
 

 

Fast and sensitive diffuse correlation spectroscopy with highly parallelized 

single photon detection 

Wenhui Liu1,2, *, Ruobing Qian1, *, Shiqi Xu1, Pavan Chandra Konda1, Mark Harfouche1, Dawid 

Borycki3, Joakim Jönsson4, Edouard Berrocal4, Colin Cooke5, Haoqian Wang6, Qionghai Dai2, Roarke 

W. Horstmeyer1† 

1 Department of Biomedical Engineering, Duke University, Durham, NC, USA, 27708 

2 Department of Automation, Tsinghua University, Beijing, China, 100084 

3 Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland 

4 Department of Combustion Physics, Lund Institute of Technology, Box 118, Lund 221 00, Sweden 

5 Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA, 27708 

6 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China, 518055 

 

*These authors contributed equally to this work 

† Correspondence: R.H. (roarke.w.horstmeyer@duke.edu)  

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2020. ; https://doi.org/10.1101/2020.07.08.193433doi: bioRxiv preprint 

mailto:roarke.w.horstmeyer@duke.edu
https://doi.org/10.1101/2020.07.08.193433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Diffuse correlation spectroscopy (DCS) is a well-established method that measures rapid changes 

in scattered coherent light to identify blood flow and functional dynamics within tissue. While its 

sensitivity to minute scatterer displacements leads to a number of unique advantages, conventional 

DCS systems become photon-limited when attempting to probe deep into tissue, which leads to long 

measurement windows (~1 sec). Here, we present a high-sensitivity DCS system with 1024 parallel 

detection channels integrated within a single-photon avalanche diode (SPAD) array, and 

demonstrate the ability to detect mm-scale perturbations up to 1 cm deep within a tissue-like 

phantom at up to 33 Hz sampling rate. We also show that this highly parallelized strategy can 

measure the human pulse at high fidelity and detect behaviorally-induced physiological variations 

from above the human prefrontal cortex. By greatly improving detection sensitivity and speed, 

highly parallelized DCS opens up new experiments for high-speed biological signal measurement. 

Various optical technologies have been developed to noninvasively detect dynamic biological events in 

deep tissue, such as changes in blood flow and other related fluctuations. For instance, methods such as 

diffuse optical tomography (DOT)1, diffuse optical spectroscopy (DOS)2 and functional near-infrared 

spectroscopy (fNIRs)3 all illuminate a tissue’s surface and measure the resulting scattered light at different 

locations to reconstruct images of absorption and scattering properties. Recent extensions now utilize 

time-gated measurements to probe even deeper by isolating scattering from non-superficial layers4. By 

examining scattered light’s spectral interference fringe pattern5, the related technique of interferometric 

near-infrared spectroscopy (iNIRS) can also extract additional path-length-dependent information to 

accurately measure deep blood flow6. The above techniques are distinct from other measurement strategies 

such as Doppler OCT7, OCT angiography8 and laser speckle contrast imaging9, in that their primary aim 

is to penetrate multiple millimeters into tissue to extract useful signal.  

Another well-established method to measure such deep tissue dynamics, termed diffuse correlation 

spectroscopy (DCS), utilizes the relatively simple strategy of illuminating tissue with highly coherent light 

and collecting back-scattered interference using a photon-counting detector. Dynamic events, such as 

blood flow or other small movements, are then estimated by calculating and processing the scattered light's 

temporal autocorrelation curve10,11.  Unlike the above methods, DCS offers a non-invasive phase-sensitive 

measurement strategy12,13
 or deep-tissue motion without requiring a reference beam, and thus offers a 

promising means to achieve a simple and low-cost functional imaging technique with high sensitivity. 
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DCS has been actively studied and translated into a useful clinical technique for analysis of the brain, 

breast, and skin14-18. 

DCS systems are typically implemented in a reflection geometry, where a source and a detector are placed 

a finite distance d apart and detected light is assumed to travel through a “banana-shaped” point-spread 

function (PSF) that describes the light's most probable path through scattering tissue10 (see Fig. 1). As this 

PSF's penetration depth scales linearly with d19, large source-detector separations are typically required to 

probe deep within a tissue. However, due to the forward-scattering nature of a biological tissue, most 

photons do not reach a detector in standard DCS measurement geometries, especially when the source and 

detector are place a large distance apart to probe deep events. For example, when illuminating tissue with 

200 mW/cm2 visible light (at the ANSI safety limit20), a straightforward simulation21 specifies that a single 

optical mode (i.e., a speckle grain) at a 2 cm source-detector separation includes approximately 106 

photons per second (see Supplementary Table. 1). Accordingly, it is possible to detect just one photon, on 

average, when sampling at a 1 MHz detection rate. Probing variations that may arise beneath the human 

skull requires large, multi-cm source-detector separations10,11,22,23, indicating that current DCS systems 

are severely photon-limited when outfitted to measure brain dynamics. To partially overcome this low 

photon budget, current DCS systems must integrate measured signals over a long time period – often more 

than a second - reducing overall system temporal resolution 13,24,25. While DCS can, in principle, capture 

the effects of very small non-absorptive changes within the brain, such as cerebral blood flow (CBF)26, 

single-detector implementations of DCS quickly run into an issue of not having enough photons when 

aiming to detect deep tissue events. 

