculated
the average ovariole number per insect family, randomly downsampling the representation for each family
by half. To weight traits by body size, we calculated the phylogenetic residuals24 of each trait to body size,
and then compared the evolution of these residuals using a PGLS regression. See supplementary methods
section 3.2 for details.

Ancestral state reconstruction of oogenesis mode was performed with the R package corHMM25, version
1.22, and models of trait evolution were compared using the R package Ouwie26, version 1.57. Ancestral
state reconstruction and model comparison were repeated 100 times over a posterior distribution of trees
and resampling data to account for variation across records for the same taxon. See supplementary methods
section 4.3.

Other comparisons of model fit were performed using the R package geiger27, version 2.0.6.4, and validated
using a parametric bootstrap with the R package arbutus28, version 0.1. See supplementary methods section
5.1.

Analyses of evolutionary rate were performed using BAMM29, version 2.5.0. For this analysis, we calculated
the average ovariole number (log10 transformed) for each genus present in the phylogeny (507 taxa). We used
the R package BAMMtools (version 2.1.7)30 to select appropriate priors, and ran BAMM for the maximum
number of generations (2 ∗ 10−9), sampling every 106 generations. Convergence was evaluated both visually
(Fig. S9) and numerically. Running BAMM for the maximum possible number of generations and selecting
the optimum burn-inS10 resulted in an effective size for the number of shifts of 497.02, and for log-likelihood
of 156.65. Repeated BAMM analyses showed similar distributions of high and low rate regimes, indicating
the implications for ovariole number evolution are robust to uncertainty in rate estimates. See supplementary
methods section 5.2 for details.

We visualized the results from the BAMM analysis to establish a threshold (10−4) for assigning a binary rate
regime to each node in the phylogeny, categorizing them as above (variable) or below (invariant) a threshold
that separates these two peaks.

Data availability

The dataset of insect ovariole number is available at Dryad (doi:10.5061/dryad.59zw3r253). The code and
phylogenetic trees required to reproduce all the analyses, figures, and generate the manuscript files are
provided at ‘https://github.com/shchurch/insect_ovariole_number_evolution_2020’, commit 6cf446a.

Statistical significance

All regressions were performed over a posterior distribution of trees and accounting for phenotypic uncer-
tainty; therefore these analyses produced a range of p-values. We considered a relationship significant when
the maximum p-value observed from this range was below the threshold 0.01. We report the maximum
p-value throughout this manuscript, and have included the full range in the supplementary information (see
Table S1).

Model comparisons of trait evolution were also performed over a posterior distribution and accounting for
phenotypic uncertainty. For these analyses, we considered a model to have significantly better fit the data
than other models when the difference in the corrected Akaike Information Criterion (AICc) was greater
than two in every analysis iteration.
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Results

Ovariole number diversity

Ovariole number varies by at least four orders of magnitude across insects (Fig. 1b). We identify seven
insect families with species that have been reported to have more than 1,000 total ovarioles, including
several eusocial insects (e.g. queens of the termite species Hypotermes obscuriceps, Blattodea: Termitidae31,
and several ant species, Hymenoptera: Formicidae)32,33 and non-eusocial insects (e.g. the blister beetle Meloe
proscarabaeus, Coleoptera: Meloidae)34. We also find two independent lineages that have evolved to have
only one functional ovariole: dung beetles in the tribe Scarabaeinae (Coleoptera: Scarabaeidae)35, and grass
flies in the genus Pachylophus (Diptera: Chloropidae)36,37. In these insects one of the two ovaries presumably
established during embryogenesis is reported to atrophy during development37,38, resulting in an asymmetric
adult reproductive system.

Figure 1: The diversity of ovariole number across insects. a, Schematic of a generalized insect female
reproductive system, showing a pair of ovaries, each with four ovarioles. b, The range of total adult ovariole
number, log10 scale, across nine groups of insects, arranged with random jitter on the y-axis within each
group. Groups are, from top to bottom: Apterygota, Palaeoptera, Polyneoptera, Condylognatha, Psocodea,
Amphiesmenoptera, Antliophora, Neuropteroidea, and Hymenoptera.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.07.191940doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.191940
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ovariole number, egg size, and body size

Ovariole number has been hypothesized to be negatively correlated with egg size5,19,39. This hypothesis is
based on the predictions that (1) female reproduction is resource-limited, therefore egg size should trade off
with egg number, and (2) ovariole number can serve as a proxy for egg number2,39. Our data do not support
the hypothesis of a negative relationship between egg size and ovariole number across insects (p-value 0.31;
Figs. 2a, S1, Table S1).

