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Extracting calcium traces from populations of neurons is a1

critical step in the study of the large-scale neural dynam-2

ics that govern behavior. Accurate activity extraction re-3

quires the correction of motion and movement-induced de-4

formations as well as demixing of signals that may overlap5

spatially due to limitations in optical resolution. Tradition-6

ally, non-negative matrix factorization (NMF) methods have7

been successful in demixing and denoising cellular calcium ac-8

tivity in relatively motionless or pre-registered videos. How-9

ever, standard NMF methods fail in animals undergoing sig-10

nificant non-rigid motion; similarly, standard image registra-11

tion methods based on template matching can fail when large12

changes in activity lead to mismatches with the image tem-13

plate. To address these issues simultaneously, we introduce a14

deformable non-negative matrix factorization (dNMF) frame-15

work that jointly optimizes registration with signal demixing.16

On simulated data and real semi-immobilized C. elegans mi-17

croscopy videos, dNMF outperforms traditional demixing meth-18

ods that account for motion and demixing separately. Finally,19

following the extraction of neural traces from multiple imaging20

experiments, we develop a quantile regression time-series nor-21

malization technique to account for varying neural signal inten-22

sity baselines across different animals or different imaging se-23

tups. Open source code implementing this pipeline is available24

at https://github.com/amin-nejat/dNMF.25

1 Introduction26

Recent advances in imaging techniques have enabled the27

capture of functional neural ensembles in vivo within28

a wide variety of animal models [Flusberg et al., 2008,29

Ahrens et al., 2013, Prevedel et al., 2014, Mann et al., 2017].30

Demixing the recorded video signals into estimates of indi-31

vidual neural activity remains a critical bottleneck in the anal-32

ysis of these large and complex datasets. Previous approaches33

for extracting individual neural activity traces have involved34

either region of interest (ROI) methods [Kerr et al., 2005,35

Niell and Smith, 2005, Dombeck et al., 2007,36
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Göbel et al., 2007, Tian et al., 2009, Kerlin et al., 2010,37

Hofer et al., 2011, Venkatachalam et al., 2016b,38

Nguyen et al., 2016, Barbera et al., 2016] or matrix39

factorization methods based on principal compo-40

nents analysis (PCA) or independent components41

analysis (ICA) [Stetter et al., 2001, Siegel et al., 2007,42

Reidl et al., 2007, Mukamel et al., 2009] or sparse cod-43

ing [Pachitariu et al., 2013, Pachitariu et al., 2017].44

Non-negative matrix factorization (NMF)45

[Paatero and Tapper, 1994, Lee and Seung, 1999,46

Lee and Seung, 2001] based models have been intro-47

duced to demix signals from recordings of calcium48

activity [Andilla and Hamprecht, 2013, Haeffele et al., 2014,49

Andilla and Hamprecht, 2014, Maruyama et al., 2014,50

Pnevmatikakis et al., 2016, Pachitariu et al., 2017,51

Zhou et al., 2018]. A prerequisite for the success of52

these methods, to permit blind-source separation, is that the53

imaged ROI remains motionless even when the animal is54

awake, satisfying the assumption that the spatial footprints55

of signal sources remain stationary. To facilitate NMF as-56

sumptions and remove excess motion variability, a common57

pre-processing step before NMF is the registration of the58

imaging volumes to a common template space.59

There is a wealth of literature in the medical imag-60

ing community regarding the registration of volumetric im-61

ages to template volumes to account for morphological vari-62

ability [Klein et al., 2009]. These methods have proven63

to be very effective in registering images that have sim-64

ilar intensity profiles but they tend to introduce artifacts65

when the template image and the moving image have dif-66

ferent appearances, low signal to noise ratio, or abnormali-67

ties [Zeng et al., 2016]. Furthermore, the computational com-68

plexity of these methods is a bottleneck since there are po-69

tentially tens of thousands of frames in volumetric calcium70

videos that need to be registered. A number of pipelines71

[Dubbs et al., 2016, Pnevmatikakis and Giovannucci, 2017,72

Pachitariu et al., 2017] implement existing sub-pixel registra-73

tion techniques [Guizar-Sicairos et al., 2008] to enable the74

rigid and non-rigid registration of calcium videos in a com-75

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.07.192120doi: bioRxiv preprint 

https://github.com/amin-nejat/dNMF
mailto:mn2822@columbia.edu
https://doi.org/10.1101/2020.07.07.192120


