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ABSTRACT 
 
Reference datasets are critical in computational biology. They help define canonical 
biological features and are essential for benchmarking studies. Here, we describe a 
comprehensive reference dataset of experimentally validated plant NLR immune 
receptors. RefPlantNLR consists of 442 NLRs from 31 genera belonging to 11 orders of 
flowering plants. This reference dataset has several applications. We used RefPlantNLR 
to determine the canonical features of functionally validated plant NLRs and to 
benchmark the five most popular NLR annotation tools. This revealed that although NLR 
annotation tools tend to retrieve the majority of NLRs, they frequently produce domain 
architectures that are inconsistent with the RefPlantNLR annotation. Guided by this 
analysis, we developed a new pipeline, NLRtracker, which extracts and annotates NLRs 
based on the core features found in the RefPlantNLR dataset. The RefPlantNLR dataset 
should also prove useful for guiding comparative analyses of NLRs across the wide 
spectrum of plant diversity and identifying under-studied taxa. We hope that the 
RefPlantNLR resource will contribute to moving the field beyond a uniform view of NLR 
structure and function. 
 
Short title: RefPlantNLR 
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INTRODUCTION 
 
Reference datasets are critical in computational biology (Weber et al., 2019; Schaafsma and 
Vihinen, 2018). They help define canonical biological features and are essential to 
benchmarking studies. Reference datasets are particularly important for defining the sequence 
and domain features of gene and protein families. Despite this, curated collections of 
experimentally validated sequences are still lacking for several widely studied gene and protein 
families. One example is the nucleotide-binding leucine-rich repeat (NLR) family of plant 
proteins. NLRs constitute the predominant class of disease resistance (R) genes in plants (Jones 
et al., 2016; Kourelis and van der Hoorn, 2018; de Araújo et al., 2020). They function as 
intracellular receptors that detect pathogens and activate an immune response that generally 
leads to disease resistance. NLRs are thought to be engaged in a coevolutionary tug of war with 
pathogens and pests. As such, they tend to be among the most polymorphic genes in plant 
genomes, both in terms of sequence diversity and copy-number variation (Tamborski and 
Krasileva, 2020). Ever since their first discovery in the 1990s, hundreds of NLRs have been 
characterized and implicated in pathogen and self-induced immune responses (Kourelis and 
van der Hoorn, 2018). NLRs are among the most widely studied and economically valuable 
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plant proteins given their importance in breeding crops with disease resistance (Dangl et al., 
2013).  
 
NLRs occur widely across all kingdoms of life where they generally function in non-self 
perception and innate immunity (Jones et al., 2016; Uehling et al., 2017; Gao et al., 2020). In 
the broadest biochemical definition, NLRs share a similar multidomain architecture consisting 
of a nucleotide-binding and oligomerization domain (NOD) and a super-structure forming 
repeat (SSFR) domain (Dyrka et al., 2020). The NOD is either an NB-ARC (nucleotide-binding 
adaptor shared by APAF-1, certain R gene products and CED-4) or NACHT (neuronal 
apoptosis inhibitory protein, MHC class II transcription activator, HET-E incompatibility locus 
protein from Podospora anserina, and telomerase-associated protein 1), whereas the SSFR 
domain can be formed by ankyrin (ANK) repeats, tetratricopeptide repeats (TPRs), armadillo 
(ARM) repeats, WD repeats or leucine-rich repeats (LRRs) (Dyrka et al., 2020; Andolfo et al., 
2019). Plant NLRs exclusively carry an NB-ARC domain with the C-terminal SSFR consisting 
typically of LRRs. The NB-ARC domain has been used to determine the evolutionary 
relationships between plant NLRs given that it is the only domain that produces reasonably 
good global alignments across all members of the family. In flowering plants (angiosperms), 
NLRs form three main monophyletic groups with distinct N-terminal domain fusions: the TIR-
NLR subclade containing an N-terminal Toll/interleukin-1 receptor (TIR) domain, the CC-
NLR-subclade containing an N-terminal Rx-type coiled-coil (CC) domain and the CCR-NLR 
subclade containing an N-terminal RPW8-type CC (CCR) domain (Shao et al., 2016). 
Additionally, Lee et al. (2020) have recently proposed that the G10-subclade of NLRs is a 
monophyletic group containing a distinct type of CC (here referred to as CCG10; CCG10-NLR). 
NLRs also occur in non-flowering plants where they carry additional types of N-terminal 
domains such as kinases and a/b hydrolases (Andolfo et al., 2019).  
 
Plant NLRs likely evolved from multifunctional receptors to specialized receptor pairs and 
networks (Adachi, Contreras, et al., 2019; Adachi, Derevnina, et al., 2019). NLRs which 
combine pathogen detection and immune signalling activities into a single protein are referred 
to as “functional singletons”, whereas NLRs which have specialized in pathogen recognition 
or immune signalling are referred to as “sensor” or “helper” NLRs, respectively. About one 
quarter of NLR genes occur as “genetic singletons” in plant genomes, whereas the others form 
genetic clusters often near telomeres (Jacob et al., 2013). This genomic clustering likely aids 
the evolutionary diversification of this gene family and subsequent emergence of pairs and 
networks (Tamborski and Krasileva, 2020; Adachi, Derevnina, et al., 2019). The emerging 
picture is that NLRs form genetic and functional receptor networks of varying complexity (Wu 
et al., 2018; Adachi, Derevnina, et al., 2019). 
 
The mechanism of pathogen detection by NLRs can be either direct or indirect (Kourelis and 
van der Hoorn, 2018). Direct recognition involves the NLR protein binding a pathogen-derived 
molecule or serving as a substrate for the enzymatic activity of a pathogen virulence protein 
(known as effectors). Indirect detection is conceptualized by the guard and decoy models where 
the status of a host component–the guardee or decoy–is monitored by the NLR (van der Biezen 
and Jones, 1998; van der Hoorn and Kamoun, 2008). Some sensor NLRs known as NLR-IDs 
contain non-canonical “integrated domains” that can function as decoys to bait pathogen 
effectors and enable pathogen detection (Cesari et al., 2014; Sarris et al., 2016; Wu et al., 
2015). These extraneous domains appear to have evolved by fusion of an effector target domain 
into an NLR (Cesari et al., 2014; Sarris et al., 2016; Białas et al., 2017). The sequence diversity 
of integrated domains in NLR-IDs is staggering indicating that novel domain acquisitions have 
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repeatedly occurred throughout the evolution of plant NLRs (Sarris et al., 2016; Kroj et al., 
2016). 
 
