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Abstract 18 
 A core issue in temporal ecology is the concept of trajectory⎯that is, when can ecologists have 19 

reasonable assurance that they know where a system is going? In this paper, we describe a non-random 20 
resampling method to directly address the temporal aspects of scaling ecological observations by 21 
leveraging existing data. Findings from long-term research sites have been hugely influential in ecology 22 
because of their unprecedented longitudinal perspective, yet short-term studies more consistent with 23 
typical grant cycles and graduate programs are still the norm. We use long-term insights to create ‘broken 24 
windows,’ that is, reanalyze long-term studies from short-term observational perspectives to examine 25 
discontinuities in trends at differing temporal scales. 26 

 The broken window algorithm connects our observations between the short-term and the long-27 
term with an automated, systematic resampling approach: in short, we repeatedly ‘sample’ moving 28 
windows of data from existing long-term time series, and analyze these sampled data as if they 29 
represented the entire dataset. We then compile typical statistics used to describe the relationship in the 30 
sampled data, through repeated samplings, and then use these derived data to gain insights to the 31 
questions: 1) how often are the trends observed in short-term data misleading, and 2) can characteristics 32 
of these trends be used to predict our likelihood of being misled?  We develop a systematic resampling 33 
approach, the ‘broken_window algorithm, and illustrate its utility with a case study of firefly observations 34 
produced at the Kellogg Biological Station Long-Term Ecological Research Site (KBS LTER). Through a 35 
variety of visualizations, summary statistics, and downstream analyses, we provide a standardized 36 
approach to evaluating the trajectory of a system, the amount of observation required to find a meaningful 37 
trajectory in similar systems, and a means of evaluating our confidence in our conclusions. 38 

Highlights 39 

Trends identified in short-term ecology studies can be misleading. 40 

Non-random resampling can show how prone different systems are to misleading trends 41 

The Broken Window algorithm is a new tool to help synthesize temporal data 42 

This tool helps to understand how much data is needed for forecasting to be reliable 43 

It can also be used to quantify how likely it is that an observed trend is spurious. 44 

KEYWORDS: Population, time series, data mining, scaling, trajectory, firefly, lampyridae 45 

 46 
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1 Introduction 48 

A fundamental problem in ecology is understanding how to scale discoveries: from patterns 49 

observed in the lab or the plot to the field or the region, or bridging between short-term observations to 50 

long term trends and trajectories (Chave, 2013; Levin, 1992; Schneider, 2001). While shorter-term studies 51 

(i.e. those where data collection occurs for less than ~5 years) that coincide with length of typical grant 52 

cycles and graduate programs are still the norm, these human constraints do not necessarily capture the 53 

ecological phenomena they seek to measure, particularly their temporal dependencies (Hastings, 2004; 54 

Wood et al., 2020). This unfortunate mismatch of scales has the potential to limit our understanding of 55 

ecological trajectories- that is, the direction a system is going through time, and can undermine our efforts 56 

towards a predictive ecology (Evans et al., 2012).   Understanding where and how short term patterns fit 57 

into broader trajectories, and how to interpret short-term patterns in the context of a system’s trajectory 58 

remains an open question (Wauchope et al., 2019; White, 2019). This is illustrated by the recent insect 59 

decline controversy, where several high profile papers have observed precipitous declines in insect 60 

populations have been subsequently shown to use inappropriate methods for synthesizing the data 61 

(Daskalova et al., 2021; Grames et al., 2019; D. L. Wagner, 2020). For example, it is inappropriate to 62 

simply combine multiple short term studies and extrapolate (e.g.: Sánchez-Bayo & Wyckhuys, 2019), 63 

particularly without explicitly considering the underlying temporal dependencies in the data (Didham et al., 64 

2020). 65 

However, simply recommending that scientists collect more data, for longer, is not necessarily 66 

practicable. While long term studies are hugely influential in ecology, they require long-term access to 67 

research resources and infrastructure and thus their unprecedented longitudinal perspective is not typical 68 

