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Abstract 
The perception of our body in space is flexible and manipulable. The predictive brain 
hypothesis explains this malleability as a consequence of the interplay between incoming 
sensory information and our body expectations. However, given the interaction between 
perception and action, we might also expect that actions would arise due to prediction errors, 
especially in conflicting situations. Here we describe a computational model, based on the 
free-energy principle, that forecasts involuntary movements in sensorimotor conflicts. We 
experimentally confirm those predictions in humans by means of a virtual reality rubber-hand 
illusion. Participants generated movements (forces) towards the virtual hand, regardless of 
its location with respect to the real arm, with little to no forces produced when the virtual 
hand overlaid their physical hand. The congruency of our model predictions and human 
observations shows that the brain-body is generating actions to reduce the prediction error 
between the expected arm location and the new visual arm. This observed unconscious 
mechanism is an empirical validation of the perception-action duality in body adaptation to 
uncertain situations and evidence of the active component of predictive processing. 

Author Summary 
Humans’ capacity to perceive and control their body in space is central in awareness, 
adaptation and safe interaction. From low-level body perception to body-ownership, 
discovering how the brain represents the body and generates actions is of major importance 
for cognitive science and also for robotics and artificial intelligence. The present study shows 
that humans move their body to match the expected location according to other (visual) 
sensory input, which corresponds to reducing the prediction error. This means that the brain 
adapts to conflicting or uncertain information from the senses by unconsciously acting in the 
world. 
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Introduction 
Humans’ capacity to perceive and control their body in space is central in awareness, 
adaptation and safe interaction. The mind and the body1,2 as a refined sensorimotor system 
that perceives and acts in an uncertain world3. Unveiling the brain mechanisms that integrate 
and deal with incomplete or conflicting information from the senses and actively compensate 
for external perturbations has puzzled researchers for decades4–9; especially the relation 
between the perceptual and the motor systems10–13 in conflicting sensorimotor situations. 
 
Despite the numerous experiments studying this association between perception and action, 
how perception affects the action (and vice versa) is still a controversial open question14,15, 
essential for understanding brain-body representation and body adaptation16,17. If the 
sensory information is learnt by acting in the environment, action should be encoded within 
the perception process11,18: “The way we use sensory information determines the way we 
encode it”16. However, contradictory results were observed depending on the experiment, 
against or standing for the independence of the motor system15. Visual3 and body illusions19 
have been useful paradigms to study this relation, as well as to investigate how the 
sensorimotor system integrates conflicting information, e.g., visual, tactile and proprioceptive 
cues. For example, using the Titchener circles illusion in a grasping task, perceptual 
judgements of the circle size were strongly affected but the grip aperture (action) was not20. 
By means of a rubber-hand illusion experiment, it was shown that ballistic pointing 
movements (action), using just proprioceptive feedback after stimulation, were also not 
affected by the perceptual conflict16. Why these experiments do not reflect the expected 
action-perception relation? One of the most accepted explanations is due to different brain 
representations of the body (e.g., body-schema vs body image21) and distinct visual 
pathways13,22 that operate differently depending on the task. 
 
Body perception in sensorimotor conflicts is less controversial. Since the introduction of the 
(passive) rubber-hand illusion19 (RHI), many derived studies have focused on understanding 
body perception, body-ownership and self-consciousness in humans 23–26 and non-humans 
primates27, by causing participants to embody artificial (rubber or virtual) body parts as their 
own. In the original experiment, the subject sees a plastic hand while his own hand lying 
next to it is covered. After visuotactile stimulation of the unseen hand, an essential effect 
appeared: when participants were asked to localize their hand in the space they reported a 
position biased to the artificial hand. They experienced a mislocalization (proprioceptive drift) 
on the estimated location of their unseen hand towards the artificial hand, suggesting a 
change of the body’s “state” or body-schema. This effect was particularly effective when the 
visual and tactile stimulation was synchronous and its intensity depended on other 
characteristics, such as spatial constraints and appearance cues28. Recently, a drift on the 
localization of the artificial hand towards the real hand was also shown (visual drift), 
exemplifying the blending nature of perception in sensorimotor conflicts29. Finally, active 
paradigms, like the active finger illusion30, further showed that active control of the body 
parts is one of the strongest cues for body-ownership and agency31, illustrating how the 
action affects body perception. 
 
Here we revisit the relation between perception and action in sensorimotor conflicts 
sustained by the predictive brain hypothesis3,7,9,24,32. Specifically, we studied, under the RHI 
paradigm, situations where visual and proprioceptive input gives conflicting information 
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about the body, and show that the RHI is both a perceptual and an active illusion. We 
suggest that both perceptual and action effects in the RHI can be explained as the brain’s 
attempt to reduce the mismatch between the expected and the perceived body location. This 
means that involuntary actions would arise to reduce the prediction error, especially in 
conflicting situations. 
 