A clear solution to this problem is to simply detect light from more optical modes - measuring light from 

N speckle grains yields N times more photons, and thus a proportionally improved signal-to-noise ratio 

(SNR). Since the optical modes emerging from the tissue are nearly mutually incoherent (i.e. decorrelating 

independently), sampling multiple speckle grains on a single detector reduces measurement contrast and 

is not a helpful strategy (beyond integrating over a few modes per channel27,28). DCS thus inherently 

benefits from a parallelized detection strategy, wherein multiple independent detectors could be used to 

measure N fluctuating speckle grains simultaneously to extract proportionally more useful signal from 

deep tissue. Several multi-channel DCS systems have previously been developed to simultaneously detect 

more signal. For example, a number of 4-channel DCS systems have been reported in prior work to detect 

blood flow both from humans29,30 and mice31; Staples et al. constructed an 8-channel DCS system using 
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one PMT and seven single photon counting modules32; Johansson et al. developed a 5×5 SPAD 

configuration to demonstrate improved SNR on a milk phantom and an in vivo blood occlusion test27, and 

Dietsche et al. implemented a 28-channel DCS setup with multiple single-mode fibers to measure blood 

flow in deep tissue28. The DCS system in the last work has the most parallelized detection channels that 

we are aware of to date.  

The recent development of integrated SPAD array technology, wherein thousands or more individual 

SPAD detectors can be integrated on a single CMOS chip, opens up a new regime for massively parallel 

single-photon detection, without dramatically increasing the complexity of the DCS measurement setup. 

SPAD arrays are solid-state detectors now fabricated in standard CMOS technology that, when 

manufactured at scale, offer a low-cost photon counting solution with unrivaled performance via chip or 

pixel-level processing capabilities33. SPAD arrays have recently been implemented in many biological 

imaging experiments to achieve a wide variety of interesting tasks. These include depth ranging and 

imaging34, fluorescent lifetime imaging microscopy35-38, endomicroscopy39, spectroscopy40, Raman 

spectroscopy41-43, and localization-based super-resolution imaging44, to name a few.  

 
Fig. 1 – Schematic diagram of parallelized DCS detection. The light from a 670 nm long-coherence 

laser is delivered by a multimode fiber to the tissue surface. Photons that penetrated deep enough will be 

reflected by the moving red blood cells and other scatterers. A small fraction will scatter back to the 

detection multimode fiber and are directed to the SPAD array. The distance between the center of the 

illumination fiber tip and detection fiber tip is d. The SPAD array records the temporal intensity 

fluctuations of the speckles at a sampling rate of 333 kHz across all 1024 channels. The autocorrelation 

curves 𝑔2 of each SPAD are computed and combined. Perturbations induced by blood flow are detected 

by comparing the decorrelation rate of the final averaged result. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 13, 2020. ; https://doi.org/10.1101/2020.07.08.193433doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.193433
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

In this work, we use an integrated SPAD array that contains 1024 independent detectors45 to demonstrate 

a massively parallelized DCS system with approximately 40 times more channels than any prior work (to 

the best of our knowledge). We discuss a unique software pipeline to integrate these parallelized 

measurements, and quantitatively demonstrate the sensitivity and temporal resolution enhancements of 

parallelized detection with a novel phantom that consists of a digital micromirror device (DMD) placed 

directly behind a rapidly decorrelating tissue-mimicking phantom (Fig. 2(b)). The DMD is employed to 

generate high-speed temporal perturbations with known parameters which allows us to carefully measure 

and assess system performance. This phantom allowed us to determine our parallelized DCS system’s 

sensitivity (i.e., its smallest detectable perturbation size) through thick tissue phantoms under various 

conditions (e.g., average scattering mean-free path, source-to-detector separation, perturbation speed, and 

signal integration time). For example, we demonstrate the ability to detect a 2.7 × 2.7 mm perturbation 

under 1 cm of tissue-like phantom (𝜇𝑎 = 0.4 cm-1, 𝜇𝑠
′ = 3.6 cm-1) at an autocorrelation curve rate of 0.1 

s with 80% accuracy. We also verify that that our system can capture high fidelity in vivo blood flow 

signal from the adult forehead at a 30 ms temporal resolution, and successfully detected an increase in 

decorrelation time from above the human prefrontal cortex at a similar rate when participants switched 

between the behavioral tasks of resting versus reading text. 

Results 

Phantom Setup. To provide a preliminary assessment of highly parallelized DCS based upon an 

integrated SPAD array, we constructed an easily reconfigurable phantom setup to create realistic kHz-rate 

perturbations deep within a decorrelating scattering slab. To achieve this goal, we turned to a non-

biological phantom arrangement that offered a useful testing platform to quantitatively evaluate our new 

system's performance gains. Multiple tissue-mimicking phantoms have previously been developed to 

simulate the dynamic scattering and absorption properties of human tissue such as that from the brain and 

skin46-51 (made of intralipid48, glycerol with fat emulsion47, or silicon rubber with small embedded 

scatterers49,51, for example). The dynamic optical properties of these prior phantoms have been typically 

tuned by varying the phantom material’s temperature, viscosity, or with pump-induced motion47,50,52. 