(Hughes et al., 2017). Furthermore, short-term studies, given their prevalence and more limited temporal 69 

commitments, can provide a more spatially distributed and potentially richer and more nuanced view into 70 

a specific phenomenon at a point in (or shorter period of) time. The key to meaningful synthesis of this 71 

vast resource of short-term studies is linking the two extremes of scale. Thus, long-term data, particularly 72 

those produced in networked, uniform approaches like those offered by the United States Long Term 73 

Ecological Research Network (LTER), present a fundamental opportunity to bridge short and long-term 74 

trends through data mining. With long term data, ecologists can systematically investigate the presence 75 

and prevalence of short-term trends and compare them to the long-term system trajectories these data 76 

document. 77 

 Ecological systems are inherently dynamic, and variations in the metrics humans collect about 78 

these systems can be driven by a variety of stochastic and deterministic processes, as well as by 79 

sampling error or other research-induced effects (Suding & Gross, 2006). Short-term dynamics observed 80 

in an ecological system are not always indicative of the long-term trajectory of that system (Carey & 81 

Cottingham, 2016), and furthermore, shorter observation periods can lead to spurious observations 82 

because of sampling error variance (Daskalova et al., 2021). In population processes, for example, 83 
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density-dependent deterministic mechanisms, combined with environmental perturbations, can produce 84 

highly variable population numbers over various time scales (Turchin, 2003). Decoupling these processes 85 

can reveal the skeleton of a deterministic process interacting with external forces (Bahlai & Zipkin, 2020). 86 

However, to disentangle these drivers from an empirical standpoint generally requires a substantial 87 

amount of data to be collected over time (Cusser et al., 2020; Higgins et al., 1997). Indeed, in a recent 88 

study, White (2019) found that 72% of vertebrate population monitoring programs required at least a 89 

decade of observation before the overall trajectory of the population could be detected statistically. A 90 

recent study of trends in water bird populations found that short term trends were generally reflective of 91 

longer-term patterns (Wauchope et al., 2019), but varied by the generation length of the organism under 92 

study.  However, they found that, similar to the White (2019) study, greater than two decades of 93 

observations would be required to reliably detect a change of 1% per year. Conversely, a study of 94 

population viability modelling in snails determined that although longer time series were generally better 95 

for establishing the population’s trajectory, diminishing returns in precision were observed after about 10-96 

15 years of data were collected (Rueda-Cediel et al., 2015). It is unclear how these findings can be 97 

generalized across organisms with differing lifespans, reproductive strategies and life histories, or other 98 

environmental processes. 99 

The question of trajectory over time is central in ecology, particularly as related to how ecological 100 

systems on which humans depend are responding to disturbance or will behave under future climate or 101 

environmental conditions (Sutherland et al., 2013). Trajectory is essential to our understanding of 102 

ecosystems, their management, and policy decisions, as we interact with our environment.  Analytic 103 

approaches to time series data have long been a focal area of research in ecology, allowing practitioners 104 

to examine temporal dependencies in a variety of processes. The shape a time series takes can provide 105 

meaningful information about the properties of the system, the rules that govern its variability, and the 106 

trajectory that the system is taking (Esling & Agon, 2012). But when insufficient data exists to apply (or 107 

even select) an appropriate time-series approach, a scientist may resort to simpler statistical tools, such 108 

as linear models, to describe the patterns observed in the data through the study’s window of 109 

observation. It is not uncommon for a shorter-duration multi-year ecological study to extrapolate from its 110 

data, using the trends observed within their sampling window to draw conclusions about a system’s 111 

apparent trajectory. For example, a study of British ladybeetle communities concluded that native 112 

ladybeetle species were in decline, as was total ladybeetle abundance, following the introduction of an 113 

invasive species (Brown et al., 2011). Another found that the richness and abundance of seeds in a soil 114 

seed bank were in a recovery trajectory following a period of industrial pollution (M. Wagner et al., 2006). 115 

An adventive pest species was implicated in reducing carbon to nitrogen ratios, organic matter in soils of 116 

infested forests, thus substantially changing the ecosystem’s function over time (Orwig et al., 2008). 117 

