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Abstract 
     Obesity is a risk factor for Alzheimer´s disease (AD), but underlying mechanisms 
are not clear. We analyzed peripheral clearance of amyloid β (Aβ) in overweight mice 
because its systemic elimination may impact on brain Aβ load, a major landmark of AD 
pathology. Overweight mice showed increased peripheral Aβ clearance by the liver, the 
major site of elimination of systemic Aβ, but unaltered brain Aβ levels. Since 
circulating insulin-like growth factor I (IGF-I) modulates brain Aβ clearance, and is 
increased in serum of overweight mice, we determined whether it affects peripheral Aβ 
clearance. We found that Aβ uptake by hepatocytes is stimulated by IGF-I. Moreover, 
mice with low serum IGF-I levels show reduced peripheral Aβ clearance. In the brain, 
IGF-I favored association of its receptor (IGF-IR) with Aβ precursor protein (APP), and 
at the same time stimulated non-amyloidogenic processing of APP in astrocytes, as 
indicated by an increased sAPPα/sAPPβ ratio after IGF-I treatment. Since serum IGF-I 
enters into the brain in an activity-dependent manner, we analyzed in overweight mice 
the effect of brain activation by environmental enrichment (EE) on brain IGF-IR 
phosphorylation and its association to APP, as a readout of IGF-I activity. After EE, 
significantly less activation of brain IGF-IR phosphorylation and APP/IGF-IR 
association was found in overweight mice as compared to lean controls. Collectively, 
these results indicate that diet influences peripheral clearance of Aβ without affecting 
brain Aβ load. Increased serum IGF-I likely contributes to enhanced peripheral Aβ 
clearance in overweight mice, without affecting brain Aβ clearance probably because its 
brain entrance is reduced.  
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Introduction 

     Obesity is considered a risk factor for AD (1-3). However, the relationship between 

body weight and dementia appears complex (4-6), and recent observations even pose a 

protective role of late-life excess weight in AD (7). Taking into account the worrying 

worldwide prevalence of obesity and dementia (8,9), greater knowledge of possible 

links between the two conditions is imperative. Amyloid β (Aβ) handling may be one 

such link, as this peptide is considered a major pathogenic factor in AD and obesity-

associated inflammation (10) may interfere with it.  

     We recently proposed that insulin peptides, including insulin and insulin-like growth 

factor I (IGF-I), may be involved in the connection between life-style and AD risk (11), 

although apparently contradictory evidence links IGF-I with AD (12,13). Significantly, 

the actions of IGF-I on the brain are modulated by diet (14).  Brain IGF-I is in part 

locally synthesized (15), and in part derived from uptake from the circulation (16). The 

entrance of circulating IGF-I into the brain is tightly regulated (17), probably because it 

participates in many essential brain functions (18).  

     IGF-I may not only be involved in brain Aβ clearance (12); other findings point to an 

effect of IGF-I on APP processing towards the non-amyloidogenic pathway, reducing in 

this way its production (19-21). However, IGF-I has also been shown to favor the 

amyloidogenic pathway (22,23), while a deleterious effect of IGF-I signaling in 

proteostasis, favoring Aβ accumulation, has also been reported (13). Of note, 

hepatocytes, the main source of circulating IGF-I (24), are the major disposal system for 

circulating Aβ in mice (25), and previous evidence has shown that insulin, a hormone 

closely related to IGF-I, favors Aβ uptake by hepatocytes (26).  

     In the present work we investigated regulation of peripheral Aβ clearance in 

overweight mice, its impact on brain Aβ levels, and the role of circulating IGF-I.  

 

Results 

Diet influences peripheral Aβ clearance 

     We examined peripheral Aβ disposal in overweight mice because is a proposed 

mechanism for central Aβ clearance (27). We administered fluorescently tagged Aβ to 

mice fed with a high fat diet (HFD) for 10 weeks. Animals became overweight and 

glucose intolerant (Suppl Figure A,B). Ninety minutes after intravenous injection of Aβ, 

overweight mice showed significantly increased fluorescence accumulation in the liver 
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and decreased in serum, suggesting increased disposal of Aβ through hepatocytes 

(Figure 1A). Conversely, brain Aβ levels in overweight mice were not different from 

those seen in lean ones (Figure 1B).  

