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Abstract 
Topographic maps are a fundamental feature of cortex architecture in the mammalian brain.             
One common theory is that the de-differentiation of topographic maps links to impairments in              
everyday behavior due to less precise functional map readouts. Here, we tested this theory by               
characterizing de-differentiated topographic maps in primary somatosensory cortex (SI) of          
younger and older adults by means of ultra-high resolution functional magnetic resonance            
imaging together with perceptual finger individuation and hand dexterity. Older adults’ SI maps             
showed similar amplitude, size, and levels of stimulus-related noise than younger adults’ SI             
maps, but presented with less representational similarity between distant fingers. Larger           
population receptive field sizes in older adults’ maps did not correlate with behavior, whereas              
reduced cortical distances related to better hand dexterity. Our data uncover the drawbacks of a               
simple de-differentiation model of topographic map function, and motivate the introduction of a             
feature-based model of cortical reorganization. 
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Introduction 
Topographic maps are a fundamental feature of cortex architecture and can be found in all               
sensory systems and in many motor systems of the mammalian brain. Topographic units             
organize subcortical brain structures such as the thalamus, the globus pallidus, and the striatum              
(Crabtree, 1992; Hintiryan et al., 2016; Zeharia et al., 2015), primary sensory input and output               
areas such as primary sensory and motor cortices (Penfield and Boldrey, 1937), and             
higher-level integrative brain areas such as the medial and superior parietal cortices and the              
cingulate cortex (Sereno and Huang, 2006; Zeharia et al., 2019, 2015). Topographic maps and              
their malfunctions give rise to a multitude of sensory, motor, and cognitive functions and              
associated deficits (Amedi et al., 2003; Kalisch et al., 2009; Kikkert et al., 2019; Kuehn et al.,                 
2018; Makin et al., 2013a; Saadon-Grosman et al., 2015), which warrants a precise             
understanding of their organizational features. 
 
One common theory posits that the ‘de-differentiation’ of topographic maps represents one            
mechanism of their malfunction. Cortical de-differentiation can be conceptualized as greater           
map activation (Pleger et al., 2016), a larger topographic map area (Kalisch et al., 2009), but                
also more noisy topographic units and/or less cortical inhibition between neighbouring           
topographic units (Lenz et al., 2012; Pleger et al., 2016). Such changes are particularly              
observed in older adults’ topographic maps, and one common model on cortical aging assumes              
‘overactivated’ or more ‘de-differentiated’ topographic maps in older compared to younger           
adults, which are assumed to explain reduced sensory, motor, and cognitive abilities of older              
adults in everyday life (Cabeza, 2002; Cassady et al., 2020; Dennis and Cabeza, 2011;              
Heuninckx et al., 2008; Mattay et al., 2002; Reuter-Lorenz and Lustig, 2005; Riecker et al.,               
2006). However, the precise topographic features that characterize a presumably          
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‘de-differentiated’ map are so far not clarified, neither are the precise behavioral phenotypes             
that relate to different aspects of topographic map change. 
 
Here, we used the hand area of the primary somatosensory cortex (SI) in younger and older                
adults as a model system to study the precise meso-scale features that characterize the              
presumably de-differentiated topographic maps of older adults, and their relation to behavior.            
Topographic maps in SI are a suitable model system to investigate basic aspects of cortical               
de-differentiation, because the tactile modality is not artificially corrected by glasses or hearing             
aids, and therefore offers access to the ‘pure’ architecture of the (altered) system. We assessed               
the functional architecture of topographic maps subject-wise at fine-grained detail using           
ultra-high field functional magnetic resonance imaging (7T-fMRI), and investigated sensory          
readouts as well as everyday hand movement capabilities of our participants. 7T-fMRI is a              
valuable method for describing fine-grained features of topographic maps, because it allows            
mapping small-scale topographic units, such as individual fingers, subject-wise and with high            
levels of accuracy and reproducibility (Kolasinski et al., 2016a; Kuehn et al., 2018; Kuehn and               
Sereno, 2018; O’Neill et al., 2020). Recently, this allowed the precise description of features that               
characterize non-afferent maps in human SI (Kuehn et al., 2018), SI map changes after              
short-term plasticity (Kolasinski et al., 2016b), or movement-dependent maps in motor cortex            
(Huber et al., 2020).  
 
To systematically characterize the meso-scale features of de-differentiated topographic maps          
and their relation to behavior, we distinguished between global changes of the map that were               
present across all topographic units (here fingers), and local changes of the map that only               
covered parts of the map. This distinction is relevant due to the nonhomogeneous use of               
individual fingers in everyday life (Belić and Faisal, 2015), the non-uniform           
microstimulation-evoked muscle activity in motor cortex (Overduin et al., 2012), and for            
differentiating between age-dependent and use-dependent plasticity (Makin et al., 2013a). We           
also distinguished between topographic map features that link to functional separation, as here             
tested by perceptual finger individuation, and those that require functional integration, as here             
tested by perceptual finger confusion and motor movements (see Fig. 1 ). A cohort of healthy               
younger (21-29 years) and healthy older (65-78 years) adults was invited to several             
experimental sessions, where touch to their fingertips was applied in the 7T-MR scanner using              
an automated Piezo-driven tactile stimulator (Miller et al., 2018; Schmidt and Blankenburg,            
2018). They were also tested behaviorally in a finger mislocalization task (Schweizer et al.,              
2000) and in different aspects of hand dexterity (Kalisch et al., 2008). By combining ultra-high               
resolution functional imaging with population receptive field mapping, Fourier-based functional          
analyses, psychophysics and measures of everyday behavior, we could compare precise map            
features between younger and older adults’ topographic maps, and link these to behavioral             
phenotypes relevant for everyday life. We could therefore test the basic assumption that             
de-differentiated cortical maps relate to impairments in everyday behavior. By targeting a            
mechanism that is assumed to be a hallmark feature of cortical aging, our data also help to                 
uncover a fundamental principle of brain aging. 
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Results 

Topographic maps do not differ in size, amplitude and variability between age groups 

We used 7T-fMRI data to compare the fine-grained architecture of topographic finger maps in SI               
between younger and older adults. Older adults were expected to present with more             
‘de-differentiated’ cortical maps compared to younger adults, which is assumed to link to higher              
map amplitude and larger map size (Kalisch et al., 2009; Pleger et al., 2016). While undergoing                
MRI scanning, younger and older adults were stimulated at the fingertips of their right hand               
using an automated Piezo-driven stimulation system, and different stimulation protocols (see           
Fig. 1 ). Participants were stimulated at each finger at their 2.5-fold individual threshold to              
exclude topographic map changes that were due to peripheral (nerve or skin) differences             
between younger and older adults. We focused on topographic maps in area 3b of SI, because                
this area is the likely human homologue of the monkey SI cortex (Kaas, 2012).  

 

 
Figure 1. Feature-based   
characterization of topographic   
maps using 7T-fMRI and    
behavioral tests. A:   
FEATure-based map classification   
allowed us to separate local from      
global map changes, and    
differences in integration from    
differences in separation. B:    
Younger and older adults were     
tested in a behavioral digit     
confusion task at their perceptual     
thresholds (see Supplemental   
Figure 1 for tactile detection     
thresholds) where their ability to     
locate threshold-touch to the    
correct finger was investigated    
(left). They were also characterized     
for individual differences in hand     
dexterity using the Purdue    
Pegboard Test, the Grooved    
Pegboard Test, and the O’Connor     
Dexterity Test (middle).   
Participants underwent 7T-fMRI at    
a separate testing day, where     
tactile finger stimulation was    
applied using an automated Piezo     
stimulator (right). C: In the 7T-MRI      
scanner, different stimulation   
protocols were tested in separate     
runs (each row represents one     
run).  

 
Significant topographic finger maps in contralateral area 3b in response to finger stimulation             
were detected in younger and older adults, and across the group as a significant group effect                
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(see Fig. 2A-C ). The expected topographic alignment of the fingers (thumb [D1], index finger              
[D2], middle finger [D3], ring finger [D4], and small finger [D5] arranged superior -> inferior in                
area 3b) was visible in all individuals of both age groups (see Fig. 2C ). The mean surface area                  
that topographic maps covered in area 3b, % signal change within the map area, and mean                
f-values did not differ significantly between age groups (original surface area: t(34)=0.04, p=.97,             
resampled surface area; t(34)=-0.15, p=.88; % signal change: t(34)=1.17, p=.25; f-value:           
t(34)=0.84, p=.41, see Fig. 2D-G ).  
 
One further variable that may explain age-related differences in topographic maps is the             
variability of topographic map alignments within age groups that may be due to increased              
internal noise. One may expect the variability to be higher in older adults compared to younger                
adults topographic maps (McGregor et al., 2012). To inspect topographic map variability within             
each age group, we calculated the dispersion index d, which indicates map stability across the               
group (d=1 indicates perfectly aligned vectors independent of vector amplitude, whereas lower d             
indicates less stable topographic arrangements between individuals in one group). Younger           
participants showed slightly lower d in the topographic map area compared to older adults (d               
young: 0.68, d old: 0.72). The variability of topographic map alignments within each age group               
was therefore generally low, and slightly higher in younger compared to older adults (see Fig.               
2B).  
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Figure 2. Topographic maps do not differ in size, amplitude and variability            
between age groups . A: Significant topographic finger maps of younger and older            
adults averaged over the group. Data are visualized on average surfaces of the current              
set of subjects (younger/older). B: Map dispersion d and Fourier transformed data of             
significant topographic group maps of younger and older adults. Lower d indicates less             
stable topographic arrangements over the group. Dotted lines indicate the area of the             
significant topographic map. C: Significant topographic maps of each single participant           
(P1-P36). D: Response amplitudes (in %) of topographic maps compared between           
younger and older adults (mean +/- SE and individual data). E: f-values of topographic              
maps compared between younger and older adults (mean +/- SE and individual data).             
F&G: Surface area of topographic maps of younger and older adults; values extracted             
from original (F) and resampled (G) surfaces (mean +/- SE and individual data).             
Shown are data of n=19 younger adults and n=17 older adults. 