These examples, representing very different ecological domains, have a common element of a three-year 118 

study duration. Yet these inferences may be out of temporal sync with the processes they aim to 119 

understand (Birkhead, 2014).  120 
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A vexing problem arises when shorter term studies apply statistical tools at time scales that are 121 

not matched with the underlying processes to make inferences about trajectory: not only may spurious 122 

trends be observed, but because only a portion of the underlying process variability is captured, a higher 123 

degree of statistical confidence in the result will be found. For example, Bahlai and students examined a 124 

12-year time series of firefly captures from Michigan (Hermann et al., 2016). Concerns had been raised 125 

about the status of fireflies in eastern North America (Chow et al., 2014), however, for that population, the 126 

authors found no evidence of decline over the 12 years (Fig. 1):  there was no linear relationship between 127 

average captures and year (p=0.71, R2=0.002), and, indeed, there appeared to be evidence of a cyclical 128 

dynamic common to many populations near their carrying capacity (Fig. 1A). However, students 129 

remarked that if the study had been limited to, for example, the 4 years from 2005-2008 (Fig. 1B), 130 

dramatically different conclusions would have been made. A linear regression of these data would very 131 

likely have been interpreted as ‘strong evidence’ that a decline was occurring in this population (slope -132 

0.31±0.05, p=0.000003, R2=0.633). Simply, with less data, we would have made the wrong conclusions, 133 

and we would have been very confident in our wrong answer. This connection between shorter 134 

observation periods and more pronounced patterns is supported by observations made in synthesis 135 

efforts: in a compilation of insect biodiversity studies, the shortest time series were more likely to show the 136 

most extreme trends (Daskalova et al., 2021). 137 

 It is because of this phenomenon of “highly-confident wrong answers” that long-term studies are 138 

so valued in the ecological community. Indeed, because biological systems are often defined by their 139 

variability, when studies are shown to be irreproducible, it is not necessarily due to poor research 140 

practice, but due to their inability to capture the full variability of the system within the limits of the study 141 

design (Jarvis & Williams, 2016; Voelkl & Würbel, 2016). Long-term ecological research provides insight 142 

into the inherent variability of natural systems (Lovett et al., 2007), and insights are thus often only 143 

apparent after many years of study (Knapp et al., 2012). Beyond this, there are many other inherent 144 

benefits to long-term studies. Long-term studies are disproportionately represented in policy reports and 145 

in the ecological literature: studies involving long term observations are cited more often than studies of 146 

shorter duration (Hughes et al., 2017). Furthermore, long-term observational studies provide important 147 

baseline data: as the world itself changes, these data provide insight into how ecosystems function, 148 

instead of studying phenomena after they happen (Franklin et al., 1990; Hastings, 2004; Magurran et al., 149 

2010).   150 

Although the importance of long-term studies is clear, empirical examinations of the converse are 151 

rare: just how frequently are scientists misled by short-term studies? Can knowledge generated by 152 

studying the relationship between short- and long-term studies to bridge the interpretations of short-term 153 

data to long-term processes? In this study, we describe a synthetic, computational approach to create a 154 

framework to address two hypotheses:   155 

Shorter observation periods will increase the likelihood of observing misleading trends 156 
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Because exogenous forces are of greater influence at smaller spatial and temporal scales, we 157 

predict that short time periods will be more variable due to these processes, and conversely do 158 

not capture the full extent of natural variability (Lovett et al., 2007; Suding & Gross, 2006), so they 159 

are more likely to result in “highly-confident wrong answers.” 160 

Statistical metrics often used as a proxy for ‘confidence’ in short-term trends (such as the p-value) will not 161 

be associated with an increased likelihood of capturing a time period consistent with long-term trends. 162 

Following from the previous prediction, we predict that p-values will be inferior predictors of the 163 

‘correctness’ of short-term trends in predicting longer term trajectory compared to other properties 164 

of the system. Better predictors may include statistical measures (slope, standard error), but 165 

trends are likely moderated by system specific predictors (e.g. site, data type). 166 

