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2 

Abstract 18 
A fundamental problem in ecology is understanding how to scale discoveries: from patterns we 19 

observe in the lab or the plot to the field or the region or bridging between short term observations to long 20 
term trends. At the core of these issues is the concept of trajectory⎯that is, when can we have 21 
reasonable assurance that we know where a system is going? In this paper, we describe a non-random 22 
resampling method to directly address the temporal aspects of scaling ecological observations by 23 
leveraging existing data.  Findings from long-term research sites have been hugely influential in ecology 24 
because of their unprecedented longitudinal perspective, yet short-term studies more consistent with 25 
typical grant cycles and graduate programs are still the norm. 26 

 We directly address bridging the gap between the short-term and the long-term by developing an 27 
automated, systematic resampling approach: in short, we repeatedly ‘sample’ moving windows of data 28 
from existing long-term time series, and analyze these sampled data as if they represented the entire 29 
dataset. We then compile typical statistics used to describe the relationship in the sampled data, through 30 
repeated samplings, and then use these derived data to gain insights to the questions: 1) how often are 31 
the trends observed in short-term data misleading, and 2) can we use characteristics of these trends to 32 
predict our likelihood of being misled?  We develop a systematic resampling approach, the ‘bad-breakup’ 33 
algorithm, and illustrate its utility with a case study of firefly observations produced at the Kellogg 34 
Biological Station Long-Term Ecological Research Site (KBS LTER). Through a variety of visualizations, 35 
summary statistics, and downstream analyses, we provide a standardized approach to evaluating the 36 
trajectory of a system, the amount of observation required to find a meaningful trajectory in similar 37 
systems, and a means of evaluating our confidence in our conclusions. 38 

 39 

KEYWORDS: Population, time series, data mining, scaling, trajectory, firefly, lampyridae 40 
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Introduction 42 

A fundamental problem in ecology is understanding how to scale discoveries: from patterns we 43 

observe in the lab or the plot to the field or the region, or bridging between short-term observations to 44 

long term trends and trajectories [1–3]. Shorter-term studies that are more consistent in length with typical 45 

grant cycles and graduate programs are still the norm but understanding where short term patterns fit, 46 

and how to interpret short-term patterns in the context of a system’s trajectory remains an open question 47 

[4]. While long term studies are hugely influential in ecology, given that they require long-term access to 48 

research resources and infrastructure their unprecedented longitudinal perspective is not typical [5]. 49 

However, when available, these long-term data present a fundamental opportunity to bridge short and 50 

long-term trends through data mining. With long term data, we can systematically investigate the 51 

presence and prevalence of short-term trends and compare them to the long-term system trajectories 52 

these data document 53 

 The shape a time series can provide meaningful information about the properties of the system, 54 

the rules that govern its variability, and the trajectory that the system is taking [6]. The question of 55 

trajectory over time is central in ecology, particularly as related to how ecological systems on which 56 

humans depend are responding to disturbance or will behave under future climate or environmental 57 

conditions [7]. Trajectory is essential to our understanding of ecosystems, their management, and policy 58 

decisions, as we interact with our environment. 59 

Ecological systems are inherently dynamic, and variations in the metrics humans collect about 60 

these systems can be driven by a variety of stochastic and deterministic processes, as well as by 61 

sampling error or other research-inducer effects [8]. Furthermore, short-term dynamics observed in an 62 

ecological system are not always indicative of the long-term trajectory of that system [9]. In population 63 

processes, for example, density-dependent deterministic mechanisms couple with environmental 64 

perturbations to produce highly variable population numbers during any given time slice [10]. Decoupling 65 

these processes can reveal the skeleton of a deterministic process interacting with external forces [11]. 66 

However, to disentangle these drivers from an empirical standpoint generally requires a substantial 67 

amount of data to be collected over time [12,13]. Indeed, in a recent study, White (2019) found that 72% 68 

of vertebrate population monitoring programs required at least a decade of observation before the overall 69 

trajectory of the population could be detected statistically. A recent study of trends in water bird 70 

populations found that short term trends were generally reflective of longer-termed patterns [4], but varied 71 

by the generation length of the organism under study.  However, they found that, similar to the White 72 

