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Abstract

Faithful DNA replication is crucial for viability of cells across all kingdoms of life.
Targeting DNA replication is a viable strategy for inhibition of bacterial pathogens.
Clostridioides difficile is an important enteropathogen that causes potentially fatal
intestinal inflammation. Knowledge about DNA replication in this organism is limited
and no data is available on the very first steps of DNA replication. Here, we use a
combination of in silico predictions and in vitro experiments to demonstrate that C.
difficile employs a bipartite origin of replication that shows DnaA-dependent melting at
oriC2, located in the dnaA-dnaN intergenic region. Analysis of putative origins of
replication in different clostridia suggests that the main features of the origin
architecture are conserved. This study is the first to characterize aspects of the origin
region of C. difficile and contributes to our understanding of the initiation of DNA
replication in clostridia.
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1. Introduction

Clostridioides difficile (formerly Clostridium difficile) (Lawson et al., 2016) is a Gram-
positive anaerobic bacterium. C. difficile infections (CDI) can occur in individuals with a
disturbed microbiota and is one of the main causes of hospital associated diarrhea, but
can also be found in the environment (Smits et al., 2016). The incidence of CDI has
increased worldwide since the beginning of the century (Smits et al., 2016; Warriner et
al., 2017). Consequently, the interest in the physiology of the bacterium has increased
in order to understand its interaction with the host and the environment and to
explore news pathways for intervention (van Eijk et al., 2017; Crobach et al., 2018).

One such pathway is the replication of the chromosome. Overall, DNA replication is a
highly conserved process across different kingdoms of life (O'Donnell et al., 2013;
Bleichert et al., 2017). In all bacteria, DNA replication is a tightly regulated process that
occurs with high fidelity and efficiency, and is essential for cell survival. The process
involves many different proteins that are required for the replication process itself, or
to regulate and aid replisome assembly and activity (Katayama et al., 2010; Murray and
Koh, 2014; Chodavarapu and Kaguni, 2016; Jameson and Wilkinson, 2017; Schenk et
al., 2017). Replication initiation and its regulation arguably are candidates for the
search of novel therapeutic targets (Fossum et al., 2008; Grimwade and Leonard, 2017;
van Eijk et al., 2017).

In most bacteria, replication of the chromosome starts with the assembly of the
replisome at the origin of replication (oriC) and proceeds bidirectionally (Chodavarapu
and Kaguni, 2016). In the majority of bacteria replication is initiated by the DnaA
protein, an ATPase Associated with diverse cellular Activities (AAA+ protein) that binds
specific sequences in the oriC region. The binding of DnaA induces DNA duplex
unwinding, which subsequently drives the recruitment of other proteins, such as the
replicative helicase, primase and DNA polymerase Il proteins {Chodavarapu, 2016
#974}. Termination of replication eventually leads to disassembly of the replication
complexes (Chodavarapu and Kaguni, 2016).

In C. difficile, knowledge on DNA replication is limited. Though many proteins appear
to be conserved between well-characterized species and C. difficile, only certain
replication proteins have been experimentally characterized for C. difficile (Torti et al.,
2011; Briggs et al., 2012; van Eijk et al., 2016). DNA polymerase C (PolC, CD1305) of C.
difficile has been studied in the context of drug-discovery and appears to have a
conserved primary structure similar to other low-[G+C] gram-positive organisms (Torti
et al., 2011). It is inhibited in vitro and in vivo by compounds that compete for binding
with dGTP (van Eijk et al., 2019; Xu et al., 2019). Helicase (CD3657), essential for DNA
duplex unwinding, was found to interact in an ATP-dependent manner with a helicase
loader (CD3654) and loading was proposed to occur through a ring-maker mechanism
(Davey and O'Donnell, 2003; van Eijk et al., 2016). However, in contrast to helicase of
the Firmicute Bacillus subtilis, C. difficile helicase activity is dependent on activation by
the primase protein (CD1454), as has also been described for Helicobacter pylori (Bazin
et al., 2015; van Eijk et al., 2016). C. difficile helicase stimulates primase activity at the
trinucleotide 5’d(CTA), but not at the preferred trinucleotide 5’-d(CCC) (van Eijk et al.,
2016).
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DnaA of C. difficile has not been studied to date. Although no full-length structure has
been determined for DnaA, individual domains of the DnaA protein from different
organisms have been characterized (Majka et al., 1997; Zawilak et al., 2003; Erzberger
et al., 2006; Zawilak-Pawlik et al., 2017). DnaA proteins generally comprise four
domains (Zawilak-Pawlik et al., 2017). Domain | is involved in protein-protein
interactions and is responsible for DnaA oligomerization (Weigel et al., 1999; Abe et
al., 2007; Natrajan et al., 2009; Jameson et al., 2014; Kim et al., 2017; Zawilak-Pawlik et
al., 2017; Martin et al., 2018; Matthews and Simmons, 2019; Nowaczyk-Cieszewska et
al., 2019). Little is known about a specific function of domain Il and this domain may
even be absent (Erzberger et al., 2002). It is thought to be a flexible linker that
promotes the proper conformation of the other DnaA domains (Abe et al., 2007;
Nozaki and Ogawa, 2008). Domain Ill and Domain IV are responsible for the DNA
binding. Domain lll contains the AAA+ motif and is responsible for binding ATP, ADP
and single-stranded DNA, as well as certain regulatory proteins (Kawakami et al., 2005;
Cho et al., 2008; Ozaki et al., 2008; Ozaki and Katayama, 2012). Recent studies have
also revealed the importance of this domain for binding phospholipids present in the
bacterial membrane (Saxena et al., 2013). The C-terminal Domain IV contains a helix-
turn-helix motif (HTH) and is responsible for the specific binding of DnaA to so called
DnaA boxes (Blaesing et al., 2000; Erzberger et al., 2002; Fujikawa et al., 2003).

DnaA boxes are typically 9-mer non-palindromic DNA sequences, and the E. coli DnaA
box consensus sequence is TTWTNCACA (Schaper and Messer, 1995; Wolanski et al.,
2014). The boxes can differ in their affinity for DnaA, and even demonstrate different
dependencies on the ATP co-factor (Speck et al., 1999; Patel et al., 2017). Binding of
domain IV to the DnaA boxes promotes higher-order oligomerization of DnaA, forming
a filament that wraps around DNA (Erzberger et al., 2006; Ozaki et al., 2012;
Scholefield and Murray, 2013). It is thought that the interaction of the DnaA filament
with the DNA helix introduces a bend in the DNA (Erzberger et al., 2006; Patel et al.,
2017). The resulting superhelical torsion facilitates the melting of the adjacent A+T-rich
DNA Unwinding Element (DUE) (Kowalski and Eddy, 1989; Erzberger et al., 2006;
Zorman et al., 2012). Upon melting, the DUE provides the entry site for the replisome
proteins. Another conserved structural motif, a triplet repeat called DnaA-trio, is
involved in the stabilization of the unwound region (Richardson et al., 2016;
Richardson et al., 2019).