Since it is challenging to precisely vary the size and decorrelation rate of a hidden perturbation within 

these prior phantom setups, we instead created a digitally addressable phantom model that utilizes a DMD 

as the experimental perturbation source, which was placed immediately behind a thick and rapid 
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decorrelating tissue phantom (5-10 mm thickness) with scattering properties that closely match living 

tissue (Fig.2 (b)). We varied the relative strength and speed of perturbations by changing both the size and 

frequency of projected patterns within a small DMD area (Fig.2 (c)), which provided a flexible means to 

mimic the effects of additional decorrelation induced by blood flow (for example). Measured decorrelation 

times arising from our tissue phantom generally fell between 10-4 and 10-5 s, with DMD-induced 

perturbations possible up to 22 kHz. We note that the DMD does not produce perturbations equivalent to 

any particular biological event. We instead used it here to facilitate quantitative analysis of the relative 

performance variations of parallelized DCS detection. In Supplementary Note 2, we also show that, with 

standard simulation tools53, the generated response of our DMD perturbations can be approximately 

related to the expected size of a biologically realistic inclusion embedded within a semi-infinite medium54-

57. The schematic diagram of the DCS system for our DMD phantom study is shown in Fig. 1, and the 

setup parameters can be found in the methods section. 

To maximize measurement SNR, it is beneficial to detect one to several optical modes (i.e., speckle grains) 

per SPAD58. To enable this criterion across the SPAD array, we ensured that the average speckle size 

contained within the optical field reaching the array is equal to, or a large fraction of, the size of each 

SPAD active area. This was achieved by adjusting the distance between the detection fiber and the 

photosensitive surface of the SPAD array (see Methods). We note that the relatively low fill factor of 

current SPAD array technology (7 μm SPAD active area with 50 μm pixel pitch in our setup, Fig. 2(e)) 

does not significantly impact parallelized DCS given the above measurement SNR constraint. 
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Fig. 2 – Detailed diagram of our parallelized DCS phantom setup for sensitivity and temporal 

resolution characterization. (a) Images of tissue phantom consisting of polystyrene microsphere-in-

water suspension in a customized cuvette; (b) DMD phantom setup with DMD placed immediately behind 

tissue phantom. The distance between the centers of the illumination fiber and the detection fiber 𝑑 was 

set to be approximately twice the cuvette thickness; (c) DMD panel. Square colored boxes represent 

different perturbation areas, varying from 1.37 × 1.37 mm2 to 9.58 × 9.58 mm2; (d) Example dynamic 

variation patterns, where pixels in middle square area switch between ‘on’ and ‘off’ states at a rate of 

multiple kHz (corresponding to the square color box in (c)), while the peripheral area is a constant random 

pattern; (e) Schematic layout of the 32 × 32 SPAD array illustrated with representative detected speckle 

patterns. The average speckle size at the SPAD array was tuned by adjusting detection fiber distance to 

approximately match the SPAD pixel active area (black circle). (f) Representative raw intensity 

measurements, 𝐼𝑗(𝑡), from each SPAD pixel with a temporal resolution of 3 μs. (g) Corresponding 

intensity autocorrelation curves of each SPAD pixel, 𝑔2
(𝑗)

(𝜏), integrated over 30 ms, and (h) The final 

averaged autocorrelation curve 𝑔2(𝜏) using all 1024 SPADs. 

Data processing. After detecting a sequence of SPAD array measurements, we first computed the 

autocorrelation curve at each SPAD pixel separately, and then averaged the computed autocorrelation 

curves into a final result (Fig. 2(f)-(h)). We note that there are many other possible methods to process the 

SPAD array’s raw 3D video frame data that we plan to examine in the future. To quantify the scattered 

field’s fluctuations, we computed the normalized temporal intensity autocorrelation function at the jth 

SPAD pixel, 𝑔2
(𝑗)

(𝜏), using the following equation, 
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𝑔2
(𝑗)(𝜏) = ∑ 𝐼𝑗(𝑡)𝐼𝑗(𝑡 + 𝜏)/

𝑃Δ𝑡

𝑡=0

∑ 𝐼𝑗(𝑡)2

𝑃Δ𝑡

𝑡=0

, (1) 

where 𝐼𝑗(𝑡) is the intensity of the jth SPAD in the array at a given time t, 𝜏 is the “lag” or correlation time, 

and we perform a summation over P temporal samples until reaching a desired degree of statistical 

averaging for one autocorrelation curve. In our phantom studies, each autocorrelation function 𝑔2 was 

typically calculated across P = 10,000 or 35000 temporal points, yielding one new autocorrelation curve 

every 𝑃Δ𝑡 = 30 ms or 105 ms, where Δ𝑡 = 3 μs is the SPAD's temporal sampling rate. We will refer to 

𝑃Δ𝑡 as the “autocorrelation curve rate”, which is different than the SPAD temporal sampling rate and 

defines the effective measurement rate for our system. After calculating 𝑔2
(𝑗)

(𝜏) for each single SPAD 

(Fig. 2(g)), we then average these autocorrelations curves across j = 1 to M SPAD pixels to compute the 

final system autocorrelation function: 

𝑔2(𝜏) = ∑ 𝑔2
(𝑗)(𝜏)

𝑀

𝑗=1

, (2) 

which yields a curve with higher SNR, as shown in Fig. 2(g-h). In most of our tests, we used a lag time 

that ranged from 𝜏𝑚𝑖𝑛 = 0 to 𝜏𝑚𝑎𝑥 = 300 μs for 𝑔2 computation, as we observed that curves decayed to 

approximately 1 when the lag time 𝜏 is larger than 200 μs. 