IGF-I promotes Aβ uptake by hepatocytes 

     To try to clarify the discrepancy between increased peripheral disposal of Aβ and 

normal brain Aβ load, we analyzed a possible role of IGF-I, that is mostly produced by 

the liver (24), and is increased in overweight mice (Figure 2A). We determined whether 

IGF-I modulates uptake of Aβ by hepatocytes. As shown in Figure 2B, in the presence 

of IGF-I (10 nM), hepatocytes accumulated significantly more fluorescence, suggesting 

a stimulatory action of IGF-I on Aβ uptake by these cells. Moreover, liver IGF-I 

deficient (LID) mice with a 70% reduction in circulating IGF-I (28), showed reduced 

liver accumulation of tagged Aβ after intravenous injection, while blood levels were 

increased, as compared to controls, indicating reduced liver clearance (Figure 2C). 

Collectively, this suggests that serum IGF-I modulates liver clearance of Aβ. 

Cell-specific actions of IGF-I in APP metabolism by brain cells 

     IGF-I has been reported to promote either amyloidogenic (22), or non-

amyloidogenic (20) APP processing pathways in neuronal cell lines. To clarify its role 

in primary cells, we analyzed the actions of IGF-I on amyloidogenic and non-

amyloidogenic APP processing by astrocytes and neurons, the primary sources of Aβ in 

the brain (29,30). Using the soluble APP metabolites sAPPβ and sAPPα as markers of 

the amyloidogenic and the non-amyloidogenic pathway, respectively, we found that 

IGF-I modulates their production in a cell specific fashion. In astrocytes, secretion of 

both soluble forms of APP was stimulated by IGF-I, whereas in neurons IGF-I inhibited 

their secretion (Figure 3A). However, the APPα/sAPPβ ratio was increased in both cell 

types, indicating that the net action of IGF-I is to promote non-amyloidogenic 

processing of APP (Figure 3B).    

     Since both IGF-IR and APP associate to LRP1, and APP processing depends on its 

subcellular localization (31), we assessed whether IGF-IR and APP interact with each 

other. Indeed, IGF-IR and APP co-immunoprecipitated in astrocytes, whereas in 

neurons the interaction was negligible (Figure 3C). Proximity ligation assays (PLA) 

confirmed a robust interaction of APP with IGF-IR in astrocytes (Figure 3D), while in 

neurons the interaction was negligible (not shown). Treatment of astrocytes with IGF-I 
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resulted in a significantly increased interaction between both proteins, as determined by 

a stronger PLA signal (Figure 3D).  

     Since IGF-I promotes Aβ uptake by hepatocytes (32), we examined whether it can 

exert similar action in brain cells. In this organ, the main cell types involved in Aβ 

clearance are microglia and astrocytes through its uptake and degradation (33,34), and 

endothelial cells at the blood-brain-barrier (BBB), through efflux of brain Aβ into the 

circulation (35). We found that IGF-I promoted Aβ uptake by astrocytes (Figure 4A), 

while decreased it in microglia (Figure 4B). In brain endothelial cell cultures mimicking 

the BBB architecture (17), IGF-I not significantly inhibited Aβ efflux from the “brain” 

side to the “blood” side of the double chamber (Figure 4C).  

Reduced brain IGF-I activity in overweight mice     

     Since serum IGF-I levels are increased in overweight mice (Figure 2A), we 

determined whether brain IGF-I is correspondingly higher, as serum IGF-I crosses the 

BBB (16). However, overweight mice showed normal brain IGF-I levels (Figure 5A). 

To explain this discrepancy between peripheral and central IGF-I levels, we determined 

whether passage of serum IGF-I into the brain is reduced in overweight mice. To this 

end, we took advantage that exposure to environmental enrichment (EE) stimulates the 

passage of serum IGF-I into the brain (17). We tested whether overweight mice show 

altered passage of IGF-I after EE by measuring Tyr-phosphorylation of brain IGF-I 

receptors as a proxy of their activity. After EE, overweight mice showed reduced IGF-

IR phosphorylation (Figure 5B), pointing to impaired entrance of circulating IGF-I. In 

addition, since systemic administration of IGF-I to lean mice housed under standard 

conditions showed enhanced APP/IGF-IR interaction (Figure 5C), corroborating in vitro 

observations (Figure 3D), we used this interaction as an additional indicator of the 

entrance of IGF-I into the brain of EE-stimulated overweight mice. Significantly, 

whereas in lean mice EE produced enhanced brain APP/IGF-IR interactions, in 

overweight mice, this interaction was significantly smaller (Figure 5D), pointing to 

reduced entrance of IGF-I.   