Hence, we expect the appearance of an active drift, defined as the movement of the arm 
towards the position of the virtual rubber-hand, as depicted in Figure 1A. This finding may 
describe a relevant example where perception reactively generates body movements, 
supporting a multisensory on-line feedback system driven by prediction error. Although the 
active drift, is not yet a fully validated measure of the RHI, we suggest that it is also an effect 
of body estimation33, which can be modulated by body-ownership but it is more closely 
related to the proprioceptive drift effect34.  
 

 
Figure 1: Predictive brain approach and experimental setup.  (A) Schematic of the expected 
drifts (visual, proprioceptive and active) and its relation to prediction minimization. The 
proprioceptive drift is produced due to body estimation under visual error mismatch, the 
visual drift is a multisensory integration collateral effect and the active drift (forces towards 
the virtual hand) is a consequence of proprioception error minimization through the reflex arc 
pathway. (B) RHI conditions. At each trial the virtual hand was placed in one of the three 
different locations: Left (-15cm), Center (0cm) and Right (+15cm) with respect to the real 
hand location, i.e., the centre corresponds to the real hand position. The real hand was 
placed 30 cm away from the body midline. (C) The perceptual stimulation was performed by 
means of virtual reality immersion and a coin vibrator for the tactile stimulation. Lateral force 
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measurements were recorded using a 6DOF force sensor on the robotic manipulandum 
vBot. 

There are a set of experiments that support our hypothesis. A human study reported small 
compensatory movements towards an artificial hand placed in the body midline in a RHI 
experiment35. Unfortunately, the experimental design was not able to disambiguate whether 
those observations were a result of body posture correction or due to a body midline effect1. 
These findings were later attributed to the high weighting of the visual input36. It was further 
observed that reactive movements were induced in participants during the RHI experiment 
when the artificial hand was moved37. A recent study showed that in the virtual hand illusion 
when the virtual hand moves there is muscle activity (measured through EMG) that 
corresponds to movement, and the amount of activity was correlated with the strength of the 
body-ownership subjective illusion38. However, is it prediction error minimization the 
mechanism behind this effect? 
 
We propose that the Free-Energy Principle7 (FEP), which its core mechanism is to minimize 
the prediction error, is able to predict perceptual and active effects in the RHI. Active 
inference39, a term coined for the FEP that accounts for both perception and action, has 
been successfully applied, for instance, to model goal-driven behaviour in organisms40 and 
the physiology of dopamine41. Perceptual illusions in humans have been also investigated 
under the FEP paradigm, such as the force-matching illusion42. In the RHI, according to the 
FEP, we should expect movements that minimize the error between the expected body 
location and the perceived location. In the presence of multimodal conflict, it was shown how 
attention benefited visual cues biasing the action43. Furthermore, an active inference 
model44,45, deployed on a humanoid robot, displayed reactive movements to correct the body 
model error towards the visual end-effector input. By comparing human arm movements with 
the model prediction we can study whether the observed movements are due to the 
minimization of the prediction error. 
 
In this work we 1) provide a computational model able to predict RHI perceptual and active 
drifts, as described in Figure 1A, 2) show robust evidence of action responses in human 
participants during the conflict, and 3) indicate a plausible explanation of these observed 
actions. For that purpose, first, we investigated an active inference model adapted to the 
RHI. Secondly, in order to validate our model predictions, we systematically examined the 
body actions using a virtual reality version of the passive RHI46, where no voluntary control 
tasks were involved (Figure 1B,C). To avoid body postural or midline biases we analysed the 
exerted forces in three location conditions of the virtual hand: left, centre and right with 
respect to the real arm position. We found that participants generated arm forces towards 
the virtual hand in all conditions. Finally, we compared the observed human forces with 
model predictions. The forces were congruent suggesting that the body movements were 
generated to minimize the mismatch between the proprioceptive information and the virtual 
hand. The mechanism behind these observed forces may be essential for understanding 
body adaptation to uncertain situations and embodiment. 

                                                
1 The body midline effect describes an increased misslocalization of the hand in the RHI towards the 
center of the body. In the case of movements, we need to consider the impact of the body posture in 
the forces exerted in the arm. 
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Results 

Computational model predictions 
We simulated 20 participants (10 synchronous and 10 asynchronous) following the RHI 
experimental design presented in Figure 1B. The simulated RHI had three different visual 
conditions, corresponding to three different locations of the virtual hand: left, right and centre 
(i.e., in the same location of their real hand). Perception and action were modelled as an 
inference problem using a FEP39,47 based algorithm (see Methods section for details). As 
depicted in Figure 2E, during stimulation the real hand location was hidden (grey hand) and 
hence the proprioceptive information was providing the current body pose (i.e., expected 
location). The virtual hand was treated a possible source of information and integrated into 
the body posture estimation as the visual cue weighted by causality. The model computed 
the force as a result of the prediction error generated in the multisensory integration process 
of the visual input and the estimated body joint angles. 
 

 
Figure 2: Computational model predicted forces and comparison against the human 
recorded average. (A) Average force of simulated participants with the active inference 
model for Left, Center and Right conditions. (B) Average force comparison for the 
synchronous condition. (C) Average force comparison for the asynchronous condition. (D) 
Mean force predicted by the model during stimulation for each simulated subject. (E) Arm 
model description with one degree-of-freedom and the VR hand as the visual input. The 
torque direction corresponds to reducing the prediction error: expected hand location minus 
the VR location. 
 