The oriC region has been characterized for several bacterial species. These analyses
show that oriC regions are quite diverse in sequence, length and even chromosomal
location, all of which contribute to species-specific replication initiation requirements
(zawilak-Pawlik et al., 2005; Ekundayo and Bleichert, 2019). In Firmicutes, including C.
difficile, the genomic context of the origin regions appears to be conserved and
encompasses the rnpA-romH-dnaA-dnaN genes (Ogasawara and Yoshikawa, 1992;
Briggs et al., 2012).

The oriC region can be continuous (i.e. located at a single chromosomal locus) or
bipartite (Wolanski et al., 2014). Bipartite origins where initially identified in B. subtilis
(Moriya et al., 1988) but more recently also in H. pylori (Donczew et al., 2012). The
separate subregions of the bipartite origin, oriC1 and oriC2, are usually separated by
the dnaA gene. Both oriC1 and oriC2 contain clusters of DnaA boxes, and one of the
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regions contains the major DUE region. The DnaA protein binds to both subregions and
places them in close proximity to each other, consequently looping out the dnaA gene
(Krause et al., 1997; Donczew et al., 2012). In H. pylori, DnaA domain | and Il are
important for maintaining the interactions between both oriC regions (Nowaczyk-
Cieszewska et al., 2019).

In this study, we identified the putative oriC of C. difficile through in silico analysis and
demonstrate DnaA-dependent unwinding of the oriC2 region in vitro. A clear
conservation of the origin of replication organization is observed throughout the
clostridia. The present study contributes to our understanding of clostridial DNA
replication initiation in general, and replication initiation of C. difficile specifically.
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2. Materials and Methods
2.1 Sequence alignments and structure modelling

Multiple sequence alignment of amino acid sequences was performed with Protein
BLAST (blastP suite, https://blast.ncbi.nlm.nih.gov/Blast.cgi) for individual alignment
scores and the PRALINE program (http://www.ibi.vu.nl/programs/pralinewww/)
(Bawono and Heringa, 2014) for multiple sequence alignment. Sequences were
retrieved from the NCBI Reference Sequences. DnaA protein sequences from C. difficile
630Aerm (CEJ96502.1), C. acetobutylicum DSM 1731 (AEI33799.1), Bacillus subtilis 168
(NP_387882.1), Escherichia coli K-12 (AMH32311.1), Streptomyces coelicolor A3(2)
(TYP16779.1), Mycobacterium tuberculosis RGTB327 (AFE14996.1), Helicobacter pylori
J99 (Q92196.1) and Aquifex aeolicus (WP_010880157.1) were selected for alignment.
Alignment was visualized in JalView version 2.11, with coloring by percentage identity.

Secondary structure prediction and homology modelling were performed using Phyre2
(http://www.sbg.bio.ic.ac.uk/phyre2) (Kelley et al., 2015) using the intensive default
settings. Phyre2 modelling of C. difficile 630Aerm DnaA (CEJ96502.1) was performed
with 3 templates from A. aeolicus (PDB 2HCB, chain C), B. subtilis (PDB 4TPS, chain D)
and E. coli (PDB 2EQG, chain A) and 21 residues were modelled ab initio. 95% of the
residues were modelled with >90% confidence. Graphical representation was
performed with the PyMOL Molecular Graphics System, Version 1.76.6. Schrodinger,
LLC.

2.2 Prediction of the C. difficile oriC

To identify the oriC region of C. difficile the genome sequence of C. difficile 630Aerm
(GenBank accession no. LN614756.1) was analyzed through different software in a
stepwise procedure (Mackiewicz et al., 2004).

The GenSkew Java Application (http://genskew.csb.univie.ac.at/) was used with
default settings for the analysis of the normal and the cumulative skew of two
selectable nucleotides of the genomic nucleotide sequence ([G — C]/[G + C]).
Calculations where performed with a window size of 4293 bp and a step size of 4293
bp. The inflection values of the cumulative GC skew plot are indicative of the
chromosomal origin (oriC) and terminus of replication (ter).

Prediction of superhelicity-dependent helically unstable DNA stretches (SIDDs) was
performed in the vicinity of the inflection point of the GC-skew plot, in 2.0 kb
fragments comprising intergenic regions from nucleotide position 4291795 to 745
(oriC1) and 466 to 2465 (oriC2) of the C. difficile 630Aerm chromosome. Prediction of
the SIDDs in the different clostridia (Table 1) was performed in the vicinity of the
inflection points of the GC-plot retrieved from DoriC 10.0 database
(http://tubic.tju.edu.cn/doric/public/index.php) (Luo and Gao, 2019), in 2.0 kb
fragments comprising intergenic regions summarized in Table 1. The SIST program
(https://bitbucket.org/benhamlab/sist codes/src/master/) (Zhabinskaya et al., 2015)
was used to predicted free energies G(x) by running the melting transition algorithm
only (SIDD) with default values (copolymeric energetics; default: 0 =—0.06; T = 37°C; x=
0.01M) and with superhelical density o = -0.04.
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We performed the identification of the DnaA box clusters by search of the motif
TTWTNCACA with one mismatch (Supplementary information) in the leading strand on
a 4432 bp sequence between the nucleotide position 4291488 to 2870 of the C.
difficile 630Aerm chromosome, using Pattern Locator
(https://www.cmbl.uga.edu//downloads/programs/Pattern Locator/patloc.c) (Mrazek
and Xie, 2006). Identification of the DnaA boxes in the different clostridia (Table 1) was
performed with the same pattern motif in the leading strand of the intergenic regions
summarized on Table 1.

DnaA-trio sequences and ribosomal binding sites where manually predicted based on
Richardson et all. (Richardson et al., 2016) and on Vellanoweth and Rabinowitz
(Vellanoweth and Rabinowitz, 1992), respectively.

All output data was obtained as raw text files and further processed with Prism 8.3.1
(GraphPad, Inc, La Jolla, CA) and CorelDRAW X7 (Corel).

2.3 Strains and growth conditions

E. coli strains were grown aerobically at 37°C in lysogeny broth (LB, Affymetrix)
supplemented with 15 pg/mL chloramphenicol or 50 pg/mL kanamycin when required.
E. coli strain DH5a (Table 2) for DnaA containing plasmid and E. coli MC1061 strain
(Table 2) was used to maintain the oriC containing plasmids. E. coli MS3898 strain,
kindly provided by Alan Grossman (MIT, Cambridge, USA) (Table 2) was used for
recombinant DnaA expression. E. coli transformation was performed using standard
procedures (Sambrook et al., 1989). The growth was followed by monitoring the
optical density at 600 nm (ODeoo).

2.4 Construction of the plasmids

For overexpression of DnaA, the dnaA nucleotide sequence (CEJ96502.1) from C.
difficile 630Aerm (GenBank accession no. LN614756.1) was amplified by PCR from C.
difficile 630Aerm genomic DNA using primers oEVE-7 and oEVE-21 (Table 3). The PCR
product was subsequently digested with Ncol and Bglll. The vector pAV13 (Smits et al.,
2011) (Table 4), containing B. subtilis dnaA cloned in pQE60 (Qiagen) was kindly
provided by Alan Grossman (MIT, Cambridge, USA) and was digested with the same
enzymes and ligated to the digested fragment to yield vector pEVE40 (Table 4).

