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Abstract 

Motivation 

Drug combinations have demonstrated great potential in cancer treatments. They alleviate drug 

resistance and improve therapeutic efficacy. With the fast-growing number of anti-cancer drugs, 

the experimental investigation of all drug combinations is costly and time-consuming. 

Computational techniques can improve the efficiency of drug combination screening. Despite 

recent advances in applying machine learning to synergistic drug combinations prediction, 

several challenges remain. First, the performance of existing methods is suboptimal. There is still 

much space for improvement. Second, biological knowledge has not been fully incorporated into 

the model. Finally, many models are lack of interpretability, limiting their clinical applications.  

 

Results 

We develop a knowledge-enabled and self-attention boosted deep learning model, TranSynergy, 

to improve the performance and interpretability of synergistic drug combinations prediction. 

TranSynergy is well designed such that cellular effect of drug actions can be explicitly modeled 

through cell-line gene dependency, gene-gene interaction, and genome-wide drug-target 

interaction. A novel Shapley Additive Gene Set Enrichment Analysis (SA-GSEA) method is 

developed to deconvolute biological pathways that contribute to the synergistic drug 

combination and improve model interpretability. Extensive benchmark studies demonstrate that 

TranSynergy significantly outperforms the state-of-the-art method, suggesting the potential of 

mechanism-driven machine learning. Novel pathways that are associated with the synergistic 

combinations are revealed and supported by experimental evidence. They may provide new 

insights into identifying biomarkers for precision medicine and discovering new anti-cancer 

therapies. Several new synergistic drug combinations are predicted with high confidence for 

ovarian cancer which has few treatment options.  
 

Availability 

The code is available at https://github.com/qiaoliuhub/drug_combination 

 

Contact: lxie@iscb.org 
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1 Introduction 

 

With an increasing comprehensive understanding of the disorder in cancer cells, many 

anti-cancer drugs are under investigation. However, drug monotherapy suffers limited efficiency 

due to inherent or acquired resistance (Housman, et al., 2014; Mansoori, et al., 2017; Nikolaou, 

et al., 2018). Drug combination therapy is an effective strategy to solve this challenging problem 

(Bayat Mokhtari, et al., 2017; Fitzgerald, et al., 2006; Lehar, et al., 2009; Raghavendra, et al., 

2018; Ramsay, et al., 2018). In addition to cancer, synergistic drug combinations have several 

successful applications in the treatment for other diseases, such as AIDS (Henkel, 1999; Murphy, 

et al., 2008), and fungal or bacterial infections (Chen, et al., 2016; Groll and Tragiannidis, 2009; 

Tamma, et al., 2012). Thus, the selection of efficient drug combination therapy for pathogens 

emerges as a compelling treatment strategy. Considering that the number of anti-cancer drugs 

has increased drastically, the possible combinations of all these drugs also become enormous 

(Ali, et al., 2012; Falzone, et al., 2018). Existing experimental method requires a large number of 

samples with different drug doses and cancer cells (Mott, et al., 2015), thus is infeasible to 

exhaust all the possible drug combinations. The computational method could be used to pre-

select drug combinations with high synergy more cheaply and efficiently. The recent 

advancement of computational modeling, especially the deep learning technique, has 

dramatically increased the prediction power of computational models and has many promising 

applications in the biomedical field. The combination of computational and experimental 

methods can improve the effectiveness of the drug combination discovery. 

 

The deep learning model has shown better performance than many conventional machine 

learning algorithms in many biomedical applications (Kalinin, et al., 2018; Mater and Coote, 

2019). High-quality experimental drug combination datasets are necessary for the success of 

deep learning. With the advancement of high throughput drug combination screening tests, the 

number of samples grows fast so that the data size limitation is considerably alleviated (Bulusu, 

et al., 2016; Holbeck, et al., 2017; Li, et al., 2018; Menden, et al., 2019; O'Neil, et al., 2016). 