(2019) study, greater than two decades of observations would be required to reliably detect a change of 73 

1% per year. Conversely, a study of population viability modelling in snails determined that although 74 

longer time series were generally better for establishing the population’s trajectory, diminishing returns in 75 

precision were observed after about 10-15 years of data were collected [15]. It is unclear how these 76 
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findings can be generalized  across organisms with differing lifespans and life histories, or other 77 

environmental processes. 78 

Yet, it is not uncommon for a shorter-duration multi-year ecological study to extrapolate from its 79 

data, using the trends observed within their sampling window to draw conclusions about a system’s 80 

apparent trajectory. For example, a study of British ladybeetle communities concluded that native 81 

ladybeetle species were in decline, as was total ladybeetle abundance, following the introduction of an 82 

invasive species [16]. Another found that the richness and abundance of seeds in a soil seed bank were 83 

in a recovery trajectory following a period of industrial pollution [17]. An adventive pest species was 84 

implicated in reducing carbon to nitrogen ratios, organic matter in soils of infested forests, thus 85 

substantially changing the ecosystem’s function over time [18]. These examples, representing very 86 

different ecological domains, have a common element of a three year study duration. Patterns in 87 

publication (Figure 1) suggest that two to three-year studies dominate the ecology literature. Yet this 88 

three-year study duration, reflective of funding cycles or typical graduate program, may be fundamentally 89 

out of sync with the processes they aim to understand, from a temporal perspective [19].  90 

A fundamental problem arises when shorter term studies apply statistical tools at time scales that 91 

are not matched with the underlying processes to make inferences about trajectory: not only may 92 

spurious trends be observed, but because only a portion of the underlying process variability is captured, 93 

a higher degree of statistical confidence in the result will be found. This concept is best illustrated with an 94 

example: in recent work, Bahlai and students examined a 12-year time series of fireflies at Kellogg 95 

Biological Station in southwestern Michigan [20] with two questions in mind:  96 

 97 

When does firefly activity peak?  98 

Are fireflies in decline? 99 

The first question was practical in nature: humans are generally interested in fireflies, and we 100 

wished to create a model that would tell us when we could expect the most firefly activity. The second 101 

was driven by some concerns raised in the literature that fireflies were indeed in decline [21,22]. Yet, in 102 

this population, we found no evidence of decline over the 12 years (Figure 2):  there was no significant 103 

linear relationship between average captures and year (p=0.32) in the larger time series (2004-2015), 104 

and, indeed, although the data were limited to capturing two cycles, there appeared to be evidence of a 105 

cyclical dynamic common to many populations near their carrying capacity (Figure 2A). However, we 106 

were compelled by the contrast we observed between the short-term pattern and long-term trends in this 107 

system. For example, if we had conducted the study over the four-year period from 2011-2014, we would 108 

have had dramatically different conclusions (Figure 2B). In this four-year period, we observed significant 109 

decline of 0.32+/-0.07 adults per trap per year (p<0.0001), and would likely have concluded that fireflies 110 

were indeed experiencing a sharp, consistent decline at our study site. Simply, with less data (even with a 111 
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slightly longer sampling period than typical), we would have made the wrong conclusions, and we would 112 

have been confident in our wrong answer. 113 

 It is because of this phenomenon of “highly-confident wrong answers” that long-term studies are 114 

so valued in the ecological community. Indeed, because biological systems are often defined by their 115 

variability, when studies are shown to be irreproducible, it is not necessarily due to poor research 116 

practice, but due to their inability to capture the full variability of the system within the limits of the study 117 

design [23,24]. Long-term ecological research provides insight into the inherent variability of natural 118 

systems [25], and insights are thus often only apparent after many years of study [26]. Beyond this, there 119 

are many other inherent benefits to long-term studies. Long-term studies are disproportionately 120 

represented in policy reports and in the ecological literature: studies involving long term observations are 121 

cited more often than studies of shorter duration [5]. Furthermore, long-term observational studies provide 122 

important baseline data: as the world itself changes, these data provide insight into how ecosystems 123 

function, instead of studying phenomena after they happen [27].   124 

Although the importance of long-term studies is clear, empirical examinations of the converse are 125 

rare: just how frequently are we misled by short-term studies? Can we use knowledge generated by 126 

studying the relationship between short- and long-term studies to bridge our interpretations of short-term 127 

data to long-term processes? We use a synthetic, computational approach to develop a framework to 128 

address two hypotheses:   129 

Shorter observation periods will increase the likelihood of observing misleading trends 130 