To construct a plasmid carrying the complete predicted oriC, the predicted oriC region
(nucleotide 4292150 to 1593 from C. difficile 630 GenBank accession no. LN614756.1)
was amplified by PCR from C. difficile 630Aerm genomic DNA using primers 0AP40 and
0AP41 (Table 3). The PCR product was subsequently digested with EcoRIl and Pstl and
ligated into porilori2 (Table 4), kindly provided by Anna Zawilak-Pawlik (Hirszfeld
Institute of Immunology and Experimental Therapy, PAS, Wroclaw, Poland), that was
digested with the same enzymes, to yield vector pAP205 (Table 4).

For the cloning of the predicted oriC1 region (nucleotide 4292150 to 24 of C. difficile
630Aerm genomic DNA) the primer set 0AP30/0AP31 (Table 3) was used. The
amplified fragment was digested with EcoRl and Pstl and inserted onto porilori2
(Table 4) digested with same enzymes, yielding vector pAP83 (Table 4). For the cloning
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of the predicted oriC2 region (nucleotide 1291 to the 1593 of C. difficile 630Aerm
genomic DNA) the primer set 0AP32/0AP33 (Table 3) was used. The amplified
fragment was digested with EcoRIl and Pstl and inserted onto porilori2 (Table 4)
digested with same enzymes, yielding vector pAP76 (Table 4).

All DNA sequences introduced into the cloning vectors were verified by Sanger
sequencing. For oriC containing vectors primers oAP56 and oAP57 (Table 3) were used
for sequencing.

2.5 Overproduction and purification of DnaA-6xHis

Overexpression of DnaA-6xHis was carried out in E. coli strain CYB1002 (Table 2),
harbouring the expression plasmid pEVE40 (Table 4). Cells were grown in 800 mL LB
and induced with 1ImM isopropyl-B-D-1-thiogalactopyranoside (IPTG) at an ODeggo of 0.6
for 3 hours. The cells were collected by centrifugation at 4°C and stored at -80°C. Cells
were resuspended in Binding buffer (1X Phosphate buffer pH7.4, 10 mM Imidazol, 10%
glycerol) lysed by French Press and collected in phenylmethylsulfonyl fluoride (PMSF)
at 0.1 mM (end concentration). Separation of the soluble fraction was performed by
centrifugation at 13000xg at 4°C for 20 min. Purification of the protein from the
soluble fraction was done in Binding buffer on a 1 mL HisTrap Column (GE Healthcare)
according to manufacturer’s instructions. Elution was performed with Binding buffer in
stepwise increasing concentrations of imidazole (20, 60, 100, 300 and 500 mM). DnaA-
6xHis was mainly eluted at concentration of imidazole equal to or greater than
300mM.

Fractions containing the DnaA-6xHis protein were pooled together and applied to
Amicon Ultra Centrifugal Filters with 30 kDa cutoff (Millipore). Buffer was exchanged
to Buffer A (25 mM HEPES-KOH pH 7.5, 100 mM K-glutamate, 5 mM Mg-acetate, 10%
glycerol). The concentrated DnaA protein was subjected to size exclusion
chromatography on an Akta pure instrument (GE Healthcare). 200 pL of concentrated
DnaA-6xHis was applied to a Superdex 200 Increase 10/30 column (GE Healthcare) in
buffer A at a flow rate of 0.5 ml min. UV detection was done at 280 nm. The column
was calibrated with a mixture of proteins of known molecular weights (Mw):
thyroglobulin (669 kDa), Apoferritin (443 kDa), B-amylase (200 kDa), Albumin (66 kDa)
and Carbonic anhydrase (29 kDa). Eluted fractions containing DnaA-6xHis of the
expected molecular weight (51 kDa) were quantified and visualized by Coomassie.
Pure fractions were aliquoted and stored at -80°C for further experiments.

2.6 Immunoblotting and detection

For immunoblotting, proteins were separated on a 12% SDS-PAGE gel and transferred
onto nitrocellulose membranes (Amersham), according to the manufacturer’s
instructions. The membranes were probed in PBST (PBS pH 7,4, 0,05% (v/v) Tween-20)
with the mouse anti-his antibody (1:3000, Invitrogen) and the respective secondary
antibody goat anti-mouse-HRP (1:3000, DAKO) were used. The membranes were
visualized using the chemiluminescence detection kit Clarity ECL Western Blotting
Substrates (Bio-Rad) in an Alliance Q9 Advanced machine (Uvitec).
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2.7 P1 nuclease Assay

For the P1 nuclease assay, 100 ng pAP205 plasmid was incubated with increasing
concentrations of DnaA-6xHis (0.14, 0.54, 1 and 6.3 uM), when required, in P1 buffer
(25mM Hepes-KOH (pH 7.6), 12% (v/v) glycerol, 1mM CaCl,, 0.2mM EDTA, 5mM ATP,
0.1 mg/ml BSA), at 30°C for 12 min. 0.75 unit of P1 nuclease (Sigma), resuspended in
0.01 M sodium acetate (pH 7.6) was added to the reaction and incubated at 30°C for 5
min. 220 ul of buffer PB (Qiagen) was added and the fragments purified with the
miniElute PCR Purification Kit (Qiagen), according to manufacturer’s instructions.
Digestion with Bglll, Notl or Scal (NEB) of the purified fragments was performed
according to manufacturer’s instructions for 1 hour at 37°C. Digested samples were
resolved on 1% agarose gels in 0.5xTAE (40 mM Tris, 20 mM CH3COOH, 1 mM EDTA PH
8.0) and stained with 0.01 mg/mL ethidium bromide solution afterwards. Visualization
of the gels was performed on the Alliance Q9 Advanced machine (Uvitec). Images were
processed in CorelDraw X7 software.
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3. Results
3.1 C. difficile DnaA protein

C. difficile 630Aerm encodes a homolog of the bacterial replication initiator protein
DnaA (GenBank: CEJ96502.1; CD630DERM_00010). Alignment of the full-length C.
difficile DnaA amino acid sequence with selected DnaA homologs from other
organisms demonstrates a sequence identity of 35% to 67%, with an even higher
similarity (57% to 83%, Fig. 1A). C. difficile DnaA displays a greater sequence identity
between the low-[G+C] Firmicutes (> 60%). When compared with the extensively
studied DnaA proteins from E. coli and B. subtilis, the full-length protein has 43% and
62% identity, and a similarity of 63% and 78%, respectively (Fig. 1A).

To assess the structural properties of C. difficile DnaA, we predicted the secondary
structure and generated a model of the protein using Phyre2 (Kelley et al., 2015) (Fig.
1B). The predicted DnaA model is based on three DnaA structures from different
organisms: A. aeolicus (residues 101 to 318 and 334 to 437)(Erzberger et al., 2006) for
domain lll and IV, and B. subtilis (residues 2 to 79) (Jameson et al., 2014) and E. coli
(residues 5 to 97) (Abe et al., 2007) for domain | and II.