The autocorrelation function, 𝑔2(𝜏), is related to the normalized electric field autocorrelation function, 

𝑔1(𝜏), by the Siegert relation59: 

𝑔2(𝜏) = 1 + 𝛽|𝑔1(𝜏)|2 (3) 

where 𝛽  is a coefficient factor. To attain a decorrelation measure, we fit 𝑔2(𝜏)  using the following 

equation, 

𝑓(𝜏) = 1 + 𝑎 × 𝑒−𝑏𝜏 (4) 

and report, 𝑡𝑑, defined as the the delay time when 𝑔2 decays to 1/e of its initial value (𝑔2(3𝜇𝑠)), as the 

“decorrelation time”. We sample 𝑡𝑑 at the system autocorrelation curve rate 𝑃Δ𝑡, and report the coefficient 

b of the index term as “decorrelation speed”. 

Increased accuracy and sensitivity of parallelized DCS using a SPAD array. Fig. 3 demonstrates the 

accuracy gained by using 1024 SPADs for parallelized DCS measurement. During this acquisition, we 

used a 5 mm thick tissue phantom with 𝜇𝑠
′ = 12.0 cm-1 and did not induce any additional perturbation with 
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the DMD, showing a tissue phantom decorrelation time of approximately 40 μs. Figure 3(a) shows 

representative raw data captured by a single SPAD over 10 ms. The average number of photons per pixel 

per sample is approximately 0.58. Figure 3(b)-(c) show the resulting autocorrelation curves generated at 

10 ms and 100 ms autocorrelation curve rates. The blue curves represent the results using measurements 

from one SPAD, 𝑔2
(1)

(𝜏), and approximately matches previous experimental measurements from common 

single-detector DCS setups. The red curves are the average of the autocorrelations 𝑔2(𝜏) from all M = 

1024 SPADs within the array. The results show that with longer autocorrelation curve rates, the 𝑔2(𝜏) 

curve of a single SPAD smoothens to approximately match the curve produced by all 1024 SPADs, but 

when the autocorrelation curve rate is short, the results of a single SPAD not only have a low SNR, but 

also deviate from the averaged curve created by our parallelized approach. 

 

Fig. 3 – The average decorrelation curve generated by multiple SPAD array pixels increases DCS 

accuracy. (a) Raw data of temporal light intensity fluctuation from one SPAD pixel. Autocorrelation 

curves calculated using a single SPAD (blue) and all 1024 SPAD pixels (red) with a measurement window 

(i.e., autocorrelation curve rate) of (b) 10 ms and (c) 100 ms, respectively. 

Next, to demonstrate the sensitivity gains of highly parallelized DCS, we tested the system's ability to 

detect an embedded perturbation using a variable number of SPADs to compute a final 𝑔2(𝜏) curve. We 

compared the averaged 𝑔2(𝜏) curve that resulted from using 1, 9 and 1024 SPADs to detect a 4.1× 4.1 

mm2 perturbation area, presented at 5 kHz, behind a 5 mm thick tissue phantom with 𝜇𝑠
′ = 12.0 cm-1. We 
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first calculated the autocorrelation curve of each SPAD pixel using an autocorrelation curve rate of 30 ms 

(P = 10,000 temporal measurements detected at 333 kHz), and then averaged the resulting 𝑔2 curves from 

M = 1, 9 and 1024 SPADs, as shown in Fig. 4(a). After repeating this experiment over 420 independent 

trials, we computed the autocorrelation curve mean ± standard deviation (SD), displayed as solid center 

lines with a band of finite width in Fig. 4(b). The red and blue bands represent measurements performed 

with and without the perturbation present, respectively, where the measurement without a perturbation 

had the entire DMD area set to a random constant pattern. Here, we see that the averaged autocorrelation 

𝑔2 curves are either completely indistinguishable or only partially distinguished when using either 1 or 9 

SPADs, but become completely distinguishable (i.e., fully separated) when using 1024 SPADs, clearly 

reflecting an improved system sensitivity. 

 

Fig. 4 – Demonstration of increased sensitivity to embedded perturbations with an increased 

number of SPADs. (a) Autocorrelation curves calculated using 1, 9 (3 × 3) and all 1024 (32 × 32) SPADs 

respectively, with an autocorrelation curve rate (𝑃Δ𝑡) of 30 ms and a 4.1 × 4.1 mm2 DMD perturbation 

area; (b) Autocorrelation curve separability and corresponding perturbation detection accuracy using 1, 9 

and 1024 SPADs. Banded curves represent the mean ± standard deviation (SD) of 420 averaged 

autocorrelations, where red curve is measurement with perturbation, and blue curve is measurement 

without perturbation; (c) Perturbation detection accuracy increases with a larger number of SPADs for 

three example setup configurations: 5 mm phantom thickness and 2.7 × 2.7 mm2 perturbation area (blue),  

5 mm phantom thickness and 4.1 × 4.1 mm2 perturbation area (red), and 10 mm phantom thickness and 

9.6 × 9.6 mm2 perturbation area (yellow). 