Given their multidomain nature, sequence diversity and complex evolutionary history, 
prediction of NLR genes from plant genomes is challenging. Several bioinformatic tools have 
been developed to extract plant NLRs from sequence datasets. As an input these tools take 
either annotated genomic features and transcriptomic data, or alternatively can be run directly 
on the unannotated genomic sequence. NLR-Parser, RGAugury, RRGPredictor, and DRAGO2 
identify transcript and protein sequences that have features of NLRs and are best described as 
NLR extractors (Steuernagel et al., 2015; Li et al., 2016; Osuna-Cruz et al., 2018; Santana 
Silva and Micheli, 2020). RGAugury, RRGPredictor, and DRAGO2 also extract other classes 
of immune-related genes in addition to NLRs. These various tools use pre-defined motifs to 
classify sequences as NLRs, but they differ in the methods and pipelines. NLR-Annotator –an 
extension of NLR-Parser–and NLGenomeSweeper, can also use unannotated genome 
sequences as input to predict the genomic locations of NLRs (Steuernagel et al., 2020; Toda et 
al., 2020). This output then requires manual annotation to extract the final gene-models and 
some of the annotated loci may represent partial or pseudogenized genes.  
 
The goal of this study is to provide a curated reference dataset of experimentally validated plant 
NLRs. This version of RefPlantNLR (v.20201113_442) consists of 442 NLRs from 31 genera 
belonging to 11 orders of flowering plants. We used RefPlantNLR to determine the canonical 
features of functionally validated plant NLRs and benchmark NLR annotation tools. We found 
that these NLR-annotation tools are able to extract the majority of NLRs in the RefPlantNLR 
dataset, however, the domain architecture analysis produced by these tools is often inconsistent 
with that of RefPlantNLR. In order to simplify NLR extraction, annotation, and phylogenetic 
analysis we developed NLRtracker: a pipeline that uses InterProScan (Finn et al., 2017) and 
predefined NLR motifs (Jupe et al., 2012) to extract NLRs and provide domain architecture 
analyses based on the canonical features found in the RefPlantNLR dataset. Additionally, 
NLRtracker outputs the extracted NB-ARC domain facilitating downstream phylogenetic 
analysis. RefPlantNLR should also prove useful in guiding comparative and phylogenetic 
analyses of plant NLRs and identifying under-studied taxa for future studies.  
 
RESULTS and DISCUSSION 
 
RefPlantNLR pipeline 
 
The current version of RefPlantNLR (v.20201113_442) contains 442 entries from 31 genera 
of flowering plants (Figure 1; Supplemental dataset 1, 2, 3). The list was obtained by mining 
and assessing information gathered from the literature. Briefly, we manually crawled through 
the literature, extracting plant NLRs that have been experimentally validated to at least some 
degree. We defined experimental validation broadly as genes reported to be involved in any of 
the following: 1) disease resistance, 2) disease susceptibility, including effector-triggered 
immune pathology or trailing necrosis to viruses, 3) hybrid necrosis, 4) autoimmunity, 5) NLR 
helper function or involvement in downstream immune responses, 6) negative regulation of 
immunity, and 7) well-described allelic series of NLRs with different pathogen recognition 
spectra even if not reported to confer disease resistance. 
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Figure 1: Number of experimentally validated RefPlantNLR sequences per plant genus. A) The number 
of experimentally validated NLRs per plant genus (N = 442), and B) the per genus reduced redundancy set at a 
90% sequence similarity threshold (N = 285) are plotted as a stacked bar graph. C) The class of pathogen to which 
NLRs in the RefPlantNLR dataset confer a response. Some NLRs may be involved in the response against multiple 
classes of pathogens while others have a helper role or are found to be involved in allelic variation in 
autoimmune/hybrid necrosis responses, and D) the per genus reduced redundancy set at a 90% sequence similarity 
threshold are plotted as a stacked bar graph. The number of experimentally validated NLRs belonging to the 
monophyletic TIR-NLR, CC-NLR, CCR-NLR, or CCG10-NLR subclade members are indicated.  
 
To validate the recovered sequences as genuine NLRs, we annotated them using InterProScan 
(Finn et al., 2017; see Material & Methods for the used sequence signatures) and predefined 
NLR motifs (Jupe et al., 2012). We defined NLRs as sequences containing the NB-ARC 
domain (Pfam signature PF00931) or a P-loop containing nucleoside triphosphate hydrolases 
domain (SUPERFAMILY signature SSF52540) combined with plant-specific NLR motifs (see 
Material & Methods for the used motifs). This resulted in 441 sequences. We also included 
RXL, which carries C-terminal LRRs, as well as an N-terminal Rx-type CC EDVID motif and 
the CC-type RNBS-D motif of the NB-ARC domain, but otherwise does not get annotated with 
a P-loop containing nucleoside triphosphate hydrolase domain (Xie et al., 2020). Altogether 
these 442 sequences form the current version of RefPlantNLR (Table S1).  
 
In addition to the 442 NLRs present in this version of RefPlantNLR, we separately collected 
several characterized animal, bacterial, and archaeal NB-ARC proteins (Table S2, 
Supplemental dataset 4) which can be used as outgroups for comparative analyses. 
Furthermore, several characterized plant immune components have features often found in 
NLRs–such as the RPW8-type CC or the TIR domain–but lack the NB-ARC domain or NB-
ARC-associated motifs that we used to define NLRs (see above). Since these proteins may 
have common origins with plant NLRs or may be useful for comparative analysis of these 
domains we have collected them separately as well (Table S3, Supplemental dataset 5, 6, 7). 
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Description of the RefPlantNLR dataset  
 
Table S1 describes the RefPlantNLR dataset, including amino acid, coding sequence (CDS) 
and locus identifiers, as well as the organism from which the NLR was cloned, the article 
describing the identification of the NLR, the pathogen type and pathogen to which the NLR 
provides resistance (when applicable), the matching pathogen effector, additional host 
components required for pathogen recognition (guardees or decoys) or required for NLR 
function and the articles describing the identification of the pathogen and host components. We 
also provide domain annotations for the amino acid sequences (Supplemental dataset 8). 
From this dataset, we extracted 433 unique NLRs and 450 NB-ARC domains of which 370 
were unique (Supplemental dataset 9, 10). NLRs with identical amino acid sequences were 
recovered because they have different resistance spectra when genetically linked to different 
sensor NLR allele (e.g. alleles of Pik), are different in non-coding regions leading to altered 
regulation (e.g. RPP7 alleles) or have been independently discovered in different plant 
genotypes (e.g. RRS1-R and SLH1).  
 