The results, summarized in Figure 2, predicted lateral forces in the direction of the artificial 
hand in all conditions. Figure 2A shows the mean force for all simulated participants split by 
the location of the virtual hand (Left in blue, Center in green and Right in red), indicating 
three differentiated patterns. Furthermore, the model in the asynchronous condition 
predicted attenuated forces (Figure 2B vs Figure 2C). Participants variability was modelled 
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by assigning different proprioceptive weighting (i.e., the precision or inverse variance of the 
proprioceptive cue) and randomizing the length of the limb. Accordingly, Figure 2D shows 
the mean force predicted by the model for each location condition during stimulation for each 
simulated subject. The model predicts an action towards the artificial hand to correct the 
error of the predicted body location that we should observe in human participants. 

Active RHI experiment with human participants 
We investigated the exerted forces of fourteen participants in a passive virtual reality rubber 
hand illusion experiment, as described in Figure 1. Analogously to the computational model 
experiment, participants were presented with three different visual conditions, corresponding 
to three different locations of the virtual hand (Figure 1B): left, right and centre (i.e., in the 
same location of their real hand). In order to analyze the forces exerted by every participant 
during visuotactile stimulation, we recorded the horizontal force applied at the manipulandum 
using a 6DOF force and torque sensor (Figure 1C). As we were only interested in the active 
component and to obtain enough force sample points for statistical robustness (120 samples 
per individual), no other typical measures of the RHI such as proprioceptive drift were taken. 
However, to complement this analysis, we did a preliminary study with eight participants to 
observe the perceptual drift and the level of body-ownership of the experimental setup - see 
Appendix 1. 
 
Lateral forces analysis 

Figure 3 shows the lateral force profile during the stimulation period of 40 seconds, averaged 
for all participants and trials. Although both synchronous and asynchronous conditions had 
clear right vs left force patterns, the variability was higher in the asynchronous case 
producing noisier force profiles. The periodic bumps in the force signal are associated with 
the actuator vibration. 

 
Figure 3: Average participant lateral force exerted during stimulation for the synchronous 
and asynchronous condition. Left (blue), Center (green) and Right (red) lines are the mean 
value across all trials and the shading region represents the standard deviation. 

 
Figure 4 shows the registered average force (stimulation phase) and standard deviation for 
all trials and participants for the Left (blue), Center (green) and Right (red) condition. The 
marker indicates the mean force and the line express the standard deviation. Both 
synchronous and asynchronous conditions showed differentiated directional forces patterns 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted October 7, 2020. ; https://doi.org/10.1101/2020.07.08.191304doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.191304


The predictive brain in action 

7 

towards the virtual hand. Figure 3D also shows the mean force for each subject indicating 
the variability of the forces gains and Figure 3E shows the forces histogram for all subject 
split by VR arm location condition. Furthermore, the appearance of forces in left and right 
directions falsifies the hypothesis of the body midline effect. 

 
Figure 4 Mean forces applied during stimulation for the different virtual hand location 
conditions: Left (blue), Center (green), Right (red).  The centre condition corresponds to the 
location of the real hand. (A) The average force applied by all the 14 subjects for the three 
different locations. Average force in the synchronous condition, where tactile (vibrator) and 
visual stimulation (ball hitting the hand) events were concurrent (less than 100 ms). (C) 
Average force in the asynchronous condition, where the tactile and visual event did not 
match. (D) Mean force registered during stimulation for each participant. (E) Mean force 
histogram for the three location conditions (all subjects). 

The rubber-hand illusion is active 
Our study shows involuntary actions towards the virtual hand during the stimulation phase, 
despite the inhibitory control and the passive nature of the experiment. We then tested the 
significance of this effect of the endpoint forces of the hand using a repeated measures 
ANOVA with main effects of visual hand location (3 levels) and trial block order, and 
between-subjects effects of conditions (synchronous or asynchronous). We found a 
significant main effect on the forces exerted depending on the location of the virtual hand 
using a repeated measures ANOVA test (F2,24= 3.851; p=0.035), with no effect of trial block 
order (F39,468=0.598; p=0.598) and no interaction effects (all p>0.398). Doing a simple 
contrast between the posture conditions we validated that the right condition had a 
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different effect than the left condition (p=0.011), indicating different forces pattern: left 
direction forces in the Left condition and right forces in the Right condition. A significant 
between-subjects effect of condition (F1,12=5.241; p=0.041) indicated a difference in the 
offset between the two conditions. However, we did not find statistical differences in the 
interaction between the synchronous/asynchronous condition and the visual location 
(F2,24=0.045; p=0.956), indicating that both conditions produced the same effect. 

Model predictions vs human observations 

 
Figure 5: Comparison between the model predictions and the human experiment. (A) 
Average force comparison between the human participants and the simulated ones with the 
active inference model for Left, Center and Right conditions. The continuous line 
corresponds to the human data and dashed line with a lighter colour to the model 
predictions. (B) Average force comparison for the synchronous condition. (C) Average force 
comparison for the asynchronous condition. 