To quantify detection sensitivity, we computed a simple classification accuracy metric by alternately 

measuring the decorrelation time 𝑡𝑑  with and without a DMD-induced perturbation and comparing the 

two adjacent measurements. If the 𝑡𝑑 determined with the perturbation present was smaller than the 𝑡𝑑 
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without the perturbation present, we assumed successful perturbation detection, and if not, we assume the 

detection is failed. This simple classification accuracy metric, defined as the proportion of successful 

detections over 420 trials, is plotted as a function of the number of SPADs (M) used to compute the average 

decorrelation curve (Fig. 4(c)). The classification accuracy generally increases with an increase in the 

number of SPADs. Different color curves represent different tissue phantom properties and DMD 

perturbation areas and the accuracy increases when using a thinner tissue phantom or larger perturbation 

area. 

Minimally detectable DMD perturbation area. For a specific tissue phantom, the ability to detect a 

perturbation depends on both the perturbation area size and autocorrelation curve rate. We thus varied 

both of these parameters while repeating our classification accuracy tests. The results of this exercise are 

summarized in Figs. 5-6. For each setting, we repeated 120 independent experiments to calculate the 

classification accuracy. The mean ± SD of several example 𝑔2 curves (5 mm thick tissue phantom with 

𝜇𝑠
′ = 12.0 cm-1) are in Fig. 5, where once again red and blue curves represent the case of perturbation 

present versus absent, respectively. The curves within each row use the same autocorrelation curve rate, 

while the curves within each column have the same DMD perturbation area. The results show that when 

using an autocorrelation curve rate of 10 ms, it is possible to accurately identify a 3.42 × 3.42 mm2 

perturbation via the 𝑔2 curve separation. When the autocorrelation curve rate increases to 30 ms or 100 

ms, it is possible to detect smaller perturbations, down to sizes of 2.74 × 2.74 mm2 and 2.05 × 2.05 mm2, 

respectively. 
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Fig. 5 – Parallelized DCS detection of mm-scale size perturbations at different autocorrelation curve 

rates. (a) - (c) Detection results with 10 ms autocorrelation curve rate for perturbation areas of size 2.05 

× 2.05 mm2, 2.74 × 2.74 mm2 and 3.42 × 3.42 mm2, respectively. Banded curves represent the mean ± 

standard deviation (SD) of 120 averaged autocorrelation curves, where the red curve indicates with 

perturbation, blue curve band indicates without, and orange box is a selected zoom-in. (d) - (f) Similar 

detection results using a 30 ms and (g) - (i) 100 ms autocorrelation curve rate. 

Figure 6(a)-(b) summarizes the classification accuracy of our parallelized DCS system under different 

phantom scattering coefficients 𝜇𝑠
′  and for different perturbation sizes, for a 5 and 10 mm thick tissue 

phantom, respectively. A 30 ms autocorrelation curve rate was used to calculate 𝑔2 in (a) and (b). It is 

clear that the classification accuracy increases with a larger perturbation area and a lower tissue phantom 

reduced scattering coefficient and thickness. Classification accuracy also improves with a longer 

autocorrelation curve rate (100 ms vs. 30 ms, Figure 6(c)). Figure 6(d) plots the minimum detectable 

perturbation area at different detection accuracy thresholds as a function of number of SPADs M used for 
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parallelized detection (5 mm thickness, 𝜇𝑠
′ = 12.0 cm-1, autocorrelation curve rate of 30 ms). These results 

show the significant improvement in system sensitivity with increased measurement parallelization. 

 
Fig. 6 – Parallelized DCS classification accuracy of different perturbation sizes, tissue phantom 

properties and autocorrelation curve rates. (a) Classification accuracy increases for larger perturbation 

areas and lower reduced scattering coefficients. Here, 𝜇𝑠
′ = 3.6, 7.2, and 12.0 cm-1 for red, blue and green 

curves respectively, for 5 mm tissue phantom thickness and 30 ms autocorrelation curve rate. (b) Matching 

results with 10 mm thick tissue phantom. (c) Comparison of classification accuracy of different 

autocorrelation curve rates with 10 mm tissue phantom. Dotted line is for 30 ms and solid line is for 100 

ms. (d) The minimum detectable perturbation area as a function of the number of SPADs. Yellow, red and 

blue curves represent results corresponding to classification accuracy thresholds at 0.8, 0.85 and 0.9 for 5 

mm tissue phantom thickness and 𝜇𝑠
′ = 12.0 cm-1. 

Impact of perturbation frequency on autocorrelation function. To test the effect of the temporal 

perturbation rate on the average autocorrelation function of our parallelized DCS system, we varied the 

refresh frequency of the DMD perturbation area between 1 kHz and 20 kHz for 3 different perturbation 

area sizes, with the results shown in Fig. 7. The tissue phantom thickness in this experiment was 5 mm 

with 𝜇𝑠
′ = 12.0 cm-1. With an autocorrelation curve rate of 30 ms, the 𝑔2 curve clearly dips with increasing 

DMD frequency, and it is easier to differentiate 𝑔2  curves corresponding to different perturbation 

frequencies for larger perturbation areas, as expected. 
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Fig. 7 – The effect of perturbation’s temporal rate on the average autocorrelation function of the 

parallelized DCS system. Different colored autocorrelation curves represent different perturbation 

frequencies. The perturbation areas corresponding to (a), (b) and (c) are: 1.37 × 1.37 mm2, 4.10 × 4.10 

mm2 and 6.84 × 6.84 mm2, respectively. The autocorrelation curve rate is 30 ms. 