Domain | of DnaA mediates interactions with a diverse set of regulators, and is
involved in DnaA oligomerization (Zawilak-Pawlik et al., 2017; Nowaczyk-Cieszewska et
al., 2019). We observe limited homology of C. difficile DnaA domain | with the
equivalent domain of the selected organisms (Fig. 1A), although the overall fold is
clearly conserved (Fig. 1B). Nevertheless, some residues (P45, F48) appear to be
conserved in most of the selected organisms (Fig. 1A).

Domain Il is a flexible linker that is possibly involved in aiding the proper conformation
of the DnaA domains, and thus requires a minimal length for DnaA function in vivo
(Nozaki and Ogawa, 2008). No clear sequence similarity is observed on domain Il and
modelling of the C. difficile DnaA protein suggests a putative disordered nature of this
domain (Fig. 1).

Domain Il is responsible for binding to the co-factors ATP and ADP, and in conjunction
with domain IV essential for DNA binding (Kawakami et al., 2005; Ozaki et al., 2008;
Ozaki and Katayama, 2012). Within domain Il we readily identified the Walker A and
Walker B motifs (WA and WB in Fig. 1A) of the AAA+ fold (residues 135-317), crucial for
binding and hydrolyzing ATP. This domain is highly conserved among all the selected
organisms (Fig. 1A) and comprises a structural center of B-sheets (Fig. 1B, pink
domain). Other features of the AAA+ ATPase fold are present and conserved between
the organisms, such as the sensor | and sensor Il motifs required for the nucleotide
binding (I and Il, Fig.1A). The arginine finger motif (the equivalent of R285 of E.coli
DnaA in the VII box), important for the ATP dependent activation of DnaA (Kawakami
et al., 2005), is conserved in C. difficile DnaA as well (R256 in motif box VII; Fig. 1A).

The C-terminal domain IV of the DnaA protein (residues 317 to 439, Fig. 1A), contains
the HTH motif required for the specific binding to DnaA-boxes (Erzberger et al., 2002;
Zawilak et al., 2003). Previous studies identified several residues involved in specific
interactions with the DnaA boxes, that bind through hydrogen bonds and van der
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Waals contacts with thymines present in the DNA sequence (Blaesing et al., 2000;
Fujikawa et al., 2003; Tsodikov and Biswas, 2011). The residues are conserved among
all Firmicutes and E. coli, including the residues R371 (position R399 in E. coli), P395
(P423), D405 (D433), H406 (H434), T407 (T435), and H411 (H439), (Fig. 1B inset, red
residues) (Fujikawa et al., 2003). Structural modeling of C. difficile DnaA predicts these
residues to be exposed, providing an interface for DNA binding (Fig. 1B). Several
residues were found to be involved in non-specific interactions with the phosphate
backbone of the DNA, including some of the residues that confer the specificity
(Fujikawa et al., 2003; Tsodikov and Biswas, 2011). These contacting residues appear
less conserved between the selected organisms (Fig. 1A. Nevertheless, the residues for
specific base recognition are conserved between the Firmicutes and E. coli, suggesting
that C. difficile DnaA is likely to recognize the consensus DnaA box TTWTNCACA
(Schaper and Messer, 1995).

3.2 Expression and purification of DnaA-6xHis

To allow for in vitro characterization of DnaA activity, we recombinantly expressed the
C. difficile DnaA with a C-terminal 6xHis-tag in E. coli cells. To prevent the co-
purification of C. difficile DnaA with host DnaA protein, E. coli strain CYB1002 was used
(a kind gift of A.D. Grossman). This strain is a derivative of E. coli MS3898, that lacks
the dnaA gene and replicates in a DnaA-independent fashion (Sutton and Kaguni,
1997). Induction of the DnaA-6xHis protein was confirmed by Coomassie staining and
immunoblotting with anti-his antibody at the expected molecular weight of 51 kDa
(Fig. 2A, red arrow). Upon overexpression of DnaA-6xHis, smaller fragments were
observed, which accumulated with a prolonged time of expression (Fig. 2A), most likely
corresponding to proteolytic fragments of the DnaA-6xHis protein.

Purification of the recombinant DnaA-6xHis showed a clear band at the expected size
when eluted at 300 mM imidazole concentration, but several lower molecular size
bands were observed (Fig. S1). Therefore, the eluted fractions where further purified
with size exclusion chromatography (SEC). This yielded a single product at the
expected molecular weight of DnaA-6xHis, and its identity was confirmed by western-
blot with anti-his antibody (Fig. 2B, red arrow). A minor band of lower molecular
weight (approximately 38 kDa, <1% of total protein) was observed (Fig. 2B, green
asterisk), which may reflect some instability of the N-terminus of the DnaA-6xHis
protein, as it appears to have retained the C-terminal 6xHis tag.

3.3 In silico prediction of the oriC region

To identify the oriC region and the elements that are part of it (DUE, DnaA-trio and
DnaA boxes) we performed different prediction approaches in a stepwise procedure,
as initially described (Mackiewicz et al., 2004).

We first analyzed the DNA asymmetry of the genome of C. difficile 630Aerm (GenBank
accession no. LN614756.1) (van Eijk et al., 2015), by plotting the normalized difference
of the complementary nucleotides (GC-skew plot) (Necsulea and Lobry, 2007). C.
difficile 630Aerm has a circular genome of 4293049 bp and an average G+C content of
29.1%. We used the GenSkew Java Application (http://genskew.csb.univie.ac.at/) for
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determining the chromosomal asymmetry. Asymmetry changes in a GC-skew plot can
be used to predict the origin of replication region and the terminus region of bacterial
genomes. Based on this analysis, the origin is predicted at approximately position 1 of
the chromosome. The terminus location is predicted at approximately 2.18 Mbp from
the origin region (Fig. 3A). These results were confirmed when artificially reassigning
the starting position of the chromosomal assembly (data not shown). The gene
organization in the putative origin region is rnpA-romH-dnaA-dnaN (position 4291488
to 2870, Fig. 3B), identical to the origin of B. subtilis (Ogasawara et al., 1985; Briggs et
al., 2012), and therefore encompasses the dnaA gene (CD630DERM_00010, Fig. 3B)
(Ogasawara et al., 1985; Briggs et al., 2012).