 

Discussion 

     These results indicate that diet influences peripheral Aβ clearance through the liver 

without impacting brain Aβ levels. A lack of correlation between peripheral and central 

Aβ clearance agrees with observations that reducing peripheral Aβ does not affect brain 
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Aβ levels, or with the absence of correlation between central and peripheral Aβ levels 

in AD patients (36-39). However, increased peripheral Aβ levels after anti-Aβ treatment 

was reported to parallel a decrease of brain Aβ; reducing peripheral Aβ was sufficient to 

reduced brain Aβ, and recent studies favor a diagnostic utility of the relationship 

between plasma and CSF Aβ1-42 (27,40,41). Thus, the relationship between peripheral 

and central Aβ is still under debate (42); indeed,  a substantial part of brain Aβ 

clearance in humans takes place in the periphery (43). In turn, normal brain levels of Aβ 

in overweight mice agree with previously reported similar observations (44), but not 

with increased brain Aβ load found by others (45,46). Conversely, enhanced elimination 

of circulating Aβ in overweight mice favors the notion that higher body mass index may 

be protective rather than detrimental for AD risk (4), However, unaffected brain Aβ 

load does not fit with a protective effect of increased body mass, unless still undefined 

systemic changes contribute to AD, as recently postulated (47).  

    Among them, we considered circulating IGF-I as a probable systemic factor 

influencing the connection of obesity with AD. IGF-I is involved in brain Aβ clearance 

(12) -although this has been questioned (48), and shows diet-sensitive actions in the 

brain (14). Indeed, several observations favor the involvement of circulating IGF-I in 

the systemic pro-clearance actions of a high fat diet. 1) IGF-I levels are increased in 

overweight mice, 2) IGF-I, as previously seen with insulin (26), stimulates uptake of Aβ 

by hepatocytes, and 3) LID mice with low serum IGF-I show reduced peripheral Aβ 

clearance. Thus, higher serum IGF-I levels in overweight mice may contribute to reduce 

peripheral Aβ levels. 

     As indicated by an increased sAPPα/sAPPβ ratio in IGF-I-treated neurons and 

astrocytes, the net action of IGF-I on the main cell types producing Aβ in the brain is to 

favor non-amyloidogenic processing of APP, contributing in this way to lower its brain 

levels and enhance neuroprotection, as sAPPα is neuroprotective acting in part through 

IGF-IR (49). Thus, the overall action of IGF-I in the brain may be anti-amyloidogenic. 

Intriguingly, insulin favors Aβ secretion in neurons (50), suggesting a complex 

interplay of these hormones in regulating brain Aβ levels.  At the same time, reduced 

IGF-I entrance in the brain of overweight mice may hamper its anti-amyloidogenic 

actions. Indeed, overweight mice showed not only reduced entrance of serum IGF-I in 

response to EE stimulation, as determined by reduced brain IGF-IR phosphorylation, 
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but also reduced APP/IGF-IR interaction. In previous work we documented an 

inhibitory effect of triglycerides (TGLs) in BBB entrance of IGF-I across the choroid 

plexus (14). It is possible that high serum TGLs as a result of the high fat diet interfere 

also with the BBB entrance of IGF-I across brain endothelial cells in overweight mice.  

    Reduced IGF-I entrance would affect its pro-clearance actions on brain Aβ (12,51). 

Also, we cannot discard that the inhibitory actions of IGF-I on Aβ uptake by microglia 

may also counteract its actions on astrocytes (but see below). Alternatively, brain Aβ 

levels may not be affected by peripheral Aβ clearance or other factors may also 

contribute to it, such as the recently postulated vascular drainage (52,53). Interestingly, 

insulin also enhances the degradation of Aβ and its clearance in astrocytes (54), and 

hepatocytes (26), respectively. Thus, these two closely related hormones may modulate 

Aβ disposal in a concerted manner, as previously reported for glucose handling (55).  