DeepSynergy is a state-of-the-art deep learning-based prediction model for the prediction of 

synergistic drug combination. It was trained using the dataset released by Merck (Preuer, et al., 

2018). In addition to suboptimal performance, the issue for this model is that the interpretation of 
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model is limited by the way adopted to represent drugs and cell lines as well as the model 

architecture. For instance, it is difficult to associate the contributions or feature importance of the 

drug descriptors, including toxophores, physicochemical properties, and fingerprints, with the 

mechanism of drug action in cells using a feedforward neural network (Benitez, et al., 1997; 

Castelvecchi, 2016; Challen, et al., 2019). 

 

Recent studies have shown that gene-gene interacting network properties play a critical 

role in the synergistic drug combination (Cheng, et al., 2019). In addition, cell line drug 

sensitivity strongly depends on whether the drug directly or indirectly inhibits the essential gene 

of the cell line (Menden, et al., 2019). Thus, it is desirable to incorporate information from gene-

gene interacting network, gene dependency, and drug-target interaction into the deep learning 

model. To this end, we implemented a mechanism-driven and self-attention boosted deep 

learning model TranSynergy for the prediction of synergistic drug combinations and the 

deconvolution of cellular mechanisms contributing to them. Instead of using chemical 

information as the representation for drugs, we applied the random walk with restart algorithm 

on a protein-protein interaction (PPI) network to infer a novel drug-target profile as the drug 

features. For each cell line, we used gene expression, gene dependencies, or PPI derived 

NetExpress scores that are correlated with the gene dependency as cell line descriptors (Jiang, et 

al., 2015; Liu, et al., 2019). These mechanism related features make the model readily 

interpretable. Furthermore, we applied the self-attention to encode the gene-gene interactions 

responsible for the synergistic drug combination. Attention mechanisms have been widely used 

in image processing and natural language processing (Bahdanau, et al., 2014; Luong, et al., 2015; 

Vaswani, et al., 2017) as well as shown promise in the predive modeling of nucleic acid 

sequences (Liu, et al., 2019). When combining the self-attention encoded representation of drug-

target interaction, gene dependency, and NetExpress score, TranSynergy  significantly 

outperforms the state-of-the-art model. To reveal novel pathways that are associated with the 

synergistic drug combination from the learned biological relations in TranSynergy model, we 

developed a novel Shapley Additive Gene Set Enrichment Analysis (SA-GSEA) based on SHAP 

(Lundberg and Lee, 2017). The revealed novel pathway may serve as a patient-specific 

biomarker for precision medicine or drug targets for discovering new cancer combination 

therapy. We further applied the model for the prediction of novel synergistic drug combination 
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targeting cancers that have few treatment options. Given the emergence of the next-generation 

sequencing technology, transcriptome of patient-derived cancer cells can be readily obtained 

(Buermans and den Dunnen, 2014). The TranSynergy can be used to predict and interpret the 

synergistic drug combination in distinct patient-derived cancer cells. Our study shows the 

potential of mechanism-driven interpretable machine learning model in the application of 

personalized cancer treatment.  

 

2 Methods 

2.1 Drug combination synergy score dataset 

 

The large-scale drug combination screening dataset was initially published by Merck 

(O'Neil, et al., 2016) and preprocessed to calculate the synergy scores (Preuer, et al., 2018). The 

screening test was performed with 38 drugs and 39 cancer cell lines. In total, 583 pairs of drug 

combinations were investigated and 23062 data points were collected. Among them, 2 drugs 

don’t have any DNA targets and the gene dependencies and gene expression data of four cells 

are not available. These drugs and cell lines were excluded from our data set.  We finally 

selected 36 drugs that targeted at least one protein and 35 cell lines. The other. The final dataset 

has 18623 data points and 525 pairs of drug combinations. 

 

2.2 Drug representation 

Observed drug target profile was collected from two datasets, Drugbank and ChEMBL 

for the 36 drugs (Gaulton, et al., 2017; Wishart, et al., 2018). The observed drug target matrix is 

a 36*2401 binary matrix that indicates whether a drug targets a protein. Observed drug target 

profile was processed with random walk with restart algorithm to obtain a novel drug target 

profile. We solving the random walk with restart problem with the Fast RWR methods (Tong, et 

al., 2006). Following is the formal equation: 

� � ��� � �1 � �	
, 

� is a hyperparameter equal to 1 - restart rate. We used the restart rate of 0.5. W is the transition 

matrix denoting the transition probability between nodes. We used the protein-protein interaction 

network matrix from STRING as the transition probability matrix (Szklarczyk, et al., 2019). The 
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edge weight between nodes is the protein-protein association confidence score. e is the seed 

vector in this equation. We used a drug target binary vector for each drug. 1 denotes that the drug 

is targeting the protein. r is the final probability distribution of each node in the network. 