Given that this prediction is often conditioned on taking into account adult body size19,40, we combined
data on ovariole number and egg size with several measurements of body size, and applied a size correction
that accounts for phylogenetic relationships.41 Across insects we did not observe a significant relationship
between ovariole number and egg size when controlling for body size (p-value 0.042; Fig. 2b, S2, S3, Table
S1), though we do note the presence of a non-significant negative trend, primarily driven by a few extreme
values (e.g. wasps in the family Trigonalidae, which have many ovarioles and lay minute eggs, Fig. S3).

We assessed the relationship between these traits for four sublineages of insects and found that across
Drosophilidae species, egg size is indeed strongly negatively correlated with ovariole number when accounting
for body size (p-value <0.001; Fig. 2c, Table S1). However this relationship did not hold for any of the three
other lineages we analyzed (e.g. Orthoptera p-value 0.993; Fig. 2d, S4, Table S1).

We additionally tested whether ovariole number is positively correlated with adult body size, and in contrast
to previous studies4, we found no correlation between ovariole number and adult body weight or length
across insects (p-values 0.708 and 0.071, respectively; Fig. S5, Table S2).
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Figure 2: Tests of the hypothesized trade off between egg size and ovariole number. a, Egg volume
(mm3) and ovariole number, both log10 scale, n=762 species. See section Modeling ovariole number evolution
for discussion of the enrichment of certain low values of ovariole number (points appearing vertically arranged)
b, Egg volume and ovariole number, residuals to adult dry body weight, n=482 genera. c, Drosophilidae
egg volume and ovariole number, residuals to thorax length, n=30 species. d, Orthoptera egg volume and
ovariole number, residuals to body length, n=40 genera.
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Ovariole number and fecundity

If the hypothesized trade off between the number and size of offspring is true for insects, then one explanation
for the lack of a consistent negative relationship between ovariole number and egg size is that ovariole number
may not be a reasonable proxy for offspring number. Previous research has shown that, across individuals
within the same species, ovariole number is correlated with certain measurements of fecundity, such as
maximum daily rate of egg production for Drosophila,42,43 but not others, such as lifetime fecundity44 or
fitness in competition assays45. Few studies have compared fecundity and ovariole number across species40,
likely due to the difficulties of measuring fecundity consistently across insects, many of which lay eggs singly
and continuously rather than in distinct clutches.

Using a previously reported dataset of lifetime fecundity measurements across insects10, we assessed the
relationship between lifetime fecundity and ovariole number, and observed a positive, but not statistically
significant, correlation (p-value 0.983; Figs. 3, S6). We interpret our results, in conjunction with those
previously reported, to suggest that ovariole number, when variable across insects in a lineage, may be one
factor among many influencing the number of eggs produced. However, we caution against using ovariole
number as a direct mathematical proxy for offspring number.

Figure 3: The relationship between lifetime fecundity and ovariole number. Both values are shown
on a log10 scale. n=98 genera, colored according to the groups shown in Fig. 1b.

Evolution of nurse cells

In addition to the number of ovarioles, insect ovary morphology has been classified into several modes of
oogenesis based on the presence and position of nutritive cells called nurse cells7, (Fig. 4a). The ovary of the
well-studied species D. melanogaster is an example of a meroistic oogenesis mode, meaning that its ovarioles
contain nurse cells of germ line origin that are connected to developing oocytes via cytoplasmic bridges46.
In insects with a polytrophic arrangement, these nurse cells are clonally related and immediately adjacent
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to each oocyte. An alternative arrangement is seen in telotrophic meroistic ovaries, where oocytes in each
ovariole are connected to a common pool of nurse cells located in the germarium7. Meroistic ovaries are
thought to have evolved from a panoistic ancestral state, meaning they lack nurse cells7. Using a previously
published set of descriptions of these oogenesis modes across insects7, we reconstructed the evolutionary
transitions between these states. Consistent with previous analyses7, we found that the ancestral insect
likely had panoistic ovaries (without nurse cells), with several independent shifts to both telotrophic and
polytrophic meroistic modes, and at least two reversals from meroistic back to panoistic (Figs. 4b, S7).