The Broken Window Algorithm is a suite of tools which will allow ecologists to leverage existing 167 

data to make inferences about system behavior and data needs to characterize system trajectories using 168 

an automated, non-random resampling approach (White & Bahlai, 2020): in short, our algorithm 169 

repeatedly ‘samples’ sequential moving windows of data from existing long-term time series, and 170 

analyzes these sampled data as if they represented the entire dataset that is, using knowingly limited 171 

‘windows’ of observation to determine how temporal dependencies in a time series affect the likelihood of 172 

a short time making a spurious conclusion about how a process varies in time. The tool then compiles 173 

typical statistics used to describe the relationships in the sampled data, through repeated samplings, and 174 

then use these derived data to gain insights to the questions, how often are the trends observed in short-175 

term data misleading, and can the characteristics of these trends be used to predict our likelihood of 176 

being misled? Findings from this work will support the development of a deep understanding of temporal 177 

scaling in ecology, aiding in the interpretation of countless future short-term studies. Secondly, and more 178 

broadly, our findings have applicability across a variety of domains. Results from this approach will have 179 

the opportunity to guide science funding policy, experimental design and interpretation, and data 180 

archiving. 181 

2 Materials and Methods 182 

2.1 Developing the ‘broken_window’ analysis algorithm 183 

 The broken_window algorithm breaks a time series dataset into all possible sequential subsets 184 

and then fits a linear model to each of these subsets and compiles the resulting summary statistics, 185 

allowing a user to identify and quantify spurious trends within their data. The algorithm is implemented as 186 

a series of functions written in R. The algorithm requires a user-inputted two variable data frame with a 187 

regular measurement interval as the first variable, and a response variable as the second variable. For 188 

the purpose of this study, we assume a yearly measurement interval and some integrative response 189 

metric (captures of organisms per trap, average reading, total yield). Data are first subjected to a 190 

standardization function which converts the response metric to a unitless Z-score to normalize the data 191 
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and make it possible to compare datasets with responses of very different magnitudes, and to minimize 192 

the impact of measurement unit choice on the observed trends.  193 

 194 

A function that fits a linear model to the data and computes an output vector with the number of 195 

observations, the number of years in the study, and particular summary statistics of interest, namely, the 196 

slope of the relationship between the response variable and time, the standard error of this relationship, 197 

p-values for each of these statistics, and then R2 and adjusted R2. Although R2 and p are not measures of 198 

statistical confidence per se, they are often used by ecologists in this way (Nakagawa & Cuthill, 2007; 199 

Yoccoz, 1991), and thus can be used as a means to approximate ‘conclusions’ that a researcher might 200 

make of the data. We use this fitting function within a moving window function that takes a provided data 201 

frame and iterates through it at all possible subsets and intervals, feeding each interval to the fitting 202 

function described above, and compiling the fit statistics for each into a single object.  203 

 204 

3 Calculation 205 

The moving window function is defined as follows. Let D represent the complete dataset, with Dt,r  206 

representing a single observations of time t and response r. Let Y = (y1, y2, …, yn) represent the set of 207 

unique values of t for which observations are recorded, where n is the total number of unique values of t. 208 

D is partitioned into sequential subsets of size S = (3, 4, …, n) to create windows wY,S such that each 209 

window  210 

wi,j ⊂ D = { Dt,r  | Yi ≤ t ≤ Yi+Sj, ∀ Yi+Sj ≤ yn}, and wy1,n = D 211 

 212 

 For each wi,j, we apply the fitting function described above, and compile the resultant fit statistics for 213 

downstream analyses into a data frame. Then, we calculate several meta-statistics and produce 214 

visualizations of trends from the resultant data frame. 215 

 216 

First, we defined the slope of the longest time series (i.e. the slope of the linear regression of the whole 217 

dataset, D) as the proxy for the ‘true’ trajectory of the data (as it represents the best information 218 

available), along with the computed slope’s standard deviation and standard error of the mean as 219 

measures of the ‘true’ variability of the set. Meta-statistics are computed based on comparison to these 220 