Intuitively, r[i] denotes the effect of each drug on each protein.  

 

2.3 cell line representation 

Gene expression profiles were downloaded from Harmonizome (Rouillard, et al., 2016) 

and were initially collected in Broad Institute Cancer Cell Line Encyclopedia (CCLE) and 

Genomics of Drug Sensitivity in Cancer (GDSC) (Barretina, et al., 2012; Iorio, et al., 2016; 

Yang, et al., 2013). Gene dependencies profile dataset is a combined dataset from the Broad 

Institute Project Achilles (Broad, 2020; Dempster, et al., 2019; Meyers, et al., 2017) and Sanger 

CRISPR data from Wellcome Trust Sanger Institute, Broad Institute(Behan, et al., 2019; Broad, 

2019). The dataset was downloaded from the DepMap portal (McFarland, et al., 2018). Linear 

regression imputation method was used to fill in the missing value in the dataset with MICE 

package (van Buuren and Groothuis-Oudshoorn, 2011). NetExpress scores were calculated with 

the Network analysis of gene essentiality (NEST) tool (Jiang, et al., 2015). The input gene 

expression was collected as mentioned above and the protein-protein interaction network is 

downloaded from the STRING database (Szklarczyk, et al., 2019). 

 

2.4 Model evaluation 

The model evaluation method used is leave-drug-combination-out. The data was split into 

five folds. The drug pair in one fold does not overlap with the drug pairs in other folds. We used 

the same training and test split and the same five-folds as those in deepSynergy . Because the 

drug combination of drug A with drug B and drug B with drug A should have the same drug 

combination synergy score, the size of training data was doubled by swapping the drug A and 

drug B. We used mean squared error as the training loss, Spearman correlation and Pearson 

correlation as evaluation metrics. 

 

2.5 Shapley Additive Gene Set Enrichment Analysis 

We use the GradientExplainer and DeepExplainer in the SHAP package to calculate 

Shapley value that characterizes the contribution of each input feature to the prediction model 
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(Lundberg and Lee, 2017). We use k-means to summarize the total dataset as the background 

dataset. The final Shapley value of each input feature was the average value of 10 tests for each 

sample data. We then ranked genes based on the Shapley values for the gene-wise features of 

cell line representation and conducted gene set enrichment analysis to unveil the enriched gene 

sets with GSEA (Liberzon, et al., 2011; Subramanian, et al., 2005).  

 

3 Results 

3.1 Integration of protein-protein interaction network with drug target information and 

gene expression information for the representation of drugs and cell lines 

 

The input of our deep learning model includes the vector representations of two drug 

molecules in the drug combination and cell line that is treated by the drug combination. One 

popular strategy is to use the physicochemical properties, fingerprints, or toxicophores that are 

derived from the molecular structure of chemical compound for the representation of drug(Preuer, 

et al., 2018). There are two disadvantages in using chemical structure as the feature. First, it is 

not straightforward to establish causal relationship between the physiochemical properties of 

drugs and the cellular mechanism of drug action. Second, the model is less generalizable when 

applied to compounds that are not similar to those in the training set (Ayed, et al., 2019). 

Biological representation based on drug-target interaction profile is an alternative strategy to 

infer the drug representation vector (Ayed, et al., 2019). Drug targets information that are 

collected from databases, including Drugbank and ChEMBL (Gaulton, et al., 2017; Wishart, et 

al., 2018), are mainly proteins that are directly interacted with drugs. We also need to encode the 

effect of drugs on down-stream non-target proteins and whole biological system. We utilize 

protein-protein interaction network to infer the drug response of the non-target proteins, since the 

protein-protein interaction mediates information transmission in the biological system. We apply 

the random walk with restart algorithm to simulate this network propagation process (Figure 1). 