Because exogenous forces are of greater influence at smaller spatial and temporal scales, we 131 

predict that short time periods will be more variable due to these processes, and conversely do 132 

not capture the full extent of natural variability [8,25], so they are more likely to result in “highly-133 

confident wrong answers.” 134 

Statistical metrics often used as a proxy for ‘confidence’ in short-term trends (such as the p-value) will not 135 

be associated with an increased likelihood of capturing a time period consistent with long-term trends. 136 

Following from the previous prediction, we predict that p-values will be inferior predictors of the 137 

‘correctness’ of short-term trends in predicting longer term trajectory compared to other properties 138 

of the system. Better predictors may include statistical measures (slope, standard error), but 139 

trends are likely moderated by system specific predictors (e.g. site, data type). 140 

In this study, we develop a suite of tools to directly address bridging this gap between the short-141 

term and the long-term with an automated approach: in short, our algorithm repeatedly ‘samples’ 142 

sequential moving windows of data from existing long-term time series, and analyzes these sampled data 143 

as if they represented the entire dataset. The tool then compiles typical statistics used to describe the 144 

relationships in the sampled data, through repeated samplings, and then use these derived data to gain 145 
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insights to the questions, how often are the trends observed in short-term data misleading, and can we 146 

use characteristics of these trends to predict our likelihood of being misled? Findings from this work will 147 

support the development of a deep understanding of temporal scaling in ecology, aiding in the 148 

interpretation of countless future short-term studies. Secondly, and more broadly, our findings have 149 

applicability across a variety of domains. Results from this approach will have the opportunity to guide 150 

science funding policy, experimental design and interpretation, and data archiving. 151 

Materials and Methods 152 

Develop ‘bad-breakup’ analysis algorithm 153 

 The bad-breakup algorithm breaks a time series dataset into all possible sequential subsets and 154 

then fits a linear model to each of these subsets and compiles the resulting summary statistics, allowing a 155 

user to identify and quantify spurious trends within their data. The algorithm is implemented as a series of 156 

functions written in R.  The algorithm requires a user-inputted two variable data frame with a regular 157 

measurement interval as the first variable, and a response variable as the second variable. For the 158 

purpose of this study, we assume a yearly measurement interval and some integrative response metric 159 

(captures of organisms per trap, average reading, total yield). Data are first subjected to a standardization 160 

function which converts the response metric to a unitless Z-score to normalize the data and make it 161 

possible to compare datasets with responses of very different magnitudes, and to minimize the impact of 162 

measurement unit choice on the observed trends.  163 

 164 

A function that fits a linear model to the data and produces a vector with the number of observations, the 165 

number of years in the study, and particular summary statistics of interest, namely, the slope of the 166 

relationship between the response variable and time, the standard error of this relationship, p-values for 167 

each of these statistics, and then R2 and adjusted R2 . Although R2 and p are not measures of statistical 168 

confidence per se, they are often used by ecologists in this way [28,29], and thus can be used as a 169 

means to approximate ‘conclusions’ that a researcher might make of the data. We use this fitting function 170 

within a moving window function that takes a provided data frame and iterates through it at all possible 171 

subsets and intervals, feeding each interval to the fitting function described above, and compiling the fit 172 

statistics for each into a single object.  173 

 174 

The moving window function is defined as follows. Let D represent the complete dataset, with Dt,r  175 

representing a single observations of time t and response r. Let Y = (y1, y2, …, yn) represent the set of 176 

unique values of t  at for which observations are recorded, where n is the total number of unique values 177 

of t. D is partitioned into sequential subsets of size S = (3, 4, …, n) to create windows wY,S such that each 178 

window  179 

wi,j ⊂ D = { Dt,r  | Yi ≤ t ≤ Yi+Sj, ∀ Yi+Sj ≤ yn}, and wy1,n = D 180 

 181 
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 For each wi,j, we apply the fitting function described above, and compile the resultant fit statistics for 182 