 

Reduced cortical distances between D2 and D3 in older adults  

Previous studies found larger cortical distances between D2 and D5 in older compared to              
younger adults, which was argued to evidence an enlargement of topographic maps in older              
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adults (Kalisch et al., 2009). We used both absolute (Euclidean) and surface-based (geodesic)             
cortical distance measures to compare distances of digit representations between younger and            
older adults (see Fig. 3C ). An ANOVA with the factors finger-pair and age calculated on               
Euclidean distances revealed a significant main effect of finger-pair (F(3,102)=11.20, p<10 -5), no            
main effect of age (p>.2), but a significant interaction between finger-pair and age (F(3)=3.23,              
p<.05). The main effect of finger-pair was due to increased Euclidean distances between D1              
and D2 compared to D3 and D4 (t(35)=5.57, p<.00001), reduced Euclidean distances between             
D1 and D2 compared to D4 and D5 (t(35)=4.87, p<.0001), increased Euclidean distances             
between D2 and D3 compared to D3 and D4 (t(35)=3.24, p<.01), and reduced Euclidean              
distances between D2 and D3 compared to D4 and D5 (t(25)=2.93, p<.01) across age groups               
(see Fig. 3A ). The interaction between finger-pair and age was driven by significantly reduced              
Euclidean distances between D2 and D3 in older adults compared to younger adults (Euclidean              
distance D2-D3 young: 7.67±0.80, D2-D3 old: 4.98 ± 0.40, p<.05, see Fig. 3A, E ). The latter                
effect was replicated for geodesic distances, where older adults showed significantly reduced            
geodesic distances compared to younger adults only between D2 and D3 (Geodesic distance             
D2-D3 young: 7.80 mm±0.72 mm, old: 5.72 mm±0.64 mm, p<.05, see Fig. 3B ). Effect size               
analyses using bootstrapping confirm large Hedge’s g for Euclidean and geodesic distances            
between D2 and D3, and low Hedge’s g for all other distances (D2-D3 Euclidean: g=.73,               
LCI=.12, UCI=1.45; D2-D3 Geodesic: g=.69, LCI=.08, UCI=1.45, all other distances g<.3, see            
Fig. 3D ). There was no significant correlation between cortical distance between D2 and D3 and               
individual age, neither for Euclidean nor for geodesic distances (see Supplemental Figure 2). 

Figure 3. Reduced cortical    
distances between D2 and D3     
in older adults . A, B: Cortical      
distances between digit   
representations in younger and    
older adults estimated as total     
(Euclidean) distance (A) and as     
surface-based (geodesic)  
distance (B) (mean ± SEM and      
individual data) C: Schematic    
visualization of cortical distance    
measures. D: Effect sizes    
(Hedge’s g and 95%    
confidence intervals) for   
Euclidean and geodesic   
distances. E: Spatial alignment    
of younger adults’ (top) and     
older adults (bottom) digit    
representations in area 3b. Line     
represents linear fit, arrows    
highlight significant differences   
in cortical distance between    
younger and older adults.    
Shown are data of n=19     
younger adults and n=17 older     
adults. 
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Larger population receptive field (pRF) sizes in older adults  

Previous studies on rats had indicated larger receptive field sizes in the hindpaw but not               
forepaw representation of older compared to younger rats (Godde et al., 2002). This left open               
the question whether or not there are enlarged population receptive field (pRF) sizes in the               
human hand area in older compared to younger humans. Bayesian pRF modeling was             
employed to model pRFs in individual topographic maps, and to compare pRF sizes between              
younger and older adults (Puckett et al., 2020). pRF distances were used to individuate the five                
fingers, and pRF sizes were extracted map- and finger-specific in each individual (Puckett et al.,               
2020) (see Fig. 4C ). pRF distances revealed an organized finger map with D1-D5 arranged              
from superior to inferior, as expected (see Fig. 4A ). An ANOVA with the factors age and finger                 
calculated on pRF sizes showed a significant main effect of finger (F(4)=7.86, p<.0001), a              
significant main effect of age (F(1)=5.00, p<.05), but no significant interaction between age and              
finger (F(4)=0.62, p>.6). The main effect of finger was due to significantly larger pRF sizes of D1                 
compared to D2 (D1: 4.26±0.85, D2: 5.69±1.77, t(66)=-4.30, p<.00006), D1 compared to D4             
(D4: 7.11±2.99, t(69)=-5.40, p<10 -5), D1 compared to D5 (D5: 6.23±3.21, t(66)=-3.52, p<.0008),            
D2 compared to D3 (D3: 4.66±2.23, t(62)=2.05, p<.05), D2 compared to D4 (t(61)=-2.31, p<.02),              
D3 compared to D4 (t(59)=-3.62, p<.0006) and D3 compared to D5 (t(62)=2.26, p<.03). The              
main effect of age was due to larger pRF sizes in older compared to younger adults (see Fig.                  
4C).  
 
Because greater pRF sizes may be associated with greater cortical overlap between            
neighbouring finger representations, dice coefficients were used to compare the overlap of            
neighbouring digit representations between younger and older adults. When computing an           
ANOVA with the factors finger-pair and age, there was a trend towards a significant main effect                
of age (F(1,31)=3.83, p=.059), and there was a significant effect of finger-pair (F(3, 93)=7.29,              
p<10 -3). The trend towards the significant effect of age was due to higher mean dice coefficients                
in older adults compared to younger adults (dice coefficient older: 0.19±0.02, younger:            
0.13±0.01, see Fig. 4B ). Correlation analysis between mean pRF sizes across fingers and             
mean dice coefficients across fingers did not reveal a significant relationship (see Fig. 4D for               
statistics). Correlation analysis between mean pRF sizes across fingers (for younger and older             
adults, respectively) and mean cortical distances (i.e., total (Euclidean) distance and           
surface-based (geodesic) distance, respectively) also did not disclose significant relationships          
(see Supplemental Figure 3 ). Correlations between average pRF sizes and behavioural           
measures (i.e., finger individuation and hand dexterity) did not reveal significant relationships            
(see Supplemental Figure 3 ). 
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Figure 4 . Larger population receptive field (pRF) sizes in older adults compared to younger adults.               
A: pRF distances (which encode each individual finger, left) and pRF sizes (which encode the size of                 
each finger representation, right) shown for six individual participants (randomly chosen, participant            
numbers same as in Figure 2 ). B: pRF sizes per finger and dice coefficients for younger and older adults                   
(mean ± SEM and individual data). C: Visualization of significant main effect of finger (left) and significant                 
main effect of age (right) of pRF sizes (mean ± SEM and individual data). D: Correlation between average                  
pRF sizes and mean dice coefficients across fingers for younger and older adults. Correlations between               
average pRF sizes and cortical distances, and between average pRF sizes and behavioural measures              
are shown in Supplemental Figure 3 . Shown are data of n=19 younger adults and n=17 older adults (A,                  
B, C ) and of n=17 younger adults and n=16 older adults (D). 
 

Lower representational similarity between distant digits in older adults 
Another aspect of cortical de-differentiation is the assumed increased ‘blurriness’ of           
de-differentiated cortical maps. This was investigated here by using representational similarity           
analyses, and resting state signal correlations. We used across-run representational similarity           
analyses to compare the similarity of digit representations between different runs within area 3b              
(Kuehn et al., 2018). We computed an ANOVA with the factors neighbour and age on               
finger-specific representational similarity, which revealed a significant effect of neighbour          
(F(4,136)=128.6, p<10 -44), no main effect of age, but a significant interaction between age and              
neighbour (F(4)=3.63, p<.05). The main effect of neighbour was due to higher representational             
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similarity between 1st neighbour fingers (N1) compared to 2nd, 3rd and 4th neighbour fingers              
(N2-N4) across age groups. This was expected, because finger stimulation is expected to excite              
neighbouring fingers more than distant fingers. Critically, the interaction between age and            
neighbour was due to lower representational similarity in older compared to younger adults’ SI              
maps for N3 (N3-similarity young: 0.01±0.03, old: -0.11±0.04, p<.05, see Fig. 5B ). N3             
representational similarity correlated negatively with age in older but not in younger adults (see              
Supplemental Figure 2 for complete statistics). 
 
To test for local (finger-specific) differences, an ANOVA with the factors digit-pair and age was               
calculated, which revealed a significant main effect of digit-pair (F(3,102)=2.88, p<.05), but no             
main effect of age, and no interaction between age and digt-pair. The significant effect of               
digit-pair was due to lower representational similarity between D2 and D3 compared to D4 and               
D5 (t(35)=2.18, p<.05), and lower representational similarity between D3 and D4 compared to             
D4 and D5 (t(35)=2.96, p<.05) across age groups.  
 
Resting state data were used to investigate whether the observed age-related differences in             
representational similarity between N3-fingers were also reflected in differences in slow           
frequency fluctuations during rest (Kuehn et al., 2017). Cross-correlation analyses revealed the            
highest correlations between time series using zero-lag correlations (tested were all possible            
lags between -130 to +130 TRs). This was true for all possible finger combinations. An ANOVA                
with the factors neighbour and age on zero-lag cross-correlation coefficients revealed no main             
effect of neighbour (F(4,88)=1.50, p=.21), a trend towards a significant main effect of age              
(F(1,22)=2.77, p=.11), but no interaction between age and neighbour (F(4)=0.73, p=.57). An            
ANOVA with the factors finger and age revealed no main effect of finger (F(4,88)=0.66, p=.62),               
a trend towards a significant main effect of age (F(1,22)=2.43, p=.13), but no interaction              
between age and finger (F(4)=0.46, p=.76). The trend for the main effect of age was due to                 
older adults showing higher correlation coefficients across neighbours and fingers compared to            
younger adults (see Fig. 5C,D).  
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Figure 5 . Lower representational similarity between distant digits in older adults . A: Between-run             
representational similarity matrices of finger representations in younger and older adults. Higher values             
indicate higher representational similarity in area 3b. B: Mean representational similarity between same             
fingers (N0), 1 st neighbour fingers (N1), 2 nd neighbour fingers (N2), 3 rd neighbour fingers (N3), and 4 th                
neighbour fingers (N4) (mean +/- SE and individual data). For correlations between N3 representational              
similarity with individual age see Supplemental Figure 2 . C: Cross-correlations between finger-specific            
time series of resting state data. On the x- and y-axes, exemplary finger-specific time series for one                 
younger adult and one older adult are shown. TR = Repetition time, where each TR represents one                 
volume. Note that the diagonal shows autocorrelations between resting state time series. D: Mean              
cross-correlation coefficients of resting state data between N1-N4 in younger and older adults (mean              
+/- SE and individual data). Shown are data of n=19 younger adults and n=17 older adults (A,B ) and                  
data of n=12 younger adults and n=12 older adults (C,D ). 
 