putationally efficient manner. Assuming that the motion does76

not involve large shifts in the field of view (FOV), these tech-77

niques aim to register individual video frames to a template78

frame through fast patchwise rigid transformations. However,79

they too are not built to handle severe deformations and large80

intensity variations.81

Recent whole-brain imaging techniques of the82

model organism C. elegans [Schrödel et al., 2013,83

Prevedel et al., 2014, Kato et al., 2015, Nguyen et al., 2016,84

Venkatachalam et al., 2016b] have opened up an exciting85

new avenue of research, enabling simultaneous recording86

of neural dynamics and freely-moving behaviors in the87

same animal. Even during restrained imaging, worms88

can exhibit highly-nonlinear motion [Girard et al., 2007,89

Larsch et al., 2013, Voleti et al., 2019], violating the as-90

sumptions that enable NMF-based signal separation and91

overstretching the capabilities of fast piecewise rigid registra-92

tion techniques. Therefore, common approaches have been93

to apply motion tracking and simple pixel-averaging around94

cellular tracking ROIs in two discrete steps, often followed95

by time-consuming supervision and manual correction of96

the results [Kato et al., 2015, Venkatachalam et al., 2016a,97

Nguyen et al., 2016]. One way to perform motion tracking98

is to use a second imaging channel to record a temporally-99

invariant fluorescent marker (such as RFP) which is100

insensitive to calcium activity. By using such cellular motion101

tracking markers, calcium activity can then be extracted by102

averaging the pixel values in the ROI that overlap with the103

marker. However, this approach is flawed for at least two104

reasons: 1) ROI averaging in densely-packed cell regions105

is prone to mixing signal between different neurons, due106

to limitations in optical resolution, and 2) introducing a107

second imaging channel effectively requires experimenters108

to reduce the frame rate and/or spatial resolution by at least109

half in order to acquire this channel or add an additional110

optical path and camera. On the other hand, if tracking is111

performed only on the calcium imaging channel, due to the112

low signal-to-noise regime and calcium signal fluctuations,113

tracking approaches may miss cellular markers at time points114

when the cells become dim, creating downstream errors in115

tracking and demixing.116

In general, tracking cells in moving animals (and even re-117

strained animals with restricted mobility), has proven to be118

a challenging machine vision problem [Hirose et al., 2017].119

Cell nuclei have similar shapes, thus providing only a lim-120

ited set of unique features to facilitate their tracking. Spatial121

noise represents a further, inherent limitation, due to the mi-122

croscopic size of the objects under investigation. Most avail-123

able microscopy approaches scan the animal in both space124

and time to achieve volumetric video recordings. Therefore,125

there are fundamental limits in reaching the high spatiotem-126

poral resolution necessary to resolve unique cell identities127

and extract their calcium signals through tracking techniques.128

Even if high accuracy cell tracking can be achieved, an-129

other issue with extracting calcium signal around tracked130

ROIs is that many existing volumetric optical imag-131

ing setups have a relatively poor resolution in the132

depth axis, characterized by an elongated point-spread-133

function [Yang and Yuste, 2017]. This phenomenon causes134

the calcium signals of nearby cells to be mixed, which in turn135

causes the pixel-wise signal read-out to be an inaccurate por-136

trayal of actual neural activity.137

Orthogonally, there have been NMF techniques138

that are invariant to signal shift, such as convolutive139

NMF [O’grady and Pearlmutter, 2006, Smaragdis, 2006].140

However, these techniques model discrete translation based141

shifts and are not suitable for modeling the complex de-142

formable motion exhibited across biological volumetric143

recordings.144

In the case of C. elegans imaging, worms145

can exhibit nonlinear motion (even when immobi-146

lized using popular paralytics [Larsch et al., 2013,147

Venkatachalam et al., 2016a, Voleti et al., 2019]) and148

variability in their neural firing patterns over time, making149

the application of previous techniques such as Normcorre150

[Pnevmatikakis and Giovannucci, 2017] or convolutive151

NMF ineffective. To surmount these issues, we introduce152

deformable non-negative matrix factorization (dNMF) to153

jointly model the motion, spatial shapes, and temporal traces154

of the observed neurons in a tri-factorization framework.155

Instead of the two-step approach of sequentially tracking156

then demixing calcium signals, we update motion parameters157

together with updates in the spatial and temporal matrices.158

To ensure that our model is not overfitting and picking up159

spurious motion and signal, we use regularized models for160

cell shapes, temporal fluctuations, and deformations. The161

model parameters capture the worm’s motion corresponding162

to a fixed, spatial representation of the video, enabling the163

deformation terms to match the worm’s posture at each164

time frame. Our framework is general and is suitable for165

decomposing videos into a set of motion parameters, fixed166

spatial representations for image components, and tempo-167

rally varying signals with underlying linear and/or nonlinear168

motion. This approach can be considered a generalization169

of the model developed in [Peng et al., 2012] (applied to170

calcium imaging data by [Poole et al., 2015]), which restricts171

attention to affine transformations.172

We validate our method on an intensity-varying173

particle-tracking simulation and compare it to state-174

of-the-art calcium-imaging motion-correction tech-175

niques [Pnevmatikakis and Giovannucci, 2017] followed by176

NMF [Pnevmatikakis et al., 2016]. We then demonstrate the177

ability of our framework to extract calcium traces from all178

neurons in the head and tail of semi-immobilized C. elegans179

exhibiting nonlinear motion. We use a dataset of 42 animals,180

21 worm heads and 21 worm tails, recorded for 4 minutes181

each while presenting three stimuli, a repulsive concentration182

of salt and two attractive odors. We find that the proposed183

approach outperforms both ROI averaging and standard184

NMF, delivering more accurate tracking and demixing than185

either of these methods in this dataset.186

Finally, after accurate extraction of neural activity signals187

from each animal, a post-processing normalization step is188

still required in order to compare neurons of the same type,189

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.07.192120doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.07.192120


across a population of animals. This is because factors such190

as variable illumination, anisotropy associated with animal191

orientation, and a lack of stereotypy in fluorescence expres-192

sion across animals introduce substantial variability into the193

baseline and amplitude of the extracted neural activity sig-194

nals. Standard post-processing approaches based on esti-195

mating ∆F/F0, do not resolve this variability, which if un-196

corrected will confound any group-type neural comparisons197

across animals. Even worse, outlier signals that arise due to198

mistracking and demixing can considerably warp the mean199

signal measured across a population of animals, especially200

when the neuron type of interest is dim and is present next to201

neuron types with brighter signal.202

To reduce this excess variability across animals, we intro-203

duce a time-series normalization approach, termed quantile204

regression. This approach optimizes for a linear transforma-205

tion of time-series intensities in a group of samples (e.g., all206

traces extracted from a given cell type over all animals), trans-207

forming the time-series samples to have matched histograms.208

We compare this approach with z-scoring and advocate its209

adoption for population-based time-series analysis due to sev-210

eral desirable properties. In particular, our approach retains211

the approximate baseline and magnitude across a population212

of neurons of the same type, while maintaining robustness213

against outlier signals. Lastly, we introduce an option for en-214

suring the non-negativity of the normalized signals, when ap-215

propriate for the biological measurements being performed.216

2 Methods217

The joint motion correction and signal extraction framework218

proposed here involves several steps illustrated in Figure 1.219

First, the volumes undergo several pre-processing steps that220

involve coarse tracking, background subtraction and smooth-221

ing, details of which are discussed in the "Pre-processing222

steps" subsection below. The pre-processed volumes are then223

subjected to simultaneous deformation compensation and sig-224

nal demixing using a matrix tri-factorization model.225

First, we introduce notation. Let Y t ∈ Rd denote the d-
pixel vectorized volumetric image at time t = 1, . . . ,T . We
seek to decompose the observations, Y t, into a factoriza-
tion involving a time-varying deformation term, fβt

that
acts on a time-invariant canonical representation of k object
shapes encoded by A. The time-varying spatial signatures,
fβt

(A) ∈ Rd×k, are then multiplied by signal carrying coef-
ficientsCt ∈Rk. We also encourage model parameters to be
"well-behaved" using regularization functions, R (details of
which will be outlined later). The resulting objective function
is:

min
A,C,β

T∑
t=1

∥∥∥Y t−fβt
(A)Ct

∥∥∥2

2
+R(A,C,β) (1)

s.t. A,C1:T ≥ 0.

This formulation differs from standard NMF tech-226

niques [Lee and Seung, 2001] in that the spatial footprint227

term consists of a time invariant term, A and a time vary-228

ing term, fβt
, which is a differentiable transformation229

parametrized by βt, that deforms the canonical repre-230

sentation into the t-th time frame. βt encapsulates the231

motion parameters and is usually low dimensional to avoid232

over-parameterization and overfitting. The regularization233

R(·) further constrains the possible choice of spatial234

footprints, signal coefficients, and spatial deformations.235

Figure 1 illustrates the model. Next, we detail two possible236

parameterizations of the spatial terms,A and f .237

2.1 Spatial component: non-parametric model238

Similar to the standard NMF models, we can parameterize
A using a d-by-k matrix, where d is the number of pixels of
one time frame of the video and k is the number of objects
that are present. We use a Gaussian interpolant, T t, to trans-
form these spatial footprints to arbitrary locations such that
fβt

(A) = T tA, where T t : Rd×d and

T t[i, j] = exp
(∥βtΨ(xj)−xi∥22

2σ2

)
. (2)

Here, xi,xj ∈ R3 denote the coordinates of two arbitrary239

pixels in the volume. Ψ : R3→ Rp denotes a basis mapping240

of coordinates to enable non-linear deformations and βt is a241

3-by-p matrix that parametrize the deformations. For exam-242

ple, in the case of a quadratic polynomial basis, βt would be a243

3-by-10 matrix, and Ψ :R3→R10 would be the quadratic ba-244

sis function Ψ([x,y,z]T ) = [1,x,y,z,x2,y2,z2,xy,yz,xz]T .245

The choice of σ controls the amount of the spread of the mass246

of a pixel into nearby pixels. Further details on optimization247

in this model can be found in the appendix 1.248

2.2 Spatial component parametrization: Gaussian249

functions250

When we have strong prior information about the component
shapes we can incorporate that into the model using an ap-
propriate parameterization for the spatial footprints. Neural
activity is most commonly imaged using cytosolic or nuclear-
localized calcium indicators; nuclear-localized indicators can
be reasonably modelled using ellipsoidally-symmetric shape
models. Specifically, we observed that the spatial component
of the neurons in the videos analyzed here, of C. elegans
imaged using nuclear-localized calcium indicators, can be
well approximated using three-dimensional Gaussian func-
tions. By taking advantage of this observation we can reduce
the number of parameters inA from one parameter per pixel
per component, to k 3D centers (3 parameters per each neu-
ron) and k covariance matrices (6 parameters per each neuron
using the Cholesky parameterization). Formally, we model
the footprint of component k using a 3-dimensional Gaus-
sian function with location parameters µk ∈ R3 and shape
parameters Σk ∈ R3×3. Under this new spatial model for
A = {µ1:K ,Σ1:K}, we modify the fβt

function to match
this parameterization to have fβt

(A) ∈ Rd×k:

fβt
(A)[i,k]≈ exp

(
[pi−βtΨ(µk)]T Σ−1

k [pi−βtΨ(µk)]
)
,

(3)

where pi is the 3D coordinate of the i-th pixel in the im-251

age. (Note that non-negativity of the spatial components is252
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Fig. 1. Schematic of the deformable non-negative matrix factorization model. The volumetric time series data Y (t) is factorized into time-varying deformation + motion maps
fβ(t) which transform the factorized signal (with spatial footprints A multiplied by time-varying intensity coefficients, C(t)) onto the observed data volumes.

enforced automatically here.) Due to the differentiability of253

fβt
, it is straightforward to compute gradients with respect254

to βt and Σk.255

2.3 Regularization: temporal continuity256

To enforce smoothness of the temporal traces and motion
trajectories in time we add a regularizer that penalizes dis-
continuities in the neural trajectories and signal coefficients.
Specifically, we encourage the neural centers and signal co-
efficients at neighboring time points to be close. The regular-
izer for this purpose is:

RT (C,β) =λβ

T −1∑
t=0

∥∥ψ(µ1:K)βt−1−ψ(µ1:K)βt

∥∥2
F

(4)

+λC

T −1∑
t=0
∥Ct−1−Ct∥2F . (5)

In this formulation ψ(µ1:K) is the quadratic transformation257

of the canonical neural centers. When multiplied by βt−1258

and βt the result will be the neural centers at time t−1 and t259

respectively.260

2.4 Regularization: Jacobian constraints for plausible261

deformations262

The term fβt
induces a deformable transformation of the

pixel correspondences between time t and the canonical rep-
resentation A. In order to constrain this transformation to
yield physically realistic deformations that respect volumet-
ric changes, we regularize the cost function using the deter-
minant of the Jacobian of the transformation term to encour-
age the Jacobian to be close to 1 and prevent the deformation
from contracting or expanding unrealistically. The Jacobian

can be represented as:

J β(x1,x2,x3) with J ij =
∂(fβ)i

∂xj
.