Using this ancestral state reconstruction, we then compared models of trait evolution to test whether evolu-
tionary transitions in oogenesis mode helped explain the diversification of ovariole number and egg morphol-
ogy. We found that, for the traits studied here, models that take into account evolutionary changes in mode
of oogenesis do not consistently demonstrate a significant improvement over models that do not take these
changes into account (∆AIC < 2, Table S3). In other words, the evolution of nurse cells and their position
within the ovary do not explain the diversification of egg size, egg shape, or ovariole number.

To analyze the robustness of these results to uncertainty in the tree topology and in the inference of ancestral
states, we repeated each analysis over a posterior distribution of trees. For egg asymmetry and curvature, but
not for volume or aspect ratio, we observed a few iterations where a model that takes into account oogenesis
mode evolution was significantly favored over models that did not (∆AIC > 2, Table S3). However, this
result was infrequent over 100 repetitions of the analysis. We therefore interpret these results as suggestive of
a possible relationship between mode of oogenesis and egg asymmetry and curvature, but one which cannot
be confirmed given the current data available.

Figure 4: The evolution of the presence and position of nurse cells. a, Insect oogenesis was cate-
gorized into several modes by Büning7 based on the presence and position of nurse cells. b, Phylogenetic
reconstruction of mode of oogenesis. Scale bar indicates 100 million years (Myr). Gray = panoistic ovaries,
without nurse cells, cyan = polytrophic meroistic ovaries, with nurse cells adjacent to maturing oocytes, red
= telotrophic meroistic ovaries, with nurse cells located in germaria, black = unique meroistic ovary type
observed in Strepsiptera. Insect taxonomic groups are, from top to bottom: Apterygota, Palaeoptera, Poly-
neoptera, Condylognatha, Psocodea, Hymenoptera, Neuropteroidea, Amphiesmenoptera, and Antliophora.

Modeling ovariole number evolution

Using the dataset compiled here and a previously published phylogeny of insects (Fig. 5a)12, we modeled
the rate of evolutionary change in ovariole number (Figs. S8, S9, S10, S11). We observed substantial
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rate heterogeneity in the evolution of ovariole number (Fig. S11), meaning that for some lineages ovariole
number has evolved rapidly where in others, ovariole number has evolved very slowly or not at all. The
most striking example of this are the multiple lineages which have independently evolved invariant or near-
invariant ovariole number across taxa (e.g. nearly all Lepidoptera have exactly eight ovarioles, Fig. 5b, cyan),
from an ancestral variable state. These invariant lineages were objectively identified by finding regions of the
phylogeny that experience extremely low rates of ovariole number diversification (Figs. S11, S12). Using this
approach, we found that invariant ovariole numbers have evolved at least nine times independently across
insects, with several subsequent reversals from invariant to variable states (Fig. 5a).

We find that the rate of evolutionary change in ovariole number is correlated with the number of ovarioles:
lineages with relatively low ovariole number also experience relatively low degrees of change (Fig. S8). This
is evidenced by the fact that, of the nine invariant lineages, none have greater than seven ovarioles per ovary
(Fig. 5c). However we note that not all insects with low ovariole counts are in invariant lineages; many
insects with fewer than 14 total ovarioles are in lineages with relatively high rates of intra- and interspecific
ovariole number variation (Fig. 5)

Additionally, the distribution of ovariole numbers across insects is enriched for even numbers of total ovarioles
(Fig. 5c). While many insects show asymmetries in the number of ovarioles between the left and right ovaries,
all of the invariant lineages are symmetric (at 4, 6, 8, 10, 12, and 14 total ovarioles). Therefore, invariant
lineages have near-zero variation when comparing between species, between individuals within a species, and
between the left and right ovary within an individual.