Compared with the chemical-based approaches for drug representation, the target-based 

representation of drug molecules has several advantages. Firstly, drug target information is 

closely related to the cellular response to the drug treatment at both molecular level and system 
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level. Secondly, it makes it possible to explain the computational model output, drug 

combination synergy, in terms of the contribution of certain proteins or genes to cancer cells. 

 

Figure 1. Illustration of genome-wide drug-target profile. Observed drug target profile is 

processed with random walk with restart to infer drug effects on both targets and non-target 

proteins. 

 

Another component of inputs is the cell line vector representation because drug-

combination has a cell line-specific response. The deepSynergy uses gene expression profile 

only (Preuer, et al., 2018). We applied a novel alternative strategy to infer cell line vector 

representation. The essentiality of genes varies in the different cell lines and plays a critical role 

in the anti-cancer drug sensitivity. Intuitively, drugs that affect more essential proteins will cause 

the cell to have a more devastating response. Two approaches are adopted to determine gene 

dependence information. The first one is collected by the BROAD institution using an 

experimental method (McFarland, et al., 2018). They performed a genome-wide loss-of-function 

screening with pooled RNAi or CRISPR library and then investigated the resulted cellular 

response. The second method is through a computational tool that integrates gene expression and 

gene-gene interaction network information (Jiang, et al., 2015). The calculated scores, called 

NetExpress score, are shown to indicate the different gene dependencies in different cell lines 

(Liu, et al., 2019). 
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3.2 TranSynergy architecture 

 

TranSynergy is a transformer boosted deep learning model for the prediction of drug 

combination synergy. It includes three major components, input dimension reduction component, 

self-attention transformer component, and output fully connected component (Figure 2). The 

input features are composed of three vectors. Each vector has 2401 dimensions, forming a 

3x2401 matrix. In the matrix, each column corresponds to a gene or protein. The first two 

vectors are the representations of two drugs. The third vector is the representation of the cell 

lines. The input dimension reduction component is a single-layer neural network to reduce the 

dimension of input. The modified transformer component takes the output from the first 

component and applies a scaled dot product based self-attention mechanism to it. Here, the self-

attention is applied to model gene-gene interactions. It is also worth noting that we customize the 

transformer model by removing the positional encoding layer since the order input feature 

dimensions should be irrelevant to the final prediction. Then the final output of the predicted 

synergy score comes from a fully connected neural network whose architecture is the same as 

that used in DeepSynergy. The hyperparameters used in each component and training process are 

listed in the supplementary Table 1. 

 

 

 

Figure 2. The architecture of TranSynergy. The input features include vector representations 

of Drug A, Drug B, and cell line vector, respectively. The first input dimension reduction 

component reduces the input dimension from 3*2401 to 3*512. The second component is a 

scaled dot product self-attention transformer. The third component is a fully connected neural 

network with the same architecture as that in DeepSynergy. 
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3.3 TranSynergy outperforms state-of-the-art model and shows superior performance 

across different cell lines  

 

To test the performance of TranSynergy architecture and compare it with the state-of-the-

art models, we used the same dataset in deepSynergy study. 80% of data are used in the training 

and 20% are held out to test model performance, and all drug combinations in test datasets are 

unseen in the training dataset. To make an apple-to-apple comparison, we use the same drugs 

and cell lines vector representation for both two deepSynergy architecture (fully connected only) 

and TranSynergy architecture. TranSynergy significantly outperforms the deepSynergy model in 

the synergy score prediction (Table 1). The accuracy improves 5.5% and 8.1% when measured 

by Pearson’s correlation and Spearman’s correlation, respectively. It is noted that the 

performance when using NetExpress score is comparable to that using the gene dependency. It is 

not surprising because NetExpress score is correlated with the gene dependency. Because the 

gene dependency data are not always available, it is possible for us to simulate the gene 

dependency using the NetExpress score, and achieve the comparable performance. It is noted 

that genomics features of cell lines (mutations and CNVs) were not used in both TranSynergy 

and DeepSynergy. They could provide additional information that is relevant to the drug mode of 

action, especially for targeted therapy. It will be interesting to incorporate genomics features into 

TranSynergy in the future.  