Using the Jacobian, the regularizer is:

RJ (β) = λJ

T∑
t=1

j∑
i=1

(detJ βt
(xi,yi,zi)−1)2, (6)

where the Jacobian is evaluated on a grid where we want to263

ensure its proximity to one.264

2.5 Optimization265

All the variations of the dNMF cost function are optimized266

in the following way. To update β and A we use the267

autograd tool and PyTorch library to automatically com-268

pute gradients of the cost function and Adam optimizer to269

back-propagate the gradients. A forward pass of computation270

is evaluating the cost function with β1:T and A (in the fully271

parametric case, or β1:T (in the Gaussian case) as parameters.272

Note that for a fixedC, all compartments of the cost function273

are differentiable with respect to the parameters.274

To update C we use multiplicative updates as described
in [Taslaman and Nilsson, 2012]:

Ct←Ct⊙
fT

βt
Y t +λC(Ct−1 +Ct+1)
fT

βt
fβt

Ct +2λCCt

. (7)

The key difference between these multiplicative updates from275

those found in [Lee and Seung, 2001] is that the parts of the276

derivatives of the temporal smoothness regularization terms277

2λCCt and λC(Ct−1 +Ct+1) appear in the denominator278

and numerator to promote smoothly varying signal.279

4
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2.6 Initialization280

One key advantage of the C. elegans datasets considered281

here is that we can reliably identify the locations of all282

cells in the field of view, using methods developed in283

[Yemini et al., 2019]. Using the location of cells in the ini-284

tial frame (for example) can tremendously aid the optimiza-285

tion of the objective 1 for two main reasons. First, it serves286

as a very good initializer for the µk parameters for cell spa-287

tial footprints mentioned in section 2. Second, we know288

a priori the correct number of cells to be demixed in the289

FOV. These two factors enable our framework to operate290

in a semi-blind manner towards the deconvolution of neu-291

ral signals of C. elegans, unlike fully blind deconvolution292

techniques such as e.g. PCA-ICA [Mukamel et al., 2009] or293

CNMF [Pnevmatikakis et al., 2016].294

2.7 Using dNMF for image registration295

The transformation terms fβt , learned using dNMF, can
be used to obtain a pixel-level transformation of the video
frames to a reference frame in order to yield a registered
video; in the ideal case this registered video would remove all
the motion from the video, leaving each neuron to flicker in
place as its internal activity modulates its fluorescence level.
In the current formulation, fβt represent push-forward map-
pings of a reference frame to all the frames in the video. How-
ever, to obtain a registration, we need to recover the inverse
mappings from all of the video frames to the reference frame.
We solve this inverse transform, βi

t, by optimizing the follow-
ing objective:

min
βi

t

T∑
t=1
∥µ1:K −βi

tψ(β∗
tψ(µ1:K))∥2F +RJ (βi) (8)

where µ1:K ∈ ZK×3
+ indicates the set of neuron coordinates296

at the reference frame and β∗
tψ(µ1:K) indicates the forward297

polynomial mapping of these neurons in the t-th video frame298

after optimization, with β∗
t indicating the transformation op-299

timized through Eq. (1). Lastly, RJ (β) indicates the same300

Jacobian regularizer as in Eq. (6). In the simplest case that301

β∗
tψ is restricted to be affine, and the regularizer weight λJ302

in RJ (βi
t) is negligible, then βi

tψ simply implements the303

shift and matrix inversion of β∗
tψ. More generally, the exact304

inverse mapping may not exist or may be unstable; in this305

more general setting Eq. (8) will output a smooth approxima-306

tion to the inverse mapping.307

Note that Eq. (8) solves a labeled point-set registration
problem (since it operates on the neuron centers µ1:K ), not
an image registration problem per se. Next we use the recov-
ered inverse mapping βi

t to perform image registration, using
pixel-wise interpolation:

pt 7→ Interp.[βi
tψ(pt)]. (9)

Here, pt ∈ Zd×3
+ denotes the mesh of pixel coordinates that308

span the entire volume of the image and Interp. refers to an in-309

terpolation function such as linear, nearest neighbor, or bicu-310

bic, that can be used to convert non-integer values of pixel co-311

ordinates to map to discrete pixels. In practice, we set the ref-312

erence frame to be the first frame in the video series and use313

linear interpolation. Note that this way of performing regis-314

tration differs from traditional registration techniques such as315

Normcorre [Pnevmatikakis and Giovannucci, 2017] in a crit-316

ical way: the deformation terms that are used to drive the317

registration are informed by the neural activity and are de-318

coupled from the inferred activity in the joint objective func-319

tion Eq. (1). Thus, in theory, large fluctuations in neural ac-320

tivity from frame to frame should not affect the deformation321

terms. In contrast, pure registration techniques on functional322

neural data may be driven to poor local optima if the neural323

activity in a particular frame differs strongly from the refer-324

ence frame.325

2.8 Population neural analysis326

After we have extracted activity traces from each neuron327

in a single field of view, a typical next step is to compile328

and analyze a collection of extracted traces across multiple329

imaged animals. The traces exhibit variability due to both330

methodological variability (e.g., variability inherent in imag-331

ing equipment) and biological variability (e.g., variability in-332

herent in the levels of fluorescent-protein expression across333

neurons of the same type). These “extra" sources of variabil-334

ity can obscure the changes in neural activity that we wish335

to extract and analyze here. Consequently, a neuron’s cal-336

cium trace, measured across multiple animals, can exhibit337

differences in overall intensity that require correction to ob-338

tain valid comparisons across animals. As a simple example,339

many neuron classes are composed of a symmetric left and340

right pair that often show identical calcium activity. With341

most imaging equipment, when the left neuron is near the342

lens, the corresponding right neuron is far away, leading to a343

false differential reading of brightness. Thus, even within a344

single animal, symmetric neurons can require corrections to345

be comparable.346

The commonly used technique of converting neural traces347

to ∆F/F0 aims to correct these issues in mismatched fluores-348

cence intensity profiles but is often insufficient (see Results349

section below and Figure 2). One way to further normalize350

time-series data is through z-scoring the signal such that the351

mean and variance across time is zero and one, respectively.352

However, in practice, simply mean-shifting to zero often mis-353

represents the neuron’s baseline signal. Similarly, scaling to354

unit variance will scale unresponsive and responsive neurons355

to the same magnitude, thus inflating instead of suppressing356

measurement noise in unresponsive cells.357

A method that employs a more robust view of the distribu-358

tion of neural signal would provide a more accurate normal-359

ization. Here we generalize the concept of z-scoring time-360

series by first observing that z-scoring is a linear transform361

that matches the histogram of the time series to a standard362

Gaussian distribution with zero mean and unit variance. We363

then cast histogram normalization in a way such that the trans-364

formation is constrained to be a linear transform that mini-365

mizes distance to the distribution as a whole, leading to more366

robust results compared to z-scoring, which restricts attention367

to two non-robust summary statistics of the histogram (the368

mean and variance). Lastly, we provide a strategy for normal-369

5
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izing a population of time series data by transforming to the370

medoid of these time series (i.e., the time series which is on371

average closest to all the others in the population). Empiri-372

cally, the resulting approach preserves signal while reducing373

variability across the population.374

2.8.1 Quantile regression: Let Ci ∈ RT denote the time se-375

ries of a neuron in the ith animal over T time steps. Suppose376

we want to match the neural time-series of the ith animal to377

the jth animal using a linear transform. One possible strategy378

to match two time-series signals to one another is to match379

their baselines and match their peaks. This corresponds to380

transforming the minimum and the maximum of one time se-381

ries such that they match the minimum and maximum of the382

other time series. This is equivalent to matching their min-383

imal and maximal quantiles through a transformation term384

involving scaling and shifting.385

We can generalize this procedure with more quantiles to
yield a transformation estimate that is more robust to noise.
Matching multiple quantiles using a linear transformation
term can be represented by the following linear model:

F−1
Cj (a) = F−1

Ci (a)ν+ν0 + ϵ (10)

where F−1 denotes the inverse cumulative distribution func-386

tion and ν,ν0 denote the scaling and magnitude shift of the387

time-series, respectively, and ϵ represents an error term. This388

model posits that each time series signal consists of a baseline389

and several peaks which can be represented as quantiles of390

histograms that require matching; baselines and peaks of the391

same neuron, across different animals, should roughly have392

similar values.393

We can then estimate ν and ν0 by solving the following
least squares problem:

W2,L(Ci,Cj) = min
ν,ν0

∫ 1

0
∥F−1

Cj (a)−F−1
Ci (a)ν−ν0∥22da.