     IGF-I stimulates Aβ uptake by astrocytes, while inhibits it in microglia. Whereas 

astrocytes appear critical to determine Aβ load (56), and increased clearance of Aβ by 

astrocytes may result in reduced Aβ plaques (34), inhibition of Aβ uptake by microglia 

may also reduce plaques (57), as the role of microglial uptake of Aβ in plaque formation 

may be detrimental (58,59). In accordance with a stimulatory effect of IGF-I on 

astrocytes, previous observations suggested that astrocyte-derived IGF-I protects 

neurons against Aβ toxicity through a mechanism involving its uptake (60). 

     The observed astrocyte-specific interaction of APP with IGF-IR and on sAPPα and 

sAPPβ levels may be related to a differential processing of APP by IGF-I in these cells, 

since its processing depends on its intracellular localization (31). Of the different 

isoforms of APP, the major one expressed in neurons is APP695, that lacks the 

extracelular protein-protein interaction domain KPI. This domain is present in the 

longer isoforms, APP751 and APP770, that are the most abundant types in glial cells (61). 

It is possible that KPI is involved in the observed interactions with IGF-IR in astrocytes. 

In turn, a trend of IGF-I to inhibit brain efflux of Aβ through BBB endothelial cells, 

would favor its accumulation in brain parenchyma (62). We previously reported that 

IGF-I stimulates Aβ efflux through the choroid plexus BBB (12), an observation 

supported by the reducing effects of in vivo IGF-I administration on brain Aβ levels 

(12,51). Thus, IGF-I may show site-specific effects on Aβ efflux through BBB cells.   

     An important limitation of this study is that we determined peripheral Aβ clearance 

indirectly. Measuring circulating levels of Aβ in overweight mice would be necessary to 
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firmly establish that peripheral Aβ clearance is enhanced. However, available methods 

of quantification of serum Aβ are not sensitive enough to reliably detect decreases in 

non-transgenic mice.  

     In summary, diet influences peripheral, but not central Aβ clearance. A lack of 

correlation between peripheral clearance and central Aβ in overweight mice further 

support a non-linear relationship between both compartments. Actions of IGF-I on Aβ 

handling may be relevant in AD pathology and related to diet influences on the disease; 

therefore cellular sites of IGF-I interaction may constitute new druggable targets, 

through, for example, potentiation of IGF-I-induced hepatic Aβ clearance.  

 

Materials and Methods 

Materials. Human IGF-I was purchased from PeProTec (UK). Primary antibodies were 

monoclonal anti-IGF-I receptor (1:1000; Santa Cruz Biotechnology, USA), monoclonal 

anti-APP (Nt 22C11; Millipore; 1:200), for PLA studies, polyclonal anti-APP (Sigma; 

1:200), for immunoprecipitation, and monoclonal anti-pTyr (1:1000, Transduction 

Labs, USA). Secondary antibodies were goat anti-rabbit (1:20000) or mouse IRDye-

coupled (1:20000), both from LI-COR (USA).  

Animals. Male adult (3-5 months old) and new-born wild type C57BL6/J mice, and 

adult liver IGF-I deficient mutant mice (LID mice; bred in-house, congenic with 

C57/BL6/J) were used. LID mice present low levels of serum IGF-I due to the 

disruption of the liver IGF-I gene with the albumin-Cre/Lox system (24). Serum IGF-I 

deficient mice have normal body and brain weights and they do not show any major 

developmental defects (24,63). Animal procedures followed European (86/609/EEC & 

2003/65/EC, European Council Directives) and approval of the local Bioethics 

Committee.  

High fat diet. Wild type C57BL6/J mice were fed for 10 weeks with either a control 

diet (ref E15000-04), or a high fat diet (HFD) with 45% KJ fat + 1.25% cholesterol (ref 

E15744-34), both purchased from ssniff Spezialdiäten GmbH (Germany). After 10 

weeks, animals were overweighed (Suppl Fig A), developed glucose intolerance (Supp 

Fig B), together with hyperinsulinemia and insulin resistance (not shown). 