 

Table 1. Performance comparison of TranSynergy with fully connected neural network 

(deepSynergy) model.  

Models Drug features Cell line features 
Pearson’s 

Correlation 
Spearman’s 
Correlation 

TranSynergy 

Network 
propagated 
drug target 

profile 

Gene dependencies 0.770±0.017 0.746±0.011 

NetExpress 0.764±0.022 0.739±0.012 

deepSynergy 

Physicochemi
cal properties, 
toxicophores 

and 
fingerprints 

Gene expression 0.730±0.020 0.690±0.018 
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We further explored the performance of TranSynergy model on 6 different tissues, colon, 

breast, melanoma, ovarian, prostate and lung. The average Pearson correlation coefficient 

between ground truth synergy score and predicted scores are 0.767 for colon cancer cells, 0.739 

for breast cancer cells, 0.757 for melanoma, 0.797 for ovarian cancer cells, 0.665 for prostate 

cancer cells, and 0.803 for lung cancer cells, respectively (Figure 3A-B). The performance of 

TranSynergy across tissues are consistent except the prostate. VCAP is the only prostate cancer 

cell line, which has the lowest Pearson correlation coefficient for tissues included in our data. 

VCAP has the second lowest Pearson correlation coefficient and Spearman correlation 

coefficient across all cell lines. The performance of TranSynergy across cell lines ranges from 

0.591 to 0.894 for Pearson correlation coefficient, and from 0.592 to 0.891 for Spearman 

correlation coefficient (Figure 3C-D), respectively. 
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Figure 3. TranSynergy performance in 6 different tissues and 35 cell lines. Box plot of A) 

Pearson correlation coefficients and B) Spearman correlation coefficients of ground truth 

synergy scores and TranSynergy model predicted synergy scores in 6 different tissues. Bar plot 

of C) Pearson correlation coefficients and D) Spearman correlation coefficients of ground truth 

synergy scores and TranSynergy model predicted synergy scores in 35 cell lines. The color 

denotes the tissue each cell line belongs to. 
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3.4 Mechanism-driven drug and cell line representations and model architecture are 

critical for superior model performance 

 

Table 2. Ablation study of TranSynergy model  

 
Drug features 

 
Models 

 
Cell line features 

Pearson’s 
Correlation 

Spearman’s 
Correlation 

Network 
propagated 
drug target 

profile 

With self-
attention 

Gene dependencies 0.770±0.017 0.746±0.011 

NetExpress 0.764±0.022 0.739±0.012 

Gene expression 0.731±0.028 0.713±0.023 

Without self-
attention 

Gene dependencies 0.734±0.022 0.722±0.020 

NetExpress 0.732±0.021 0.721±0.019 

Gene expression 0.723±0.021 0.712±0.020 

Observed drug 
target profile 

With self-
attention 

Gene dependencies 

0.635±0.048 0.634±0.025 

Without self-
attention 

0.632±0.039 0.634±0.038 

 

 

We introduced two strategies for cell line vector representation based on gene 

dependency and NetExpress score which combines the gene expression and gene-gene 

interaction to surrogate the gene dependency. To demonstrate the importance of these kinds of 

mechanism-driven representations, we compared their performance with conventionally used 

gene expression only representation on both TranSynergy and DeepSynergy architectures. As 

shown in Table 2,  we found that models that are based on the gene dependency and NetExpress 

score  perform better than models with gene expression only representation. Because both gene 

dependencies and NetExpress scores characterize the dependencies of cells on each gene for 

different cell lines, they provide more mechanism information on cellular response to drugs than 

gene expression only. 

To investigate whether the PPI network propagation step is essential for the model 

performance, we trained the TranSynergy model with only observed drug target information. The 

observed drug target vector is a binary 2401-dimension vector that indicates whether a drug 
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physically binds to the corresponding protein. The cell line vector representation used in this 

comparison is that based on the cell line dependency. We also trained a fully connected neural 

network model with the same data. Models with the network propagated drug target vector 

representation show superior performance to those with observed drug target information (Table 

2). 