(11)

The arg-min of Eq. (11) yields the linear estimates ν,ν0 that394

can be used to transform the time seriesCi to match the time395

seriesCj , where Ĉ
i,j

=Ciν∗ +ν∗
0 . We term this regression396

model, quantile regression (QR), since the predictors and re-397

sponses are quantiles of time-series data. If only two quan-398

tiles are used i.e. the bottom and topmost quantiles, this pro-399

cedure is equivalent to matching the minimum/maximum of400

the two time-series.401

Optimizing Eq. (11) yields the transformation that best402

matches the histogram of the ith time series Ci with that of403

the jth time series Cj . The residual discrepancy between404

the transformed ith time series Ĉ
i,j

and the jth time series405

Cj can be thought of a distance between these time series.406

In fact, the minimum of Eq. (11) is a linear approximation407

of a bona fide distance metric, termed the Wasserstein met-408

ric [Peyré et al., 2019], that is a distance between probability409

distributions.410

Using this notion of proximity between time series, if we
have a population of N samples C1, . . . ,CN , the strategy

for normalizing the time series we advocate here is to com-
pute pairwise Wasserstein distance approximations between
all time series and choose the medoid time series to normalize
to:

C0← argmin
Cℓ

N∑
i=1

W2,L(Cℓ,Ci) (12)

In other words, we can find the best fit of each time series411

through quantile regression to all other time series, and set412

as a reference the time series that has the minimal average413

distance to all the other time series. Once the reference is414

set, all the samples are transformed to match the reference415

quantiles using Eq. (11). See Figure 2 for an illustration.416

Lastly, if the time series all capture non-negative signal
(as is often encountered in calcium imaging) the regression in
Eq. (11) can be constrained to be non-negative to ensure the
transformed time series maintains its positivity. This yields
the non-negative linear estimate of the Wasserstein metric.
We term this variant of the quantile regression model as non-
negative quantile regression (NQR):

W2,N (Ci,Cj) = min
ν,ν0≥0

∫ 1

0
∥F−1

Cj (a)−F−1
Ci (a)ν−ν0∥22da

(13)

2.9 Evaluation metrics417

To evaluate the performance of the proposed method as well
as the compared methods, we focus on several metrics that
shed light both on the signal demixing capabilities of the
methods as well as their ability to track objects in time.
Namely we focus on two major metrics: trajectory corre-
lation, which measures the ability of the deformation model
to keep track of the observed motion, and signal correla-
tion, which measures the demixing performance by compar-
ing the correlation of demixed signal intensities relative to the
ground truth. Specifically, these metrics can be expressed as

Trajectory correlation:

ρ(β̂,β) =
∑

i,j,t(β̂
ij
t −

¯̂
β)(βij

t − β̄)√∑
i,j,t(β̂

ij
t −

¯̂
β)2

√∑
i,j,t(β

ij
t − β̄)2

Signal correlation:

ρ(Ĉ,C) =
∑

kt(Ĉkt− ¯̂
C)(Ckt− C̄)√∑

kt(Ĉkt− ¯̂
C)2

√∑
kt(Ckt− C̄)2

.

The above metrics are applicable when the ground truth418

motion trajectories and the signal coefficients are known.419

To evaluate the performance of the methods using unsu-420

pervised registration heuristics, we focus on the correla-421

tion of registered frames to the average frame (after reg-422

istration). Heuristically, this measure has been demon-423

strated to be an effective indicator of successful registra-424

tion [Pnevmatikakis and Giovannucci, 2017]. Furthermore,425

in the real data experiments, we also evaluate the average426
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Fig. 2. A demonstration of quantile regression for the tail neuron LUAL in C. elegans, across 21 animals. Different colors indicate different animals. First column: The raw
traces superimposed exhibit variability in intensity profiles due to imaging and biological differences (top). The histograms and cumulative distribution functions (CDFs) of the
time-series signals display the differing distributions representing these traces (middle and bottom). Second column: Z-scored traces exhibit tighter grouping than raw traces
(top) further shown in their CDFs (bottom). However, these z-scored traces are shifted towards zero mean (top) which is misrepresentative of the signal magnitude and also
exhibit significant remaining variability. Third and fourth columns: After quantile regression (QR) and non-negative quantile regression (NQR) to the medoid of the traces,
we see that the normalized traces retain their shape (top), exhibiting even tighter grouping than after z-scoring. In comparison with the z-scored traces, both QR and NQR
preserve the median signal magnitude, ∆F/F0=~2 (top and middle) with smaller tails in their histogram (middle), implying a better fit across the population of animals.

spread of cell locations before and after registration. This is427

computed by taking the average distance of the cells to the av-428

erage cell location. Similar to the frame correlation measure,429

this metric allows us to diagnose whether certain cells are430

registered better than others. While the average correlation431

of frames is a high-level measure of registration performance,432

the measure of cellular spread is a localized metric, indicat-433

ing whether certain regions of the volume are registered bet-434

ter than others. In other words, the former metric measures435

global sharpness while the latter measures local sharpness.436

The added benefit of the latter two evaluation metrics437

is that since they do not require any ground truth, they438

can be used for hyperparameter selection; i.e., we can se-439

lect regularization parameters that yield the sharpest regis-440

tration results. Furthermore, we can use the sharpness cri-441

teria to evaluate the goodness of fit for different deforma-442

tion models such as quadratic polynomials (as used here), b-443

splines [Rueckert et al., 1999], or higher order polynomials.444

2.10 Compared methods445

We argue in this paper that jointly optimizing for de-446

formable registration and time-series signal extraction has447

the potential to improve the quality of both the registra-448

tion and signal extraction. Therefore, we compare the449

registration performance of dNMF against the state-of-the-450

art method for calcium video motion registration, named451

Normcorre [Pnevmatikakis and Giovannucci, 2017]. Norm-452

corre does not explicitly model the presence of indepen-453

dent signal carrying units in the FOV and instead performs454

piecewise-rigid transformations on overlapping sub-blocks455

of the volume using a fast fourier transform based tech-456

nique [Guizar-Sicairos et al., 2008]. Furthermore, Norm-457

corre uses a normalized cross-correlation registration loss458

function that is less prone to intensity variations across time-459

frames.460

Next, we also evaluate the signal extraction perfor-461

mance of dNMF against two standard routines in cal-462

cium imaging. First, we compare against region of in-463
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terest (ROI) tracking and pixel averaging within the ROI464