We next used the SIST program (Zhabinskaya et al., 2015) to localize putative DUEs in
the intergenic regions in the chromosomal region predicted to contain the oriC.
Hereafter we refer to these regions as oriC1 (in the intergenic region of romH-dnaA)
and oriC2 (in the intergenic region dnaA-dnaN), in line with nomenclature in other
organisms (Ogasawara et al., 1985; Donczew et al., 2012) (Fig. 3B). SIST identifies
helically unstable AT-rich DNA stretches (Stress-Induced Duplex Destabilization
regions; SIDDs) (Donczew et al., 2012; Zhabinskaya et al., 2015). In regions with a lower
free energy (Gix < y kcal/mol) the double-stranded helix has a high probability to
become single-stranded DNA. With increasing negative superhelicity (o = -0.06, Fig.
3C, green line) regions of both oriC1 and oriC2 become single stranded DNA (G <2
kcal/mol). At low negative superhelicity (o = -0.04, Fig. 3C, red line) short stretches of
DNA of approximately 27 bp were identified with a significantly lower free energy.
These regions with lower free energy at a negative superhelicity of -0.04 and -0.06 are
potential DUE sites. The nucleotide sequence of the possible unwinding elements
identified are represented in detail in Fig. 4 (grey boxes).

We then performed the identification of DnaA box clusters through a search of the
consensus DnaA box TTWTNCACA containing up to one mismatch, using Pattern
Locator (Mrazek and Xie, 2006). 22 putative DnaA boxes where identified in both the
leading and lagging strain in the predicted C. difficile oriC regions (Fig. 4, pink boxes),
14 in the oriC1 region and 8 in the oriC2 region. Both the consensus DnaA box
TTWTNCACA and variant boxes are found. A cluster of DnaA boxes was proposed to
contain at least three boxes with an average distance lower than 100 bp in between
(Mackiewicz et al., 2004). At least one such cluster can be found in each origin region
(Fig. 4).

We also manually identified the putative ribosomal binding sites for the annotated
genes (Fig. 4, dashed line).

Finally, we manually predicted DnaA-trio sequences (3’-[G/A]A[T/A]n>3-5" preceded by
a GC-cluster) in the predicted oriC regions, as this motif is required for successful
replication in both E. coli and B. subtilis (Richardson et al., 2016; Katayama et al.,
2017). We identified a clear DnaA-trio in the lagging strand upstream of a predicted
DUE region in the oriC2 region, with the nucleotide sequence 5’-
CACCTACTACTATTACTACTATGA-3’ (Fig. 4, light blue box), but no clear DnaA-trio was
identified in the oriC1 region.
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From all the observations, we anticipate that a bipartite origin is located in the dnaA
chromosomal region of C. difficile with unwinding occurring downstream of dnadA, at
the oriC2 region.

3.4 DnaA-dependent unwinding

To localize DnaA-dependent unwinding of oriC, we used the purified C. difficile DnaA-
6xHis protein and the predicted oriC sequence, to perform P1 nuclease assays as
previously described (Sekimizu et al., 1988; Donczew et al., 2012). Localized melting
resulting from DnaA activity exposes ssDNA to the action of the ssDNA-specific P1
nuclease. After incubation of a vector containing the oriC fragment with DnaA protein
and cleavage by the P1 nuclease, the vector is purified and digested with different
endonucleases to map the location of the unwound region.

We constructed vectors, based on porilori2 (Donczew et al., 2012), harboring C.
difficile oriC1 (pAP76) or oriC2 (pAP83) individually, as well as the complete oriC region
(pAP205) (Fig. 5A and S2A). For a more accurate determination of the unwound region,
the vectors were subjected to digestion by three different restriction enzymes (Bglll,
Notl, Scal), resulting in different restriction patterns. Limited spontaneous unwinding
of the plasmid was observed in the C. difficile oriC-containing vectors (Fig. 5A and S2B).
No DnaA-dependent change in restriction pattern was observed when using the single
oriC regions (Fig. S2B), suggesting oriC1 and oriC2 individually lack the requirements
for DnaA-dependent unwinding.

We did observe a DnaA-dependent change in digestion patterns for the oriCloriC2-
containing vector pAP205 (Fig 5). Digestion of this vector with Bglll in the absence of
DnaA-6xHis and P1 nuclease resulted in a linear DNA fragment (4638 bp) due the
presence of a unique Bglll restriction site (Fig. 5B, first lane, upper panel). The addition
of P1 nuclease leads to the appearance of a faint band between 1650 and 3000 bp (Fig.
5B), consistent with previous observations that the presence of a plasmid DUE can
result in low-level spontaneous unwinding due to the inherent instability of these AT-
rich regions (Jaworski et al., 2016). Upon the addition of the DnaA-6xHis protein the
observed band becomes more intense, suggesting a strong increase in unwinding (Fig.
5B, upper panel, red arrow).

Digestion of pAP205 with Notl in the absence of DnaA-6xHis and P1 nuclease results in
fragments of 3804 and 842 bp, due to two Notl recognition sites in the vector (Fig 5B,
1t lane, middle panel). In the presence of just P1 nuclease, a similar low level of
spontaneous unwinding is observed, resulting in the appearance of two additional
faint bands, one between 1650 and 3000 bp and other between 1000 and 1650 bp
(Fig. 5B). The addition of DnaA-6xHis results in an increase in intensity of both these
bands in a dose dependent manner (Fig. 5A, middle panel, red arrows).

The Scal digestions of pAP205 show a complex pattern, which we attribute to partially
incomplete digestion under the conditions used, and which we have not been able to
fully resolve. The most relevant observation is a clearly visible band of between 650
and 850 bp in the presence of both P1 and DnaA-6xHis (Fig. 5A, lower panel, red
arrow). We do not observe spontaneous unwinding in the presence of only P1
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439 nuclease, although the pattern is distinct from that of the control lane (Fig 5B, first
440 lane, lower panel).

441 The DnaA-dependent appearance of the ~2000 bp band in the Bglll digest, the ~1200
442 and ~2200bp bands in the Notl digest, and the ~700 bp band in the Scal digest localize
443 the DnaA-dependent unwinding of the C. difficile oriC in the oriC2 region (Fig. 5B, gray

444 rectangle, DUE). Moreover, these results suggest that C. difficile has a bipartite origin
445 of replication, as successful DnaA-dependent unwinding of C. difficile in the oriC2

446 region requires both oriC regions (oriC1 and oriC2).

447 3.5 Conservation of the origin organisation in related Clostridia

448 Our results suggest that the origin organization of C. difficile resembles that of a more
449 distantly related Firmicute, B. subtilis. To extend our observations, we evaluated the
450 genomic organization of the oriC region in different organisms phylogenetically related
451 to C. difficile. We followed a similar approach as described above for C. difficile

452 630Aerm, taking advantage of the DoriC 10.0 database
453 (http://tubic.tju.edu.cn/doric/public/index.php) (Luo and Gao, 2019). Importantly, our

454 results with respect to the C. difficile origin of replication described above were largely
455 congruent with the DoriC 10.0 database (data not shown). We retrieved the predicted
456 oriC regions from the DoriC 10.0 database and performed an in-depth analysis of these

457 regions for the closely related C. difficile strain R20291 (NC_013316.1), as well as the
458 more distantly related C. botulinum A Hall (NC_009698.1), C. sordelli AM370

459 (NZ_CP014150), C. acetobutylicum DSM 1731 (NC_015687.1), C. perfringens str.13
460 (NC_003366.1) and C. tetani E88 (NC_004557.1) (Table 1).