Finally, the self-attention that simulates gene-gene interactions plays a critical role in the 

model performance. As shown in Table 2, regardless of drug and cell line features used, the 

model with the self-attention consistently outperforms those without the use of self-attention.  

 

3.5 Shapley Additive Gene Set Enrichment Analysis reveals novel biological pathways 

associated with synergistic drug combinations  

 

Table 3. The most important pathways revealed by SA-GSEA 

Drug 
combination 

(drug 1, drug 2) 
Cell line 

Targets with high SHAP values 
The most enriched gene set in the 

cell line 

Drug 1 Drug 2 GD NetExpress 

BEZ-235, 
ERLOTINIB 

T47D 
Targets in 

PI3K/AKT/mT
OR pathway 

EGFR 

Upregulated 
genes in RAF 
overexpressed 

cells 

Downregulated 
genes in STK33 

knock-down 
cells 

BEZ-235,  
MK-4827 

T47D 
Targets in 

PI3K/AKT/mT
OR pathway 

PARP1/2 

Upregulated 
genes in RAF 
overexpressed 

cells 

N/A 

BEZ-235,  
L-778123 

T47D 
Targets in 

PI3K/AKT/mT
OR pathway 

FPTase/ 
GGPTase 

Upregulated 
genes in RAF 
overexpressed 

cells 

Downregulated 
genes in PRC2-
SUZ12 knock-

down cells  

BEZ-235, 
DINACICLIB 

T47D 
Targets in 

PI3K/AKT/mT
OR pathway 

CDKs 

Upregulated 
genes in RAF 
overexpressed 

cells 

Downregulated 
genes in PRC1-

BMI knock-
down cells 

ETOPOSID, 
MK-8669 

CAOV3 TOP2A/TOP2B mTOR 

Upregulated 
genes in JAK2 
knock-down 

cells  

N/A 

PACLITAXEL, 
DASATINIB 

MSTO-211H 
Tubulin/microtu
bule associated 

proteins 

BCRABL, SRC, 
Ephrins and 

GFR 

Upregulated 
genes in ESR1- 

cells 

Upregulated 
genes in BMI1 
knock-down 

cells 

ABT-888, 
DASATINIB 

MSTO-211H PARP1/2 
BCRABL, SRC, 

Ephrins and 
GFR 

Upregulated 
genes in SNF5 

know-down 
cells 

Downregulated 
genes in PRC1-

BMI knock-
down cells 
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We propose to use Shapley Additive Gene Set Enrichment Analysis (SA-GSEA) to 

determine biological pathways associated with synergistic drug combines (see methods for 

details). Shapley additive value is a powerful way to characterize the feature importance 

(Lundberg and Lee, 2017).  Because each of features in TranSynergy corresponds to a gene, the 

Shapley value essentially indicates the importance of gene for the synergy prediction. As 

examples, we explored seven samples in the testing dataset, which have high synergistic scores 

and are accurately predicted (Table 3 and Supplementary Figures 1-16). Both two best 

TranSynergy models harbor propagated drug target features. One of them uses NetExpress 

scores as cell line features, while the other represents cell line with gene dependencies profiles.  

The drug pairs in Table 3 show high synergy score in three cell lines, T47D, CAOV3 and 

MSTO-211H. For the synergistic drug pairs in T47D, BEZ-235 is one of the notable drugs. The 

BEZ-235 can inhibit PI3K/AKT/mTOR pathway, which is deregulated in breast cancer (Verret, 

et al., 2019). In the SA-GSEA of cell line gene dependencies profile, RAF oncogenic signature is 

significantly enriched. It is established that RAS/RAF/MEK/ERK pathway and 

PI3K/AKT/mTOR pathway are closely interconnected components and form feedback loops in 

breast cancer (Saini, et al., 2013). The SA-GSEA of cell line NetExpress scores reveals 

additional pathways associated with the synergistic drug combination, including STK33, PRC2-