 
Mislocalizations reflect representational similarity of topographic fields 

We used a behavioral finger mislocalization task to test whether the above described functional              
markers of cortical de-differentiation in area 3b have perceptual correlates. For this purpose, we              
used a perceptual task that is expected to reflect individual differences in topographic map              
architecture (Schweizer et al., 2001, 2000). During the task, participants were touched at the              
fingertips of their right hand at their individual 50%-threshold (see Fig. 1 for graphical overview,               
see Supplemental Figure 1 for individual tactile detection thresholds), and were asked to name              
the location of finger touch in a five-choice-forced-response paradigm (possible answers were            
‘thumb’, ‘index finger’, ‘middle finger’, ‘ring finger’, or ‘small finger’). Mislocalizations (i.e., errors             

11 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 9, 2020. ; https://doi.org/10.1101/2020.07.08.179978doi: bioRxiv preprint 

https://paperpile.com/c/2HfhKe/u75l+t8wj
https://doi.org/10.1101/2020.07.08.179978


 

where participants assigned touch to another finger than the one that was stimulated) are the               
variable of interest in this task, because mislocalizations are assumed to be driven by              
overlapping and/or more similar representations in SI that cause perceptual confusion (Pilz et             
al., 2004). In total, the applied stimulation resulted in 41.10% of mislocalizations across all              
fingers and groups, which was expected due to the 50%-threshold that was applied during              
stimulation.  
 
We first tested whether the distribution of mislocalizations followed the expected pattern of             
higher than chance mislocalizations to adjacent fingers and lower than chance mislocalizations            
to distant fingers. This pattern is expected if the task reflects the adjacency of cortical               
representations (Schweizer et al., 2000). For younger adults, more mislocalizations than           
expected by chance were detected at N1, N2, and N3, whereas less mislocalizations than              
expected by chance were detected at N4. For older adults, more mislocalizations than expected              
by chance were detected at N1 and N2, and less mislocalizations than expected by chance at                
N3 and N4 (see Fig. 6C and Supplemental Figure 4 ). The comparison of the measured               
distribution of mislocalization with the proportional distribution as expected by chance showed a             
significant difference for both age groups (younger adults: G(3)=9.33, p<.05; older adults:            
G(3)=43.59, p<.001). There was a trend towards older adults showing in total more             
mislocalizations compared to younger adults (older: M=0.45 ± 0.03, younger: M=0.38 ± 0.03,             
t(48)=1.69, p=.097, see Supplemental Figure 4 ). 
 
We tested whether the above identified age-related difference in functional map architecture            
(i.e., less representational similarity between N3-fingers) present with a perceptual correlate. For            
this aim, we computed an ANOVA with the factors neighbour and age on relative              
mislocalizations (in %). There was a main effect of neighbour (F(2.26,108.34)=108.30, p<.001),            
no significant main effect of age (p=1), and a trend towards a significant interaction between               
neighbour and age (F(2.26,108.34)=2.50, p=.08). The main effect of neighbour was due to             
significantly more mislocalizations to N1 compared to N2 (t(83.54)=5.82, p<.001), to N1            
compared to N3 (t(98)=11.64, p<.001), to N1 compared to N4 (t(79.97)=17.54, p<.001), to N2              
compared to N3 (t(98)=7.66, p<.001), to N2 compared to N4 (t(98)=15.40, p<.001), and to N3               
compared to N4 (t(98)=7.03, p<.001) across age groups. This is expected based on the higher               
amount of mislocalizations to nearby compared to distant fingers, as outlined above. The trend              
towards a significant interaction between neighbour and age was due to older participants             
showing less mislocalizations to N3 compared to younger participants (older: 0.15±0.01,           
younger: 0.21±0.02, t(48)=-2.52, p<.05, see Fig. 6D ). Less representational similarity between           
N3-fingers in older adults as identified using 7T-fMRI was therefore accompanied with less             
perceptual digit confusion between N3-fingers as tested behaviorally in the same participants,            
but on a separate testing day.  

 

Mislocalizations reflect adjacency of cortical representations 

We then tested whether the above identified age-related differences in finger-specific map            
architecture (i.e., less cortical distance between D2 and D3) present with a perceptual correlate.              
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For this aim, we computed one robust ANOVA with the factors digit and age for each of the five                   
stimulated fingers on the relative distribution of mislocalizations (in %). We found a main effect               
of digit, which was due to more mislocalizations to the respective neighbouring digit/s, as              
outlined above (see Supplemental Figure 5 for complete statistics). Importantly, we also found             
a significant interaction between age and digit for D2 (F(3,22.02)=4.84, p<.05). Post hoc tests              
revealed that older adults showed higher percentages of mislocalizations from D2 to D3             
compared to younger adults (older: M=41.09±5.75, younger: M=17.56±4.19, t(27.73)=3.96,         
p<.001, see Fig. 6E, see Supplemental Figure 5 for complete statistics). Reduced cortical             
distances between the representations of D2 and D3 in older adults, as identified using 7T-fMRI,               
was therefore accompanied with more perceptual confusion between D2 and D3 as tested             
behaviorally in the same participants, but on a separate testing day. 
 

Figure 6 . Mislocalizations reflect    
representational similarity of   
topographic fields and adjacency of     
cortical representations. A,B:   
Finger-specific responses to digit    
stimulation in younger and older adults      
shown as numbers of responses per digit       
dependent on stimulated digit (stimulated     
digit shown at top row, A) and as relative         
distribution of mislocalizations (B) (mean ±      
SE). in B, X-axes represent stimulated      
digits, y-axes represent response digits.     
See Supplemental Figure 6 for hit rates       
and response biases. C: Difference values      
between the measured distribution of     
mislocalizations and the distribution as     
expected by chance for both age groups.       
The mislocalizations were summed for the      
fingers according to their distance to the       
stimulated finger. Raw values are shown in       
Supplemental Figure 4 . D: Distribution of      
mislocalizations dependent on neighbour    
(N1-N4) and age group (mean ± SE and        
individual data). E: Distribution of     
mislocalizations for D2 stimulations to     
each digit (mean ± SE and individual       
data). For complete statistics for each digit       
(D1-D5) see Supplemental Figure 5 . *      
indicates significant difference at post hoc      
t-test at an alpha level of p<.05. Shown are         
data of n=25 younger adults and n=25       
older adults. 
 

 
To investigate whether the above-described age-related differences in perceptual finger          
confusion were due to finger-specific differences in sensitivity or bias (for example, lower             
sensitivity or higher bias in D2/D3 in older compared to younger adults), we applied signal               
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detection theory and determined d’ and bias by calculating the amount of times a specific finger                
was touched but not detected (miss), was touched and detected (hit), was not touched but               
falsely detected (false alarm), or was not touched and not detected (correct rejection). We              
calculated an ANOVA with the factors age and digit on d’ and a robust ANOVA with the same                  
factors on bias. For d’, there was no main effect of digit (F(4,192)=1.16, p>.3), a trend towards a                  
main effect of age (F(1,48)=3.37, p=.073), with older adults showing lower d’ compared to              
younger adults (older: M=1.36±0.12, younger: M=1.67±0.12), but, critically, there was no           
interaction between age and digit (F(4,192)=0.45, p>.7).  
 
For bias, there was a main effect of digit (F(4, 21.69)=3.54, p<.05), which was due to lower bias                  
for D2 compared to D1 (t(48.78)=2.46, p<.05), for D2 compared to D5 (t(39.41)=3.68, p<.001)              
and for D3 compared to D5 (t(35.06)=2.93, p<.01) across age groups, no main effect of age                
(F(1,24.66)=0.67, p>.4), and, critically, no interaction between digit and age (F(4,21.69)=0.91,           
p>.4, see Supplemental Figure 6 for complete statistics and a graphical overview). The             
specific difference in perceptual confusion between D2 and D3 in older adults can therefore              
likely not be assigned to finger- and age-specific differences in d’ or bias. 
 