The distribution of the RefPlantNLR entries across plant species mirrors the most heavily 
studied taxa, i.e. Arabidopsis, Solanaceae (Solanum, Capsicum and Nicotiana) and cereals 
(Oryza, Triticum and Hordeum) (Figure 1A). These seven genera comprise 79% (347 out of 
442) of the RefPlantNLR sequences. When accounting for redundancy by collapsing similar 
sequences (>90% overall amino acid identity per genus), these seven genera would still account 
for 75% (215 out of 285) sequences (Figure 1B). It should be noted that there could be different 
evolutionary rates between NLRs, and hence some subfamilies may still be overrepresented in 
the reduced redundancy set.  
 
In total, 31 plant genera representing 11 taxonomic orders are listed in RefPlantNLR. 
Interestingly, these species represent a small fraction of plant diversity with only 11 of 59 major 
seed plant (spermatophyte) orders described by Smith and Brown represented, and not a single 
entry from non-flowering plants (Table S4) (Smith and Brown, 2018). Arabidopsis remains 
the only species with experimentally validated NLRs from the four major clades (CC-NLR, 
CCG10-NLR, CCR-NLR and TIR-NLR) (Figure 1). 
 
We also mapped the frequency of the pathogens that are targeted by RefPlantNLR entries. 
Most validated NLRs in the RefPlantNLR dataset are involved in responses against fungi 
followed by oomycetes (Figure 1c, Figure 1d for the reduced redundancy set). Responses to 
certain pathogen taxa is not constrained to particular subclasses of NLRs as all of TIR-NLRs, 
CCG10-NLRs, and CC-NLRs are involved in resistance to the main pathogen classes (fungi, 
oomycete, bacteria, and viruses). The notable exception is the CCR-NLR subclade which has 
only been validated for its helper function (Figure 1c, Figure 1d). Additionally, CCG10-NLR 
subclade members have not been assigned a helper activity, and CCR-NLR subclade members 
have not been implicated in autoimmunity or hybrid necrosis (Figure 1c, Figure 1d) even 
though several RPW8-only proteins are involved in hybrid necrosis (Chae et al., 2014; 
Barragan et al., 2019). 
 
The average length of RefPlantNLR sequences varies depending on the subclass (Figure 2A, 
Figure 2C for the reduced redundancy set). CC-NLRs varied from 665 to 1845 amino acids 
(mean = 1021, N = 318), whereas TIR-NLR varied from 380 to 2048 amino acids (mean = 
1167, N = 96). NB-ARC domains were more constrained (mean = 271, N = 370, stdev = 17) 
(Figure 2B). Nonetheless, 13 atypically short NB-ARCs (166 to 231 amino acids) and 5 long 
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NB-ARCs (305 to 339 amino acids) were observed at more than two standard deviations of the 
mean illustrating the overall flexibility of plant NLRs even for this canonical domain (Figure 
2B, Figure 2D for the reduced redundancy set). 
 

 
Figure 2: Length distribution RefPlantNLR amino acid sequence and extracted NB-ARC domains. 
Length distribution of the RefPlantNLR sequences. A) Histogram of RefPlantNLR amino acid sequence length 
(binwidth 50aa, N = 442). B) Histogram of the unique RefPlantNLR extracted NB-ARC domain 
(SUPERFAMILY signature SSF52540) amino acid sequence length (binwidth 5aa, N = 370). C) Histogram of 
amino acid sequence length of the reduced redundancy RefPlantNLR set at a 90% amino acid similarity threshold 
(binwidth 50aa, N = 285). D) Histogram of the extracted NB-ARC domain from the reduced redundancy 
RefPlantNLR set (binwidth 5aa, N = 281). Colour-coding according to NLR subfamily.  
 
We noted that some of the unusually small NLRs lacked a SSFR domain, while some of the 
small NB-ARC domains appeared to be partial duplications of this domain. In order to look at 
domain architecture of NLRs more widely and to determine whether these unusual features are 
common, we mapped the domain architecture of RefPlantNLR proteins (Figure 3A, Figure 
3B for the reduced redundancy set). Even though CC-NLR and TIR-NLR domain 
combinations were the most frequent (60% and 18%, respectively), we observed additional 
domain combinations. In the RefPlantNLR dataset, a subset of NLRs lack the N-terminal 
domain but still group with the major NLR clades based on the NB-ARC phylogeny. Some 
TIR-NLRs lack a SSFR domain. Non-canonical integrated domains are found in all NLR 
subfamilies, and occur at the N-terminus, in between the N-terminal domain and the NB-ARC 
domain, at the C-terminus or both ends. Of these non-canonical domains, the N-terminal late-
blight resistance protein R1 domain (also known as the Solanaceae domain; Pfam signature 
PF12061) only occurs in association with the NB-ARC domain, and has an ancient origin likely 
in the most recent common ancestor of the Asterids and Amaranthaceae (Seong et al., 2020). 
Other non-canonical domains are also more wide-spread, including the monocot-specific 
integration of a zinc-finger BED domain in between the CC and NB-ARC domain (Bailey et 
al., 2018; Marchal et al., 2018). Finally, some CC-NLRs have significantly truncated NB-ARC 
domain as is the case for Pb1 and RXL, the latter which using InterProScan only gets annotated 
with a LRR domain although it retains other NLR motifs such as the EDVID and RNBS-D 
motifs (Figure 3C). 
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Figure 3: Domain architecture of the RefPlantNLRs. Bar chart of the domain architecture of A) 
RefPlantNLRs (N = 442), or B) the per genus reduced redundancy RefPlantNLR set at an overall 90% amino acid 
similarity per genus (N = 285). C) Schematic representation of domain architecture. Used InterPro signatures for 
each of the domains are highlighted in the material & methods. There is currently no InterProScan signature or 
motif for the CCG10 N-terminal domain. 
 