SUZ12, and PRC1-BMI oncogenic signatures. STK33 can interact with PI3K/AKT/mTOR 

pathways (Castellano and Downward, 2011; Zhou, et al., 2020). PRC2-SUZ12 pathway is 

known to play a crucial role in DNA damage-repairing process (Bhoumik, et al., 2005; Campbell, 

et al., 2013; Williams and Schumacher, 2016). Besides, PI3K/AKT/mTOR pathway activate 

transcription by reducing trimethylation of promoter-associated Histone H3 Lys27 (H3K27me3), 

which is regulated by PRC2 (Spangle, et al., 2017). This may be one explanation of the observed 

cell growth stalling after PI3K/AKT/mTOR inhibition. Similarly, AKT can phosphorylate BMI, 

which reduces the transcriptional silencing caused by BMI (Spangle, et al., 2017). This may also 

suggest the underlying mechanism following PI3K/AKT/mTOR pathway inhibition. 

The drug combination of ETOPOSIDE and MK-8669 is synergistic in CAOV3 cancer 

cell line. ETOPOSIDE targets TOP2A and TOP2B, two topoisomerase components. The 

inhibition on them is believed to cause DNA double strand break. MK-8669 targets mTOR, a 

crucial component in PI3K/AKT/mTOR pathway. Besides, TUBB also shows a surprising high 
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importance in the SA-GSEA of MK-8669 drug targets. This indicates that inhibition of mTOR or 

TUBB combining with DNA damage can have a synergistic effect. In the SA-GSEA of cell line 

features, JAK2 oncogenic signature is enriched in the ranked gene list based on their Shapley 

values. This might suggest that JAK2 is novel pathway affected by this drug combination 

therapy (Bartalucci, et al., 2013).  

For synergistic drug pair in MSTO-211H cell line, one of the drugs is DASATINIB. The 

DASATINIB targets BCRABL, SRC, Ephrins and GFR. For the combination of PACLITAXEL 

and DASATINIB in MSTO-211H cell line, the PACLITAXEL targets tubulin and microtubule 

associated proteins. From the SA-GSEA of cell line genes, genes in the ESR1 and BMI1 

oncogenic signature gene sets were top ranked. SRC activates estrogen receptor α proteolysis in 

some cancers, thus inhibition of SRC can alters cancer cell response to other therapies (Chu, et 

al., 2007). Investigation has found that BCRABL can enhance BMI1 expression (Bhattacharyya, 

et al., 2009). BMI1 is also shown to be involved in DNA-damage-repair process (Ginjala, et al., 

2011). The inhibition of these pathways combining the restrain on mitosis can have high anti-

tumor activities in Mesothelioma cancer. For the combination of DASATINIB and ABT-888 in 

MSTO-211H, besides BCRABL-BMI interaction mentioned before, SNF5 pathway is also 

ranked on the top. It worth mentioning that both SNF5 and PARP1/2 play key roles in the DNA 

repair process (Javle and Curtin, 2011; Ribeiro-Silva, et al., 2019).  

 

3.6 Novel drug combination prediction 

 

We predicted the synergy score of novel drug pairs-cell line samples. For 3650 novel 

samples, Table 4 lists top 10 samples which have higher cell line-wise z-scores (Supplementary 

Table 2). It is noted that Etoposide, which targets TOP2A and TOP2B, is one of drug 

components in the drug pairs which are synergistic on CAOV3 cancer cell line. It is consistent 

with the results of SA-GSEA in which the target combination of TOP2A, TOP2B and TUBB 

shows high feature importance. Two samples show synergistic effect on OV90, another ovarian 

cancer cells. For ETOPOSIDE and VINORELBINE combination, drugs also target TOP2A, 

TOP2B and TUBB. For PACLITAXEL and VINORELBINE, both drugs target tubulin or 

microtubule associated proteins. Besides, DEXAMETHASONE exists in synergistic drug 

combinations in OCUBM, SKMES1and KPL1. 
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Table 4. Predicted most synergistic novel drug pairs. 