Cell cultures. Astroglial cultures with >95% GFAP-positive cells were prepared as 

described (64). Postnatal (day 1-2) brains were dissected, forebrain removed, and 

mechanically dissociated. The resulting mixed cell suspension was centrifuged and 
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plated in DMEM/F-12 (Life Technologies) with 10% fetal bovine serum (Life 

Technologies) and 100 mg/ml of antibiotic-antimycotic solution (Sigma-Aldrich, 

Spain). When confluent, cells were shaken (210 rpm/37ºC/3 hours) to detach microglial 

cells. For microglial cultures, supernatants were centrifuged (1000 rpm/5 min), re-

suspended in DMEM/F12 (Life Technologies)+FBS (Gibco, USA), HS and 

penicillin/streptomycin solution. Cells were seeded at 12.5-104 cells/cm2 in a multi-well 

coated with poly-L-lysine (65), and cultured for 2 days. Cells were then changed to 

DMEM/F12 for 3 hours until Aβ uptake was carried out (see below). Astrocytes were 

then collected from the same flasks that microglia was obtained, as follows. After 

removing the microglia-containing supernatant, the medium was replaced and flasks 

shaken for 15 h/280 rpm. Cells were then trypsinized and seeded at 3.75x104 cells /cm2 

in the same culture medium, replaced every 4 days. When 80% confluency was reached, 

astrocytes were cultured for 3 hours with DMEM/F12 before the different assays were 

initiated (see below). Endothelial cell cultures were performed as described (65). 

Briefly, dissection was performed on ice and cortices were cut into small pieces (1 

mm3), digested in a mixture of collagenase/dispase (270 U collagenase/ml, 10% 

dispase) and DNAse (10 U/ml) in DMEM for 1.5 h at 37°C. The cell pellet was 

separated by centrifugation in 20% bovine serum albumin/DMEM (1000g, 5 min). 

Capillary fragments were retained on a 10µm nylon filter, removed from the filter with 

endothelial cell basal medium (Life Technologies), supplemented with 20% bovine 

plasma-derived serum and antibiotics (penicillin, 100 U/ml; streptomycin, 100 µg/ml), 

and seeded on 60-mm Petri dishes multi-well plate coated with collagen type IV (5 

µg/cm2) and fibronectin (1µg/cm2). 3µg/mL puromycin was added for 3 days, removed 

from the culture medium and replaced by fibroblast growth factor (2 ng/ml) and 

hydrocortisone (1µg /ml). For hepatocytes cultures, adult (2 months old) control animals 

were anesthesized (pentobarbital 50 mg/kg), and the hepatic portal vein exposed to 

inject a solution containing NaCl (118 Mm), KCl (4.7 Mm), KH2PO4 (1.2 Mm), 

NaHCO3 (25Mm), glucose (5.5 Mm), and  EGTA (0.5 Mm) at 37C. The inferior cava 

vein was cut to open the circuit. Thereafter the same solution without EGTA and 

containing CaCl2 (2 Mm), MgSO4 (1.2 Mm), and colagenase (90U/ml) was perfused. 

The liver was dissected and placed in DMEM/F12 -10% FBS with penicillin/ 

streptomycin, filtered in a 70 um Nylon mesh, centrifuged (60g,  5 min) and re-

suspended in DMEM/F12-10% FBS with 45% Percoll® (Sigma Aldrich). Cells were 

then re-suspended and washed 3X in DMEM/F12-10% FBS using 200g, 10 min spins, 
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before plating them at 8.25 x 104 cells/collagen-coated multi-well. Cultures were kept 2 

days before use.   

Glucose tolerance test (GTT) 

Mice were fasted for 6 hours and left isolated in individual cages (with water but no 

food access) for at least 30 min before starting the test to avoid any stress-related effect 

on glycemia (66). For the glucose tolerance test (GTT), an overload of glucose (2g/kg) 

was injected intraperitoneally. The aqueous solution was left overnight at room 

temperature so the β-form of glucose was enriched. Blood samples were extracted from 

the tip of the tail at time 0, 15, 30, 60, and 90 to measure glucose levels with a 

glucometer (Menarini Diagnosis, Italy).  

Environmental enrichment. Mice were submitted to environmental enrichment as 

explained in detail elsewhere (67). Briefly, animals were placed for 2 hours in a large 

cage, 10 animals/cage and with different objects (cardboard tunnels, shelters of different 

materials, a plastic net, toys, chewable and nesting material). Thereafter, they were 

sacrificed and their brain collected for immunoprecipitation and western blot analysis. 