We explored the phylogenetic diversity of RefPlantNLR proteins using the extracted NB-ARC 
domains (Figure 4; Supplemental dataset 9, 10, 11, 12). As with previously reported NLR 
phylogenetic analyses, RefPlantNLR sequences generally grouped in well-defined clades, 
notably CC-NLR, CCG10-NLR, CCR-NLR and TIR-NLR. Within this phylogeny some of the 
branches, notably of Wed and Pi54, are long and may represent highly diverged NB-ARC 
domains. Since Pb1 (Hayashi et al., 2010) and RXL (Xie et al., 2020) do not match the Pfam 
NB-ARC domain they were not included in this phylogenetic analysis. 
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Figure 4: Phylogenetic diversity of RefPlantNLR sequences. The tree, based on the NB-ARC domain, was 
inferred using the Maximum Likelihood method based on the Jones-Taylor-Thornton (JTT) model (Jones et al., 
1992). The tree with the highest log likelihood is shown. Branch labels indicates percentage bootstrap values 
inferred from 1000 rapid bootstrap replicates (Stamatakis et al., 2008). NLRs with identical NB-ARC domains 
are collapsed, while for those with multiple NB-ARC domains the NB-ARC are numbered according to order in 
the protein. The representative sequences of the 90% sequence identity reduced redundancy set are indicated in 
bold.  The TIR-NLR, CC-NLR, CCR-NLR, and CCG10-NLR subclades are indicated. Domain architecture is 
shown as in figure 3. 
 
Benchmarking NLR-annotation tools using RefPlantNLR 
 
We took advantage of the RefPlantNLR dataset to benchmark NLR-annotation tools by 
determining their sensitivity in retrieving NLRs and accuracy in annotating NLR domain 
architecture. This is particularly justified because the majority of NLR prediction tools have 
only been evaluated using the reference Arabidopsis NLRome, which is not representative of 
NLR diversity across flowering plants (Figure 1). We selected the 5 most popular NLR 
annotation tools for benchmarking (Table 1). Since not all RefPlantNLR entries have an 
associated CDS entry or genomic information and some of these NLR annotation tools only 
take nucleotide sequences as an input we decided to proceed with the benchmarking using only 
the RefPlantNLR entries with CDS information (429/442). Out of the NLR-annotation tools, 
DRAGO2 has the highest sensitivity, retrieving all of the RefPlantNLR entries when run on 
amino acid sequences (Figure 5a, Table 1). NLR-Annotator has the second highest sensitivity, 
retrieving 421/429 (98.1%) of the sequences (Figure 5a, Table 1). It has previously been noted 
that NLR-Annotator  does not perform well on retrieving the CCR-NLR subclade members 
(Steuernagel et al., 2015). Indeed, NLR-Annotator missed 6/9 (67%) of CCR-NLRs in the 
RefPlantNLR dataset, while it retrieved all TIR-NLRs and CCG10-NLRs,  and only missed 
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2/309 (0.6%) of CC-NLRs (Figure 5b). Additionally, NLR-Annotator performs similarly on 
extracted genomic sequence, retrieving 371/380 (97.4%) of RefPlantNLR entries with 
associated genomic information (Figure S1). NLGenomeSweeper, which like NLR-Annotator 
also takes either CDS or genomic sequence as an input, performs considerably worse on 
genomic input as compared to CDS input retrieving 342/381 (89.8%) of RefPlantNLR entries 
using extracted genomic sequence as an input versus 418/429 (97.4%) of RefPlantNLR entries 
when CDS was used as an input (Figure S1). Both NLR-Annotator and NLGenomeSweeper 
duplicate NLRs with multiple NB-ARC domains, potentially artificially inflating the number 
of NLRs extracted.  
 
Next, we compared sensitivity and domain annotation accuracy of the NLR annotation tools 
according to the four main NLR subclades. While DRAGO2 is the most sensitive in retrieving 
NLRs, it correctly annotated the domain architecture of less than half (45%) of the 
RefPlantNLR sequences (Figure 5b, Table 1). Although NLR-Annotator does not 
automatically output a domain architecture analysis as the other tools, upon conversion of the 
motif analysis to domain architecture we found that NLR-Annotator has the highest domain 
annotation accuracy of all tools, correctly annotating 378/429 (88%) of the NLRs (Figure 5b, 
Table 1). The other tools did not perform much better than DRAGO2, correctly annotating 
between 31.9% to 62.2% of RefPlantNLR entries (Figure 5b, Table 1). When looking at the 
different NLR subclades it becomes clear that most tools correctly identify and annotate TIR-
NLRs, while domain prediction accuracy is lower for the other NLR subclades (Figure 5b). 
The exception to this is NLR-Annotator which accurately annotates the domains of 273/309 
(88%) CC-NLRs. This is possibly because NLR-Annotator was validated with the wheat 
genome which contains a large proportion of CC-NLRs and some of the used motifs are 
specific to monocot CC-NLRs (Jupe et al., 2012), whereas the other tools were validated with 
Arabidopsis, which has a higher abundance of TIR-NLRs as compared to other species. Finally, 
comparing these NLR-annotation tools on the reduced redundancy RefPlantNLR set revealed 
a similar pattern (Figure S2, Appendix S1 for the full analysis). Based on the benchmarking 
using RefPlantNLR we find DRAGO2 to be the most sensitive tool for NLR-retrieval, while 
NLR-Annotator is the most sensitive tool for use on genomic input. None of the tools performs 
well on the domain architecture analysis except for NLR-Annotator, however, to extract such 
a domain architecture output from NLR-Annotator does require a substantial effort on the user 
side.  
 
Table 1: NLR-annotation tools         
    Output   RefPlantNLR (N = 429) 

Tool Input 
Domain 
annotation 

NB-
ARC   Sensitivity 

Annotation 
specificity 

DRAGO2 AA/transcripts Yes No   100%/99.3%* 45.2%/44.9%* 
NLGenomeSweeper Transcripts/Genomic Yes Yes   97.4%/89.8%** 31.9%/36.5%** 
NLR-annotator Transcripts/Genomic NLR-motifs Yes   98.1%/97.4%** 88.1%/86.9%** 
RGAugury AA Yes No   97.2% 58.3% 
RRGPredictor AA/transcripts Yes No   95.1% 62.2% 
*AA/CDS input             
**CDS/Genomic input. Gene models were available for 381 NLRs       
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Figure 5: Benchmarking NLR annotation tools using RefPlantNLR. Benchmarking of NLR annotation tools 
using the RefPlantNLR dataset for which a CDS entry was available (N = 429). A) UpSet plot showing 
intersection of RefPlantNLR entries retrieved by each annotation tool. B) Domain architecture analysis produced 
by each NLR annotation tool per NLR subclass. Correct domain architecture is consistent with RefPlantNLR 
annotation, incorrect is inconsistent with RefPlantNLR annotation. Other is retrieved by NLR annotation tool but 
not reliably classified as NLR. 
 