Drug combination Cell line 
Predicted 

Synergy score 
Z-score 

DEXAMETHASONE and ETOPOSIDE  CAOV3 94.520215 3.07259459 
ETOPOSIDE and METFORMIN  CAOV3 70.556332 2.21009253 

ETOPOSIDE and SN-38  CAOV3 69.380475 2.16777138 
DEXAMETHASONE and 

VINBLASTINE  
OCUBM 38.6095235 1.94930657 

DEXAMETHASONE and PACLITAXEL  SKMES1 37.9697725 1.91635083 
ETOPOSIDE and VINORELBINE  OV90 33.844834 1.89400207 

PACLITAXEL and VINORELBINE OV90 32.5451685 1.81387084 
ETOPOSIDE and VINBLASTINE CAOV3 56.799048 1.71494381 

DEXAMETHASONE and 
VINBLASTINE  

KPL1 37.8084735 1.6825975 

ETOPOSIDE and PACLITAXEL CAOV3 53.1252895 1.58271882 
 

 

4 Discussion 

In this study, we presented a novel deep learning model TranSynergy for the synergistic 

prediction and mechanism deconvolution of drug combinations. We demonstrated that network 

propagated drug target profile, which indicates both drug-target protein interaction and drug 

effect on non-targeted proteins, is crucial for the comprehensive representation of drug features. 

We also showed that gene essentiality in the cancer cells, whether experimentally or 

computationally determined, is a better cell line representation than raw gene expression profile. 

Due to the limited data size, we only selected the minimum number of genes for the 

representation of drugs and cell lines, which includes only drug target genes and annotated 

cancer-related genes. Too many input features could cause the model to suffer overfitting 

problems during the training due to the curse of dimensionality (Clarke, et al., 2008; Danaee, et 

al., 2017). The performance can be improved further when more data are available or by utilizing 

unlabeled data sets so that more genes can be included into the representations. 

 

Even though multiple high throughput drug combination screening dataset is available, 

we still face the inconsistency problem in both the experimental and quantification methods for 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.08.193904doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.08.193904
http://creativecommons.org/licenses/by-nc-nd/4.0/


the determination drug combinations effects. Firstly, the combinational spaces for the drug doses 

used to generate the drug dose matrix vary in different studies. Secondly, several distinguished 

methods are proposed to calculate the expected drug combination effect from experimental data, 

such as combination index (CI)-isobologram equation (Chou and Talalay, 1983; Chou, 2010; 

Chou and Talalay, 1984), Bliss independence (BI) method (Berenbaum, 1978; Bliss, 1939; 

Greco, et al., 1995), and Loewe Additivity (LA) model (Loewe, 1953; Loewe and Muischnek, 

1926). The calculated drug synergy scores are not the same when different quantification 

methods are utilized. To further improve the data quality, it is necessary to develop new methods 

to harmonize different data sets. 

 

Deep learning-based computational models have made promising breakthroughs in many 

biomedical areas. Interpretation of deep learning models becomes critical to overcoming the 

skepticism of it being a black-box (Ching, et al., 2018). Recently, many methods have been 

proposed, such as input perturbation methods (Heaton, et al., 2017; Zhou and Troyanskaya, 

2015), backpropagation based methods (Springenberg, et al., 2014), and the calculation of SHAP 

values (Lundberg and Lee, 2017). We carefully design the input features so that each feature 

dimension is corresponding to a gene. With the SHAP values of the gene-wise input feature, we 

extract the information on the effect of drug-target interactions and gene-gene interactions on the 

cancer cell response. This potentially provides a method to study the underlying mechanism of 

the multi-targeted drug combinations therapy.  

 

Drug combinations can be a more efficient therapeutic strategy for cancer by targeting 

multiple proteins to defer the rapid emergence of drug resistance. The exploration of effective 

and synergistic drug combinations is hindered by the costly and time-consuming experimental 

preclinical investigation. Computational methods can be a cheaper and faster alternative 

approach to facilitate the development of drug combination therapy for cancer patients (Yin, et 

al., 2018). Nowadays, more emphasis is put on personalized medicine, which requires the 

consideration of the heterogeneity of each patient's cancer types and genomics information to 

find more efficient therapy. Given a large amount of data for patients' genome information, 

development of an accurate and interpretable computational model is critical for the realization 
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of personalized medicine. Mechanism-driven machine learning as demonstrated in this study is a 

promising direction to address challenges in precision medicine of combination therapy.  
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