Aβ uptake 

In vitro: Cells were treated during 15 hours with 500 nM soluble Aβ40-HiLyte Fluor™ 

488 (AnaSpec) (68), and IGF-I (1 nM in glial cultures, 10 nM in hepatocytes). 

Thereafter, cultures were washed with PBS pH 6.0 to eliminate membrane bound Aβ 

followed by PBS pH 7.4.  Cell nuclei were stained with Hoechst 33342 (Thermo Fisher 

Scientific; 1:500) in PBS pH 7.4/5 min, fluorescent images were taken in an DMI 6000 

(Leica) microscope using Exc: 350 nm/ Em: 461 nm for Hoeschst dye and  Exc: 503 

nm/ Em: 528 nm for fluorescently labeled Aβ. Thereafter, cells were lysed in Tris-HCl 

(10 mM) pH 8.0, guanidine (50 mM), and spinned at 14.000 rpm for 10 min at 4ºC. 

Fluorescence was quantified in a FLUOStar OPTIMA (BMG Labtech) at Exc: 485 nm/ 

Em: 520 nm. In transcytosis assays using brain endothelial cells, Aβ40-HiLyte Fluor™ 

488 soluble (500 nM) was added in the bottom compartment (Figure 4C) with or 

without 1 nM IGF-I, and after 15 hours the culture medium from the upper chamber 

was collected and fluorescence measured in the fluorimeter, as above.   

In vivo: Aβ40-HiLyte Fluor™ 488 (400 μg/kg) was injected into the tail vein using a 

0.38 mm cannula (Intramedic, Spain), and after 90 min mice were sacrificed, blood 

taken from the heart and liver dissected. Liver tissue was homogenized in Tris-HCl (10 

mM) pH 8.0 - guanidine (50 mM). Fluorescence in serum and liver extracts was 
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quantified by fluorimetry, as above. Values were normalized per ml of serum or mg of 

protein. The latter was measured in liver samples using the BCA system (Sigma). 

Immunoassays. Western blot and immunoprecipitation were performed as described 

elsewhere in detail (69). Densitometric analysis of blots was performed using the 

Odissey system (Lycor Biosciences, USA). A representative blot is shown from a total 

of at least three independent experiments. GFAP immunocytochemistry in cultured cells 

followed previously published procedures (69). In brief, cultured cells were incubated to 

block non-specific antibody binding, followed by incubation overnight at 4°C with anti-

GFAP in  phosphate buffer (PB) - 1% bovine albumin - 1% Triton X-100 (PBT). After 

several washes in PB, sections were incubated with an Alexa-coupled secondary 

antibody (1:1000, Molecular Probes, USA) diluted in PBT. Finally, a 1:500 dilution (in 

PBS) of DAPI (Hoechst 33342) was added for 3 minutes. Wells were rinsed several times 

in PB 0.1 N, mounted with 15 µl of gerbatol mounting medium, and allowed to dry. 

Omission of primary antibody was used as control. Microphotographs were taken in a 

Leica (Germany) microscope.  Plaque load was determined as explained elsewhere in 

detail (69).  

     IGF-I in serum and brain was determined using a species-specific ELISA (R&D 

Systems, USA), as described in detail elsewhere (18). Murine Aβ (Thermofisher, USA), 

and murine sAPPα and sAPPβ were determined by ELISA in brain lysates and culture 

supernatants, respectively, following the manufacturer´s instructions.  Blood was 

collected from the heart after pentobarbital anesthesia and thereafter brains were 

dissected and frozen at -80ºC until used. 