Figure 5 shows the comparison between the mean forces registered in the human 
experiment and the predicted by the model. The model was able to predict lateral forces 
exerted by the participants in the virtual rubber-hand illusion for the left, centre and right 
condition. The directions were congruent in all location conditions. Furthermore, a mismatch 
in the strength of the effect was found in the asynchronous condition. While the 
computational model predicted an attenuated response, in the human experiment similar 
gains were found in the synchronous and asynchronous condition. This result might be 
connected with the strong proprioceptive drifts found with this virtual setup in the 
asynchronous condition (see Discussion). 

Discussion 

The active drift 
We showed that both the model and the humans present movements (measured force) 
towards the virtual hand. Therefore, we suggest that there is an active component in the RHI 
in addition to the known perceptual effects (i.e., proprioceptive and visual drift). However, the 
observed forces in humans were small and the attenuated forces predicted by the model in 
the asynchronous condition did not adjust to human observations. Several experiments 
confirmed that body ownership is not elicited during asynchronous stimulation24,46,48. Thus, 
the results produced in the asynchronous condition does not agree with the findings where 
body-ownership modulates the movement38. One of the possible reasons might be related to 
the level of immersion in the VR setting. In a preliminary study, prior to these experiments, 
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we measured the proprioceptive drift and the body-ownership level under the same 
experimental setup (see Appendix). We observed that participants presented strong 
proprioceptive drifts also in the asynchronous condition. Although this is coherent with other 
perceptual drifts registered under asynchronous stimulation49, it reduces the robustness of 
the asynchronous condition. One other reason might be that the active component is related 
to an independent process associated with the proprioceptive drift and not directly with body-
ownership. In fact, the Active Inference model triggers the action due to the change in the 
body posture estimation that also produces the proprioceptive drift. Despite the experiments 
that support the active drift35,38,43,45 including the present one, further studies with other 
control conditions should be performed to increase the evidence of this effect. 

Action in the predictive brain: FEP empirical evidence 
Although the FEP7 has been widely proposed to account for several brain processes, such 
as perception and action39, interoception63 or self-recognition64,65, it is has been difficult to 
find behavioural validation for this theoretical construct. The FEP postulates that both 
perception and action minimize the surprise, formalized as the discrepancy between our 
belief and the real world. Thus, there are two ways of minimizing this discrepancy or 
prediction error: either we change our perception or we exert an action. In the case of 
sensorimotor conflicts, such as body illusions, we can change our belief of where our body is 
or we can act to reduce this discrepancy. Hence, during the RHI, the new visual input (virtual 
hand) is expected to be merged with proprioceptive information generating an error on the 
body location estimation51. When modelling the action inside the FEP (i.e., active inference) 
it predicts that actions will reduce the prediction error. Here, conversely to other related 
works, instead of fitting the model to human observations, we designed the experiment to 
validate the predictions that we were already observing in our model. 
 
The lateral force directions found in human participants agreed with the model forecast. In 
particular, our FEP based model correctly predicted forces towards the virtual hand to 
reduce the error of the predicted body location altered by the new visual input. These forces 
were congruent to the ones observed in the behavioural experiment. Thus, a possible 
explanation is that the same process of inferring the body state generates actions that 
reduce the prediction error. As the model can account at the same time for the three 
observed drifts in the rubber-hand illusion (visual, proprioceptive and active), yields to 
potential experimental evidence of the FEP. 
 
However, it is critical to be very cautious regarding the model comparison. There are other 
possible computational approaches that could also fit, such as acknowledging those forces 
as a consequence of body representation learning while interacting with the world. For 
instance, cross-modal learning66 that includes action and perception cues as inputs could 
also retrieve these forces by means of sensory reconstruction. Moreover, there are relevant 
differences between the simplified joint model and the real musculoskeletal human body. 
Although the perceptual and force directions were in accordance with our model predictions, 
the observed forces profiles, i.e., the gains, were adjusted by an action gain hyperparameter. 
Besides, visual and proprioceptive precision optimization turned out to be essential in order 
to obtain human participants force profile. 
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Incorporating body illusions into body perception and action 
models 
Several seminal computational models have been proposed in the literature for sensorimotor 
control50. However, these models were mainly designed for voluntary control tasks and have 
usually disregarded the effects observed in body illusions. We cannot neglect the relevance 
of such experiments because they reveal the basis of sensorimotor integration, embodiment 
and body ownership36. 
 
In particular, sensorimotor computational models should be able to predict the three drifts 
involved in the RHI: proprioceptive19, visual29 and active. In the literature, proprioceptive drift 
patterns were replicated by using a Bayesian causal model49 and by means of a predictive 
coding model51. Furthermore, congruency was also analysed using dynamical causal 
modelling (the mathematical construct behind the FEP)52. Here, our proposed approach is 
able to address the three drifts. The proprioceptive drift is produced due to the visual error 
mismatch, the visual drift is obtained by representing the virtual hand location as another 
causal variable that is affected by the multisensory fusion process, and finally, the active drift 
(lateral forces) is a consequence of proprioception error minimization through the reflex arc 
pathway. 