‘true’ statistics. 221 

 222 

For all meta-statistics based on frequentist assumptions, we used a set of frequently used ‘significance’ 223 

levels as defaults (i.e. an α=0.05 for line fit statistics) but also encoded the functions so that a user could 224 

change these default values easily through supplying a function with different arguments. For each 225 

relevant function, we allowed users to toggle via a function argument between these meta-statistics 226 

based on the full set of windows tested, or only on the set of windows with statistically significant results, 227 

as defined above. 228 
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 229 

We defined “stability time” as the number of time steps needed before a given proportion of slopes 230 

(default = 95%) observed in a window of that length are within a certain number of standard deviations 231 

(default = 1) of the true slope. These values were selected to mitigate the impact of outlying data and to 232 

reflect industry standards. We computed absolute range (minimum and maximum values) of slope across 233 

all windows, as well as relative range (minimum and maximum difference from the ‘true’ slope, computed 234 

as the slope(wi,j) minus slope(D)). We also created functions that computed the proportion of windows 235 

examining a dataset would produce particular results. The proportion of statistically significant slopes 236 

produced by a given D measure the probability that a randomly selected window of time would produce a 237 

‘statistically significant’ result. We defined the ‘proportion wrong’ as the proportion of windows producing 238 

statistics that would lead to conclusions differing from those observed for the ‘true’ trend (i.e. if the true 239 

trend was a positive slope, all windows suggesting a negative or non-significant zero-magnitude slope 240 

were considered spurious, and so on). We provide functions to compute the proportion wrong for all 241 

windows in combination, for each window length, and in the set of windows with lengths less than stability 242 

time. In combination, these functions provide a standardized approach to asking the questions of how 243 

long a system must be observed to make consistent conclusions about its trajectory, and the likelihood of 244 

coming to misleading conclusions about a system if it is observed for less than that time period.  245 

 246 

We created several visualization functions to enable a user to, for a given dataset D, quickly interpret 247 

trends based on these meta-statistics, and compare trends in outputs across multiple datasets. A pyramid 248 

plot (Fig. 2A) uses the data frame of summary statistics from the fits of all windows. It plots the computed 249 

slope for each window on the x axis and the length of the window on the y-axis, resulting in a triangular or 250 

funnel shaped cloud of points. By default, point size is scaled by the R2 of the response-by-time 251 

relationship within a given window and statistically significant points are demarcated by a circle, and non-252 

significant points given by an ‘X’. All points are given with lines indicating their respective standard error. 253 

A vertical dashed line indicates the slope of the longest time series, and two dotted vertical lines are 254 

plotted at one standard deviation from this value, allowing a user to visually identify the stability time, that 255 

is, the length of time required for the majority of windows to produce slopes within a certain interval of the 256 

true slope. 257 

 258 

The “wrongness” plot (Fig. 2B) examines the same data from a summarized perspective- it plots the 259 

average R2 value and proportion wrong  on the y axis by number of years in a window on the x-axis, 260 

allowing a user to visualize the relationship between misleading results and the ‘confidence’ in them for a 261 

given D.  Finally, the “broken stick” plot (Fig. 3) allows a user to visualize the raw time series from D 262 

simultaneously with some of the results of the broken_window algorithm. The z-scaled response metric 263 

(y-axis) is plotted by observation time (x-axis). The true slope of the entire dataset D is plotted as a solid 264 

black line. Then, best fit lines for each window of a user-specified length (default=3-time steps) are 265 
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plotted, allowing a user to visualize the variation in trend at different points in the time series. Statistically 266 

significant slopes are given by dashed red lines, non-significant slopes are indicated by dotted lines. 267 

Finally, we created a function which layers and animates broken stick plots to visualize how window 268 

slopes change given increasing window length. 269 

The R script was developed in RStudio Version 1.2.5033 “Orange Blossom” running R 3.6.2 “Dark and 270 