In vivo forehead blood flow results. To demonstrate that our highly parallelized DCS system can also 

improve the SNR of in vivo measurements, we modified our setup to measure blood flow within the human 

forehead and verified our measurements with a commercial pulse oximeter. The source-detector distance 

d was set at 1.5 cm and each measurement consisted of 21 s of continuous frame data. We processed the 

data to generate decorrelation speed plots sampled at different autocorrelation curve rates, 𝑃Δ𝑡, as well as 

with using measurements from a variable number of SPADs, M, to demonstrate the temporal resolution 

advantages of our parallelized approach. Example results from these tests are shown in Fig. 8. Similar to 

our phantom studies, we fit the autocorrelation curves using an exponential function and extract and plot 

the decay coefficient b (Eq. (4)). A larger b value represents faster decorrelation speed (i.e., faster blood 

flow).  

The representative autocorrelation curves and the pulse signals calculated using the normalized 

decorrelation speed b were shown in Fig. 8(a-f). With an autocorrelation curve rate of 𝑃Δ𝑡 = 100ms and 

averaging all M = 1024 SPADs, we obtain a high-SNR autocorrelation function 𝑔2(𝜏) (Fig. 8(c)) with a 

decorrelation time that clearly follows the periodicity of the subject pulse (Fig. 8(d)). Two deflections 

caused by ventricle contractions and repolarization can be clearly observed. However, if only M = 10 

SPADs were used for averaging, pulse signal retrieval remains challenging (Fig. 8(b)), as the decorrelation 

speed b extracted from the exponential fit is heavily affected by a low SNR  autocorrelation function 𝑔2(𝜏) 

(Fig. 8(a)). Moreover, we are still able to retrieve the pulse signal with a shorter autocorrelation curve rate, 

𝑃Δ𝑡 = 30 ms (Fig. 8(e-f)). This is further validated by examining the Fourier transform of the DCS 
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decorrelation speed signal (Fig. 8(f)) and the pulse signal simultaneously acquired by the pulse oximeter 

(Fig. 8(h)), shown in Fig. 8(g), which have approximately the same peak frequency at ~1.1 Hz. Consistent 

results were obtained for 5 different human subjects. 

 

Fig. 8 – Human forehead pulse measurement results. Representative autocorrelation curves (blue) and 

their best exponential function fit (red) are at left (a, c, e). At right are associated DCS pulse measurements 

over 10 s (b, d, f), which are represented by the plot of normalized decorrelation speed, extracted from 

autocorrelation curves after exponential fitting. (a-b) Using M = 10 SPADs and an autocorrelation curve 

rate 𝑃Δ𝑡 = 100 ms, (c-d) M = 1024 SPADs and an autocorrelation curve rate of 𝑃Δ𝑡 = 100 ms, and (e-f) 

M = 1024 SPADs and an autocorrelation curve rate, 𝑃Δ𝑡 = 30 ms. (g) The Fourier transform of the DCS 

pulse signal (f) and the pulse signal acquired using a commercial pulse meter (h). 

Human prefrontal cortex activation test. As an additional demonstration of the sensitivity gains of 

highly parallelized DCS, we also measured dynamic variations induced by a behavioral task. The 

prefrontal cortex region is considered to manage in part cognitive processes such as planning, cognitive 

flexibility, and working memory60. Previous studies with the complementary non-invasive optical 
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measurement approach termed interferometric near-infrared spectroscopy (iNIRS), for example, 

measured and reported dynamic changes within the prefrontal cortex area for subjects who read a 

paragraph of unfamiliar text after a 10-min rest period6. Here, we explored the likelihood of observing 

such dynamic activity using autocorrelation functions obtained from our highly parallelized DCS system. 

The subjects first rested for 5 minutes, and then began a 15-minute test divided into three stages: reading 

stage 1, resting stage, reading stage 2, where each stage lasted 5 minutes. We collected DCS measurements 

for the first 10 seconds of every test minute using all 1024 SPADs. The autocorrelation function 𝑔2(𝜏) 

and the associated decorrelation time 𝑡𝑑 were calculated using an autocorrelation curve rate of 100 ms. A 

representative plot of the decorrelation time measurement of one subject is shown in Fig. 9(a). We then 

calculated the mean decorrelation time for each subject by averaging the 100 values of  𝑡𝑑 that comprise 

each 10 s DCS measurement window (see plot in Fig. 9(b)).  A total of 6 subjects were recruited and tested 

in this study. To first detect and remove subject data that included unwanted motion artifacts during each-

minute test, we calculated the standard deviation (SD), σd, of the decorrelation time, td, within each 10s 

measurement window (15 in total, Supplementary Fig. 3) to obtain the 95% confidence interval of σd 

(±2σd, red dash lines in Supplementary Fig.3, 90 total measurements), and then removed experiments 

exhibiting a decorrelation time standard deviation σd outside of the confidence interval. In this study, 

subject #3 and #6 included such data, suggesting significant motion occurred, which we aim to address 

with a new setup in future work (see Discussion). The mean decorrelation time of the remaining 4 subjects 

are shown in Fig. 9(c) with the mean ± SD shown as a dotted line with a banded curve. The solid horizontal 

line represents the mean decorrelation time across each of the three test stages (the first reading stage, 

resting stage, and the second reading stage). The mean decorrelation time in both reading stages (blue) 

was generally observed to be lower than in the resting stage (red), indicating an increase in blood flow 

speed within the measurement area (i.e., activation of prefrontal cortex), matching prior results6. 
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Fig. 9 – Human prefrontal cortex activation measurement. (a) Plot of the decorrelation time (𝑡𝑑) values 

over 15 minute test including two reading stages and one intermediate rest stage, were 10 s of signal is 

collected every minute. (b) Plot of mean decorrelation time corresponding to (a). Each mean decorrelation 

time value is obtained by averaging all the decorrelation time values within corresponding 10 s window. 