461 Similar to C. difficile 630Aerm, the genomic context of the origin contains the romH-
462 dnaA-dnaN region for most of the clostridia selected and mirrors that of B. subtilis

463 (Fig.6). The only exception is C. tetani E88 where the uncharacterized CLOTE0041 gene
464 lies upstream of the dnaA-dnaN cluster (Fig.6).

465 We also identified the possible DnaA boxes for the selected clostridia (Fig. 6, pink semi-
466 circle). Across the analyzed clostridia, oriC1 region presented more variability in the
467 number of putative DnaA boxes, from 9 to 19, whereas oriC2 contained 5 to 9 DnaA
468 boxes, with C. tetani E88 with the lowest number of possible DnaA boxes, both at the
469 oriC1 (9 boxes) and oriC2 (5 boxes) regions (Fig. 6, pink semi-circle). In all the

470 organisms we observe at least 1 DnaA cluster in each origin region, as also observed

471 for C. difficile 630Aerm.

472 Prediction of DUEs using the SIST program (Zhabinskaya et al., 2015) identified several
473 helically unstable regions that are candidate sites for unwinding (Fig. 6, dashed lines,
474 and Fig. S3). Notably, in all cases one such region in oriC2 (Fig. 6, grey circle) is

475 preceded immediately by the manually identified DnaA-trio (Fig. 6, light blue circle).
476 Based on our experimental data for C. difficile 630Aerm, we suggest that in all analyzed
477 clostridia, DnaA-dependent unwinding occurs at a conserved DUE downstream of the

|478 DnaA-trio in the oriC2 region (Fig. 6).
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4. Discussion

Chromosomal replication is an essential process for the survival of the cell. In most
bacteria DnaA protein is the initiator protein for replication and through a cascade of
events leads to the successful loading of the replication complex onto the origin of
replication (Mott and Berger, 2007).

Initial characterization of bacterial replication has been assessed in the model
organisms E. coli and B. subtilis (Jameson and Wilkinson, 2017). Despite the similarities
the structure of the replication origins and the regulation mechanisms are variable
among bacteria (Wolanski et al., 2014). In contrast to E. coli, B. subtilis origin region is
bipartite, with two intergenic regions upstream and downstream the dnaA gene. In C.
difficile the genomic organization in the predicted cluster rnpA-romH-dnaA-dnaN, and
the presence of AT-rich sequences in the intergenic regions is consistent with a
bipartite origin, as in B. subtilis (Fig. 3).

The origin region contains several DnaA-boxes with different properties that are
recognized by the DnaA protein. The specific binding of DnaA to the DnaA-boxes is
mediated mainly through domain IV of the DnaA protein. From DNA bound structures
of DnaA it was possible to identify several residues involved in the contact with the
DnaA boxes, some of which confer specificity (Blaesing et al., 2000; Fujikawa et al.,
2003; Tsodikov and Biswas, 2011). Analysis of the of C. difficile DnaA homology in
domain IV did not show any difference in the residues involved on the DnaA-box
specificity (Fig.1, vertical arrows), suggesting the same consensus motif conservation
as the DnaA-box TTWTNCACA for E.coli (Schaper and Messer, 1995). The conserved
DnaA-box motif allowed us to identify several DnaA boxes along the intergenic regions
of the oriC. Like in the bipartite origin of B. subtilis, we identified at least one cluster of
DnaA-boxes in the C. difficile oriC, present at the oriC1 and the in oriC2 regions (Fig.4
and 6). However accurate determination of the C. difficile DnaA-boxes was not
resolved and further footprinting assays could provide insights on the DnaA-box
conservation and affinities. Moreover, it remains to be determined whether the DnaA
boxes are crucial for origin firing and/or transcriptional regulation.

The P1 nuclease assays place a region in which DnaA-dependent unwinding occurs in
the oriC2 region of C. difficile, supported by the presence of the several features on the
oriC2, such as the identified DUE and DnaA-trio, both required for unwinding (Kowalski
and Eddy, 1989; Richardson et al., 2016). The presence of both oriC regions (oriC1 and
oriC2) is required for melting in vitro, as observed for other bipartite origins (Wolanski
et al., 2014). In contrast to the bipartite origin identified in H. pylori (Donczew et al.,
2012), we did not observe unwinding of the oriC2 region alone. Though this may be a
specific aspect of C. difficile oriC2, we cannot exclude that differences in the
experimental setup (e.g. DnaA protein purification) could affect these observations.
Nevertheless, our data are consistent with DnaA binding the DnaA-box clusters in both
oriC regions, leading to potential DnaA oligomerization, loop formation, and unwinding
at the AT-rich DUE site.

When analyzing the origin region between different clostridia, features similar to those
of C. difficile are observed, such as conservation of DnaA-box clusters within both oriC
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regions in the vicinity of the dnaA gene. Similar to C. difficile and B. subtilis, a putative
DUE element, preceded by the DnaA-trio, was also located within the oriC2 region
(Fig.4 and 6). Thus, the overall origin organization and mechanism of DNA replication
initiation is likely to be conserved within the Firmicutes (Briggs et al., 2012). As spacing
of the DnaA-boxes are determinants for the species-specific effective replication
(Zawilak et al., 2003; Zawilak-Pawlik et al., 2005), these similarities do no exclude the
possibilities that subtle differences in replication initiation exist, and further studies
are required.

Additionally, several proteins can interact with the oriC region or DnaA, including YabA,
Rok, DnaD/DnaB, Soj and HU (Briggs et al., 2012; Jameson and Wilkinson, 2017). In
doing so they shape the origin conformation and/or stabilize the DnaA filament or the
unwound region, consequently affecting replication initiation.