[Venkatachalam et al., 2016a]. This method tracks the posi-465

tions of cells across time and extracts signal by taking the466

average pixel intensity value in a pre-defined radial region467

around the tracking marker. We also compare against the rou-468

tine of performing motion correction first and then signal ex-469

traction through NMF [Pnevmatikakis et al., 2016]. To repli-470

cate this routine in our experiments, we motion correct using471

Normcorre and then use the Gaussian cell shape parametriza-472

tion version of NMF that is described in section 2. We use473

this variant of NMF rather than non-parametric variants such474

as CNMF [Pnevmatikakis et al., 2016] to bring the compari-475

son against dNMF to an equal footing since dNMF already476

uses this parametrization that tends to model nuclear shapes477

well.478

2.11 Implementation details479

All the optimization codes are implemented in Python480

3.7.3 using the autograd tool and the PyTorch 1.5481

package. We used the Adam optimizer with learning rate482

0.001 for the simulations and 0.00001 for the worm exper-483

iments. Large learning rates lead to jumps in the tracks484

and lower quality traces, while small learning rates need485

more iterations to converge. The experiments are run on a486

Lenovo X1 laptop with Microsoft Windows operating system487

using 64 GB RAM and Intel(R) Core(TM) i7-8850H CPU @488

2.60GHz, 2592 Mhz, 6 Core(s), 12 Logical Processor(s). We489

further implemented a sequential optimizer for the demixing490

of an online stream of videos where each batch of data con-491

sisting of a few time frames of the video is processed with492

parameters initialized using the previous batch. In addition,493

to improve the memory and time efficiency of our algorithms494

we also introduced a stochastic variant of dNMF, where in495

each iteration, to compute the loss and its gradient, we ran-496

domly subsample the pixels both in the spatial and temporal497

domains and update the parameters based on those samples.498

2.12 C. elegans video description499

Videos of calcium activity in C. elegans were cap-500

tured via a spinning-disk confocal microscope with res-501

olution (x,y,z)=(0.27,0.27,1.5) microns. Whole-brain cal-502

cium activity was measured using the fluorescent sensor503

GCaMP6s in animals expressing a stereotyped fluorescent504

color map that permitted class-type identification of every505

neuron in the worm’s brain (NeuroPAL strain OH16230)506

[Yemini et al., 2019]. Each video was 4 minutes long and507

was acquired at approximately 4Hz. Worms were par-508

alytically immobilized (using tertramisole) in a microflu-509

idic chip capable of delivering chemosensory stimuli (salt510

and two odors) [Chronis et al., 2007, Si et al., 2019]. This511

setup allows for the controlled delivery of multiple solu-512

ble stimuli to the animal with high-temporal precision. See513

[Yemini et al., 2019] for full experimental details.514

Despite paralytic immobilization, we still observed some515

motion of the worm within the chip, primarily over small dis-516

tances of several microns and over slow, multi-second time517

scales. Some of this motion was driven by the animal, while518

some was the result of the animal drifting passively due to519

minute pressure differences in the chip. This motion was520

strongest in the tail, which, due to its taper, was not well521

secured by the channel walls of the microfluidic chip. De-522

spite the smaller scale of this motion (as compared to freely-523

moving behavior such as crawling), motion artifacts could524

strongly confound traces, particularly in the head of the ani-525

mal where the neurons are very tightly packed. Thus, these526

motion artifacts required algorithmic correction.527

Each dataset from this collection is a video in the form of528

a 4D tensor W ×H ×D× T (approximately 256× 128×529

21× 960) where the value of the tensor at (x,y,z, t) cor-530

responds to the activity of a neuron located near the point531

(x,y,z) at time t. To extract the neural activity from the532

videos we first reformat the data into a d×T matrix where533

d = WHD that is called the data matrix Y . We then run534

the Gaussian dNMF with cell centers initialized using the535

cell locations in the initial frame, determined using the semi-536

automated methods described in [Yemini et al., 2019]. Since537

the cells are approximately spherical in this video we used538

a fixed spherical covariance matrix for all the cells with539

squared root diagonal entries equal to 0.57µm (roughly a540

third of the minimal diameter of adult worm neurons).541

2.13 Pre-processing steps542

Neuron centers were first tracked using a local image registra-543

tion approach throughout the time series, using the approach544

in [Venkatachalam et al., 2016a]. After identifying each neu-545

ron center in the first frame, every subsequent frame was reg-546

istered to this first frame. The registration was performed on547

x-, y-, and z- maximum-intensity projections of a small vol-548

ume around the neuron center using the imregister func-549

tion in MATLAB. The volume was chosen to be small enough550

that nonrigid deformations could generally be neglected, so551

we used a rigid registration model (translation and rotation552

only). Because motion is continuous between frames, the553

initial guess for the transformation was taken to be the calcu-554

lated transformation from the previous time frame.555

We use the initial trajectories of the neurons to556

initialize our motion parameters βt by solving βt =557

argminβ ∥βψ(P1)−Pt∥22 where Pt contains the locations558

of neurons in time t tracked using local image registration559

techniques. For computational efficiency, we also mask out560

pixels that are outside of the circles with radii 3µm from the561

location of all neurons in all time points.562

3 Results563

3.1 Simulation experiments564

To evaluate the effectiveness of our algorithm in capturing565

motion and demixing time-series traces, we simulated the tra-566

jectory of 10 neurons, with a time-specific trace assigned to567

each (Fig. 3A-B). The signal for each neuron is modeled as568

a binary vector with length T and probability p of observ-569

ing a unit spike, convolved with a decaying exponential ker-570

nel. Each trajectory was generated using quadratic transfor-571

mations of the point cloud in its previous time point, starting572
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Fig. 3. Demixing calcium signals in simulated videos. A: Neurons are generated as Gaussian shapes and undergo motion and simulated calcium activity in a 100-second
long video. Static snapshots of the video are shown (left) and spatial footprints for each cell are assigned unique colors with intensities proportional to calcium activity (right).
Note that the spatial footprints of cells are also in motion, tracking the position of the cells. B: The ground truth calcium activity for each cell (left) is compared with the neural
activity extracted using dNMF (second column), Normcorre [Pnevmatikakis and Giovannucci, 2017]+NMF (third column) and ROI tracking and pixel averaging (fourth column).
dNMF recovers the ground truth signal well whereas Normcorre+NMF and ROI methods yield significantly more mixed signals (indicated by red arrows) due to the proximity
of the cells and the tendency of the spatial footprints of mobile cells to overlap. C: The correlation of the recovered signal to the ground truth signal as a function of the image
signal-to-noise ratio (SNR). D: The correlation of the recovered cell movement trajectories to the ground truth trajectories as a function of trajectory SNR. E: The correlation
of the recovered signals to the ground truth as a function of the density of independent objects in the FOV. F: The correlation of the recovered signals to the ground truth
as a function of the density of signaling events (simulating neural excitation) exhibited by the cells. Note that we provided ROI tracking here with access to the ground truth
cell centers at all times (explaining why ROI averaging correlation values remain high even in the limit of very high activity density); nonetheless, even with artificially perfect
tracking accuracy, mixing of nearby signals remains a significant issue. See MOVIE LINK for further details.
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each cell (corresponding to the cell dimming and brightening, but remaining in place); imperfect registrations are indicated by “spreading" or “doubling" of the cell shapes,
as indicated by red arrows. Bottom row: The locations of the cells across time (colors denote different times) superimposed on the first frame prior to registration (left),
after dNMF based registration (middle) and after Normcorre (right). Red arrows indicate cells with imperfect registration, with significant remaining movement of the cells
across frames. B: The correlation of the video frames to the mean video frame before registration (blue), after dNMF based registration (red), and after Normcorre (cyan);
higher values indicate better performance here. C: The correlation of individual registered frames to the mean video frame after dNMF registration (x-values) and Normcorre
(y-values). The straight line indicates x = y; points below this line indicate the higher correlation of dNMF registered frames to the mean frame. D: The spread of the cell
position centers, relative to their average. in the unregistered video (blue), after dNMF-based registration (red), and after Normcorre (cyan). A lower standard deviation for
cell spread indicates better performance for local registration of cell shapes. See MOVIE LINK for further details.
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Fig. 5. Demixing neural calcium signal in semi-immobilized C. elegans videos. A: Three static, z-axis maximum projected frames from a representative 4-minute long video
of GCaMP6s neural activity. We focus on the signal from five pairs of spatially-neighboring neurons in the tail: DVA/DVB, PVNR/PVNL, PVWL/PHCR, PLNR/LUAR, and
VD13/DA8. B: Calcium signals extracted by dNMF (left), Normcorre [Pnevmatikakis and Giovannucci, 2017] + NMF (middle), and ROI tracking and averaging (right). dNMF
extracts uncoupled signals that demonstrate independent neural activity. The selected cells were chosen such that the signal recovered by ROI averaging is inconsistent with
dNMF (quantified by having correlation smaller than 0.4). Normcorre + NMF partially mixes signals between both PHCR/PVWL and PVNL/PVNR around the 30-second mark
and DVB/DVA around the 120-second mark (red arrows), and loses nearly all signal from PLNR, due to motion exhibited by the semi-immobilized animal. ROI averaging
produces completely correlated signal (red arrows) between all of the labeled neurons, and loses most of the signal from LUAR and PLNR, due to overlap in their spatial
footprints. C: Calcium activity traces, of the labeled tail neurons, extracted from a population of 21 worms. The unique colors label traces from the same neurons, across
different animals. Here, the dNMF traces are tightly grouped, exhibiting minimal variability between animals. Normcorre+NMF traces exhibit mixed-signal and mistracked
neurons. ROI traces exhibit wider variability than dNMF, due to mixed signals and, potentially, noise common to ROI averaging. D: Pairwise neuron distances versus pairwise
correlation of neural signals for all three methods. Note that signal mixing tends to occur when the signal sources are close to one another, necessitating techniques such
as NMF to disentangle independent signals. For this reason, dNMF is well suited to demix spatially-close neuron pairs. Normcorre+NMF experiences mixing effects due to
motion for which it fails to account (seen in the supplementary movie linked below). ROI averaging does mix traces and thus shows increasingly correlated signals between
neuron pairs as they get nearer to each other (indicated by the red arrow). See MOVIE LINK for further details.