Stormy Night.” The script, its development history and all code for case studies and figure generation, are 271 

available on GitHub at https://github.com/cbahlai/broken_window. 272 

 273 

4 Results   274 

We demonstrated the utility of the broken_window algorithm using the firefly study which inspired 275 

its development (Hermann et al., 2016). These data on firefly (beetles in the family Lampyridae, with 276 

those captured primarily thought to belong to Photinus pyralis) captures on insect sticky traps were 277 

collected 2004-2015 across 10 plant communities in southwestern Michigan. Complete sampling design 278 

and treatments descriptions are provided in Hermann et al (2016). For the purpose of this demonstration, 279 

we used the data collected at the perennial early secessional community plots, where fireflies were 280 

relatively abundant and complete data were available. Data were subjected to cleaning and quality control 281 

using scripts developed by Hermann et al (2016), and then compiled into a metric of total captures per 282 

trap, by year (N=12) and replicate (N=6), for a total of 72 observations.  283 

The broken_window algorithm produced 55 unique windows (1 sequence of 12 years of data, 2 284 

sequences of 11 years of data, … , 10 sequences of 3 years of data). The full 12 year, 72 observation 285 

dataset of the normalized response over time was found to have a non-significant slope (-0.01±0.03, 286 

p=0.70) and low R2 value (0.002) suggesting there is unlikely to be a linear trend with time in these data 287 

(or, more specifically, we fail to reject the null hypothesis that there is no linear relationship between our 288 

response and time) (Fig. 2A). Values computed for the slopes across the various windows ranged ±1.2 289 

units around the true slope. The algorithm found a stability time of 7 years, that is, once seven years of 290 

data were collected, slopes on >95% of windows tested from anytime in the study were within one 291 

standard deviation of the slope of the longest series. Overall, nearly half (27/55) of the windows tested 292 

found a statistically significant slope, and thus there was nearly a 50% chance a shorter sample leading 293 

to a misleading conclusion. Although misleading slopes combined with significant p-values occurred for 294 

window lengths longer than 7 years (Fig. 2B), they were much more common with window lengths shorter 295 

than the stability time (68% of windows), yet these shorter windows were also more likely to be 296 

accompanied by a R2> 0.1 (Fig. 2B). Although 3 of these 21 windows ≥7 years in length contained 297 

statistically significant trends, after stability time, relative slope ranged from -0.14 to 0.17 z-scaled units 298 

around the true slope (Fig. 3).  299 

 300 

5 Discussion 301 
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Patterns observed in local scale, short-term ecology tend to be dominated by stochastic forces, 302 

making generalizations, extrapolations and predictions difficult at larger scales, yet are essential to 303 

capture fine-scale understanding of system dynamics (Chave, 2013; Willis & Birks, 2006). The 304 

broken_window algorithm formalizes a framework for determining how long a system must be observed 305 

before conclusions about its general trends can be reached, and the prevalence of misleading results that 306 

occur prior to that time period. With our firefly case study, we found that trends observed prior to our 307 

‘stability time’ of seven years had essentially even odds of being misleading: of three possible outcomes 308 

for each window (slope more negative than overall trend, slope more positive than overall trend, slope the 309 

same as overall trend), 2/3 of outcomes fell into the two former, and erroneous categories. In this case, 310 

no net linear trend was observed in the firefly population data (Fig. 1, 2A). Interestingly, we observed that 311 

in our case study, statistics commonly used as indicators of “strength” of relationship suggested more 312 

uncertainty, and less ‘confidence’ in results from windows of longer length: p-values, on average, went 313 

up, and R2 values decreased on average as longer windows of the time series were examined (Fig. 2C). 314 

This finding shines an important light on the reliability of these statistical tools as indicators of model 315 

performance: although they provide measures of how well the data from a given window fit the selected 316 

model at that time, they also inflate our confidence in what is often an inappropriate model fit to a 317 

spurious or short-term trend (Nakagawa & Cuthill, 2007). Given the high likelihood that these 318 

observations will vary by context, future work must consider how process characteristics, data availability, 319 

and cultural precedent (i.e.: the history of use of a given approach in a scientific field) affect the selection 320 

and interpretation of these models. Furthermore, it should explicitly examine data with different structures 321 

to examine the relationship between time series shape and likelihood of erroneous conclusions at 322 

differing study lengths. 323 

In this paper, we demonstrate the utility of the broken_window algorithm in the context of a 324 