Using these results, we propose a multi-rate model, where the rate of ovariole number evolution differs based
on the evolution of a discrete trait representing invariant or variable status. We propose that the evolution
of this discrete trait is governed by a model where the likelihood of transitions from a variable to an invariant
state is negatively correlated with the current number of ovarioles. Here we demonstrate that a multi-rate
Brownian motion model far outperforms a single rate model in fitting the data (∆ AICc 672.4).
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Figure 5: The evolutionary distribution of ovariole number across insects. a, Phylogeny of insect
genera, colored according to the inferred rate regime of ovariole number evolution, variable in gray and
invariant in black (see Supplementary Methods). b, Total ovariole numbers, shown on a log10 scale and
arranged by insect genus according to the phylogeny. Tips with more than one point represent genera with
multiple records for total ovariole number in the dataset. c, The distribution of values shown in (b), showing
enrichment for even values in the left tail of the distribution.
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Discussion

A frequently invoked life-history prediction is that, given a finite set of metabolic resources, organisms can
either produce few offspring, each with high fitness, or many low-fitness offspring1–3. In insects, egg size
and ovariole number are often used as proxies for offspring fitness47 and number42,43, respectively, and
therefore it has been predicted that insects with more ovarioles lay smaller eggs than insects with fewer
ovarioles5,6,19,39. Our results, using a dataset that spans 3355 observations and that takes into account
phylogenetic relationships, indicate that a general trade-off between insect egg size and ovariole number does
not exist (Fig. 2).

Lineages of insects with invariant ovariole number illustrate this point. Despite having the same ovariole
number, these lineages contain a range of egg sizes that is comparable to the four orders of magnitude
observed across all insects (Fig. 2a). Furthermore, we observed no relationship between the evolutionary
rates of change for ovariole number and egg size (Fig. S14). Therefore, if a trade-off between egg size and
fecundity exists, factors beyond variation in ovariole number must contribute to fecundity. These factors
might include variation in the rate of egg production per ovariole48–51, among others52,53.

We suggest that considering the evolution of developmental processes that govern ovariole number specifica-
tion may be more useful in explaining patterns of diversity than predictions based on metabolic trade-offs.
The regulation of ovariole number is best understood from research on Drosophila melanogaster, where
the number of ovarioles in the adult is determined by cell proliferation and rearrangement during larval
development54,55. In this species, the number of ovarioles can vary between the left and right ovaries within
an individual, as well as across individuals within a population56,57. This variation is derived primarily from
variation in the number of “terminal filament precursor cells”58,59, as well as from variation in the number
of those precursor cells that group together to form the structure that initiates ovariole formation, known
as a “terminal filament”60. Across species of Drosophila, variation in average adult ovariole number results
primarily from variation in the average number of terminal filament precursor cells59.

When considering the developmental processes that could give rise to invariant ovariole number, we propose
that the major determinants of ovariole number known from Drosophila may not apply. To achieve an
invariant ovariole number, these processes might instead include mechanisms for strict counting of individual
cells or discrete cell subpopulations. In the former, if the cells that ultimately comprised a terminal filament
were derived by mitotic division from a single progenitor, rather than by cellular rearrangements as is the
case in Drosophila54, then an invariant ovariole number could be achieved via strict control of the number
of precursor cells. Alternatively, an invariant ovariole number could be achieved by partitioning the starting
population of precursor cells into a tightly regulated number of subpopulations. This would again be a
departure from known mechanisms in Drosophila, in which a variable number of precursor cells are gathered
into terminal filaments until the population is depleted54,60. The determining factor for partitioning the
precursor pool could be, for example, a spatially variable morphogen emanating from adjacent tissues61 or
a reaction-diffusion patterning process62 within the developing ovary, as has been shown to generate fixed
numbers of multicellular structures in other developmental contexts63–65. These predictions could be tested
by characterizing the dynamics of cell number and position across invariant lineages, and making comparisons
to corresponding data from their variable relatives.

The evolutionary transitions between variable and invariant ovariole number are reminiscent of other quan-
titative traits across multicellular life, including patterns of variability and invariance in arthropod segment
number66,67, vertebrate digit number68,69, or the number of angiosperm floral organs70,71. Across these sys-
tems, the evolutionary history of morphogenetic counting mechanisms is poorly understood. We suggest that
insect ovariole number presents an ideal case to study this phenomenon. In particular, we note the evidence
that invariance has evolved convergently at least nine times, as well as the evidence of several reversals back
to variability from an invariant ancestral state (Fig. 5). These convergent lineages provide an opportunity
to test the predictability of evolutionary changes to counting mechanisms, by asking whether convergent
evolution of invariance involves convergent canalization of shared molecular mechanisms.
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