Impaired hand dexterity in older adults  

Besides characterizing the participants in functional map features and perceptual digit           
confusion, we also tested them in three tasks that assessed individual differences in hand              
dexterity. These tests required coordinated finger movements via the precision grip, and were             
performed to answer the critical question of how the observed differences in cortical             
‘de-differentiation’ and their perceptual correlates are relevant for everyday hand use. The tests             
required participants to quickly move small round (Purdue Pegboard Test) or grooved (Grooved             
Pegboard Test) pins into corresponding holes, or to quickly pick up three small sticks at a time,                 
and place them into a small hole (most difficult task, O’Connor Dexterity Test, see Fig. 1 ).                
These tests are successful in predicting skills relevant for everyday life, such as picking up and                
placing small parts, and are standard measures in clinical practice to detect deteriorated             
movement skills such as in increasing age or in neurodegenerative diseases (Carment et al.,              
2018; Darweesh et al., 2017; Feys et al., 2017). Hand dexterity was significantly worse in older                
participants compared to younger participants in all three tests: Older adults were slower than              
younger adults to complete the Purdue Pegboard Test (older: 79.20s±3.00s, younger:           
59.84s±1.49s, t(35.18)=5.77, p<.001), older adults were slower than younger adults to complete            
the Grooved Pegboard Test (older: 86.80s±2.47s, younger: 63.84s±1.47s, t(39.07)=7.98,         
p<.001), and older adults completed less holes compared to younger adults in the O’Connor              
Dexterity Test (older: 26.73±1.55, younger: 36.17±1.63, t(44)=-4.18, p<.001). There was a           
significant positive correlation between the time (in s) taken to complete the Grooved Pegboard              
Test and individual age in older adults, and a trend towards a positive correlation between the                
time (in s) taken to complete the Purdue Pegboard Test and individual age in older adults (see                 
Supplemental Figure 1 for complete statistics).  
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Relation between functional map architectures and behavioral phenotypes 

Critically, individual differences in hand dexterity in the group of older adults allowed us to ask                
whether observed age-related changes in topographic map architecture and their perceptual           
correlates related to better or worse hand dexterity in older adults. This question was evaluated               
using factor analyses. The aim of factor analysis is to explain the outcome of n variables in the                  
data matrix X using fewer variables, the so-called factors. In order to understand common              
variances between the above explained differences in hand dexterity and functional as well as              
perceptual map features, we fitted a model to the data matrix X consisting of the following                
variables: Hand dexterity (Purdue Pegboard Test, Grooved Pegboard Test, O’Connor Dexterity           
Test), perceptual digit confusion (D2-D3 confusion, N3 confusion), cortical distance (Euclidean           
distance D2-D3, geodesic distance D2-D3), and representational similarity (N3-finger). The          
two-factor model (mean psi=.52) loaded performance in the O’Connor Dexterity Test, perceptual            
digit confusion (D2-D3), and cortical distance (D2-D3, both Euclidean and geodesic) onto factor             
1, and representational similarity (N3-fingers), performance in the Purdue Pegboard Test,           
performance in the Grooved Pegboard Test, and perceptual digit confusion (N3) onto factor 2              
(see Fig. 7A ). The model therefore separated perceptual and functional variables into local             
effects (D2-D3 cortical distance, D2-D3 perceptual confusion, factor 1) and into global effects             
(N3 representational similarity, N3 digit confusion, factor 2, see Fig. 7A ). Whereas hand             
dexterity loaded positively on age-related local effects (more completed holes in O’Connor            
Dexterity Test for lower cortical distances between D2 and D3, and for higher perceptual              
confusion between D2 and D3 that both characterize older adults), hand dexterity loaded             
negatively on age-related global effects (more time spent on Purdue Pegboard Test and more              
time spent on Grooved Pegboard Test for lower representational similarity between N3-digits,            
and lower perceptual confusion to N3 that both characterize older adults).  
 
This overall picture remained the same when we fitted a three-factor model, with the difference               
that representational similarity was identified as a separate factor (see Fig. 7C ). When we fitted               
a four-factor model, the factor specifications remained the same, with the difference that             
perceptual digit confusion (D2-D3) was fitted as a separate factor. These results show that              
representational similarity and D2-D3 digit confusion share less common variance with the other             
variables in their factor. This was also reflected in the correlation analyses, where we see lowest                
r-values for these two variables (see Fig. 7B ). Taken together, the factor analyses indicate that               
cortical map features that characterize the full topographic map area can be differentiated from              
those that only cover parts of the map. The correlation analyses further show that ‘more               
de-differentiation’ of local map features relate to better rather than worse hand dexterity as              
revealed in the (most difficult) O’Connor dexterity test. 
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Figure 7. Relation between    
functional map  
architectures and  
behavioral phenotypes.  
A,B: With a two-factorial    
model, the data were    
categorized into features   
that link to local effects     
(perceptual confusion  
between D2 and D3, cortical     
distance between D2 and    
D3, factor 1) and those that      
link to global effects    
(perceptual confusion to N3,    
representational similarity to   
N3, factor 2). Whereas    
manual dexterity loaded   
positively onto age-related   
local effects (higher values    
in O’Connor test, which    
reflect better performance,   
relate to higher perceptual    
confusion between D2 and    
D3, and lower cortical    
distance between D2 and    
D3), manual dexterity   
loaded negatively onto   
global effects (higher values    
in Purdue and Grooved    
Pegboard Test, which reflect    
worse performance, relate   
to lower perceptual   
confusion between N3, and    
lower representational  
similarity of N3). A: factor     
loadings and psi values, B:     
p-values and correlation   
coefficients (r) of Pearson    
correlations. C: Results of    
three-factorial model.  
Shown are data of n=17     
older adults. 
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Discussion 
Here, we used a combination of ultra-high resolution functional magnetic resonance imaging,            
computational modeling, psychophysics, and everyday task assessments to detect and describe           
‘de-differentiated’ cortical maps in primary somatosensory cortex (SI) and their association to            
functional readouts and everyday behavior. Older adults are an ideal population to study             
mechanisms of cortical de-differentiation, because their topographic map architecture is          
assumed to become ‘less precise’ with increasing age, which has been related to maladaptive              
behavior (Cabeza, 2002; Cassady et al., 2020; Dennis and Cabeza, 2011; Heuninckx et al.,              
2008; Mattay et al., 2002; Reuter-Lorenz and Lustig, 2005; Riecker et al., 2006).  
 
We did not detect significant differences in basic map statistics such as topographic map size,               
amplitude and stimulus-related noise between younger and older adults’ SI maps. Rather, we             
observed larger pRF sizes and lower representational similarity between distant fingers on the             
global level, and reduced cortical distances between the representations of the index finger and              
the middle finger on the local level. Local and global changes in map topography reflected the                
pattern of perceptual finger confusion, because older adults showed lower perceptual confusion            
between distant fingers and higher perceptual confusion between the index and the middle             
finger compared to younger adults. Because the latter result correlated with better hand             
dexterity, local cortical ‘de-differentiation’ was here related to better hand performance in            
everyday life. These results are in three respects novel and even surprising. 
 
Age-related differences in receptive field sizes in rats are restricted to the hindpaw             
representation and do not occur in the forepaw representation, with more intensive use of the               
forepaw compared to the hindpaw assumed to be the underlying reason (David-Jürgens et al.,              
2008; Godde et al., 2002). In older rats, receptive fields in the hindpaw representation are less                
inhibitory and larger than receptive fields in younger rats (David-Jürgens et al., 2008; Godde et               
al., 2002; Spengler et al., 1995), which relates to worse walking behavior (Godde et al., 2002).                
This topographic pattern could not be replicated for humans, because we here found larger pRF               
sizes in the hand area of older compared to younger participants, which corroborates the above               
described hindpaw-selective changes in rats. Other than in rats, we also do not see a significant                
correlation between larger pRF sizes and worse motor control of the hand, neither for tasks on                
finger individuation nor for measures of hand dexterity. In addition, we do not see an increase in                 
topographic map amplitude or topographic map size in older adults, which corroborates the idea              
of an ‘overactivated’ map in older adults. Our data therefore confirm changes in the inhibitory               
topographic architecture in older adults’ SI area that may explain the increased pRF size (Lenz               
et al., 2012; Pleger et al., 2016), but leave open the question to which extent these changes are                  
behaviorally relevant, and also question their necessary link to higher BOLD responses in the              
affected area. 
 
The second finding that was not expected based on prior evidence is the reduced rather than                
enhanced representational similarity between finger representations in older compared to          
younger participants. The presumably more de-differentiated cortical maps were in fact less            
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de-differentiated in distant finger representations. It was even more astonishing that this effect             
related to a behavioral phenotype, because those fingers that showed less representational            
similarity in older adults were also mixed up less perceptually. So far, research has stressed that                
de-differentiated topographic maps are characterized by less rather than more distinct map            
organization (Cassady et al., 2020; Pleger et al., 2016). However, subcortical U-fibers, which             
are located within the cortex or in the very outer parts of the subcortical white matter, particularly                 
connect adjacent but not directly neighbouring representations in the cortex. Short-association           
fibers are among the last parts of the brain to myelinate, and have very slow myelin turnover                 
(Reiser et al., 2007). Myelination and protracted maturation of short-association fibers can            
continue until the age of fifty (Wu et al., 2016). Fully myelinated U-fibers in older adults and less                  
myelinated U-fibers in younger adults may explain higher correlated short-distance          
representations in older adults, and good performance in discriminating non-neighbouring          
signals. This finding hints towards potentially better ‘abstract encoding’ in older adults, here             
defined as the distinct extraction of information from adjacent but not neighbouring topographic             
units.  
 
Perhaps the most surprising finding of our study, however, is the reduced cortical distance              
between the index and middle finger representations in older adults with preserved map size,              
where, previously, greater distances between fingers and larger map sizes were reported            
(Kalisch et al., 2009). Whereas the reduced cortical distance between neighbouring fingers is in              
principle in line with a de-differentiation model of topographic map architecture, its relation to              
better rather than worse hand dexterity is certainly not. These findings highlight the importance              
of combining laboratory measures of perceptual precision with complex everyday task           
assessments that detail the relevance of fine-grained topographic map changes for everyday            
hand use. Interestingly, the reduced cortical distance between index and middle finger            
representations in older adults explains the increased enslaving of the middle finger during             
index finger flexion in older adults (Van Beek et al., 2019), and may relate to use-dependent                
plasticity (Makin et al., 2013a). During everyday hand movements, the index and the middle              
finger correlate less with each other than other neighbouring fingers (Belić and Faisal, 2015),              
and the index finger is the most independent of the four fingers (Ingram et al., 2008). During                 
tactile learning, plasticity transfers more from the middle finger to the index finger than from the                
middle finger to the ring finger (Dempsey-Jones et al., 2016). The observed local map changes               
may therefore either be induced by the correlated input of the middle and ring finger or ring                 
finger and small finger (Kolasinski et al., 2016b), or by age-related changes in the local               
myeloarchitecture that link to functional map topography (Carey et al., 2018; Kuehn et al.,              
2017a). In either way, a positive relationship between increased cortical de-differentiation and            
impairments in everyday hand use is not supported by our data. 
 