 
Figure S1: Comparison of NLR-Annotator and NLGenomeSweeper on CDS versus genomic input. 
NLR-Annotator and NLGenomeSweeper were run on CDS or genomic input. A) Domain architecture analysis of 
NLR-Annotator and NLGenomeSweeper run on CDS or genomic input from each RefPlantNLR entry. Only 
entries for which a genomic locus was available were considered (N = 381). B) Same as A) for the representative 
dataset (N = 259). Correct domain architecture is consistent with RefPlantNLR annotation, incorrect is 
inconsistent with RefPlantNLR annotation.  
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Figure S2: Benchmarking NLR annotation tools using reduced redundancy RefPlantNLR entries. 
Benchmarking of NLR annotation tools using the reduced redundancy RefPlantNLR dataset for which a CDS 
entry was available (N = 280). A) UpSet plot showing intersection of RefPlantNLR entries retrieved by each 
annotation tool. B) Domain architecture analysis produced by each NLR annotation tool per NLR subclass. 
Correct domain architecture is consistent with RefPlantNLR annotation, incorrect is inconsistent with 
RefPlantNLR annotation. Other is retrieved by NLR annotation tool but not reliably classified as NLR. 
 
NLRtracker: an NLR extraction and annotation pipeline based on the core features of 
RefPlantNLR 
 
To address the limitations of the current NLR annotation tools highlighted above, we generated 
a novel pipeline we called NLRtracker. NLRtracker uses  InterProScan (Finn et al., 2017) and 
the predefined NLR motifs (Jupe et al., 2012) to annotate all sequences in a given proteome or 
transcriptome and then extracts and annotates NLRs based on the core NLR sequence features 
(Late blight R1, TIR, RPW8, CC, NB-ARC, LRR, and integrated domains) found in the 
RefPlantNLR dataset (Figure 6a, Appendix S2). Additionally, NLRtracker extracts the NB-
ARC domain for comparative phylogenetic analysis.  
 
We compared NLRtracker to the other NLR-annotation tools on the Arabidopsis, tomato, and 
rice RefSeq genomes. In this way we could also assess the accuracy of each NLR-annotation 
tool, something which is not possible with the RefPlantNLR dataset. Using all tools, we 
extracted a total of 1615 NLRs from the reference Arabidopsis (N = 441), tomato (N = 250), 
and rice (N = 924) genomes (Figure 6b). The total number of NLRs belonging to each subclade 
in each species is reflected in the distribution of each subclade in these species in the 
RefPlantNLR dataset (Figure 6b). In addition to the four main subclades of NLRs, we also 
retrieved a highly conserved TIR-NB-ARC (TN) class of proteins which phylogenetically 
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clusters separately from all other plant NLRs and whose gene structure is clearly distinct from 
other TIR-NLRs (Meyers et al., 2002), as well as certain NB-ARC containing proteins which 
did not clearly belong to any of these clades. This included an Arabidopsis NB-ARC protein 
with an integrated ZBTB8B domain in between the NB-ARC and the LRR, as well as a rice 
protein containing an NB-ARC domain with a C-terminal armadillo-type SSFR (Figure 6b, 
Appendix S3 for the full analysis).  
 
Using this dataset, we evaluated the sensitivity and specificity of each NLR-annotation tool. 
Sensitivity was defined as the total percentage NLRs retrieved out of the total NLR dataset, 
while specificity was defined as the total number of sequences annotated as NLRs being 
genuine NLRs. False positives could include TIR- or RPW8-only proteins annotated as genuine 
NLRs, or unrelated sequences annotated as NLRs. On this dataset, NLRtracker had the highest 
sensitivity (retrieving 1611/1615 (99.8%) NLRs with 100% accuracy (Table 2, Figure 6b, 
Figure S3). The four missed sequences were retrieved by DRAGO2 and included one NLR 
with an N-terminal CC-domain and a C-terminal LRR, but which did not get annotated with 
an NB-ARC domain using InterProScan or the predefined NLR motifs, and three truncated 
proteins, two of which contain an LRR domain while one does not get annotated with any 
domain using InterProScan.  
 
Of the pre-existing tools DRAGO2 was the most sensitive, retrieving 1526/1615 (94.5%) 
NLRs, however, it also was the least accurate method extracting 91 false positives (Table 1, 
Figure S3). These false positives were predominantly proteins containing a P-loop containing 
nucleoside triphosphate hydrolase domain unrelated to the NB-ARC domain. Similarly, 
RGAugury extracted 13 such false positives. By contrast, the 8 false positives extracted by 
RRGPredictor are RPW8-containing proteins lacking an NB-ARC domain. In conclusion, the 
NLRtracker tool we developed here is more sensitive and more accurate than previously 
available tools for extracting NLRs from a given plant proteome/transcriptome. Additionally, 
NLRtracker facilitates domain architecture analysis and phylogenetic analysis. Combining the 
extracted NB-ARC domain generated by NLRtracker with the RefPlantNLR extracted NB-
ARC dataset (Supplemental dataset 10) should greatly facilitate comparative phylogenetics 
and reveal the phylogenetic relationships of a newly annotated NLR. Nevertheless, the quality 
of the output remains dependent on the quality of the input sequences, and none of these tools 
is able to determine whether an extracted sequence represents a genuine NLR, as in having a 
genuine NB-ARC domain or consisting of a full-length protein. For example, 94/1615 
extracted proteins do not get annotated with an NB-ARC domain, of which 44 do not get 
annotated with a P-loop containing nucleoside triphosphate hydrolases domain but do contain 
NB-ARC-specific motifs in combination with domains found in NLRs. Some of these may 
represent genuine NLRs such as Pb1 or RXL, that have undergone regressive evolution, 
whereas other may be partial or pseudogenes.  
 