YabA or Rok affect B. subtilis replication initiation (Goranov et al., 2009; Schenk et al.,
2017; Seid et al., 2017), but no homologs of these proteins have been identified in C.
difficile. In B. subtilis, DnaD, DnaB and Dnal helicase loader proteins associate
sequentially with the origin region resulting in the recruitment of the DnaC helicase
protein (Marsin et al., 2001; Velten et al., 2003; Smits et al., 2010; Jameson and
Wilkinson, 2017). In B. subtilis, DnaD binds to DnaA and it is postulated that this affects
the stability of the DnaA filament and consequently the unwinding of the oriC (Ishigo-
Oka et al., 2001; Martin et al., 2018; Matthews and Simmons, 2019). B. subtilis DnaB
protein also affects the DNA topology and has been shown to be important for
recruiting oriC to the membrane (Rokop et al., 2004; Zhang et al., 2005). C. difficile
lacks a homologue for the DnaB protein, although the closest homolog of the DnaD
protein (CD3653) (van Eijk et al., 2017) may perform similar functions in the origin
remodeling (van Eijk et al., 2016). Direct interaction of DnaA-DnaD through the DnaA
domain | was structurally determined and the residues present at the interface were
solved (Martin et al., 2018). Despite high variability of this domain between organisms,
half of the identified contacts for the DnaA-DnaD interaction are conserved within C.
difficile, the S22 (S23 in B. subtilis DnaA), T25 (T26), F48 (F49), D51 (D52) and L68 (L69)
(Fig.1) (Martin et al., 2018; Matthews and Simmons, 2019). This might suggest a similar
interaction surface for CD3653 on C. difficile DnaA. A characterization of the putative
interaction between CD3653 and DnaA, and the resulting effect on DnaA
oligomerization and origin melting awaits purification and functional characterization
of CD3653. The Soj protein, also involved in chromosome segregation, has been shown
to interact with DnaA via domain lll, regulating DnaA-filament formation (Scholefield
et al., 2012) and C. difficile encodes at least one uncharacterized Soj homolog.
Bacterial histone-like proteins (such as HU and HBsu) can modulate DNA topology and
have been shown the influence on oriC unwinding and replication initiation in other
organisms (Krause et al., 1997; Chodavarapu et al., 2008). C. difficile encodes a
homologue of HU, HupA (Oliveira Paiva et al., 2019). Though the role of Soj and HupA
in DNA replication remains to be elucidated, our experiments show they are not
strictly required for origin unwinding. Finally, SpoOA, the master regulator of
sporulation, binds to several SpoOA-boxes present in this the oriC region in B. subtilis
(Boonstra et al., 2013). Some of the Spo0A-boxes partially overlap with DnaA-boxes
and binding of SpoOA can prevent the DnaA-mediated unwinding, thus playing a
significant role on the coordination of between cell replication and sporulation
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(Boonstra et al., 2013). In C. difficile, SpoOA-binding has previously been investigated
(Rosenbusch et al., 2012), but a role in DNA replication has not been assessed. For all
the regulators with a C. difficile homolog discussed above (i.e. CD3653, Soj, HupA and
Spo0A), further studies can be envisioned employing the P1 nuclease assays described
here to assess the effects on DnaA-mediated unwinding of the origin.

In summary, through a combination of different in silico predictions and in vitro
studies, we have shown DnaA-dependent unwinding in the dnaA-dnaN intergenic
region of the bipartite C. difficile origin of replication. We have analysed the putative
origin of replication in different clostridia and observed a conserved organization
throughout the Firmicutes, although different mechanisms and modes of regulation
might drive the initiation of replication. The present study is the first to characterize
the origin region of C. difficile and form the start to further unravel the mechanism
behind the DnaA-dependent regulation of C. difficile initiation of replication.
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601 Table 1. Clostridia intergenic regions used for SIDD analysis.

oriC1*! oriC2
Clostridia (GenBank accession no.)
DoriC ID*? DoriC ID*

4189900 to 561 | 780 to 2780
C. difficile R20291 (NC_013316.1)
ORI93010593 | ORI93010592

3759361 to 800 | 510to 2510
C. botulinum A Hall (NC_009698.1)
ORI92010336 ORI92010335

3549121 to 662 | 561 to 2561
C. sordelli AM370 (NZ_CP014150
ORI97012279 ORI97012278

3941422 to 961 | 1040 to 3040
C. acetobutylicum DSM 1731 (NC_015687.1)
ORI194010884 ORI194010883

303024110 810 | 881 to 2881
C. perfringens str.13 (NC_003366.1)
ORI10010054 ORI110010053

52001 to 54000 | 50081 to 52081
C. tetani E88 (NC_004557.1)
ORI10010089 ORI10010088

602 *12.0 kb fragments selected for SIDD analysis comprising the intergenic regions

603 *2 DoriC 10.0 intergenic regions from http://tubic.tju.edu.cn/doric/public/index.php
604

605
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606 Table 2. E. coli strains used in this study.

Name Relevant Genotype/Phenotype* Origin
F—endA1l gInV44 thi-1 recAl relAl gyrA96 deoR nupG Laborator

DH5a purB20 $80dlacZAM15 A(lacZYA-argF)U169, hsdR17(rkK— . Y

collection

mK+), A—
str. K-12 F— A— A(ara-leu)7697 [araD139]B/r A(codB-lacl)3 Laborator

MC1061 | galK16 galE15 e1l4— mcrAO relAl rpsL150(StrR) spoT1 CoIIectiony

mcrB1 hsdR2(r-m+)

AdnaA zia::pKN500(miniR1) asnB32 relAl spoT1 thi-1

|
ilv192 mad1 recA1 Aimm434 F- pBB42 (lacl; TetR) Grossman lab

CYB1002

607
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608 Table 3. Oligonucleotides used in this study.
Name Sequence (5">3’) *
OEVE-7 CAGTCCATGGATATAGTTTCTTTATGGGACAAAACC
OEVE-21 CGGCAGATCTTCCCTTCAAATCTGATATAATTTTGTCTATTTTAG
0AP30 AATTGAATTCTTTGTCCCATAAAGAAACTATATCC
0AP31 TGGGCTGCAGTTCAACCCTTTAGTCCTATTAAAGTCC
0AP32 AATTGAATTCTTTGCTAGGATTTTTTGATTAC
0AP33 TGGGCTGCAGTTGACAAAATTATATCAGATTTG
0AP40 TGGGCTGCAGTTGCTAGGATTTTTTGATTAC
0AP41 AATTGAATTCTTTCAACCCTTTAGTCCTATTAAAGTCC
0AP56 CAGCGAGTCAGTGAGCGAGGAAG
0AP57 GATTGATTTAATTCTCATGTTTGAC

609 * Restriction enzyme cleavage sites used underlined
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610 Table 4. Plasmids used in this study.