Taken together, both in the case of cortical distance, where more local ‘de-differentiation’             
related to better hand dexterity, and in the case of representational similarity, where presumably              
more ‘de-differentiated’ cortical maps showed less representations similarity at distant locations,           
a simple de-differentiation model of cortex function does not seem to appropriately reflect the              
empirical data. In our view, topographic maps should be classified according to specific map              
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features that take into account spatial extent (global versus local map changes) and functional              
readout (integration versus separation). This distinction facilitates the precise investigation of           
how specific map features relate to corresponding functional readouts such as cortical            
integration or cortical separation (see Fig. 1 ). For example, whereas reduced cortical distances             
may increase the local integration of cortical signals, this may benefit tasks that require              
coordinated finger movements but may worsen tasks that require finger individuation. The            
distinction between local and global map features is particularly relevant when distinguishing            
between use-dependent and age-dependent topographic map plasticity, and between adaptive          
versus maladaptive plasticity. In our data, the local shifts of the index and middle finger               
representations towards each other seem to have adaptive consequences, whereas          
maladaptive consequences for global changes in pRF sizes were not identified. 
 
This approach sheds new light on future interventions and training paradigms that aim at              
speeding up, slowing down, or reversing neuroplastic processes in the cortex. Repeated            
sensory stimulation of the skin induces NMDA-dependent Hebbian plasticity at the           
corresponding cortical territory, a mechanism that improves local spatial discrimination          
thresholds (Dinse et al., 2003; Kuehn et al., 2017b). Synchronous stimulation of more than one               
finger, but also glueing of multiple fingers, has been used to induce neuroplastic processes of               
topographic map architectures (Kalisch et al., 2008; Kolasinski et al., 2016b). Synchronous            
stimulation of all five fingers causes less mislocalizations to nearby digits and more             
mislocalizations to distant digits (Kalisch et al., 2008, 2007), whereas temporal gluing of the              
index finger to the middle finger induces a shift of the ring finger towards the small finger,                 
accompanied by less cortical overlap between the middle and the ring finger. This intervention              
also caused lower thresholds in temporal order judgments between the middle finger and the              
ring finger, and higher thresholds in temporal order judgments between the ring finger and the               
small finger (Kolasinski et al., 2016b). Integrating previous knowledge with our data leads to the               
assumption that concurrent stimulation of distant but not neighbouring topographic units and/or            
correlated input to topographic units that neighbour the affected ones (here the ring finger and               
small finger instead of the index finger and the middle finger) may be particularly beneficial to                
induce adaptive neuroplasticity in aging topographic maps. This principle can be applied to             
other cases of distorted (Saadon-Grosman et al., 2015) or preserved (Makin et al., 2013b) map               
architectures in clinical cases. At a more abstract level, these data indicate that a precise               
characterization of local and global map changes and their relation to mechanisms of signal              
integration and separation is a prerequisite for the development of beneficial and individualized             
training strategies that aim at stopping or reversing maladaptive topographic map change. 
 
In summary, we here provide a comprehensive description of ‘de-differentiated’ topographic           
maps in SI, and detail the topographic map features that relate to cortical aging. Our data may                 
inspire future research on cortical plasticity, and may motivate the distinction between local and              
global changes of the map area in relation to functional readout that may either benefit               
integration or separation of neuronal representations. Future ultra-high field fMRI studies with            
larger cohorts will uncover global topographic map features and their relation to            
behaviorally-relevant neuroplasticity. 
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Materials and Methods 
Participants 
We tested n=25 younger adults (mean age 25±0.49, ranging from 21 to 29 years, 13 male and                 
12 female) and n=25 older adults (mean age 72.2±0.81, ranging from 65 to 78 years, 13 male                 
and 12 female) for sensorimotor behavior at the right hand (sample size for touch thresholds,               
tactile mislocalization and pegboard test based on Kalisch et al., 2008 , sample size for              
topographic shift based on Kalisch et al., 2009 ). Participants were recruited from the database              
of the DZNE Magdeburg. Due to the strict exclusion criteria for 7T-MR measurements (see              
below), participant recruitment and testing took 4 years in total (2016-2020). The Montreal             
Cognitive Assessment (MOCA) was used as a screening tool to assess the possibility of mild               
cognitive dysfunction amongst participants. Inclusion criteria were (i) no medication that           
influenced the central nervous system, (ii) intact hand function (sensory and motor), (iii) 7T-MRI              
compatibility (see below), and (iv) no sign of early dementia (note that n=1 older adult had a                 
MOCA score of 21; he showed good performance in all tests and was included in the analyses).                 
The MOCA score of the other participants ranged between 25 and 30 (M=28.44±0.25). 

We reinvited participants for one 3T-MRI session and one 7T-MRI session. Before the             
behavioral tests, participants were already screened for 7T-MRI exclusion criteria such as            
metallic implants and other foreign bodies, active implants (e.g., pacemaker, neurostimulators,           
cochlear implants, defibrillators and pump system), permanent makeup, tinnitus or hearing           
impairments. Due to changes in health conditions between the behavioral and           
MR-measurements, and/or due to stricter MR-regulations due to COVID-19 that were           
implemented in March 2020, we could reinvite n=20 younger adults and n=18 older adults of the                
original cohort for the MRI measurements. For n=1 younger adult and n=1 older adult, the               
7T-MRI session could not be completed successfully. Therefore, MR analyses are presented for             
n=19 younger adults (10 female, 9 male, mean age: 24.89 years), and n=17 older adults (8                
female, 9 male, mean age: 69.12 years). All participants were paid for their attendance and               
written informed consent was received from all participants. The study was approved by the              
Ethics committee of the Otto-von-Guericke University Magdeburg. 

General procedure 
Participants were invited to three appointments. There was one appointment for behavioral            
tests, one appointment for a 7T-fMRI session, and one appointment for a 3T-MRI session (see               
Fig. 1  for an overview).  

Digit confusion  
The behavioral tests took place on the first testing day. To estimate perceptual digit confusion, a                
tactile finger mislocalization task was used (Schweizer et al., 2001, 2000) that is assumed to               
reflect SI map topography (Kalisch et al., 2008, 2007; Schweizer et al., 2001). First, the               
detection threshold of each finger was estimated. During testing, participants sat on a chair with               
the hand positioned palm upwards on a foam cushion. The tested hand was occluded from               
view. Participants heard white noise through headphones during the task. Before the            
experiment started, five points were marked on the participant’s fingertips via a felt-tip pen: one               
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point at the center of the volar surface of the first segment of each digit (D1-D5). The detection                  
threshold was estimated for each finger separately with a two-alternative forced choice task. For              
each finger, mechanical forces were applied to the marked area of the fingertip using Semmes               
Weinstein monofilaments (Semmes-Weinstein monofilaments; Baseline R, Fabrication       
Enterprises Inc., White Plains, NY, USA, applied weights: 0.008 g, 0.02 g, 0.04 g, 0.07 g, 0.16                 
g, 0.4 g, 0.6 g, 1.0 g, 1.4 g, 2.0 g, 4.0 g, 6.0 g). These calibrated filaments assert the same                     
amount of pressure once the filament is bent. Stimulation duration was 1 second. At each trial,                
two intervals were presented with only one of them containing a stimulation. Participants were              
asked to detect the stimulation interval by pressing the respective key on the keyboard in a                
self-paced manner (“1” or “2”). For stimulus application, the experimenter followed auditory            
instructions via headphones. Neither the hand nor the experimenter were visible to the             
participant during testing. A randomized sequence (different for each participant) was used to             
determine which interval contained the stimulation. The adaptive thresholding procedure          
followed a 3-down/1-up staircase algorithm. Two such staircases were used in an alternating             
manner, one started at 0.4 g, the other at 0.02 g. The threshold was estimated if the standard                  
deviation from the mean in stimulus intensity was equal or less than 1 step (Gescheider et al.,                 
1996). This was repeated five times, once per finger, in a randomized sequence. The task took                
approximately 60 to 75 minutes.  
 
After a short break, the finger mislocalization task was applied using Semmes Weinstein             
monofilaments. The stimulation sites were the same as for the tactile detection task (marked              
area at fingertip, see above). For each finger, the applied force matched the respective tactile               
detection threshold as assessed before. Therefore, both younger and older adults were            
stimulated at each finger at their individual tactile detection threshold, controlling for individual             
and finger-specific variability in tactile sensitivity. Each trial started with a 3 second stimulation              
interval, where stimulation was applied to one of five possible fingertips. Stimulation duration             
was 1 second. The beginning and end of this interval were marked by computer-generated              
tones. In this five-alternative-forced-choice test, participants were provided with 7 seconds time            
to verbally name the finger where they felt the touch. Previous studies showed similar tactile               
misattributions for verbal versus motor responses (Badde et al., 2019). This long response             
interval was chosen to prevent speed-accuracy trade-offs for older compared to younger adults.             
If participants did not feel touch at none of the fingers (note that touch was applied at individual                  
thresholds and was therefore expected to be perceived in only around 50% of the cases), they                
were motivated to name their best guess. The next trial started once the experimenter had               
inserted the response into the computer. Each finger was stimulated 20 times, stimulation order              
was pseudo-randomized for each participant in a way that there was maximally one repetition in               
each sequence. All testing was done by one of the authors (A.C.). Because the results of this                 
task are stable across multiple runs (Schweizer et al., 2000), all testing was done within one                
session. The task took approximately 20 minutes. 
 
Hand dexterity 
Three standard tests were then used to test individual levels of hand dexterity (similar to Kalisch                
et al., 2008 ). The Purdue Pegboard Test is composed of two rows of 25 small holes each, and                  
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one larger hole at the top that contains 25 small metal pins. The task was to pick one pin at a                     
time with the right hand, and insert them into the holes on the right side of the board from top to                     
bottom. If one of the metal pins dropped during the manual transfer, participants were instructed               
to continue with the next one. We measured the time to complete the test (in s), and the number                   
of dropped pins (n). The Grooved Pegboard Test is composed of a 5x5 matrix of small                
(grooved) holes, and one larger hole at the top that contains 31 small metal pins. The task was                  
to pick one pin at a time with the right hand, and insert them into the holes from left to right.                     
Other than the Purdue Pegboard Test, this task requires changing the orientation of the pins               
such that they fit into the grooved holes (shown schematically in Fig. 1 ). If one of the metal pins                   
dropped during the manual transfer, participants were instructed to continue with the next one.              
We measured the time to complete the test (in s), and the number of dropped pins (n). The                  
O’Connor Finger Dexterity Test is the most difficult test of these three, and is composed of a                 
10x10 matrix of small holes, and one larger hole at the top that contains 315 small, thin metal                  
sticks. Participants were asked to pick three sticks at a time with their right hand, and place all of                   
them into a small hole, starting from left to right. This required orienting the three pins within one                  
hand in a way that they would fit into the small hole. If one of the metal pins dropped during the                     
manual transfer, they were instructed to continue with the next one. Because there are strong               
individual and age-related differences in this test, participants were here given 4 minutes time to               
fill as many holes as possible. We measured the number of holes that were successfully filled                
with three metal sticks (n) as well as the number of dropped pins (n). 
 