The boundaries of an action-perception body-schema 
Our results suggest that the movements are generated to adjust our body posture with the 
observed reality. Although this seems to contradict the ballistic pointing results16, where no 
effect was found in the movement due to the visuo-proprioceptive conflict, in this experiment 
we included a strong visual cue. Therefore, the multisensory integration process remains, 
but the weighting has changed36,43.  
 
The forces registered indicate the coupling between action and perception, strengthening the 
stance of a body-schema representation that includes action codes (i.e., an “action-
perception representation” driven by inference), probably mapped during learning when 
interacting with the body in the world. Similarly, as the reactive actions observed in mice for 
correcting wrong perceptual expectations54 humans would exert reactive forces in any 
conflicting or uncertain situations. Furthermore, we might rethink about the boundaries 
between body-schema, body image and its relation with the action55. 
 
An action-perception body-schema, similar to the dynamic body-schema56 or the 
peripersonal space57,58, would be advantageous in terms of adaptation during interaction as 
world changes can be instantly taken into account while maintaining a coherent body pose 
estimation and reducing prior model errors. Our model, apart from indicating the potential 
mechanism underneath perceptual and action alterations observed in body illusions, could 
also explain behaviours, such as follower effect in VR settings38. Deeper studies should be 
performed to understand the relation between this observed action-perception coupling and 
its impact in body-ownership and agency59,60, and thus, into the development of the self. 
Furthermore, if this reactive process is compatible with optimal control models4,61 we should 
observe action biases when participants perform a task. According to our model, this would 
indicate that involuntary or unconscious actions driven by inference and triggered by 
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prediction errors would play an important role in body adaptation and interaction, in addition 
to voluntary control62. 

The hands that ‘act’ to ‘feel’ 
This systematic study reveals an effect in sensorimotor conflicts that may have important 
implications on how the body adapts to uncertain situations. Subjects' recorded forces 
(action) had the same direction than the proprioceptive drift (perception), i.e. towards the 
virtual hand. This evidence that the RHI is both a perceptual and an active illusion. 
Moreover, its congruence with the FEP predictions suggests that the body deals with the 
conflict by acting to reduce the prediction mismatch, or in other words, ‘act’ to permit the 
proper embodiment of the visual arm. 

Methods 

Computational model 
We model body perception as inferring the body posture by means of the sensation 
prediction errors (visual and proprioceptive) and the error in the predicted dynamics. Inspired 
by the fact that the RHI affects the joint angles perception67, body posture is defined by the 
joint angles. To design the arm model we only consider one degree of freedom: the elbow 
that rotates over the vertical axis (Figure 2E). Thus, we define 𝑠𝑠𝑝𝑝 as the measured/observed 

joint angle of the elbow and  as the inferred elbow joint angle2. Visual 
information is given by the horizontal location of the centre of the hand 𝑠𝑠𝑣𝑣  and the centre of 
the virtual hand 𝑠𝑠𝑟𝑟. We further define that zero degrees measurement indicates when the 
arm is in perpendicular to the horizontal axis. Hence, left and right rotations are negative and 
positive respectively. Given the length of the arm 𝐿𝐿, the generative model that predicts the 
hand visual location depending on the state is as follows: 
 

 �̂�𝑠𝑣𝑣 =  𝑔𝑔𝑣𝑣�𝜇𝜇[0]� + 𝑧𝑧𝑣𝑣 = 𝐿𝐿 cos�𝜇𝜇[0] − 𝜋𝜋/2� )  + 𝑏𝑏 + 𝑧𝑧𝑣𝑣  (1) 
 
where 𝑏𝑏 is a perceptual bias that depends on each participant and 𝑧𝑧𝑣𝑣 is normally distributed 
noise. The rest of the observations can be predicted with a Gaussian with mean 0. Thus, the 
observed sensations 𝒔𝒔 and the brain generative model 𝑔𝑔(𝜇𝜇, 𝜈𝜈) that predicts the sensations 
are: 
 

 𝒔𝒔 =  

⎣
⎢
⎢
⎡𝜇𝜇

[0]

𝜇𝜇[1]

𝜈𝜈
𝑠𝑠𝑣𝑣 ⎦
⎥
⎥
⎤

+ 𝑍𝑍 

 

𝑔𝑔(𝜇𝜇, 𝜈𝜈) =  

⎣
⎢
⎢
⎡ 𝜇𝜇[0]

𝜇𝜇[1]

𝑔𝑔𝑣𝑣�𝜇𝜇[0]�
𝜈𝜈 ⎦

⎥
⎥
⎤

+ 𝑍𝑍 

 

(2) 

Where 𝑍𝑍 is the noise associated with each variable. 
 