downstream analyses into a data frame. Then, we created functions that calculate several meta-statistics 183 

and produce visualizations of trends from the resultant data frame. 184 

 185 

First, we defined the slope of the longest time series (i.e. the slope of the linear regression of the whole 186 

dataset, D) as the proxy for the ‘true’ trajectory of the data (as it represents the best information 187 

available), along with the computed slope’s standard deviation and standard error of the mean as 188 

measures of the ‘true’ variability of the set. Meta-statistics are computed based on comparison to these 189 

‘true’ statistics. 190 

 191 

For all meta-statistics based on frequentist assumptions, we used a set of frequently used ‘significance’ 192 

levels as defaults (i.e. an α=0.05 for line fit statistics) but also encoded the functions so that a user could 193 

change these default values easily through supplying a function with different arguments. For each 194 

relevant function, we allowed users to toggle via a function argument these meta-statistics based on the 195 

full set of windows tested, or only on the set of windows with statistically significant results, as defined 196 

above. 197 

 198 

We defined “stability time” as the number of time steps needed before a given proportion of slopes 199 

(default = 95%) observed in a window of that length are within a certain number of standard deviations 200 

(default = 1) of the true slope. We computed absolute range (minimum and maximum values) of slope 201 

across all windows, as well as relative range (minimum and maximum difference from the ‘true’ slope, 202 

computed as the slope(wi,j) minus slope(D)). We also created functions that computed the proportion of 203 

windows examining a dataset would produce particular results. The proportion of statistically significant 204 

slopes produced by a given D measure the probability that a randomly selected window of time would 205 

produce a ‘statistically significant’ result. We defined the ‘proportion wrong’ as the proportion of windows 206 

producing statistics that would lead to conclusions differing from those observed for the ‘true’ trend (i.e. if 207 

the true trend was a positive slope, all windows suggesting a negative or non-significant slope were 208 

considered spurious, and so on). We provide functions to compute the proportion wrong for all windows in 209 

combination, for each window length, and in the set of windows with lengths less than stability time. In 210 

combination, these functions provide a standardized approach to asking the questions of how long a 211 

system must be observed to make consistent conclusions about its trajectory, and the likelihood of 212 

coming to misleading conclusions about a system if it is observed for less than that time period.  213 

 214 

We created several visualization functions to enable a user to, for a given dataset D, quickly interpret 215 

trends based on these meta-statistics, and compare trends in outputs across multiple datasets.  A 216 

pyramid plot (Figure 3) uses the data frame of summary statistics from the fits of all windows. It plots the 217 

computed slope for each window on the x axis and the length of the window on the y-axis, resulting in a 218 
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triangular or funnel shaped cloud of points. By default, point size is scaled by the R2 of the response-by-219 

time relationship within a given window and statistically significant points are demarcated by a circle, and 220 

non-significant points given by an ‘X’. All points are given with lines indicating their respective standard 221 

error. A vertical dashed line indicates the slope of the longest time series, and two dotted vertical lines are 222 

plotted at one standard deviation from this value, allowing a user to visually identify the stability time, that 223 

is, the length of time required for the majority of windows to produce slopes within a certain interval of the 224 

true slope. 225 

 226 

The “wrongness” plot (Figure 4) examines the same data from a summarized perspective- it plots the 227 

average R2 value and proportion wrong  on the y axis by number of years in a window on the x-axis, 228 

allowing a user to visualize the relationship between misleading results and the ‘confidence’ in them for a 229 

given D.  Finally, the “broken stick” plot (Figure 5) allows a user to visualize the raw time series from D 230 

simultaneously with some of the results of the bad-breakup algorithm. The z-scaled response metric (y-231 

axis) is plotted by observation time (x-axis). The true slope of the entire dataset D is plotted as a solid 232 

black line. Then, best fit lines for each window of a user-specified length (default=3-time steps) are 233 

plotted, allowing a user to visualize the variation in trend at different points in the time series. Statistically 234 

significant slopes are given by dashed red lines, non-significant slopes are indicated by dotted lines. 235 