Table 2: Extraction of NLRs from the Arabidopsis, tomato, and rice RefSeq proteomes 
      Arabidopsis/tomato/rice (N = 1615) 

Tool Input   Sensitivity Specificity* 

DRAGO2 AA/transcripts   94.5% 94.4% 
NLGenomeSweeper Transcripts/Genomic 76.3% 100% 
NLR-annotator Transcripts/Genomic 88.4% 100% 
RGAugury AA   92.6% 99.1% 
RRGPredictor AA/transcripts   91.1% 99.5% 
NLRtracker AA/transcripts   99.8% 100% 
*Percentage of retrieved NLRs being genuine NLRs   
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Figure 6: Sensitivity of NLRtracker compared to other annotation tools using Arabidopsis, tomato, 
and rice RefSeq genomes. Benchmarking of NLR annotation tools using the Arabidopsis, rice and tomato 
RefSeq genomes. A)  NLRtracker pipeline. InterProScan and predefined NLR-motifs are used to group 
sequences into different categories. B) Number of NLRs retrieved in each NLR subclass per species. 
 

 
Figure S3: Sensitivity and accuracy of NLRtracker compared to other annotation tools using 
Arabidopsis, tomato, and rice RefSeq genomes. Benchmarking of NLR annotation tools using the 
Arabidopsis, rice and tomato RefSeq genomes. UpSet plot showing intersection of NLRs retrieved by each 
annotation tool. False positive annotations are marked in red.  
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Additional applications of the RefPlantNLR dataset 
 
We showed that RefPlantNLR is useful for benchmarking and improving NLR annotation 
tools. Additional uses of the dataset include providing reference points for newly discovered 
NLRs with NLRtracker feeding into the large-scale phylogenetic analyses that are necessary 
for classifying NLRomes. Phylogenetic analyses would help assign NLRs to subclades and 
provide a basis for generating hypotheses about the function and mode of action of novel NLRs 
which phylogenetically cluster with experimentally validated NLRs. This type of phylogenetic 
information can be combined with other features such as genetic clustering and has, for 
instance,  proven valuable in previous work on rice and solanaceous NLRs (Białas et al., 2017; 
Wu et al., 2017) and for defining the CCG10-NLR class (Lee et al., 2020).  
 
Furthermore, known mutants and sequence variants can be mapped onto a phylogenetic 
framework, such as the RefPlantNLR tree (Figure 4). For example, the CC-NLR ZAR1 and 
TIR-NLR ROQ1 are bound to ATP in their activated form (Wang et al., 2019; Martin et al., 
2020), whereas the TIR-NLR RPP1 is bound to ADP in its activated form (Ma et al., 2020). 
RefPlantNLR has already proven useful in interpreting a feature of the recently elucidated 
structure of the RPP1 resistosome (Ma et al., 2020). The authors used RefPlantNLR to 
determine that although most CC-NLRs contain a TT/SR motif in which the arginine interacts 
with ATP, a subset of TIR-NLRs contain a charged or polar substitution creating a TTE/Q 
motif interacting with ADP in the activated form (Ma et al., 2020). Interestingly a 
phylogenetically distinct subgroup of CC-NLRs known as the MIC1 group (Bailey et al., 2018) 
is an exception to this rule by having a TTE/Q motif in their ADP binding pocket and thus may 
also retain ADP binding when activated. This example shows how a carefully curated reference 
dataset like RefPlantNLR can facilitate data interpretation and hypothesis generation. 
 
RefPlantNLR highlights the under-studied plant species of NLR biology. Table S4 reveals that 
~80% (48 out of 59) of the major seed plant clades recently defined by Smith and Brown (Smith 
and Brown, 2018) do not have a single experimentally validated NLR. Certain taxa have 
subfamily-specific contractions and expansions, and hence may contain unexplored genetic 
and biochemical diversity of NLR function. Looking forward, combining the output of 
NLRtracker with RefPlantNLR may highlight understudied subgroups of NLRs even within 
well-studied organisms. For example, while all currently studied CCR-NLRs act as helper 
NLRs for TIR-NLRs, it has been reported that the CCR-NLR subfamily has experienced clade-
specific expansions in gymnosperms and rosids, pointing to potential biochemical 
specialization of this subfamily in these taxa (Van Ghelder et al., 2019). In addition, although 
NLRs have been reported in non-seed plants and some of these appear to have distinct N-
terminal domains (Andolfo et al., 2019), their experimental validation is still lacking.  
 
The RefPlantNLR dataset has inherent limitations due to its focus on experimentally validated 
NLRs. First, it is biased towards a few well studied model species and crops as illustrated in 
Figure 1. Additionally, RefPlantNLR entries are somewhat redundant with particular NLR 
allelic series, such as the monocot MLA and spinach alpha-WOLF, being overrepresented in 
the dataset (Figure 1, Figure 4). These issues, notably redundancy, will need to be considered 
for certain applications where it may be preferable to use the reduced redundancy dataset 
(Supplemental dataset 13, 14). 
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Conclusion 
 
We hope that the RefPlantNLR resource will contribute to moving the field beyond a uniform 
view of NLR structure and function. It is now evident that NLRs turned out to be more 
structurally and functionally diverse than anticipated. Whereas a number of plant NLRs have 
retained the presumably ancestral three domain architecture of the TIR/CCR/CCG10/CC fused 
to the NB-ARC and LRR domains, many NLRs have diversified into specialized proteins with 
degenerated features and extraneous non-canonical integrated domains (Sarris et al., 2016; 
Kroj et al., 2016; Adachi, Derevnina, et al., 2019). Therefore, it is time to question holistic 
concepts such as effector-triggered immunity (ETI) and appreciate the wide structural and 
functional diversity of NLR-mediated immunity. More specifically, a robust phylogenetic 
framework of plant NLRs should be fully integrated into the mechanistic study of these 
exceptionally diverse proteins. 
   
MATERIAL & METHODS 
 
Sequence retrieval 
 
RefPlantNLR was assembled by manually crawling the literature for experimentally validated 
NLRs according to the criteria described in the results section. NLRs are defined as having a 
NB-ARC and at least one additional domain. Where possible the amino acid and nucleotide 
sequences were taken from GenBank. For some NLRs, only the mRNA has been deposited and 
no genomic locus information was present. When GenBank records were not available, the 
sequences were extracted from the matching whole-genome sequences projects or from articles 
and patents describing the identification of these NLRs.  
 