(c) Mean ± SD results of the mean decorrelation time of 4 subjects. The decorrelation time of each subject 

is obtained after normalizing their mean value to 1. Solid horizontal lines represent the average of the five 

normalized decorrelation times in each stage. 

Discussion 

In this study, we demonstrated the highly parallelized acquisition of DCS signal using an integrated SPAD 

array that contained 32 × 32 pixels, which allowed us to average over a thousand independent speckle 

fluctuation measurements per frame to improve system sensitivity and speed. We found that the SPAD 
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array provides enhanced sensitivity as compared to a single or a small number of SPADs by testing its 

performance with a novel perturbation model, implemented by inserting a DMD beneath a thick tissue 

phantom, which demonstrated accurate detection of mm-scale perturbations under 1 cm of tissue-like 

phantom. We also used this new approach to measure the blood pulse from the human forehead with a 30-

millisecond temporal resolution and detect behavior-induced variations from above the pre-frontal cortex. 

Monolithic CMOS SPAD arrays continue to rapidly increase in pixel count (e.g., an 1 megapixel array is 

now available61), and recent consumer-oriented developments have led to combined sensing and 

processing layers via 3D stacking that open up new functionalities33. Like other integrated CMOS 

technology, we expect both pixel counts and functionality to increase with improvements from an ever-

advancing semiconductor manufacturing industry. Prior work has shown that more than one single-photon 

detector can increase DCS measurement sensitivity for the challenging task of non-invasive detection of 

functional brain dynamics13,62, and tomographically measure cerebral blood flow50,63, for example. Our 

new approach here offers a means to implement such efforts with dozens of times more detectors and thus 

increase speed or sensitivity by a proportional factor, thus opening up a new suite of possible experiments. 

The sampling rate of our SPAD array in this study is 333 kHz, which is slower than the typical sampling 

rate (1 MHz or more) of single SPADs in previously reported DCS setups. Nevertheless, as our in vivo 

study and phantom-based experiments demonstrate, this lower sampling rate is still fast enough to retrieve 

the entire autocorrelation function of relevant biological activity such as blood flow with a source-detector 

distance of 1.5 cm. Our SPAD array currently operates at a bit depth of 8, which is more than sufficient 

for most of DCS applications. In future work, we aim to work at an increased sampling rate of 720 kHz 

with a decreased per-sample bit depth, which is possible with our current hardware. In addition, we used 

a 670 nm illumination source, as the detection sensitivity of our SPAD array is higher in the visible 

wavelength range. However, a longer wavelength would potentially increase the penetration depth into 

deep tissue. Future studies will thus aim to further optimize the selected illumination wavelength for a 

particular task, and to optimize our human subject setup to minimize the impact of slight head movements. 

Although we adopted several measures to keep the subject’s head as stable as possible (see Methods), we 

occasionally observed dramatic changes in the mean decorrelation time value during long-term 

measurement, which may have been caused by the changes of the multimode fiber’s position and/or 

pressure on the skin surface.  To improve setup stability, we aim to modify our headwear setup and design 

appropriate behavioral tasks that can be completed by reclining participants. Finally, the large spatio-
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temporal datasets acquired per experiment suggest that a new suite of software tools are on the horizon 

for highly parallelized DCS setups.  

Methods 

Phantom experimental setup. Our decorrelating tissue phantom was created by a 1 μm polystyrene 

microsphere-in-water suspension (Polysciences, inc.; Warrington, PA) in custom made cuvettes. The front 

and back walls of the cuvette perpendicular to the fiber tips were made of microscope coverslips with a 

thickness of 0.17 mm. The back wall coverslip was placed directly against the surface of a DMD (Digital 

Light Innovations; Austin, TX; 1024 × 768 micromirrors with a micromirror pitch size of 13.68 μm) and 

completely covered its surface (see Fig. 2(c)). In this study, we tested two different phantom tissue 

thicknesses using cuvettes with thicknesses of 5 mm and 10 mm (Fig. 2(b)). We also tested scattering 

tissue phantoms with three different reduced scattering coefficients: 𝜇𝑠
′ = 12.0 cm-1, 7.2 cm-1, 3.6 cm-1, 

created by varying the microsphere-in-water concentration. These coefficient values are close to 

previously reported reduced scattering coefficients of human skin, brain, and other soft tissue64. 

The DMD could generate binary patterns at a frequency of up to 22 kHz. The middle square area of the 

DMD (the “perturbation area”) switches between the ‘on’ and ‘off’ states at a rate of multiple kHz to 

simulate changes caused by deep tissue motion, while the peripheral area is a random pattern that remains 

constant. We varied the size of the central perturbation area from 1.37 × 1.37 mm2 (100 × 100 

micromirrors) to 9.58 × 9.58 mm2 (700 × 700 micromirrors), as shown in Fig. 2(f). The measurement 

without the DMD-induced perturbation is achieved by setting the entire DMD area to be a random pattern 

that remained constant. 