from a random initial point cloud. (Note that the composition573

of many such quadratic mappings is non-quadratic, and there-574

fore the generative model here does not perfectly match the575

model dNMF uses to fit the data, where a quadratic transfor-576

mation maps the spatial componentsA to match the observed577

data at each frame; nonetheless, despite this model mismatch,578

dNMF achieves accurate results here, as discussed below.)579

The trajectory of each neuron was then convolved with a fixed580

3D Gaussian filter that represents the shape of that neuron and581

then multiplied with the time course assigned to that neuron.582

The simulated video is the result of the superposition of these583

moving Gaussian functions.584

We compare the performance of dNMF, Norm-585

corre+NMF, and ROI pixel averaging in a variety of586

confounding scenarios using the metrics defined in section 9.587

In all simulation experiments, the ROI averaging method is588

provided with the ground truth cell positions — i.e., we ex-589

amine the accuracy of this method under the (unrealistically590

optimistic) assumption that neurons are tracked perfectly, to591

evaluate the demixing performance of ROI signal extraction592

without the additional confound of tracking performance.593

In Fig. 3C-F, we explore the performance limits of dNMF,594

Normcorre+NMF, and ROI pixel averaging as a function of595

imaging noise and motion variability. Signal SNR is defined596

by the peak-to-trough difference between the neural activity597

signals during times of activity. Trajectory SNR is quanti-598
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Fig. 6. C. elegans neural activity video registration results. A: Top row: The mean video frame prior to registration (left), after dNMF based registration (middle), and after
Normcorre (right). Overall conventions are similar to Fig. 4. Middle row: The mean, of the absolute value, of the difference between the first video frame (prior to registration)
and subsequent video frames (left). We show these results for dNMF-base registration (middle) and Normcorre (right). Distorted toroidal shapes (indicated by red arrows)
denote the superposition of mismatched spatial footprints, indicating a misestimation of deformation. The yellow arrow indicates Normcorre’s boundary pixel extrapolation,
which introduces blocky artifacts. Bottom row: The positions of cells over time superimposed on the first video frame (left), after dNMF-based registration (middle), and after
Normcorre (right). Tighter grouping of cell centers indicates a good correction of motion. Spread groupings of cells indicate poor registration (indicated by red arrows). B:
Correlation of the video frames to the mean frame, across time, for the unregistered video (blue), after dNMF-based registration (red), and after Normcorre (cyan). dNMF
slightly outperforms Normcorre here. C: Correlation of the individual video frames, to the mean video frame, after registering with dNMF (x-values) and after Normcorre
(y-values). The solid line denotes x = y. Points below this line (which indicate a higher correlation of registered frames to the average frame) represent better performance
for dNMF, and points above this line represent better performance for Normcorre. D: The spread of the cell position centers, relative to their average. in the unregistered video
(blue), after dNMF-based registration (red), and after Normcorre (cyan). Again, a lower standard deviation for cell spread indicates better performance for local registration of
cell shapes. See MOVIE LINK for further details.

fied by how well the cells adhere to the motion of all other599

cells; high trajectory SNR indicates all cells move in unison,600

resembling a deformable medium, and low trajectory SNR in-601

dicates each cell is moving like independent particles. Math-602

ematically, this is proportional to the log ratio of the variance603

of the average location of the cells versus the variance of the604

time differences of these locations. It can be seen in Fig. 3D605

that dNMF is robust to noise but ultimately may introduce606

errors to demixing and trajectory tracking if the signal and607

trajectory SNR (Fig. 3D) are too low. Normcorre+NMF does608

relatively worse than dNMF as a function of signal SNR and609

trajectory SNR. ROI pixel averaging has the poorest signal610

recovery performance of the three compared methods as a611

function of signal SNR. (Note that ROI pixel averaging en-612

joys a constant trajectory estimation rate in Fig. 3D, since it613

has access to ground truth cell locations, as discussed above.)614

Next, we evaluated the signal extraction performance as a615

function of the cell density in the FOV. Increased cell density616

indicates an increased superpositioning of independent sig-617

nals and therefore a higher degree of signal mixing. dNMF618

demixing performance degrades linearly as the density of in-619

dependent objects within the FOV increases (Fig. 3E) but en-620

joys higher rates of recovery than both Normcorre+NMF and621

ROI pixel averaging.622

Lastly, we observe that the density of signaling events623

changes the demixing performance for the three compared624

methods. In particular, low signal densities (simulating weak625

excitation) make it harder to track individual cells, which may626

be dim and therefore hard to detect and track in many frames.627

dNMF does not suffer in the low signal density regime since628
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Raw Z-score Quantile regression (QR) Non-negative QR

Fig. 7. dNMF was used to motion correct, extract, and demix calcium traces of C. elegans neurons from 21 animal heads and 21 animal tails. We demonstrate four strategies
for superimposing multi-animal traces for different neuron types. First column: Raw traces superimposed, colors indicate different neuron types. Within the same color,
different traces indicate different animals. (Y-axis: neuron types), (X-axis) time (s). Second column: Z-scored neuron time series. Third column: Quantile regression (QR)
normalized time series. Fourth column: Non-negative quantile regression (NQR). Z-scores use only two summary statistics (mean and variance) for normalization. Z-score
scaling to unit variance is strongly influenced by any large-magnitude fluctuations in the signal. Consequently, in a mixture of responsive and unresponsive traces from the
same neuron, across multiple animals, z-scored traces with a response will be scaled to match their unresponsive counterparts, thus muting signal in these traces. This is
exhibited by the compressed appearance of the z-scored traces in the second column. In contrast, quantile regression uses a more robust and rich set of summary statistics
to determine an appropriate scaling. As such responsive and unresponsive neural traces retain appropriate differential scales. This is exhibited by the quantile regression
methods shown in third and fourth columns which show better preservation of neuron responses when compared to their z-scored equivalents. Additionally, the z-score
translates to zero mean and thus can misrepresent the signal baseline. In contrast, both QR methods preserve the correct signal baseline and, when appropriate, the NQR
method can be used to further maintain non-negativity of signals (see Fig. 2).

it combines information across all visible cells to update the629

tracking model, and this helps to track dim cells as well.630

In Fig. 4, we qualitatively demonstrate the reg-631

istration performance of dNMF versus Normcorre632

[Pnevmatikakis and Giovannucci, 2017]. We see that633

the average frame, after registering with dNMF, is sharper634

than the non-registered average frame, with better-localized635

and less-variable cell center locations. In comparison, Norm-636

corre yields a higher spread of cells, even after registration,637

which may lead to erroneous signal recovery. Both of638

these global and local sharpness metrics are quantified in639

Fig. 4C-D.640

3.2 Demonstration of demixing in real C. elegans data641

In the simulated data analyzed above, dNMF exhibits supe-642

rior registration performance due to its ability to decouple643

the intensity signal from the motion of objects. Conversely,644

coupling registration with signal extraction enables dNMF to645

capture the neural signal and demix it from nearby cells more646

accurately.647

We extend this demonstration further with a real data648

example. The worm’s tail contains several ganglia, with649

densely-packed neurons, whose spatial footprints often over-650

lap due to insufficient spatial resolution. Additionally, even651

neurons in separate ganglia can end up in sufficient proxim-652

ity, due to microfluidic confinement or other imaging-setup653

induced deformations, such that their spatial footprints over-654

lap. The spatial overlap represents a significant challenge,655

both for tracking individual neurons and demixing their sig-656

nal. Figure 5 shows an example of the difficulty present when657

tracking and demixing neural activity signals from animals658

with spatially overlapping neural footprints in their recorded659

images. In this example, ROI tracking loses most of the sig-660

nal from the LUAR and PLNR neurons and further mixes661

signals between the DA8/VD13, DVA/DVB, PHCR/PVWL,662

and PVNL/PVNR neurons. Normcorre+NMF performs bet-663

ter but loses nearly all signals from PLNR while also still664

mixing signals between the DVA/DVB, PHCR/PVWL, and665

PVNL/PVNR neurons. In comparison, dNMF recovers666

strong, independent signals from all ten neurons. Thus dNMF667

can track and differentiate signals from neurons, even within668

areas containing multiple spatially-overlapping neural foot-669

prints where other comparable algorithms fail.670

Additionally, in figure 5, we quantify the demixing perfor-671

mance by computing the pairwise correlation of nearby neu-672

rons as a function of the distance between these neurons. Sig-673

nal mixing is expected to occur when the spatial footprints of674

nearby neurons, blurred by the point spread function and/or675
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insufficient spatial resolution, overlap with another. There-676