                                                
2 The notation reflects the order of the dynamics. 𝜇𝜇 [0], 𝜇𝜇 [1], 𝜇𝜇 [2]  represents the position, velocity and 
acceleration of the inferred brain variables71,72. 
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The brain generative model  that drives the dynamics of the internal variables (state) 
does not expect any action as there is no task involved3 and it is modelled as a mass-spring 
system. Note that this function is an approximation of the real model of the arm:  
 

 𝑓𝑓(𝜇𝜇,𝜌𝜌) =  �
𝜇𝜇[1]

−𝑘𝑘𝜇𝜇[0]/ 𝑚𝑚
0

� + 𝑊𝑊 

 

(3) 

Where 𝑊𝑊 is the associated noise of the process, 𝑚𝑚 is the mass of the arm and 𝑘𝑘 is the 
viscosity parameter. 
 
We infer the elbow angle by optimizing the free-energy bound under the Laplace 
approximation68. Defining the error between the inferred brain variables and the dynamics 
generative model as 𝒆𝒆𝜇𝜇 = 𝝁𝝁 − 𝑓𝑓(𝜇𝜇,𝜌𝜌), the differential equation that drives 𝝁𝝁 =

�𝜇𝜇[0], 𝜇𝜇[1], 𝜇𝜇[2]�
𝑇𝑇

 is: 
 

 �̇�𝝁 = �
𝜇𝜇[1]

𝜇𝜇[2]

𝜇𝜇[3]
� +

𝜕𝜕𝑔𝑔
𝜕𝜕𝝁𝝁

𝑇𝑇

Σ𝑠𝑠−1 �𝒔𝒔 − 𝑔𝑔(𝝁𝝁)� +
𝜕𝜕𝑓𝑓
𝜕𝜕𝝁𝝁

𝑇𝑇

Σ𝜇𝜇−1

⎝

⎛�
𝜇𝜇[1]

𝜇𝜇[2]

𝜇𝜇[3]
� −  𝑓𝑓(𝜇𝜇,𝜌𝜌)

⎠

⎞  − Σ𝜇𝜇−1

⎣
⎢
⎢
⎡𝑒𝑒𝜇𝜇

[1]

𝑒𝑒𝜇𝜇
[2]

𝑒𝑒𝜇𝜇
[3]
⎦
⎥
⎥
⎤
 

 

(4) 

Regarding the action, it only depends on the sensory input, as during the RHI the participant 
only relies on the proprioceptive input. Thus, we define its differential equation as: 
 

 �̇�𝑎 = −
𝜕𝜕𝐹𝐹𝑠𝑠
𝜕𝜕𝑎𝑎

=  −𝐾𝐾𝑎𝑎
𝜕𝜕𝑠𝑠𝑝𝑝
𝜕𝜕𝑎𝑎

 Σ𝑠𝑠−1(𝑠𝑠𝑝𝑝 − 𝜇𝜇[0]) 
 

(5) 

Experiments have shown that during the RHI participants modify the precision of visual and 
proprioceptive cues69. Thus, we optimize their precision also to reduce the prediction error: 
 

 Σ𝑠𝑠−1 = −
𝜕𝜕𝐹𝐹

𝜕𝜕 Σ𝑠𝑠−1 
=  −  

1
2 �
𝒔𝒔 − 𝑔𝑔(𝝁𝝁)�

2
+ Σ𝑠𝑠 

 
(6) 

We set a minimum of exp(1) and exp(0.1) for visual and proprioception precision 
respectively. 
 
Finally, we considered that the perception of the virtual hand location is another unobserved 
variable. Thus, the model also infers the visual horizontal location, allowing the blending of 
the real hand perception error with the virtual hand and therefore, producing a visual drift. 
 

 �̇�𝜈 =
𝜕𝜕𝐹𝐹
𝜕𝜕𝜈𝜈

=
∂g
𝜕𝜕𝜈𝜈

Σ𝑠𝑠−1 (𝒔𝒔 − 𝑔𝑔(𝝁𝝁)) (7) 

 

                                                
3 In the case of having a task we shall include a perceptual attractor in the sensory manifold and its 
transformation to the joint variables. For instance we can include the virtual arm as the goal by 
substituting in equation (3) the second row by �𝑇𝑇�𝜇𝜇 [0]�𝐴𝐴�𝜇𝜇 [0],𝜌𝜌� − 𝑘𝑘𝜇𝜇 [0]�/𝑚𝑚 , where is 𝐴𝐴�𝜇𝜇 [0],𝜌𝜌� =
 𝛽𝛽 �𝜌𝜌 − 𝑔𝑔𝑣𝑣�𝜇𝜇 [0]��  and the  𝑇𝑇�𝜇𝜇 [0]� =  −𝐿𝐿 sin (𝜇𝜇 [0] − 𝜋𝜋/2) 
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To generate individual differences between participants we fixed all parameters and we 
randomly selected the initial proprioceptive variance σ𝑠𝑠𝑝𝑝

2 ∼ 𝒩𝒩(1,0.5). This means that each 
participant has a different precision of the proprioceptive cue.  We further included the bias 
in the predicted real hand location based on reported data of RHI human experimentation (in 
cm) 𝑏𝑏 ∼ 𝒩𝒩(0,4.2794). The length (in cm) of the forearm was drawn from a normal 
distribution 𝐿𝐿 ∼ 𝒩𝒩(44.7208,2.4807). Bias and the forearm lengths data were taken from 
participants real data29. During stimulation we also introduced artificial noise in sp and sr 
readings. 
 