simple, single population case study. However, this analytical approach has broad application which has 325 

been applied by several colleagues in additional systems.  In a recent study, Cusser et al (2020) applied 326 

the algorithm to a thirty-year experiment comparing the sustainability and productivity attributes of an 327 

agricultural cropping system under several management regimes. In this system, due to high variability 328 

between treatments, 15 year observation periods were needed to detect consistent between-treatment 329 

differences in yield and soil water availability, and at least 1/5 of all windows examined resulted in 330 

spurious, statistically misleading trends (i.e. suggest the opposite relationship between management 331 

treatments). In an expansion of this work, Cusser and colleagues (2021) used the broken window 332 

algorithm to mine more than 100 additional long-term population datasets and found that ~50% of studies 333 

had temporal dependencies between treatments that could not be reliably detected with fewer than 10 334 

years of data. Furthermore, they linked the stability of the abiotic environment to the ability to detect 335 

trends: simply, experiments taking place in more variable environments were more prone to spurious 336 

trends and required more data and time to establish experimental differences.  In another study, R. 337 

Christie et al (2021) compiled 289 surveys of deer tick activity produced by public health departments and 338 
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researchers primarily in the northeast and Midwest United States and subjected each set of observations 339 

to the broken_window algorithm. They found none of the survey data reached stability time in less than 5 340 

years, indicating that shorter term studies may be insufficient to infer long term population dynamics. 341 

Bruel and White (2021) used a similar approach to investigate the optimal sampling of sediment cores for 342 

constructing phytoplankton communities. However, they examined the sampling effort required to detect 343 

abrupt shifts (i.e., changepoints) in community structure, as opposed to simple linear trends over time. 344 

This work highlights the need for future studies investigating the sampling required to detect patterns 345 

beyond those from simple linear regression. Other related work has focused on estimating the length of 346 

time series required to achieve high statistical power (White, 2019), and studying data-poor fisheries 347 

(White & Bahlai, 2020): taken together, these tools will enable previous work to be mined to understand 348 

the characteristics of trends common to those systems, and enable future studies to be designed to 349 

maximize information value. 350 

The broken_window algorithm uses the longest available study duration as a proxy for ‘truth’ as 351 

its core assumption. However, long-term studies themselves are not immune to uncovering misleading 352 

trends. Methodology, site selection, and periods of disturbance following the initiation of a long-term study 353 

may inherently bias the apparent trajectory of a system (Fournier et al., 2019).  This highlights the 354 

importance not just of study duration, but of the selection of study starting and ending points: capturing an 355 

outlying data point or a high or low in a system’s natural variability near the beginning or end of the study 356 

period will be highly influential on the statistical outcome, and thus the conclusions reached (Chatterjee & 357 

Hadi, 1986; Fournier et al., 2019). Understanding and characterizing these highly influential observations 358 

in the analysis process is essential to our interpretations of these ecological trajectories. Thus, it is 359 

important to consider these biasing factors when using long-term data in algorithms like the one 360 

presented herein: any statistical method is likely to be influenced by outlying or unlikely observations. 361 

The broken_window algorithm uses a linear model as its underlying structure, which is the 362 

simplest case of a relationship a response variable might take with time. However, many ecological 363 

processes are not linear with time and may be better described with non-linear approaches (Bahlai & 364 

Zipkin, 2020; Knape, 2016; Wauchope et al., 2019). In the initial deployment of this algorithm, we created 365 

a tool for the simplest case that would be applicable under a whide variety of circumstances, but future 366 

iterations should consider multiple underlying model structures, as well as contingencies for unevenly 367 

spaced observations or missing data. 368 

6 Conclusions  369 

 The ever-increasing availability of long-term data, fostered by the growth of technology that 370 

enables automated collection and sharing of data products, and the infrastructure availability and 371 

‘maturity’ of projects like the US (and international) Long Term Ecological Research networks (Brunt et 372 

al., 2002) and more recently, the National Ecological Observatory Network (SanClements et al., 2020; 373 