fore, one heuristic to determine how well demixing was per-677

formed is the correlation of pairwise distances of neurons678

to the pairwise correlations of their activity. Indeed, both679

matrix factorization methods, dNMF and Normcorre+NMF,680

yield uncorrelated trends between neuron pair distance and681

the correlation of their respective trace activity. On the other682

hand, simple ROI averaging tends to visibly mix signals in683

closely-neighboring neurons, resulting in unrealistically high684

correlation values near 1 for the closest neighbors.685

3.3 Worm registration686

After optimizing dNMF, we can obtain registered videos of687

worms to evaluate performance and compare against Norm-688

corre (Figure 6A). Similar to simulated data, we can once689

again observe that the mean video frame after registering690

with dNMF is sharper when compared to both the raw av-691

erage frame and this average after applying Normcorre. Fur-692

thermore, the mean of the absolute difference between video693

frames and the first frame shows that the dNMF registration694

has fewer distorted toroidal shapes than Normcorre, indicat-695

ing better registration of cell shapes. Lastly, we can also696

see that after registering with dNMF the cell centers have a697

tighter grouping than Normcorre; this is another indication of698

better registration performance.699

Figure 6B-D evaluates these observations quantitatively.700

The subfigures B and C indicate that the frames registered701

via dNMF tend to have a higher correlation to the mean reg-702

istered frame than Normcorre, which indicates the quality of703

registration. Furthermore, the dNMF and Normcorre registra-704

tion results diverge most in the initial frames, where the ma-705

jority of deformable motions are observed. Since Normcorre706

is a piecewise rigid registration technique, its deformation707

model may be misspecified to capture such motions, whereas708

the dNMF motion model is more accurate. Figure 6D demon-709

strates that the cell grouping after dNMF is indeed tighter710

than Normcorre.711

3.4 Population study of C. elegans712

Using the neural traces extracted with dNMF (converted713

to ∆F/F0), we demonstrate the time-series histogram-714

normalization technique of quantile regression (QR), show715

its non-negative regression variant (NQR), and compare these716

with z-score normalization. The time-series data we used is717

the brain-wide neural GCaMP6s intensity extracted from 21718

worm heads (up to 189 neurons in each head) and 21 worm719

tails (up to 42 neurons in each tail). In these animals, neu-720

rons with the same identity often exhibited very different in-721

tensity distributions across individual animals. In the course722

of a time series, neuron intensities change to reflect the un-723

derlying activities but, given a sufficiently long recording, af-724

ter proper alignment, the probability density function (PDF)725

should be roughly equivalent for neurons of the same class726

type.727

Differences in the intensity PDFs of neurons with identi-728

cal class types are due to variability in imaging conditions,729

anisotropy due to random animal orientations, and biological730

variability in fluorescence expression. To properly compare731

one animal to another, class-specific neural intensity distribu-732

tions must be corrected so that they match each other appro-733

priately (e.g., all LUA neurons should exhibit similar PDFs);734

otherwise, this variability will distort population representa-735

tions of the signal. In figure 2, we explore these popula-736

tion representations of signal by focusing on a single neuron,737

LUAL, to compare raw, z-scored, QR, and NQR normalized738

neural traces. Although the LUAL neurons should preserve739

similar PDFs, instead they exhibit high variability in both740

their signal magnitude and baseline activity in their traces,741

histograms, and cumulative distribution functions (CDFs). Z-742

scoring partially corrects this variability but retains long tails743

in the PDFs (histograms), while shifting them to zero mean,744

which is far less than the median signal observed in the raw745

traces (a median ∆F/F0 of approximately 2). In comparison,746

QR and NQR reduce LUAL neural variability substantially,747

when compared to z-scoring. Moreover, both QR and NQR748

preserve the median exhibited by the raw traces and, thereby,749

retain a better approximation of the neural baseline, whereas750

z-scoring distorts this baseline.751

In figure 7, we extend our demonstration to all head and752

tail neurons. In this broader representation of neural activity,753

one can see that the raw traces and even the z-scored traces754

distort the neural signal, exhibiting a flat appearance with out-755

liers flanking this flattened signal. In contrast, the QR and756

NQR traces exhibit strong signals without obvious outliers.757

Thus both QR and NQR can correct variability in neural in-758

tensities to help compare signals from neurons with identical759

types, recorded from a population of animals.760

4 Discussion761

In this paper, we considered the problem of extracting and762

demixing calcium signals from microscopy videos of C. el-763

egans. We developed an extension of NMF, with a nonlin-764

ear motion model applied to the spatial cellular footprints, to765

deform the static image of these cells, modeling the worm’s766

posture at each time frame. We provided two different param-767

eterizations for the spatial footprints (Gaussian functions or a768

non-parametric model) and described regularizations that can769

help in finding smooth trajectories and signals. We further770

showed that our method outperforms state-of-the-art models771

that use a two-step process for motion stabilization/tracking772

and signal extraction. Finally, we demonstrated the effective-773

ness of our model by extracting calcium signals from videos774

of semi-immobilized C. elegans.775

The dNMF framework we introduce is a generalization776

of standard non-negative matrix factorization techniques that777

are commonly used to demix, deconvolve, and denoise neu-778

ral signals in calcium imaging [Pnevmatikakis et al., 2016].779

To tackle the added problem of deforming tissues and mo-780

bile animals, we have additionally adopted techniques from781

the image-registration community to quantify motion in the782

factorization model. The overall framework is modular and783

may be further generalized to incorporate different image784

fidelity loss functions, different regularizers, and alterna-785

tive deformation parametrizations. Currently, we use a Eu-786
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clidean loss to assess the goodness-of-fit of the factorization787

model compared to the observations. Alternative choices788

for the loss function include normalized local cross correla-789

tion [Sotiras et al., 2013]. Similarly, we found it sufficient to790

use a quadratic polynomial basis for quantifying the motions791

exhibited by semi-immobilized C. elegans worms. However,792

different animal models or freely-moving worms may neces-793

sitate the use of higher-order deformation models such as794

free-form b-splines [Rueckert et al., 1999].795

One common obstacle, after extracting neural traces from796

a population of animals, is that imaging and biological vari-797

ability can lead to high variability in the intensity values of798

traces measured from the same neuron, across multiple ani-799

mals. To address this, we have provided a time-series nor-800

malization technique called quantile regression (QR). This801

technique bears similarities to z-scoring but it is more ro-802

bust to outliers in the time series, does not artificially enforce803

a uniform signal variance over all cells, and yields a more804

consistent and tighter normalization across a population of805

neural traces. Moreover, QR can optionally enforce the non-806

negativity of the signal that is transformed and normalized807

(as opposed to z-scoring, which introduces negative values).808

Finally, in this work we focused on nuclear-localized809

calcium imaging in semi-immobilized C. elegans. We810

believe that a similar approach will be useful with811

other indicators [Chen et al., 2020] and in other prepara-812

tions, e.g. larval zebrafish [Vanwalleghem et al., 2018],813

Drosophila [Schaffer et al., 2020], and Hydra814

[Szymanski and Yuste, 2019]; see, in particular, the recent815

preprint by [Lagache et al., 2020], who develop improved816

tracking methods that may nicely complement the dNMF817

approach. We look forward to exploring these directions818

further in future work.819

5 Software820

The software is implemented in Python us-821

ing the Pytorch library and is available at822

https://github.com/amin-nejat/dNMF.823
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7 Video captions1104