Domain annotation 
 
Protein sequences were annotated with CATH-Gene3D (v4.2.0) (Dawson et al., 2017), 
SUPERFAMILY (v1.75) (Gough et al., 2001), PRINTS (v42.0) (Attwood et al., 2000), 
PROSITE profiles (v2019_11) (Sigrist et al., 2013), SMART (v7.1) (Letunic et al., 2015), 
CDD (v3.17) (Marchler-Bauer et al., 2015), and Pfam (v33.1) (El-Gebali et al., 2019) 
identifiers using InterProScan (v5.47-82.0) (Finn et al., 2017) and predefined NLR-motifs 
(Jupe et al., 2012) using the meme-suite (v5.1.1) (Bailey et al., 2009). A custom R script 
(Appendix S4) was used to convert the InterProScan output to the final GFF3 annotation and 
extract the NB-ARC domain. We routinely use Geneious Prime (v2020.2.4) 
(https://www.geneious.com) to visualize these annotations on the sequence. The NLR-
associated signature motifs/domain IDs are: 

• Late blight resistance protein R1: PF12061 
• Rx-type CC: PF18052, cd14798 
• RPW8-type CC: PF05659, PS51153 
• TIR: PF01582, PF13676, G3DSA:3.40.50.10140, SSF52200, PS50104, SM00255  
• NB-ARC: PF00931, G3DSA:1.10.8.430 
• NB-ARC used for phylogenetic analysis: overlap of G3DSA:3.40.50.300, 

SSF52540, G3DSA:1.10.8.430, and PF00931 domains 
• NB-ARC associated motifs: motif 2, 7, and 8 from Jupe et al., (2012) corresponding 

to the CCR/CCG10/CC-type RNBS-D, MHD, and linker motifs of the NB-ARC 
domain, respectively 

• LRRs: G3DSA:3.80.10.10, PF08263, PF07723, PF07725, PF12799, PF13306, 
PF00560, PF13516, PF13855, SSF52047, SSF52058, SM00367, SM00368, 
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SM00369, PF18837, PF01463, SM00082, SM00013, PF01462, PF18831, and 
PF18805 

• Other: any other Pfam, SUPERFAMILY, and/or CATH-Gene3D annotation. 
Additionally, we included the PROSITE Profiles signatures PS51697 (ALOG 
domain) and PS50808 (zinc-finger BED domain), and the SMART signature 
SM00614 (zinc-finger BED domain). 

 
Sequence deduplication 
 
The NLR amino acid sequences were clustered using CD-HIT at 90% sequence identity 
(v4.8.1; Fu et al., 2012; Usage: cd-hit -i RefPlantNLR.fasta  -o RefPlantNLR _90 -c 0.90 -n 5 
-M 16000 -d 0). A custom R script (Appendix S4) was used to assign representative sequences 
per cluster per genus, i.e. if a single cluster contained sequences from multiple genera we 
assigned a representative sequence per genus. The reduced redundancy sequences are provided 
in Supplemental dataset 13, 14. 
 
Phylogenetics 
 
The NB-ARC domain of all NLRs were extracted and deduplicated using a custom R script 
(Appendix S4). For sequences containing multiple NB-ARC domains the extracted NB-ARC 
domain was numbered according to occurrence in the protein. Sequences were aligned using 
Clustal Omega (Sievers et al., 2011), and all positions with less than 95% site coverage were 
removed using QKphylogeny (Moscou, 2020) (Supplemental dataset 11). RAxML (v8.2.12) 
(Stamatakis, 2014) was used (usage: raxmlHPC-PTHREADS-AVX -T 6 -s RefPlantNLR.phy 
-n RefPlantNLR -m PROTGAMMAAUTO -f a -# 1000 -x 8153044963028367 -p 
644124967711489) to infer the evolutionary history using the Maximum Likelihood method 
based on the JTT model (Jones et al., 1992). Bootstrap values from 1000 rapid bootstrap 
replicates as implemented in RAxML are shown (Stamatakis et al., 2008) (Supplemental 
dataset 12). The RefPlantNLR phylogeny was rooted on the TIR-/CCR-subclade and edited 
using the iTOL suite (v5.5.1; Letunic and Bork, 2019). 
 
Figures describing RefPlantNLR 
 
The figures describing the RefPlantNLR dataset were generated using a custom R script 
(Appendix S5). 
 
Benchmarking RefPlantNLR 
 
For benchmarking using the RefPlantNLR dataset we used DRAGO2 (DRAGO2-API, Osuna-
Cruz et al., 2018), NLGenomeSweeper (v1.2.0, Toda et al., 2020; dependencies: Python 3.8, 
NCBI-BLAST+ (v2.11.0+), MUSCLE aligner (v3.8.1551), SAMtools (v1.9-50-g18be38a), 
bedtools (v2.27.1-9-g5f83cacb), HMMER (v3.3.1), InterProScan (v5.47-82.0), TransDecoder 
(v5.5.0)), NLR-Annotator  (Steuernagel et al., 2020; dependencies: meme-suite (v5.1.1), NLR-
Parser (v3;Steuernagel et al., 2015), Oracle Java SE Development Kit 11.0.9), RGAugury (Li 
et al., 2016; dependencies: CViT, HMMER,  InterProScan, ncoils, NCBI-BLAST+, Pfamscan, 
Phobius), and RRGPredictor (Santana Silva and Micheli, 2020; dependencies: InterProScan) 
using either amino acid, CDS, and/or the extracted NLR genomic loci as an input. Since 
NLGenomeSweeper and NLR-Annotator only accept nucleotide input, while RGAugury only 
accepts amino acid input, we only used RefPlantNLR entries for which CDS was available in 
the direct comparison. For the domain analysis only the TIR, RxN-type CC, RPW8-type CC, 
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NB-ARC, and LRR domains were considered. Additionally, sequentially duplicated domains 
were compressed in a single annotation. A custom R script was used to generate the analysis 
(Appendix S1). 
 