MR sequences 
Data were acquired at a whole body 7 Tesla MR scanner (Siemens Healthcare, Erlangen,              
Germany) in Magdeburg using a 32 Channel Nova Medical head coil. First, a whole-brain              
MP2RAGE sequence with the following parameters was acquired: Voxel resolution: 0.7 mm            
isotropic, 240 slices, FoV read: 224 mm, TR=4800 ms, TE=2.01 ms, TI1/2=900/2750 ms,             
GRAPPA 2, sagittal positioning. Shimming was performed prior to collecting the functional data,             
and two EPIs with opposite phase-encoding (PE) polarity were acquired before the functional             
scan. The functional EPI sequence (gradient-echo) had the following parameters: Voxel           
resolution: 1 mm isotropic, FoV read: 192 mm, TR=2000 ms, TE=22 ms, GRAPPA 4,              
interleaved acquisition, 36 slices. The same sequence was used for all functional tasks (see              
below). 3T-MRI data were acquired at the Philips 3T Achieva dStream MRI scanner, where a               
standard structural 3D MPRAGE was acquired (resolution: 1.0 mm x 1.0 mm x 1.0 mm, TI = 650                  
ms, echo spacing = 6.6 ms, TE = 3.93 ms, α = 10°, bandwidth = 130 Hz/pixel, FOV = 256 mm ×                      
240 mm, slab thickness = 192 mm, 128 slices).  
 
Physiological data recording 
A pulse oximeter (NONIN Pulse Oxymeter 8600-FO) clipped to the index finger of the              
participant’s left hand was used to measure the pulse during functional scanning at the 7T-MRI               
scanner. Additionally, participants wore a breathing belt to capture respiration. An in-house            
developed setup was used to digitally record and analyze the physiological data (hardware             
employing National Instruments USB 6008 module with pressure sensor Honeywell          
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40PC001B1A). The sampling frequency was set to 200 Hz. Data acquisition started with the MR               
trigger of each functional run. 
 
fMRI task 
Five independently-controlled MR-compatible piezoelectric stimulators (Quaerosys,      
http://www.quaerosys.com) were used to apply tactile stimulation to the five fingertips of the             
right hand of younger and older adults while lying in the 7T-MRI scanner (Schweisfurth et al.,                
2015, 2014, 2011). One stimulator was attached to the tip of each right finger using a                
custom-build, metal-free applicator that could be fitted to individual hand and finger sizes. Each              
stimulator had 8 individually-controlled pins arranged in a 2x4 array, covering 2.5x9 mm2 of skin               
(see Fig. 1 ). Vibrotactile stimulation was applied to the fingertips at a frequency of 16 Hz                
(Schweizer et al., 2008). Stimulation intensity of each subject and each finger was adjusted to               
2.5 times the individual tactile detection thresholds. To minimize adaptation-related differences           
in map activity between younger and older adults, two randomly chosen pins were raised once               
at a time, yielding 16 pin combinations per second (Schweisfurth et al., 2015, 2014, 2011). 
 
Participants first underwent two phase-encoded protocols, and then continued with two           
blocked-design protocols. The phase-encoded protocols consisted of 2 runs of 20 cycles each.             
Each cycle lasted 25.6 seconds, stimulation was applied to each fingertip for 5.12 seconds, and               
for 20 times. Stimulation was delivered either in a forward order (D1->D5) or in a reverse order                 
(D5->D1, see Fig. 1 ). Half of the participants of each age group started with the forward-run, the                 
other half started with the reverse-run. One run comprised 256 scans (512 seconds for a TR of                 
2 seconds), and lasted for 8 minutes and 31 seconds. Participants were instructed to covertly               
count short randomly distributed interrupts embedded in the tactile stimulation (duration 180 ms,             
slightly longer than in Schweisfurth et al., 2015, 2014, 2011 to account for the effect of age ).                 
There were the same number of gaps per finger and per person. 
 
The blocked-design paradigm comprised 6 conditions: Stimulation to D1, D2, D3, D4, D5, and a               
rest condition with no stimulation. The same stimulation protocol as in the phase-encoded             
design was used (each finger was stimulated for 5.12 seconds, same frequency and stimulation              
duration). Fingers were here stimulated in a pseudo-random sequence, where there was never             
one finger stimulated more than two times in a row. In 70% of the trials, there was a 2 second                    
pause between two subsequent stimulations, in 30% of the trials, there was a 6 seconds pause                
between two subsequent stimulations. This was counterbalanced across fingers. Each finger           
was stimulated 10 times. One run comprised 208 scans, and lasted for 6 minutes and 56                
seconds. The same task was applied as in the phase-encoded paradigm. The blocked-design             
run was repeated twice. Subsequently, two runs were measured where a one-TR stimulation of              
all 5 fingers was followed by a 11-TR rest without any stimulation. This sequence was repeated                
10 times for each run, with 2 runs in total. Finally, we acquired a 5-minutes resting state scan,                  
where participants were asked to look at a centrally presented fixation cross, and to think about                
nothing in particular. All functional measurements together took around 40 minutes. 
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Behavioral analyses: Digit confusion  
Using an adaptive staircase procedure, the detection threshold was estimated if the standard             
deviation from the mean in stimulus intensity was equal or less than 1 step (Gescheider et al.,                 
1996). These values were transformed logarithmically (log 100.1mg), and were used as           
stimulation intensities for the mislocalization task. Mislocalizations were defined as responses           
where participants indicated another finger than the one that was stimulated, i.e., as false              
responses. These were analysed with respect to their distribution across the non-stimulated            
fingers. Mislocalizations were grouped according to their distance to the stimulated finger into 1 st              
neighbour, 2 nd neighbour, 3 rd neighbour and 4 th neighbour (N1-N4) mislocalizations (e.g., if D2             
was stimulated and the participant assigned the touch to D4, this was a N2 mislocalization, if the                 
participant assigned the touch to D5 instead, this was a N3 mislocalization, and so forth,               
Schweizer et al., 2000). No errors for one specific finger were computed as zero values. The                
resulting distribution of the relative number of mislocalizations towards N1-N4 was compared to             
the expected equal distribution of mislocalizations for each finger using the G-test of goodness              
of fit (Sokal and Rohlf, 1981). An equal distribution is expected if the naming of the localization                 
is at chance level and does not follow the principles of topographic arrangement, where more               
mislocalizations are expected to closer neighbours compared to distant neighbours (Schweizer           
et al., 2001, 2000). In this analysis, the different distributions of response options for the               
different neighbours were taken into account (i.e., the fact that across all fingers, there are more                
response options for 1 st compared to 2 nd, 2 nd compared to 3 rd, and 3 rd compared to 4 th neighbour)                 
(Schweizer et al., 2000). The G-tests of goodness of fit were Holm-Bonferroni corrected at a               
significance threshold of p<.05.  
 
To calculate hit rates, for each participant, the number of correctly perceived stimulus locations              
was accumulated for each finger and divided by the number of stimulations of that finger. This                
resulted in the proportion of correct responses (hit rates) in percent for each finger. False alarms                
were defined as the number of times that this same finger was falsely identified as the one                 
being stimulated when actually not touched. This is irrespective of which finger was touched that               
time (i.e., it could be misclassified when N1, N2, N3 or N4 was touched). For the estimation of                  
d’, hits and false alarms were first converted to z-scores. The false alarm z-scores were then                
subtracted from the hit rate z-scores, and the sensitivity index was obtained for each finger               
separately. The beta criterion (bias) was further calculated for each finger based on the z-scores               
by estimating the exponential of the difference between the false alarm z-scores and the hit rate                
z-scores, each raised to a power of two, and divided by 2. To overcome the problem of missing                  
events, the loglinear transformation was applied to the analyses (Stanislaw and Todorov, 1999).  
 
The distribution of mislocalizations (in %) was used for an ANOVA with the factors neighbour               
(N1-N4) and age (young, old). To test for finger-specific effects, an ANOVA was calculated for               
each digit with the factors response digit and age (young, old). For D1, response digit was                
specified as D2, D3, D4, D5; for D2, it was specified as D1, D3, D4, D5, and so forth. To                    
estimate whether age-dependent changes in mislocalizations are due to age-related differences           
in sensitivity and/or bias, two ANOVAs with the factors digit (D1-D5) and age (young, old) were                
also conducted for sensitivity and bias. In the case of sensitivity, the sensitivity index d’ was                
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used as a dependent variable and in the case of bias, the beta criterion was used as a                  
dependent variable. Robust ANOVAs were calculated if the distribution of values in the             
non-normality distributed data was skewed, ANOVAs were calculated if the data were normally             
distributed, or if only sub-groups of the data were not normally distributed (Glass et al., 1972;                
Harwell et al., 1992; Lix et al., 1996). Robust ANOVAs based on trimmed means were               
computed in R (R Core Team, 2019) with the statistical package WRS2, developed by Wilcox,               
and the function ‘bwtrim’. Trimmed means are formed after the removal of a specific percentage               
of scores from the lower and higher end of the score distribution, obtaining thus accurate results                
even for non symmetrical distributions, by removing outliers and skew (Field, 2009). As post hoc               
tests for the ANOVA, independent-sample t-tests were computed, as post hoc tests for the              
robust ANOVA, the Yuen-Welch method for comparing 20% trimmed means was applied, which             
is a robust alternative to independent samples t-test (Mair and Wilcox, 2020). The latter test was                
computed by using the function ‘yuen’ of the WRS2 package in R. An alpha level of p<.05 was                  
used to test for significant main effects and interactions. 
 