Light from a 670 nm long coherence laser (Opto Engine LLC; Midvale, UT) with 150 mW input power 

was delivered by a multimode fiber(core diameter = 50 μm, NA = 0.22, Thorlabs; Newton, NJ) to the 

surface of the tissue phantom. To match power conditions required during in vivo experiments, we also 

followed the American National Standard for Safe Use of Lasers (ANSI) power limit for our phantom 

studies, which requires an irradiance less than 200 mW/cm2. We placed the illumination fiber tip 22 mm 

away from the cuvette surface to form a 10 mm diameter spot on the phantom surface, which provided 

our system with a peak irradiance of about 191 mW/cm2. We set the distance between the centers of the 

illumination fiber and the detection fiber (core diameter = 1000 μm, NA = 0.5, Thorlabs; Newton, NJ) to 
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be twice the thickness of the phantom to collect photons following the banana shaped path's most probable 

trajectories (Fig. 2 (b))1. The SPAD array (Photon Force PF-32) consists of 32 × 32 single SPADs, and 

each single SPAD is 50 μm × 50 μm in size, with a circular active area of approximately 7 μm in diameter 

(Fig. 2(e)). The sampling rate of each SPAD is 333kHz with a bit depth of 8. 

Geometry for parallelized speckle detection with SPAD array. To tune the average speckle size at the 

detector plane, we placed the detector fiber tip at an appropriate distance (R) from the SPAD array. 

Selecting a distance between the fiber and the SPAD array that is too small will cause each SPAD to 

contain many independent speckle grains, which leads to a reduced dynamic speckle contrast, while 

selecting a distance that is too large will yield a low SNR. To match the average speckle size to the SPAD 

pixel active area, which yields maximum contrast, we calculated the speckle grain size 𝑑𝑠  at 50% 

correlation generated from a fiber as a function of the distance and fiber core diameter using the following 

equation65: 

𝑑𝑠 = 1.4𝜆
𝑅

𝐷
(5) 

Here, 𝜆 is the wavelength of the illumination laser, R is the distance between the detection fiber and SPAD 

array, and D is the core diameter of the detection fiber. To obtain the maximum SNR, 𝑑𝑠 should be similar 

to the diameter of the SPAD pixel active area of 7 μm. In our setup, we used a multimode fiber with D = 

1 mm, making the ideal fiber-to-SPAD distance R = 7.5 mm.  

Stability of multiple tests in calculating classification accuracy. In the tissue phantom setup, motion of 

both the DMD and microsphere-based tissue phantom potentially affect the SPAD array signal. During 

our experiments, it was important to keep the microsphere solution stable in terms of concentration and 

temperature to maintain a constant phantom-induced decorrelation rate. To achieve this, we placed the 

entire system in a closed box to reduce the effect of air flow on the solution, and illuminated the sample 

and ran the DMD at the experimental frequency for 30 minutes before each experiment, to achieve a stable 

temperature and microsphere phantom movement before initiating data collection. To confirm this 

stability, we would collect a 3-minute measurement with the same DMD projection pattern, calculate a 

continuous autocorrelation function 𝑔2 with an autocorrelation curve rate of 0.1 s using Eq. 2, and ensure 

the decorrelation curves remained unchanged within the expected standard deviation.  

Human forehead blood flow and prefrontal cortex activation measurement setup. Similar to the 

phantom study setup, the laser (670 nm) was delivered by the same multimode fiber to the participant’s 
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forehead. We adjusted the laser input power to 40 mW and attached a 3d printed holder to the fiber tip. 

The holder kept the fiber head ~1.1 cm away from the subject’s forehead so that the illumination spot on 

the skin surface spread to 0.2 mm2, which ensured power irradiance below the ANSI limit (200 mW/cm2). 

Contact between the holder and forehead also helped reduce motion effects. The source-detector distance 

d was set at 1.5 cm and the SPAD array sampling rate was 333kHz. The participant’s head was rested on 

a chinrest and secured with an adjustable elastic bandage to further reduce the motion effects during the 

measurement, especially for the prefrontal cortex activation measurement. The participants also wore laser 

safety goggles (LG4, Thorlabs; Newton, NJ) during the whole experiment for eye safety. All the in vivo 

studies were approved by the Duke Campus Institutional Review Board. 

For the initial forehead blood flow validation study, DCS measurements were taken for 21 seconds. To 

validate the accuracy of our DCS pulse measurement, a commercial pulse oximeter (EMAY Ltd; 

HongKong, China) was used to record the pulse signal simultaneously. For the prefrontal cortex activation 

measurement, we designed a test lasting for 20 minutes that was divided into four stages: 1) close eyes 

and rest for 5 minutes, 2) read for 5 minutes (reading stage 1), 3) close eyes and rested for 5 minutes, 4) 

reading for another 5 minutes (reading stage 2). During the test, we kept the environment dark and quiet, 

placed a tablet in front of the subjects that displayed preselected novels that the subjects had never read 

before. At the beginning of each stage, a beep sound was played to inform the subject to open eyes and 

start to read or close eyes and rest. Data transfer limitations from the SPAD array to computer memory 

limited the streaming data duration to 10 s per minute across all 1024 SPADs. The decorrelation curve 

rate for this experiment was 100 ms. 

Data availability 

All relevant data are available from the authors upon request. 

Code availability 

All relevant codes are available from the authors upon request. 
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