Finally, we created a function which layers and animates broken stick plots to visualize how window 236 

slopes change given increasing window length. 237 

The R script was developed in RStudio Version 1.2.5033 “Orange Blossom” running R 3.6.2 “Dark and 238 

Stormy Night.” The script, its development history and all code for case studies and figure generation are 239 

available on GitHub at  https://github.com/BahlaiLab/bad_breakup_2  240 

 241 

Case Study 242 

We demonstrate the utility of the bad-breakup algorithm using the firefly study which inspired its 243 

development [20]. These data on firefly (beetles in the family Lampyridae, with those captured primarily 244 

thought to belong to Photinus pyralis) captures on insect sticky traps were collected 2004-2015 across 10 245 

plant communities in southwestern Michigan. Complete sampling design and treatments descriptions are 246 

provided in Hermann et al (2016). For the purpose of this demonstration, we used the data collected at 247 

the perennial early secessional community plots, where fireflies were relatively abundant and complete 248 

data were available. Data were subjected to cleaning and quality control using scripts developed by 249 

Hermann et al (2016), and then compiled into a metric of total captures per trap, by year (N=12) and 250 

replicate (N=6), for a total of 72 observations.  251 

The bad-breakup algorithm produced 55 unique windows (1 sequence of 12 years of data, 2 252 

sequences of 11 years of data, … , 10 sequences of 3 years of data). The full 12 year, 72 observation 253 

dataset of the normalized response over time was found to have a non-significant slope (-0.01±0.03, 254 
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p=0.70) and low R2 value (0.002) suggesting there is unlikely a linear trend with time in these data (or, 255 

more accurately, we fail to reject the null hypothesis that there is no linear relationship between our 256 

response and time) (Figure 3). Values computed for the slopes across the various windows ranged ±1.2 257 

units around the true slope. The algorithm found a stability time of 7 years, that is, once seven years of 258 

data were collected, slopes on >95% of windows tested were within one standard deviation of the slope of 259 

the longest series. Overall, nearly half (27/55) of the windows tested found a statistically significant slope, 260 

and thus there was nearly a 50% chance a shorter sample leading to a misleading conclusion. Although 261 

misleading slopes combined with significant p-values occurred for window lengths longer than 7 years 262 

(Figure 4), they were much more common with window lengths shorter than the stability time (68% of 263 

windows), yet these shorter windows were also more likely to be accompanied by a R2> 0.1 (Figure 4). 264 

Although 3 of these 21 windows ≥7 years in length contained statistically significant trends, after stability 265 

time, relative slope ranged from -0.14 to 0.17 z-scaled units around the true slope (Figure 5).  266 

 267 

Discussion 268 

In this paper, we developed a method to directly address the temporal aspects of scaling 269 

ecological observations by leveraging existing data, particularly those produced by long-term studies, in 270 

the scaling of insights gained from shorter-term investigations. Scaling between the short-term study and 271 

the long-term trajectory of a system is a fundamental problem in ecology, and is essential to maximize the 272 

utility of observations made in shorter-term studies. Patterns observed in local scale, short-term ecology 273 

tend to be dominated by stochastic forces, making generalizations, extrapolations and predictions difficult 274 

at larger scales, yet are essential to capture fine-scale understanding of system dynamics [3,30].  275 

The bad-breakup algorithm formalizes a framework for determining how long a system must be 276 

observed before conclusions about its general trends can be reached, and the prevalence of misleading 277 

results that occur prior to that time period. With our firefly case study, we found that trends observed prior 278 

to our ‘stability time’ of seven years had essentially even odds of being misleading: of three possible 279 

outcomes for each window (slope more negative than overall trend, slope more positive than overall 280 

trend, slope the same as overall trend), 2/3 of outcomes fell into the two former, and erroneous 281 

categories. In this case, no net linear trend was observed in the firefly population data (Figure 3), so 282 

future work should explicitly examine data with different structures to examine the relationship between 283 

time series shape and likelihood of erroneous conclusions at differing study lengths. Interestingly, we 284 

observed that in our case study, statistics commonly used as indicators of “strength” of relationship 285 