Finally, in order to generate the synchronous and the synchronous condition differences we 
modelled the parameter 𝜅𝜅 as the probability of touch and visual cues being generated by the 
same source49. For that purpose, we synthetically produced tactile and visual events in the 
ranges of 100 ms in the synchronous condition and 800 ms otherwise44. This parameter 
weights the error between the expected visual location of the arm and the virtual hand 
location input: 𝜅𝜅(𝜈𝜈 − 𝑔𝑔𝑣𝑣(𝜇𝜇)). A 𝜅𝜅 value of 1 means that the visual input is generated by our 
body. A 𝜅𝜅 value of 0 implies that the virtual hand comes from another source. 

Ethics 
Informed consent was obtained, and the study was approved by the ethics committee of the 
Medical Faculty of the Technical University of Munich, and adhered to the Declaration of 
Helsinki. The study was performed in accordance with the ethical guidelines of the German 
Psychological Society (DGPs). 

Devices 

 
Figure 6: Experimental setup. Back-top view of the participant on the vBOT manipulandum 
with the VR system and the coin vibrator attached to the dorsum of the left hand. 
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Subjects were seated with their shoulders restrained against the back of a chair by a 
shoulder harness and their hand and forearm were rested by a flat surface attached to the 
vBOT robotic manipulandum70 with their forearm supported against gravity with an air sled 
(Fig. 1A). The robotic manipulandum generated environmental dynamics and measured the 
subjects’ behaviour. Position and force data were sampled at 1KHz. Endpoint forces at the 
handle were measured using an ATI Nano 25 6-axis force-torque transducer (ATI Industrial 
Automation, NC, USA). The position of the vBOT handle was calculated from joint-position 
sensors (58SA; IED) on the motor axes. Visual feedback was provided using a virtual reality 
(VR) device (Oculus Rift V1, Facebook technology). When using the VR system, any visual 
information about their body location was prevented. The virtual environment was designed 
and programmed in C# using the Unity engine (Fig. 1B). The virtual environment and body 
size were fixed for all participants (e.g. the length of the VR arm was always the same). 
Tactile feedback was provided with commercially available coin vibrators, controlled with an 
embedded chip and connected via USB to the VR engine. The vibration events are 
controlled by means of a visual animation of a bouncing ball. 

Participants 
Fourteen right-handed volunteers (7 male and 7 female) from 18 - 40 years old with normal 
or corrected-to-normal vision, who were able to use the VR participated in this study. All 
participants had no neurological or psychological disorders, virtual sickness, nor skin hyper 
sensibility4 as indicated by self-report. We ensured that all participants were not wearing nail 
polish or had remarkable visual features on the left or right forearm and hand. Participants 
height was between 1.6 and 1.9 m to fit within the constraints of the experimental apparatus. 
Participants were economically compensated with eight euros per hour. 

Experimental design and procedure 
First, we randomly assigned 7 participants for the synchronous and 7 for the asynchronous 
condition. In total, we registered 1680 trials or samples. The generation of the conditions 
was computed randomly in blocks as described in Figure 7. 

 
Figure 7: Conditions generation. Each participant did 10 blocks of 12 trials (4 for each VR 
location condition). Center trials positions were fixed while the right and the left set of four 
trials were randomly distributed between the centre trials.  

The centre condition was always fixed in the beginning, the middle and the end of every trial. 
Four trials of the left or right condition were randomly selected between the centre 
conditions. The selection of the centre condition in the middle was imposed to reduce the 
localization bias (i.e. the participant thinks that its hand position is closer to the virtual hand) 
produced when stimulating in the left and right condition. 

                                                
4 A pretest with the vibrator was performed on the participant hand who gave a written statement that 
the vibrator did not harm himself. 
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Each trial corresponded to a 40-second of visuotactile stimulation where the force was 
recorded. In order to register the samples, we performed 10 blocks per participant separated 
by a short break. Each block was composed of 12 trials (4 trials for each virtual hand 
location condition, left, centre, right). In total, each participant performed 120 trials (40 per 
visual hand location condition). 
 
Participants were seated on the experiment chair, in front of a table, following the 
instructions of the experimenter. Once the chair was adjusted to the needed height, the 
experimenter attached the vibrator to the middle point of the hand dorsum, as described in 
Figure 6. Participants then wore the Oculus Rift VR system. The left hand rested on the air 
sled and the right hand on the table (Figure 6). Participants were asked to stay relaxed and 
stay still in the chair. 
 
The initial location of the left hand was fixed for all participants and was programmed in the 
Manipulandum. Each trial consisted of two phases and then a resting period: 
 

1) Cross: Participants were asked to face directly forward to look at a cross that 
appears in a random location around the middle of the scene to avoid the use of the 
head angle as a cue. 