Proximity ligation assays (PLA). Assays were performed as described (70). Amyloid 

precursor protein (APP) – IGF-IR interactions were detected in astrocytes and neurons 

grown on glass coverslips using the Duolink II in situ PLA detection Kit (OLink; 

Bioscience, Sweden). Cultured cells were fixed in 4% paraformaldehyde/10 min, 

washed with PBS containing 20 mM glycine to quench the aldehyde groups, 

permeabilized with the same buffer containing 0.05% Triton X-100 for 5 min, and 

washed with PBS. After 1 h/37°C with the blocking solution in a pre-heated humidity 

chamber, cells were incubated overnight in antibody diluent medium with primary 

antibodies: mouse monoclonal anti-APP and rabbit polyclonal anti-IGF-I receptor, and 

processed following the instructions of the supplier using the PLA probes detecting 

rabbit or mouse antibodies (Duolink II PLA probe anti-Rabbit plus, and Duolink II PLA 
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probe anti-Mouse minus, diluted 1:5 in antibody diluent), and a DAPI-containing 

mounting medium. 

Statistical analysis. Normal distribution tests were carried out in all experiments and a 

non-parametric Wilcoxon test was applied accordingly. For samples with normal 

distribution, parametric tests include one-way ANOVA followed by a Bonferroni or t-

test. A p<0.05 was considered significant. 
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LEGENDS TO FIGURES 
 
Figure 1. Diet modulates peripheral Aβ uptake. A, Overweight mice show enhanced 
Aβ uptake by the liver and lower serum Aβ levels (n=4). B, Brain Aβ levels remain 
unaltered in overweight mice (n=6-8). *p<0.05, **p<0.01, and ***p<0.001 in this and 
following figures. 
 
Figure 2. Modulation by IGF-I of Aβ uptake by hepatocytes. A, Serum levels of 
IGF-I are increased after 10 weeks of high fat diet (n=10 per group). B, IGF-I induces 
uptake of Aβ by hepatocytes (n= 6). Representative micrograph of cultured hepatocytes 
with internalized fluorescent Aβ (green). Cell nuclei stained with Hoescht. Lower 
histograms: quantification of intracellular fluorescent Aβ after IGF-I treatment.  C, 
Serum IGF-I deficient mice (LID mice) show reduced Aβ uptake by the liver (n= 5 
control/6 LID).  
 
Figure 3. APP processing in astrocytes is modulated by IGF-I. A, IGF-I stimulated 
the secretion of both sAPPα and sAPPβ in cultured astrocytes (left histograms), while 
inhibited it in neurons (righ histograms, n=4). B, However, IGF-I increased the 
sAPPα/sAPPβ ratio in both cell types, indicating a net non-amyloidogenic action of 
IGF-I in these cells. C, IGF-IR and APP co-immunoprecipitate in cultured astrocytes 
while in neurons the interaction is negligible. D, Proximity ligation assays (PLA) of 
APP and IGF-IR in cultured astrocytes confirm an interaction of both proteins that is 
upregulated by IGF-I (n= 3). Cell nuclei stained with Hoescht. 
 
Figure 4. IGF-I modulates brain Aβ uptake in a cell-specific manner. A, Aβ uptake 
by astrocytes is significantly increased by IGF-I (n= 8). Representative 
photomicrograph showing uptake by cultured astrocytes of fluorescently labeled Aβ 
(green). Cell nuclei stained with Hoescht. B, Aβ uptake by microglia is significantly 
reduced by IGF-I (n= 7). C, IGF-I did not significantly affect brain-to-blood efflux in an 
in vitro system mimicking the blood-brain-barrier (cartoon in the left). Amount of Aβ in 
the upper chamber was quantified 15 h after adding it to the lower chamber in the 
presence or absence of IGF-I (n= 6).  
 
Figure 5. Reduced entrance of serum IGF-I in overweight mice. A, Brain levels of 
IGF-I were normal in HFD-fed overweight mice (n= 10 per group). B, In response to 
environmental enrichment (EE), overweight mice show lower brain IGF-IR 
phosphorylation than lean mice receiving a standard diet.  Representative blot is shown, 
together with quantification histograms (n= 10 EE/ 6 Control; for each diet). C, Brain 
IGF-IR/APP co-immunoprecipitation is increased after systemic IGF-I administration. 
D, Interaction of APP with IGF-IR in the brain of mice submitted to EE stimulation was 
significantly decreased in overweight mice (n=10 per group). 
 
Supplementary Figure. A, Mice submitted to a high fat diet during 10 weeks (W) 
show increased body weight along time (n=10 per group). B, Overweight mice show 
reduced tolerance to systemic glucose load, as determined by significantly greater blood 
glucose levels over 90 min after glucose administration.  
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