suggested more uncertainty, and less ‘confidence’ in results from windows of longer length: p- values, on 286 

average, went up, and R2 values decreased on average as longer windows of the time series were 287 

examined (Figure 4). This finding shines an important light on the reliability of these statistical tools as 288 

indicators of model performance: although they provide measures of how well the data from a given 289 

window fit the selected model at that time, they also inflate our confidence in what is often an 290 
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inappropriate model fit to a spurious or short-term trend. Future work must consider how process 291 

characteristics, data availability, and cultural precedent (i.e.: the history of use of a given approach in a 292 

scientific field) affect the selection and interpretation of these models. 293 

The bad-breakup algorithm has application beyond our single-population case study. In a recent 294 

study, Cusser et al [13] applied the algorithm to a thirty-year experiment comparing the sustainability and 295 

productivity attributes of an agricultural cropping system under several management regimes. In this 296 

system, due to high variability between treatments, 15 year observation periods were needed to detect 297 

consistent between-treatment differences in yield and soil water availability, and at least 1/5 of all 298 

windows examined resulted in spurious, statistically misleading trends (i.e. suggest the opposite 299 

relationship between management treatments). In another study, Christie, Stack Whitney et al (in prep) 300 

compiled 289 surveys of deer tick activity produced by public health departments and researchers 301 

primarily in the northeast and Midwest United States and subjected each set of observations to the bad 302 

breakup algorithm. They found none of the survey data reached stability time in less than 5 years, 303 

indicating that shorter term studies may be insufficient to infer long term population dynamics. Other work 304 

has focused on estimating the length of time series required to achieve high statistical power [14], the 305 

necessary frequency of monitoring [4], and studying data-poor fisheries [31] 306 

The bad-breakup algorithm uses the longest available study duration as a proxy for ‘truth’ as its 307 

core assumption. However, long-term studies themselves are not immune to uncovering misleading 308 

trends. Methodology, site selection, and periods of disturbance following the initiation of a long-term study 309 

may inherently bias the apparent trajectory of a system [32].  For example, a 2002 study uncovered a 310 

significant multi-year cooling trend, from 1986-1999 in Antarctica’s McMurdo Dry Valleys [33]. Yet, this 311 

study was initiated during an unusually warm year for the time period, essentially making it impossible for 312 

a ‘statistically significant’ increasing trend to be observed for many years without a series of record-high 313 

years: an unusual event in the first year of the study limited the possible outcomes of the statistical 314 

analysis. Recent years have seen temperatures stabilize and increase, and correspondingly, increasing 315 

stream flow and decreases of thickness of ice in glacial lake systems [34]. This highlights the importance 316 

not just of study duration, but of the selection of study starting and ending points: capturing an outlying 317 

data point or a high or low in a system’s natural variability near the beginning or end of the study period 318 

will be highly influential on the statistical outcome, and thus the conclusions reached [32,35]. 319 

Understanding and characterizing these highly influential observations in the analysis process is essential 320 

to our interpretations of these ecological trajectories. Thus, it is important to consider these biasing 321 

factors when using long-term data in algorithms like the one presented herein. 322 

The bad-breakup algorithm uses a linear model as its underlying structure, which is the simplest 323 

case of a relationship a response variable might take with time. However, many ecological processes are 324 

not linear with time and may be better described with non-linear approaches [4,11,36]. In the initial 325 

deployment of this algorithm, we created a tool for the simplest case that would be applicable under a 326 
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whide variety of circumstances, but future iterations should consider multiple underlying model structures, 327 

as well as contingencies for unevenly spaced observations or missing data. 328 

Conclusions and future directions  329 

 330 

 The ever-increasing availability of long-term data, fostered by the growth of technology that 331 

enables automated collection and sharing of data products, and the infrastructure availability and 332 