Behavioral analyses: Hand dexterity 
For the Purdue Pegboard Test and the Grooved Pegboard Test, the time (in s) taken to                
complete each test was compared between the two age groups using two independent sample              
t-tests. For the O’Connor Finger Dexterity Test, the number of successfully filled holes (n) was               
compared between the two age groups using one independent sample t-test. A            
Bonferroni-corrected alpha level of p<.016 was used to test for significant group differences. 
 
MRI analyses 
Surface reconstruction 
FSL 5.0 (Smith et al., 2004; Woolrich et al., 2009) and Freesurfer’s recon-all             
(http://surfer.nmr.mgh.harvard.edu/) were used for brain segmentation and cortical surface         
reconstruction using the T1-weighted 3D MPRAGE. Note that the spatial resolution of the             
T1-weighted MPRAGE that was used for brain segmentation and the functional EPI sequence             
was identical (1mm isotropic). Recon-all is a fully automated image processing pipeline, which,             
among other steps, performs intensity correction, transformation to Talairach space,          
normalization, skull-stripping, subcortical and white-matter segmentation, surface tessellation,        
surface refinement, surface inflation, sulcus-based nonlinear morphing to a cross-subject          
spherical coordinate system, and cortical parcellation (Dale et al., 1999; Fischl et al., 1999).              
Skull stripping, construction of white and pial surfaces, and segmentation were manually            
checked for each individual participant. 
 
Preprocessing 
Motion artefacts and compressed distortion can be a serious problem for functional MR data,              
particularly those acquired at 7T where field inhomogeneity is increased. To resolve these             
problems, two EPIs with opposite phase-encoding (PE) polarity were acquired before the            
functional scan. A point spread function (PSF) mapping method was applied to perform             
distortion correction of both EPIs with opposite PE polarity (In et al., 2016). PSF mapping allows                
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reliable distortion mapping due to its robustness to noise and field inhomogeneity (Robson et              
al., 1997). Because the amount of spatial information differs between the opposite PE datasets,              
a weighted combination of the two distortion-corrected images was incorporated to maximize            
the spatial information content of the final, corrected image. The EPI-images of the functional              
blocks were motion corrected to time-point=0, and the extended PSF method was applied to the               
acquired and motion-corrected images to perform geometrically accurate image reconstruction .          
Finally, after data acquisition, slice timing correction was applied to the functional data to correct               
for differences in image acquisition time between slices using SPM8 (Statistical Parametric            
Mapping, Wellcome Department of Imaging Neuroscience, University College London, London,          
UK).  
 
Functional time series were then registered to the T1-weighted 3D MPRAGE used for recon-all              
using csurf tkregister (12 degrees of freedom, non-rigid registration). The resulting registration            
matrix was used to map the x,y,z location of each surface vertex into functional voxel               
coordinates. The floating point coordinates of points at varying distances along the surface             
normal to a vertex were used to perform nearest neighbour sampling of the functional volume               
voxels (i.e., the 3D functional data were associated with each vertex on the surface by finding                
which voxel that point lay within). Because time series of the different cycle directions (D1->D5               
and D5->D1) were mirror-symmetric to each other, they were averaged time point by time point               
by reversing the direction of time on a scan-by-scan basis. The time-reversed cycle direction              
(D5->D1 cycle) was time-shifted before averaging by 4 seconds (= 2 TRs) to compensate for               
hemodynamic delay. Averaging was done in 3D without any additional registration. Note that             
data were neither normalized nor smoothed (beyond interpolation during registration) during this            
procedure.  
 
Moreover, physiological fluctuations originating from cardiac pulsation and respiration are          
considered a primary source of noise in functional MR data sets, particularly for resting state               
data acquired at high field strengths (Krüger and Glover, 2001). The resting-state functional             
data were therefore corrected for pulse- and respiration-induced noise. To prepare the            
physiological data for noise correction and to remove acquisition artifacts, we used the             
open-source Python-based software ‘PhysioNoise’ (Kelley et al., 2008). Resulting respiratory          
and cardiac phase data were then used to correct the resting-state time series for pulse- and                
respiration-induced noise by performing RETROspective Image CORrection (RETROICOR)        
(Glover et al., 2000) on a slice-by-slice basis (Birn et al., 2006). Residuals were taken as                
cleaned data to regress out motion-related noise parameters (extracted from the raw data)             
using the program vresiduals implemented in LIPSIA (freely available for download at:            
github.com/lipsia-fmri/lipsia ). Finally, the data were high-pass filtered at 0.01 Hz (allowing           
frequencies faster than 0.01 Hz to pass) using the program vpreprocess implemented in LIPSIA.              
For n=9 participants, physiological data could not successfully be acquired due to a loss of the                
pulse oximeter and/or loosening of the breathing belt during scanning, which interrupted            
successful physiological data sampling. For n=4 participants, we observed severe motion           
artifacts for the resting state data. Therefore, resting state analyses are presented for a subset               
of participants only (n=12 younger and n=12 older adults). 
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Phase-encoded analyses 
The program Fourier implemented in csurf (http://www.cogsci.ucsd.edu/~sereno/.tmp/dist/csurf) 
was used to conduct statistical analyses on the averaged individual time series of the averaged               
forward- and reversed-order runs (Kuehn et al., 2018). Csurf was used to run discrete Fourier               
transformations on the time course at each 3D voxel, and then calculates phase and              
significance of the periodic activation. There were 20 stimulation cycles, which were used as              
input frequencies. No spatial smoothing was applied to the data before statistical analyses.             
Frequencies below 0.005 Hz were ignored for calculating signal-to-noise, which is the ratio of              
amplitude at the stimulus frequency to the amplitudes of other (noise) frequencies. Very low              
frequencies are dominated by movement artifacts, and this procedure is identical to linearly             
regressing out signals correlated with low frequency movements. High frequencies up to the             
Nyquist limit (1/2 the sampling rate) were allowed. This corresponds to no use of a low-pass                
filter. For display, a vector was generated whose amplitude is the square root of the F-ratio                
calculated by comparing the signal amplitude at the stimulus frequency to the signal at other               
noise frequencies and whose angle was the stimulus phase. The data were then sampled onto               
the individual freesurfer surface. To minimize the effect of superficial veins on BOLD signal              
change, superficial points along the surface normal to each vertex (upper 20% of the cortical               
thickness) were disregarded. The mean value of the other layers (20-100% cortical depth) were              
used to calculate individual maps. On the individual subject level, clusters that survived a              
surface-based correction for multiple comparisons of p<.01 (correction was based on the cluster             
size exclusion method as implemented by surfclust and randsurfclust within the csurf FreeSurfer             
framework (Hagler et al., 2006)), and a cluster-level correction of p<.001, were defined as              
significant. On the group level, clusters that survived a cluster-filtered correction of the F-values              
were considered significant (pre-cluster statistical threshold of p<.01, and minimum surface area            
of 14 mm2, according to Hagler et al., 2007 ). 
 
Complex-valued data from each individual subject’s morphed sphere were also sampled to the             
canonical icosahedral sphere (7th icosahedral sub-tessellation) surface. For each target vertex,           
the closest vertex in the source surface was found. The components in this coordinate system               
were then averaged (separately for younger and older adults’ brains), and the (scalar)             
cross-subject F-ratio was calculated. The cross-subject F-ratio is calculated based on the            
complex coefficients at the stimulus frequency from each subject. The F-ratio is described as              
follows: 
 

[xav^2 + yav^2]/2 
 ------------------------------------------------------------- 
 [Sum(_x-xav)^2)/n + Sum(_y-yav)^2/n] / [2*n-2] 
 
where _x and _y are the raw Fourier coefficients at the stimulus frequency, xav and yav are the                  
average of them, and n is the number of subjects. This is described and demonstrated in Hagler                 
et al., 2007 . A cluster threshold of p<.01 was defined as significant.  
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Surface-based masks of area 3b of each individual brain were used to define area 3b. Surface                
area measurements were extracted by calculating the sum of ⅓ of the area of each of the                 
triangles surrounding that vertex. Surface area was defined as the summed vertex-wise area of              
the significant area 3b map. We report two sums: the surface area as of the individual surface                 
(the .area field), and the surface area of the original surface (the lh.area file). F-values of the                 
Fourier model from the significant tactile map area in area 3b were extracted subject-by-subject,              
and were then averaged. To estimate mean response amplitudes of the tactile maps (in %), we                
estimated the discrete Fourier transform response amplitude (hypotenuse given real and           
imaginary values) for each vertex within the significant map area. This value was multiplied by 2                
to account for positive and negative frequencies, again multiplied by 2 to estimate peak-to-peak              
values, divided by the number of time points over which averaging was performed (to normalize               
the discrete Fourier transform amplitude), and divided by the average brightness of the             
functional data set (excluding air). Finally, the value was multiplied by 100 to estimate              
percentage response amplitude (Kuehn et al., 2018). Independent-sample t-tests with a           
Bonferroni-corrected alpha level of p<.0125 were used to compare mean F-values, mean &             
response amplitude, and mean surface area (current and original surface) between younger and             
older adults. The chi-square goodness-of-fit test was used to test for normality of the data.  
 
Consistency of map alignment 
We estimated the vertex-wise consistency of the map gradient within each age group using the               
dispersion index d, which is described as follows: 
 
 amplitude of vector average 
d  =   ---------------------------------------------------- 
 average amplitude of indiv vectors 
 
This index is 1.0 in the case of perfectly aligned vectors across the entire group (within younger                 
or within older participants), independent of vector amplitude. d therefore distinguishes a vector             
average that was generated by a set of large but inconsistent signals (lower d) from a                
same-sized vector average that was generated by a set of smaller but more consistent signals               
(higher d). As such, d provides an indication about the consistency of the map alignment within                
each age group.  
 