Schimel et al., 2007) present several key opportunities for new understanding of temporal processes in 374 
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ecology. Not only can these data be used to observe long-term processes in their respective systems, 375 

these data can be used to contextualize the vast amount of data produced by shorter-term studies in our 376 

field. Ecology, until relatively recently, was a field defined by data scarcity: studies took place at local 377 

scales, over time periods manageable to small groups of researchers, and these shorter-term studies 378 

remain the most common output in ecological research (Peters, 2010). Their work represents a huge 379 

human undertaking, however, and it is critical that we are able to interpret the insights these observations 380 

provide appropriately. 381 

 382 

The broken_window algorithm provides a framework for understanding how ecological data 383 

produced by different domains behaves at different temporal scales. Thus, this tool can be used to 384 

synthesize data describing ecological processes, specifically examining how system properties (such as 385 

landscape, site, seasonality, lifespan in the case of organisms, management regimes, cycles in 386 

population trends) affect the likelihood of a spurious trend being observed. In future work, we will examine 387 

data of differing structures to identify the characteristics of observation periods that are more likely to 388 

produce misleading results, and conversely, the characteristics of time periods that are consistent with 389 

longer system trends. This framework will support ongoing research efforts to separate trends in 390 

ecological systems from natural variability, human biases and research-specific influences and underlying 391 

processes, and provide critical insight into the scaling to temporal processes between short- and long-392 

term experimental designs. 393 

 394 
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Figures 562 

 563 

Figure 1: Same data, different observation periods, different conclusions. Firefly populations 564 

(reported as mean number of adults captured per trap) monitored in ten plant community treatments at 565 

Kellogg Biological Station in southwestern Michigan cycle over an approximately 6 year period (panel A). 566 

Yet, if sampling had only occurred over a 4 year period, we would conclude the population underwent a 567 

steep (and statistically significant) decline in the four years from 2005-2008 (slope -0.31±0.05, 568 

p=0.000003, R2=0.633; panel B). Data and figures adapted from Hermann et al (2016). 569 

 570 

Figure 2: Core outputs of the broken_window algorithm: Using the firefly data from the early 571 

sucessional plant community presented in Hermann et al (2016), we are able to compile 55 possible 572 

windows of three years or greater. A) The pyramid plot gives a distribution of possible conclusions. On 573 

this plot, each point represents a window and its corresponding summary statistics for a linear 574 

relationship between the response variable (in this case, z-scaled population density of fireflies) and time. 575 

Point coordinates are defined by the slope and length of a window, and point size is scaled by the R2 576 

computed for that regression. The lines accpmanying each point represent standard error of the slope for 577 

each point. Statistically significant relationships (in this case α=0.05) are plotted as black circles, and non-578 

significant slopes are plotted as red Xs. The vertical central dashed black line represents the slope of the 579 

complete time series (here with 12 years of data) and the vertical dotted grey lines are placed at one 580 

standard deviation in both the positive and negative direction from the ‘true’ slope. B) The ‘wrongness 581 

plot’ visualizes the relationship between the likelihood of a spurious conclusion and statistical proxies for 582 

‘confidence’ in a relationship. The proportion of windows where spurious slopes were observed by the 583 

length of window  are displayed as black circular points with blue solid smoothing line , and the average 584 

R2 value across windows of that length  are given as orange triangular points with a dashed red 585 

smoothing line. The grey dotted vertical line is placed at the ‘stability time’ of 7 years, after which the 586 

slopes in 95% of the windows occur within one standard deviation of the ‘true’ slope. 587 

 588 

 589 

Figure 3: The broken stick plot allows a user to visualize the magnitude of difference between the 590 

slopes produced at different window lengths.  Using the firefly data from the early successional plant 591 

community from Hermann et al (2016), all of the nine panels presents the Z-scaled response of firefly 592 

density over time, and a solid black line indicates the linear regression of the full data series (the ‘true’ 593 

slope). The 95% confidence interval of this line is plotted in light blue. Within each panel, the linear 594 

regressions for each window of a given length are plotted: regressions with a statistically significant slope 595 

(at α=0.05) are given with red dashed lines, and non-significant regressions are plotted as grey dotted 596 

lines.  597 
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