Name Relevant features* Source/Reference
pAV13 lacl9, Prs expression vector; km (Smits, Merrikh et al. 2011)
pEVE40 Prs - DnaA-6xHis; km This study
porilori2 H. pylori oriCloriC2; amp (zlgcigizew, Weigel et al.
pAP76 C. difficile oriC2; amp This study
pAP83 C. difficile oriC1; amp This study
pAP205 C. difficile oriCloriC2; amp This study
611 * amp — ampicillin resistance cassette, km — kanamycin resistance cassette
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Figure 1. C. difficile DnaA DNA binding domain is conserved. A) Multiple sequence
alignment (PRALINE) of C. difficile DnaA with homologous proteins retrieved from
GenBank. The aminoacid sequences from C. difficile 630Aerm (CEJ96502.1), C.
acetobutylicum DSM 1731 (AEI33799.1), B. subtilis 168 (NP_387882.1), E. coli K-12
(AMH32311.1), S. coelicolor A3(2) (TYP16779.1), M. tuberculosis RGTB327
(AFE14996.1), H. pylori 199 (Q9Z2)96.1) and Aquifex aeolicus (WP_010880157.1) were
used. Residues are colored according to sequence identity conservation highlighted
with blue shading (dark blue more conserved), performed in JalView. Secondary
structure prediction (ss) is indicated, according to Phyre2 modelled structure. DnaA
domains are represented, with the conserved AAA+ ATPase fold motifs Walker A,
Walker B, VII box, sensor | and sensor Il highlighted (WA, WB, 1, VII and Il motifs), as
well as the domain IV helix-turn-helix (HTH). Residues involved in the base-specific
recognition are identified with an arrow. B) Structural model of C. difficile DnaA
determined by Phyre2. Domains are colored as in alignment. Both the N-terminus and
the C-terminus are indicated in the figure. The DnaA domain IV is enhanced (inset)
with the DnaA-box binding specific residues represented in red sticks.
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Figure 2. Expression and purification of C. difficile DnaA protein. A) E. coli expressing
DnaA-6xHis cells were induced with 1 mM IPTG. Optical density-normalized samples
before induction (T0), after 1 hour of induction (T1) and 3 hours of induction (T3) were
resolved by 12% SDS-PAGE and immunoblotted with anti-his antibody. Induced DnaA is
observed with the approximate molecular weight of 51 kDa (red arrow). Possible
breakdown product is observed (blue arrow). B) Confirmation of size-exclusion fraction
containing the C. difficile DnaA-6xHis and further used for analysis after protein
purification resolved by 12% SDS-PAGE (Coomassie staining) and immunoblotted with
anti-his antibody. DnaA-6xHis is observed with the approximate molecular weight of
~51 kDa (red arrow). Possible minor breakdown products are observed (green
asterisk).
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642
643 Figure 3. Prediction of the C. difficile origin of replication. A) GC skew analysis of the
644 C. difficile 630Aerm (LN614756.1) genome sequence. Normal GC skew analysis ([G —
645 Cl/IG + C]) performed on leading strand (blue line) and respective cumulative GC skew
646 plot (red line). Calculations where performed with a window size of 4293 bp and a step
647 size of 4293 bp. The origin (oriC) and terminus (ter) regions are indicated. B)
648 Representation of the predicted origin region and genomic context (from residues at
649 position 4291488 to 2870 of the C. difficile 630 Aerm chromosome). The rnpA, romH
650 (blue arrow), dnaA (orange arrow) and dnaN (green arrow) genes are indicated.
651 Putative origins in intergenic regions are represented oriC1 (rpmH-dnaA) and oriC2
652 (dnaA-dnaN). C) SIDD analysis of 2.0 kb fragments comprising oriC1 (nucleotide
653 4291795 to 745) and oriC2 (nucleotide 466 to 2465). Predicted free energies G(x) for
654 duplex destabilization at a superhelical density of 6 = -0.06 (green) or o =-0.04 (red).
655
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oriC1
romH

T CTGARAC AT TG T TAG TG TG TCTCT T TGGTTOATAAGTTCTTTTAGTOAT 141 TTTGCACOGCCTTTCAG

ATTTTATTTTCCGTTTATAAAAATAATAACTTTACCCTCAAAGTAAACATAACACATATAATTATAAATACTTTTACTACTGTTGTC

AACGAGTTTTTGGGACGCTTATATCACAAAATCTACCATATATATATTATGTATTTTTTTTATTGAAAATACTAGCAAAAATCTAT|

TAATTTTATTCTAAATTATTTTTTTCAATTATATACACAAATAAAGTAATTTTAACATGTTTATATTTITTATCAACAATTAGTTAATA

TGTGGATAAATTAGTTACAAATCATTGAAGTTTGACATATATTTTGATATTATAAATATACTTGTTGATAATGTGCATAAATGTT

ATCAACTTATTAGAAATTATTCACAGCTTGTGGATACT TTTGTGTATAACTTTTAAGATTACTGACAATACTCTAGTTATAATCA

CCATTTATTGTATGTTTATGTTATTTATAACTTTATCTACATATTGTTTATATCTTTTAATATTTTTTTAATAATTTATACTATTATTAA

TTTATCAACACCATTATCCATAAATTTAGTTATTCTGTAAAATTTATATATATTTTTGCTTTTOTGTTAATAACTTIGTGGAAAATA

dnaA
oriC2
dnaA

TTGTATGTTTATATCTCTTGAATAACCT

(GTTAATACTTTTTTTGAACAAAAATTATTAACAAAT TATICAAGTCTAAAATAACAAAGATATTAACATCITTATACACAT GTTAATAT

CTTTGTATTTATAATGTTATACATACT TATTAACATTATCAACAACACCTACTACTATTACTACTATGATTTTAACTTATTTTTATAT|

ATAAAAAGCCAGAGGAGGTTATCCAC

dnaN

Figure 4. Identification of the C. difficile oriC region. Nucleotide sequence of the oriC1
region (nucleotide 4292328 to 48 of the C. difficile 630Aerm LN614756.1 genome
sequence) and oriC2 region (nucleotide 1274 to 1587). Identification of the possible
unwinding AT-rich regions previously identified in the SIDD analysis (grey boxes). The
putative DnaA boxes found are represented (pink boxes) and orientation in the leading
(right) and lagging strand (left) are shown. Possible DnaA-trio sequence are denoted
(light blue boxes). Coding sequence of the genes romH (blue arrow), dnaA (orange
arrow) and dnaN (green arrow) and respective putative ribosome binding sites (dashed
line) are indicated. Pattern identification is described in Material and Methods.
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667
668 Figure 5. Identification of the unwinding region in C. difficile oriC. A) Representation
669 of the oriC1oriC2 containing vector pAP205 used in the P1 nuclease assay. The
670 predicted oriC1 and oriC2 regions (dotted lines) and included genes are represented,
671 romH (blue), dnaA (orange), and dnaN (green). The bla gene, the pBR322 plasmid
672 origin of replication and the positions of used restriction sites are marked. The
673 unwinding region (DUE) is denoted in a grey circle. B) P1 nuclease assay of the
674 oriCloriC2-containing vector pAP205. Digestion of the vector (lane 1) with different
675 restriction enzymes Bglll (upper panel), Notl (middle panel) and Scal (bottom panel).
676 Treatment of the fragments with P1 nuclease only (lane 2) and incubated with
677 increasing amounts of C. difficile DnaA protein (lanes 3-6). The DNA fragments were
678 separated in a 1% Agarose gel and analyzed with ethidium bromide staining. Resulting
679 fragments of the DnaA-dependent unwinding are indicated with a red arrow (see
680 results for details).
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Figure 6. Comparison of the clostridia oriC regions. Representation of the origin
region and genomic context of B. subtilis, C. difficile 630Aerm chromosome and the
predicted regions for C. difficile R20291, C. botulinum A Hall, C. sordelli AM370, C.
acetobutylicum DSM 1731, C. perfringens str.13, C. tetani E88 (see Table 1). The romH
(blue arrow), dnaA (orange arrow) and dnaN (green arrow) genes are indicated.
Predicted DnaA-boxes are indicated by pink boxes and orientation on the leading
(right) and lagging strand (left) are shown. Identification of the experimentally
identified unwinding AT-rich regions (lines) and the SIDD-predicted helical instability
are shown (dashed lines). The putative DUE is denoted (grey circle). Possible DnaA-trio
sequences are shown in light blue boxes. See Material and Methods for detailed
information. Alignment of the represented chromosomal regions is based on the
location of the DnaA-trio.

C. difficile 630Aerm
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