7.1 Simulation demixing video (VIDEO LINK)1105

Simulated data demixing results. Left block: In the top left1106

we see a max projection of the raw video to be demixed. This1107

video involves 10 neurons in motion with time-varying cal-1108

cium activity. (For better visibility, note that we use a differ-1109

ent simulated dataset here than in Figure 3.) In the middle we1110

see the reconstruction of this video using the moving spatial1111

components extracted with dNMF; each extracted cell is ran-1112

domly assigned a unique color. On the top right, we see the1113

residual of the raw video minus the reconstruction. The next1114

row shows a selection of cells zoomed and centered on the1115

motion tracking position inferred by dNMF, followed by the1116

corresponding spatial component with intensity proportional1117

to the extracted activity level. Note that the neuron centered1118

panels exhibit little motion, showing that each zoomed cell1119

has been successfully tracked. The following row shows the1120

same cells but with the ground truth signal intensities, and1121

then the localized residual. Finally, the bottom row shows1122

the extracted signals (in the color assigned to each cell) vs.1123

the ground truth (black).1124

Right block: This block has the same1125

conventions as the left block but with Norm-1126

corre [Pnevmatikakis and Giovannucci, 2017] motion1127

corrected video instead of dNMF. The raw data in this1128

panel is motion corrected through Normcorre and thus the1129

reconstruction, residual and the zoom panels are all in the1130

context of the motion corrected video.1131

As noted above, upon zooming in on the motion corrected1132

patches around each cell, we can see that dNMF provides a1133

good stabilization of the centered cell in each zoomed video,1134

leading to accurately demixed neural signal. In contrast, the1135

Normcorre registered video displays some residual motion1136

which leads to relatively poorer extraction of signal. The high1137

residual signal left by Normcorre+NMF is indicative of poor1138

signal extraction.1139

7.2 Simulation registration video (VIDEO LINK)1140

Simulated data registration results. Top row: The video prior1141

to registration (left), after dNMF based registration (middle),1142

and after Normcorre [Pnevmatikakis and Giovannucci, 2017]1143

registration. 2nd Row: Absolute value of the video frames1144

subtracted from the first frame prior to registration (left), af-1145

ter dNMF based registration (middle) and after Normcorre1146

(right). If registration is perfect, this frame will look like a1147

weighted sum of Gaussian shapes, one for each cell (corre-1148

sponding to the cell dimming and brightening, but remaining1149

in place); imperfect registrations are indicated by “spreading"1150

or “doubling" of the cell shapes, as indicated by red arrows.1151

3rd row: The estimated deformation field at each time point.1152

Bottom row: The locations of the cells across time (colors1153

denote different times) superimposed on the first frame prior1154

to registration (left), after dNMF based registration (middle)1155

and after Normcorre (right). In this video, we see a near per-1156

fect stabilization of motion by dNMF, whereas Normcorre1157

displays residual motion as indicated by the absolute residu-1158

als (2nd row) as well as the cell spreads in the 4th row.1159

7.3 Worm demixing video (VIDEO LINK)1160

C. elegans video demixing results. Left block: In the top left1161

we see the C. elegans tail video to be demixed. This video1162

involves about 40 neurons of a semi-immobilized worm tail1163

exhibiting calcium activity. In the right we see the recon-1164

struction of this video using the moving spatial components1165

extracted with dNMF. The top row of the bottom panels1166

show a selection of cells zoomed and centered on the mo-1167

tion tracking position inferred by dNMF and in the bot-1168

tom row is the corresponding spatial component with in-1169

tensity proportional to the extracted activity level. Note1170

that the neuron centered panels exhibit little motion, hint-1171

ing at the successful tracking of objects. Right block: This1172

block has the same conventions as the left block but with1173

Normcorre [Pnevmatikakis and Giovannucci, 2017] motion1174

corrected video. Bottom panel: This panel shows the raw1175

video with tracking markers superimposed on top of the neu-1176

ron centers that are used for ROI averaging. In this video, we1177

see that the large motion exhibited by the worm islargely sta-1178

bilized by dNMF, but less so by Normcorre (as is particularly1179

visible in the zoomed panels).1180

7.4 Worm registration video (VIDEO LINK)1181

C. elegans video registration results. Top row: Video prior1182

to registration (left), after dNMF based registration (middle)1183

and after Normcorre [Pnevmatikakis and Giovannucci, 2017]1184

(right) with cell tracking markers superimposed in red. Inten-1185

sities are oversatured here for better visualization of cell loca-1186

tions. (The flashing blobs in the top left indicate non-neural1187

objects in the FOV such as gut cells.) Middle row: The ac-1188

tual intensity profiles of the videos prior to registration (left),1189

after dNMF based registration (middle) and after Normcorre1190

(right). Bottom row: The positions of cells over time super-1191

imposed on the first registered frame for unregistered video1192

(left), after dNMF based registration (middle) and Normcorre1193

(right). Tighter cell groups indicate registration that corrects1194

for motion well. Dispersed cell centers indicate residual lo-1195

cal motion. In this video, we see that dNMF has slightly1196

better registration performance than Normcorre as exhibited1197

by the smaller cell spread in several neurons, especially the1198

neurons in the pre-anal ganglion (towards the left border of1199

the frame).1200

8 Appendix1201

8.1 Spatial component: non-parametric model (addi-1202

tional details)1203

Similar to the standard NMF models, we can parameterizeA
using an d by k matrix where d is the number of pixels of one
time frame of the video and k is the number of objects that
are present. fβt

(A) = T tA where T t : Rd×d and

T t[i, j] = exp
(∥βtΨ(xj)−xi∥22

2σ2

)
, (14)

where βt is a 3 by 10 matrix, and Ψ : R3 → R10 is the
polynomial basis function that maps a 3D location into its
10-dimensional quadratic representation in the following way
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Ψ([x,y,z]T ) = [1,x,y,z,x2,y2,z2,xy,yz,zx]T . The choice
of σ controls the amount of the spread of the mass of a pixel
into nearby pixels. If σ is large then each pixel will diffuse
into many pixels around it which will create artificial over-
lap between the component footprints. If σ is very small
then we get vanishing gradients. A careful choice of σ is
therefore important for the optimization. We usually set the
σ to 0.1 in our experiments. If we set the β1:T and T 1:T
to the identity we will recover the original formulation of
NMF [Lee and Seung, 2001]. However, if we optimize over
β1:T we can capture the nonlinear deformation of the objects
and estimate the time varying signals more accurately. Fur-
thermore, using this type of kernel matrix as a surrogate for
the quadratic transformation has the advantage that it allows
us to compute gradients of the cost function with respect to
βt:

∂L
∂βt

=
d∑

i,j=1

∂T t[i, j]
∂βt

∂L
∂T t[i, j]

(15)

=−Gt[i, j]
(
βtΨ(xj)−xi

2σ2

)
T t[i, j]

where Gt = ∂L
∂T t

= (T tACt−Y t)(CT
t A

T )

We can also compute the gradient with respect to other pa-
rameters of the model similar to the vanilla NMF and derive
the optimal step size for faster multiplicative updates:

∂L
∂C

=
T∑

t=1
(T tA)TT tAC− (T tA)TY t (16)

+λC(2Ct−Ct−1−Ct+1) (17)

∂L
∂A

=
T∑

t=1

∂T tA

∂A

∂L
∂T tA

=
T∑

t=1
T T

t A(T tACC
T −Y tC

T
t ).

(18)

8.2 Regularization: spatial location priors1204

One of the key advantages of our modular framework is that,1205

if available, we can use statistical atlases of neural positions1206

to better condition our non-convex objective function towards1207

favorable local minima. This is especially useful in the non-1208

parametric modeling of spatial components, where we may1209

not have a good model of the spatial occupancy map of cells.1210

Similar to the approach taken by [Saxena et al., 2019], we
can introduce a regularizer to encourage spatial proximity of
non-parametric components to a set of predefined centers that
is defined by the statistical atlas of neuron positions. Given
a (non-negative) constraint matrix D ∈ Rd×k such that each
column encodes the allowable occupancy maps of each of the
k cells, the regularizer is:

RS(A) = λS

∑
ij

AijDij . (19)

The constraint matrix D determines the span by which pix-1211

els can be part of a spatial footprint for each component. For1212

example, the kth column of D has 1’s in the entries that cor-1213

respond to plausible pixel locations that the kth neuron may1214

occupy. Alternatively, D can contain weighted values such1215

that pixels with smaller distance values to a component will1216

tend to have a larger weights.1217

The utilization of this spatial location regularization us-1218

ing statistical atlases (along with the corresponding strong1219

prior information on the number of cells that should be visi-1220

ble in the field of view) is an important advantage of dNMF1221

(and loca-NMF [Saxena et al., 2019]) over blind deconvolu-1222

tion techniques such as CNMF [Pnevmatikakis et al., 2016].1223
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