‘maturity’ of projects like the US (and international) Long Term Ecological Research networks [37] and 333 

more recently, the National Ecological Observatory Network [38,39] present several key opportunities for 334 

new understanding of temporal processes in ecology. Not only can these data be used to observe long-335 

term processes in their respective systems, these data can be used to contextualize the vast amount of 336 

data produced by shorter-term studies in our field. Ecology, until relatively recently, was a field defined by 337 

data scarcity: studies took place at local scales, over time periods manageable to small groups of 338 

researchers, and these shorter term studies remain the most common output in ecological research. Their 339 

work represents a huge human undertaking, however, and it is critical that we are able to interpret the 340 

insights these observations provide appropriately. 341 

 342 

The bad-breakup algorithm provides a framework for understanding how ecological data 343 

produced by different domains behaves at different temporal scales. Thus, this tools can be used to 344 

synthesize data describing ecological processes, specifically examining how system properties (such as 345 

landscape, site, seasonality, lifespan in the case of organisms, management regimes, cycles in 346 

population trends) affect the likelihood of a spurious trend being observed. In future work, we will examine 347 

data of differing structures to identify the characteristics of observation periods that are more likely to 348 

produce misleading results, and conversely, the characteristics of time periods that are consistent with 349 

longer system trends. This framework will support ongoing research efforts to separate trends in 350 

ecological systems from natural variability and underlying processes, and provide critical insight into the 351 

scaling to temporal processes between short- and long-term experimental designs. 352 

 353 
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Figures 464 

 465 

Figure 1: Ecological studies are most often 3 years in duration. To gain an estimate of typical 466 

ecological study length in recent decades, we searched Google Scholar using the terms ‘“[X] year study” 467 

ecology’, bounded for 1990-2019, where X= (1, 2, …, 20, 25, 30) and (one, two, …, twenty, twenty-five, 468 

thirty).  469 

 470 

Figure 2: Same data, different observation periods, different conclusions. Firefly populations 471 

monitored in ten plant community treatments at Kellogg Biological Station in southwestern Michigan cycle 472 

over an approximately 6 year period (panel A). Yet, if sampling had only occurred over a 4 year period, 473 

we would conclude the population underwent a steep (and statistically significant) decline in the four 474 

years from 2011-2014 (panel B). Data and figures adapted from Hermann et al (2016). 475 

 476 

Figure 3: The pyramid plot gives a distribution of possible conclusions. Using the firefly data from 477 

the early sucessional plant community presented in Hermann et al (2016), we are able to compile 55 478 

possible windows of three years or greater. On this plot, each point represents a window and its 479 

corresponding summary statistics for a linear relationship between the response variable (in this case, z-480 

scaled population density of fireflies) and time. Point coordinates are defined by the slope and length of a 481 

window, and point size is scaled by the R2 computed for that regression. The lines accpmanying each 482 

point represent standard error of the slope for each point. Statistically significant relationships (in this 483 

case α=0.05) are plotted as black circles, and non-significant slopes are plotted as red Xs. The vertical 484 

central dashed black line represents the slope of the complete time series (here with 12 years of data) 485 

and the vertical dotted grey lines are placed at one standard deviation in both the positive and negative 486 

direction from the ‘true’ slope.  487 

 488 

Figure 4: The ‘wrongness plot’ visualizes the relationship between the likelihood of a spurious 489 

conclusion and statistical proxies for ‘confidence’ in a relationship. Using the firefly data from the 490 

early sucessional plant community presented in Hermann et al (2016), we plot the proportion of windows 491 

where spurious slopes were observed by the length of window (black circular points with blue solid 492 

smoothing line), and the average R2 value across windows of that length (orange triangular points with a 493 

dashed red smoothing line). The grey dotted vertical line is placed at the ‘stability time’ of 7 years, after 494 

which the slopes in 95% of the windows occur within one standard deviation of the ‘true’ slope. 495 

 496 

Figure 5: The broken stick plot allows a user to visualize the magnitude of difference between the 497 

slopes produced at different window lengths.  Using the firefly data from the early successional plant 498 

community from Hermann et al (2016), all of the nine panels presents the Z-scaled response of firefly 499 

density over time, and a solid black line indicates the linear regression of the full data series (the ‘true’ 500 
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slope). The 95% confidence interval of this line is plotted in light blue. Within each panel, the linear 501 

regressions for each window of a given length are plotted: regressions with a statistically significant slope 502 

(at α=0.05) are given with red dashed lines, and non-significant regressions are plotted as grey dotted 503 

lines.  504 

 505 
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