Description of NLRtracker 
 
NLRtracker (Appendix S2) runs InterProScan (v5.47-82.0) (Finn et al., 2017) and FIMO from 
the meme-suite (v5.1.1) (Bailey et al., 2009) using predefined NLR-motifs (Jupe et al., 2012). 
An R script which depends on the Tidyverse (Wickham et al., 2019) extracts sequences 
containing NLR-associated domains and classifies them into different subgroups:  

• NLR: containing an NB-ARC domain 
• Degenerate NLR: containing RxN-type CC, late blight resistance protein R1, 

RPW8-type CC, or TIR in combination with a P-loop containing nucleotide 
hydrolase domain not overlapping with other annotations or containing a RxN-type 
CC, late blight resistance protein R1, RPW8-type CC, TIR, or LRR with a RNBS-
D, linker, and/or MHD motif 

• TX: TIR domain containing protein lacking a P-loop containing nucleotide 
hydrolase domain and RNBS-D, linker, and/or MHD motif 

• CCX: RxN-type CC or late blight resistance protein R1 domain containing protein 
lacking a P-loop containing nucleotide hydrolase domain and RNBS-D, linker, 
and/or MHD motif 

• RPW8: RPW8-type CC domain containing protein lacking a P-loop containing 
nucleotide hydrolase domain and RNBS-D, linker, and/or MHD motif 

• MLKL: containing HeLo domain of plant-specific mixed-lineage kinase domain 
like proteins (PF06760; DUF1221) (Mahdi et al., 2020) 

NLRtracker outputs the domain architecture analysis, as well as the domain boundaries. 
Additionally, the NB-ARC is extracted facilitating phylogenetic analysis. The current version 
of NLRtracker can be accessed through GitHub (https://github.com/slt666666/NLRtracker).  
 
Benchmarking on Arabidopsis, tomato and rice genomes 
 
The NCBI RefSeq proteomes of Arabidopsis (Arabidopsis thaliana ecotype Col-0; genome 
assembly GCF_000001735.4; TAIR and Araport annotation), tomato (Solanum lycopersicum 
cv. Heinz 1706; genome assembly GCF_000188115.4; RefSeq annotation v103), rice (Oryza 
sativa group Japonica cv. Nipponbare; genome assembly GCF_001433935.1; RefSeq 
annotation v102) were downloaded from NCBI. We used NLRtracker, DRAGO2, RGAugury, 
and RRGPredictor on amino acid sequences, while we used the extracted CDS from the 
genomic sequence as an input for NLGenomeSweeper and NLR-Annotator.  
 
NLRs were grouped in different subclades based on phylogenetic clustering with the 
RefPlantNLR CCR-NLR, TIR-NLR, CCG10-NLR, and CC-NLR subgroups, while those that 
did not clearly fall into any of these groups but contained a TIR-domain and P-loop containing 
nucleotide hydrolase domain were classified as TN subclade members. The remainder was 
grouped together and classified as other. Proteins which were extracted but did not belong to 
the NLR subfamily were manually inspected and classified as false positives. Additionally, 
TIR- or RPW8-only (TX and RPW8 respectively) proteins extracted as NLRs were marked as 
false positives. A custom R script was used to generate the analysis (Appendix S3). 
 
Data availability and updates 
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Up to date versions of RefPlantNLR can be accessed via Zenodo at 
http://doi.org/10.5281/zenodo.3936022. This project is part of the OpenPlantNLR community 
on Zenodo: https://zenodo.org/communities/openplantnlr 
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Table S1: Description of RefPlantNLR. 
 
Table S2: Description of animal, bacterial, and archaeal NB-ARC-domain containing 
proteins. 
 
Table S3: Description of NLR-associated proteins. 
 
Table S4: Plant orders represented in RefPlantNLR. 
 
Supplemental dataset 1: Amino acid sequences of RefPlantNLR entries (fasta format). 
This file contains 442 amino acid sequences. 
 
Supplemental dataset 2: CDS sequences of RefPlantNLR entries (fasta format). This file 
contains 427 CDS sequences. For 15 RefPlantNLR entries no CDS sequence could be 
retrieved. 
 
Supplemental dataset 3: Annotated genomic sequences of RefPlantNLR entries 
(GenBank flat file format). This file contains 354 genomic loci containing the gene models 
of 387 RefPlantNLR entries. 
 
Supplemental dataset 4: Amino acid sequences of animal, bacterial, and archaeal NB-
ARC domain containing proteins (fasta format). This file contains 13 amino acid 
sequences. 
 
Supplemental dataset 5: Amino acid sequences of NLR-associated entries (fasta format). 
This file contains 15 amino acid sequences. 
 
Supplemental dataset 6: CDS sequences of NLR-associated entries (fasta format). This 
file contains 15 CDS sequences. For 1 entry no CDS sequence could be retrieved. 
 
Supplemental dataset 7: Annotated genomic sequences of NLR-associated entries 
(GenBank flat file format). This file contains 13 genomic loci containing the gene models 
of 14 NLR-associated entries. 
 
Supplemental dataset 8: Domain and motif annotation of the RefPlantNLR amino acid 
sequences, animal, bacterial, and archaeal NB-ARC domain containing proteins, and 
NLR-associated proteins (GFF3 format). This file contains the InterProScan annotation of 
470 amino acid sequences. 
 
Supplemental dataset 9: Amino acid sequences of the extracted RefPlantNLR NB-ARC 
domains (fasta format). This file contains 450 NB-ARC domain amino acid sequences 
belonging to 442 RefPlantNLR entries. 
 
Supplemental dataset 10: Amino acid sequences of the unique RefPlantNLR extracted 
NB-ARC domains (fasta format). This file contains 370 unique NB-ARC domains amino 
acid sequences. 
 
Supplemental dataset 11: Clustal Omega alignment of the unique RefPlantNLR 
extracted NB-ARC domains (PHYLIP format). This file contains the Clustal Omega 
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alignment of 369 unique NB-ARC domains with all positions with less than 95% coverage 
removed. Pb1 and RXL were omitted from this alignment. 
 
Supplemental dataset 12: NB-ARC domain phylogeny of the RefPlantNLR entries using 
the Maximum likelihood method (Newick format). This file contains the phylogenetic 
analysis of the NB-ARC domain of the RefPlantNLR entries using the JTT method. 
 
Supplemental dataset 13: Amino acid sequences of the non-redundant RefPlantNLR 
entries (fasta format). This file contains 285 amino acid sequences representing the non-
redundant RefPlantNLR entries at a 90% identity threshold per genus. 
 
Supplemental dataset 14: Amino acid sequences of the non-redundant RefPlantNLR 
entries (fasta format). This file contains 281 amino acid sequences representing the unique 
non-redundant RefPlantNLR at a 90% identity threshold per genus extracted NB-ARC 
domains. 
 
Appendix S1: Benchmarking using RefPlantNLR. Scripts and data. 
 
Appendix S2: NLRtracker. Scripts. 
 
Appendix S3: Benchmarking using Arabidopsis, tomato, and rice proteomes. Scripts 
and data.  
 
Appendix S4: Scripts and data to convert annotations, extract NB-ARC domain and 
assign representative entries. 
 
Appendix S5: R script used to generate figures describing RefPlantNLR. 
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