2) Stimulation: At the start of the trial a virtual arm appeared in the virtual scene with a 
ball on the top of the hand. Participants were asked to look at the index finger of the 
left hand. In the synchronous condition, every time the ball touches the virtual hand 
there is a tactile stimulus through the vibrator (a touch event every two seconds 
approximately). In the asynchronous stimulation, the vibration occurs with a random 
delay after the visual stimulation. 

3) Resting: At the end of each trial, participants rested for 1 minute alternating removing 
the VR system and moving the arms without removing the VR. 

 
We tested both synchronous and asynchronous visuotactile stimulation. At the synchronous 
condition, the ball contacted with the virtual hand and the vibration on the real hand events 
happened at the same time (less than 100 ms difference). On the other hand, the 
asynchronous condition vibration events were generated randomly between the visual hit 
and the highest height reached by the ball. 
 
Data was analyzed offline using Matlab (R2019a) and statistical tests were performed using 
the repeated measures ANOVA in JASP 0.11.1. 

Code and data 
For reproducibility of the results, we provide an instance of the developed model (in python, 
Google colab) with fixed parameters that can be executed in the following link. Statistical 
force data that support the findings, as well as human raw data from the manipulandum, is 
available from the corresponding author upon request. 
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Appendix 

Body-ownership and proprioceptive drift study 
We performed a preliminary aside study to verify the proprioceptive drift and level of body-
ownership and with our experimental setup. Eight participants (a different group from the 
main study) were tested under the same experimental setup as for the action paradigm. We 
measured the proprioceptive drift and the body-ownership score. The experiment had ten 
conditions (five synchronous and five asynchronous), where the virtual hand was placed in 
one of the three locations: left, centre, right. At the synchronous condition, the ball contact 
with the virtual hand and the vibration on the real hand events happen in less than 100 ms of 
difference. On the other hand, the asynchronous condition events are separated in time with 
more than 800 ms with random noise added of 100 ms. 
 
Participants were seated on the experimental chair, in front of a table, following the 
instructions of the experimenter. Once the chair was adjusted to the needed height, the 
experimenter attached the vibrator to the middle point of the hand dorsum. Participants then 
wore the VR system. The left hand rested on the air sled and the right hand rested on the 
table. The initial location of the manipulandum was fixed and programmed for all 
participants. Each condition trial consisted of four phases: 1) Pre-localization: Only a table 
was displayed in the VR and a vertical ruler (depending on the condition) appeared. The 
participants had to indicate where they currently perceive the location of the index finger of 
their left hand. This process was repeated 8 times. Between each measurement, participants 
were asked to face directly forward to look at a cross that appears in a random location 
around the middle of the scene to avoid the use of the head angle as a cue; 2) Stimulation: 
the trial started and a virtual arm appears in the scene with a ball on the top of the hand that 
bounces; 3) Post-localization: Participants were asked to indicate where they perceived the 
index finger of the hand in the same horizontal or vertical ruler as stage 1; Finally, 4) 
Resting: at the end of each trial, participants removed the VR system and rested for 1 minute 
while filling the illusion questionnaire. 

Proprioceptive drift and body-ownership 
As expected, proprioceptive drifts were found in the left and right conditions (Figure 8A). 
Perceptual drifts effects were also found in the asynchronous condition indicating that 
random vibrations were also integrated although to a lesser degree. The virtual immersion 
made that even in the asynchronous condition participants experienced some degree of 
partial body-ownership. We also evaluated their level of body-ownership with the virtual 
hand.  Figure 8B shows the questionnaire results using a seven-point Likert scale (3 
indicating strong agreement and –3 indicating strong disagreement). Then synchronous 
condition yielded to embodiment effects and the asynchronous condition also showed partial 
embodiment due to the VR immersion and the causality of random vibration events (as 
shown in the positive values of Q1 and Q3). 
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Figure 8: (A) Proprioceptive drift for synchronous (continuous line) and asynchronous 
(dashed line) for the three VR arm location conditions (Left, Center, and Right). (B) Body-
ownership scoring results from a questionnaire answered by the participants using a 7-point 
Likert scale (3 indicating strong agreement and -3 indicating strong disagreement). 

Questionnaire 
The illusion questionnaire was developed by adapting the one presented in Nina et al.51 to 
virtual environments with previously developed questionnaires for virtual reality RHI31,46. It is 
compounded by nine questions, where Q1-Q3 describe the RHI effect19 and Q4-Q9 are 
control questions. 
 

1. It seemed as if I was feeling the vibration in the location of the virtual arm. 
2. Sometimes I had the sensation that the vibration I felt in my hand was caused by the 

contact of the ball with the virtual hand. 
3. There were moments in which I felt that the virtual hand was my own hand 
4. There were moments where the touch I was feeling came from somewhere between 

my own hand and the virtual hand. 
5. There were moments in which I felt as if my real hand was becoming virtual 
6. It seemed as if I might have more than one left hand 
7. The virtual hand started to look like my hand, in terms of shape, skin tone, freckles or 

some other visual aspects. 
8. I felt as if the virtual hand was drifting towards the real hand. 
9. I felt as if my real hand was drifting towards the virtual hand. 
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