GLM analyses 
Fixed-effects models on the 1 st level were calculated for each subject separately using the              
general linear model (GLM) as implemented in SPM8. The analyses were performed on the two               
blocked-design runs (run 3 and run 4 of the experiment). Because we treated each finger               
individually and independently, BOLD activation elicited by each finger’s tactile stimulation was            
treated as an independent measure in the quantification (Kuehn et al., 2018; Stringer et al.,               
2014). We modeled one session with five regressors of interest each (stimulation to D1, D2, D3,                
D4, D5). We computed five linear contrast estimates: Touch to D1, D2, D3, D4, and D5 (e.g.,                 
the contrast [4 -1 -1 -1 -1] for touch to D1). Frame-to-frame displacement of realignment               
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parameters (first two shift regressors and rotation regressors) did not differ significantly between             
age groups (all p>.5). Given that functional and anatomical data were not normalized, no group               
statistics were performed with SPM. Instead, on the individual subject level, voxels that survived              
a significance threshold of p<.05 and k>3 were mapped onto the cortical surfaces using the               
procedure as described above. These thresholded contrast images were used for finger            
mapping analyses on the individual subject level within the FSL-framework. 
 
Representational similarity analysis  
For all participants, beta values were extracted from each single finger receptive area within              
area 3b. Anterior-posterior boundaries were taken from Freesurfer surface labels. Significant           
tactile maps in each participant were used to define the response regions. We characterized              
topographic similarity of finger representations for each digit pair by computing the similarity             
between all digit combinations between the first and second run within the area 3b map area                
(Kuehn et al., 2018). Correlation coefficients of the vectors were calculated using Pearson             
correlations. The correlation coefficients were first computed at the individual subject level,            
Fisher z-transformed, and then averaged across subjects to calculate digit-specific group           
averaged correlation matrices. We computed an ANOVA with the factors neighbour (N0-N4) and             
age (young, old) to test for age-related differences in distant-dependent similarities between            
finger representations between runs. We used an alpha level of p<.05 to test for significant main                
effects and interactions.  
 
Preprocessed resting state data that were corrected for physiological noise (see above) were             
used to compute similarities between time series of finger representations in area 3b. The              
matlab-function ‘xcorr’ was used to compute cross-correlations between time series of all finger             
pairs. Cross-correlations measure the similarity between two vectors and their shifted (lagged)            
copies as a function of the lag, and take into account temporal shifts as a function of TR. For                   
any given lag, cross-correlations estimate the correlation between two random sequences and            
estimate functional connectivity (Hyde and Jesmanowicz, 2012). 
 
Cortical distance and cortical overlap 
Geodesic distances between receptive fields (in mm) were computed using the Dijkstra            
algorithm. The path follows the edges of triangular faces on the surface between each peak               
vertex of each individual receptive area. Distances between neighbouring digit representations           
were calculated by extracting paths between peaks of neighbouring digit representations. We            
also calculated Euclidean distances between each neighbouring digit pair. With A(x1,x2,z3) and            
B(x2,y2,z3) the Euclidean distance were computed as 
 
d(A,B) = sqt((x2-x1)2 + (y2-y1)2 + (z2-z1)2)) 
 
Geodesic and Euclidean distances between each neighbouring digit pair were compared           
between groups using a 4x2 ANOVA with the factors digit-pair (D1-D2, D2-D3, D3-D4, D4-D5)              
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and age (young, old). The chi-square goodness-of-fit test was used to test for normality of the                
data. 
 
Cortical overlap between adjacent digits (D1-D2, D2-D3, D3-D4 and D4-D5) was calculated            
using the Dice coefficient (Dice, 1945; Kikkert et al., 2016; Kolasinski et al., 2016b). The dice                
coefficient varies from a value of 0, indicating no digit overlap, to a value of 1, indicating perfect                  
digit overlap. Where A and B are the area of the two digit representations, the Dice Coefficient is                  
expressed as: 
 
2|A∩B | / |A |+|B | 
 
Vertices of digit representations were determined as the number of significant vertices within the              
tactile 3b map area. The chi-square goodness-of-fit test was used to test for normality of the                
data. For normally distributed data, an ANOVA was calculated with the factors digit-pair (D1-D2,              
D2-D3, D3-D4 and D4-D5) and age (young, old). An alpha level of p<.05 was used to identify                 
significant main effects and interactions.  
 
Hedges’ g was used to estimate effect sizes (Hedges, 1981). Hedges’ g is similar to Cohen’s d                 
but outperforms Cohen’s d when sample sizes are low. 95% confidence intervals and Hedges’ g               
were computed via bootstrapping 10,000 times. Bootstrapping is a non-parametric statistical           
test that can be applied both when the data are normal and non-normal distributed.              
Bootstrapping is particularly suitable for data with small sample sizes. Forest plots were used to               
visualize effect sizes   
(https://www.mathworks.com/matlabcentral/fileexchange/71020-forest-plot-for-visualisation-of-m
ultiple-odds-ratios). A forest plot is a graphical display that illustrates the relative strength of              
interventions, such as training effects, in different conditions (Timm and Kuehn, 2020), and is              
often used in clinical trials to compare the effectiveness of treatments (e.g., Kang et al., 2016 ).  
 
Bayesian pRF modeling 
Population receptive field (pRF) modeling was performed using the SPM-based BayespRF           
Toolbox (freely available for download from https://github.com/pzeidman/BayespRF) which is         
dependent on Matlab (SPM12 and Matlab 2018b). The BayespRF toolbox provides a generic             
framework for mapping pRFs associated with stimulus spaces of any dimension onto the brain.              
It was first used for mapping 2-dimensional (2D) visual pRFs in human visual cortex (Zeidman et                
al., 2018), and it was recently applied to map somatosensory pRFs in human SI (Puckett et al.,                 
2020). Data were prepared for the pRF modeling by reducing the number of voxel time courses.                
This was achieved by performing a GLM analyses in SPM; only data that passed a significance                
threshold of p<.05 were used for the pRF modeling (Zeidman et al. 2018, Puckett et al. 2018).                 
This procedure allows reducing computing time considerably (note that one pRF modeling            
process takes around 2 days for the given input data). The resulting mask was combined with                
the freesurfer mask of area 3b. pRF modeling was then conducted on a voxel-wise basis, where                
the fit between an estimated waveform and the empirically measured BOLD-response was            
optimized. This was achieved by modifying the size and position of the pRF model. The               
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posterior model probability was thresholded at >0.95 (Puckett et al., 2020; Zeidman et al.,              
2018). We defined the somatosensory space using the same 2D matrix that was used for visual                
pRF mapping, but with limiting the dimensions to +/- 12.5 in both dimensions. pRF modeling               
was performed on the x-dimension, i.e., the inferior-superior dimension of topographic           
alignment. Note that similar to Puckett et al., 2020 , these analyses model one dimension in the                
2-dimensional sensory space. We allowed the minimal pRF size to be not smaller than 1/10th of                
the sensory space occupied by a single fingertip, and the maximum size restricted to the               
equivalence of all five fingers (i.e., 25 units) (Puckett et al., 2020). A Gaussian pRF profile was                 
chosen as a response function for pRF analysis (code available at           
https://gitlab.com/pengliu1120/bayesian-prf-modelling.git). This model was characterized as a       
normal, excitatory distribution with pRF center location (x) and width (i.e., σ, the standard              
deviation of the Gaussian profile) as estimated parameters (Puckett et al., 2020).  
 
After processing, output volumes were extracted from the obtained results, including distance,            
angle, width, beta, decay, transit and epsilon. Distance and angle are the vectors of polar               
coordinates depending on stimuli space definition, width is the defined pRF size parameter,             
ranging from 0.5 to 25. Distance values were used to define locations of activated voxels for                
each finger, width values were used as pRF size estimates for activated voxels. For display, the                
dimensions of the pRF distance volumes were adjusted to 0/25. 
 
After performing Bayesian pRF modelling for every subject, group average pRF sizes were             
calculated and used for statistical analysis. A two-way ANOVA was performed with age and              
finger as independent variables, and group average pRF size as dependent variable. We also              
performed correlation analyses between average pRF sizes and cortical distances (Euclidean           
distance and geodesic distance), mean dice coefficients, recorded time of the Purdue Pegboard             
Test and recorded time of the Grooved Pegboard Test. 
 
Factor analyses and correlations 
We used the function ‘factoran’ in MATLAB_R2014b, which fits factor analysis models using             
maximum likelihood estimates. We searched for one, two, three, and four common factors, i.e.              
factors that might affect several of the variables in common. In that way, we obtained maximum                
likelihood estimates of the factor loadings and the specific variances, representing independent            
random variability, for each variable. For the refitted models with more than one common factor,               
the loadings were initially estimated without rotation, but for better interpretability, we further             
used the ‘promax’ oblique rotation. Factor rotation aimed at obtaining for each variable only a               
small number of large loadings affected by the factors, preferably only one. The ‘promax’              
rotation chosen here rotated the factor axes separately, allowing them to have an oblique angle               
between them, and computed new loadings based on this rotated coordinate system. We             
computed lambda as the coefficient, or loading, of the jth factor for the ith variable. Note that for                  
the factor analysis with three and four common factors, some of the specific variances were               
equal to the value of the 'delta' parameter (close to zero), leading to a fit known as a Heywood                   
case. We computed psi as the specific variance of the model. Psi=1 would indicate that there is                 
no common factor component in that variable, while psi=0 would indicate that the variable is               
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entirely determined by common factors. Correlation coefficients between behavioral measures          
and functional map features that showed significant differences between age groups were            
calculated within the group of older adults using Pearson correlations. Correlation coefficients            
were determined between the following variables: Hand dexterity (Purdue Pegboard Test -            
recorded time, Grooved Pegboard Test - recorded time, O’Connor Finger Dexterity Test -             
number of successfully completed holes), perceptual digit confusion (percentage of D2-D3           
confusion, percentage of N3 confusion), cortical distance (Euclidean distance between D2 and            
D3, geodesic distance between D2 and D3), and representational similarity (RS of N3). 
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