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A salient characteristic of monkey inferior temporal (IT) cortex is
the IT face processing network. Its hallmarks include: "face neu-
rons" that respond more to faces than non-face objects, strong spa-
tial clustering of those neurons in foci at each IT anatomical level
("face patches"), and the preferential interconnection of those foci.
While some deep artificial neural networks (ANNs) are good predic-
tors of IT neuronal responses, including face neurons, they do not
explain those face network hallmarks. Here we ask if they might be
explained with a simple, metabolically motivated addition to current
ANN ventral stream models. Specifically, we designed and success-
fully trained topographic deep ANNs (TDANNs) to solve real-world vi-
sual recognition tasks (as in prior work), but, in addition, we also op-
timized each network to minimize a proxy for neuronal wiring length
within its IT layers. We report that after this dual optimization, the
model IT layers of TDANNs reproduce the hallmarks of the IT face
network: the presence of face neurons, clusters of face neurons that
quantitatively match those found in IT face patches, connectivity be-
tween those patches, and the emergence of face viewpoint invari-
ance along the network hierarchy. We find that these phenomena
emerge for a range of naturalistic experience, but not for highly un-
natural training. Taken together, these results show that the IT face
processing network could be a consequence of a basic hierarchical
anatomy along the ventral stream, selection pressure on the visual
system to accomplish general object categorization, and selection
pressure to minimize axonal wiring length.
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V isual object categorization of both non-face objects and
face objects inferred from the retinal image is supported

by the primate ventral visual stream – a series of hierarchically
organized cortical areas (V1, V2, V4, pIT, cIT, aIT) (4–11).
We use the phrase "general object recognition" to refer to
this set of behavioral abilities. Presently, the best models
of the ventral stream neural mechanisms that support this
set of behaviors are specific deep artificial neural networks
(ANNs) optimized for performance on image categorization
tasks (1, 12). While these models can largely explain ventral
stream neuronal responses to images, they cannot predict the
rich spatial structure of the ventral stream in general and
inferior temporal (pIT, cIT, aIT) cortex in particular.

For example, from primary visual cortex to IT cortex,
neurons with similar response properties are not scattered
randomly within the tissue of each cortical area, but are spa-
tially clustered. In early visual cortex, neurons are primarily
organized in the tissue by the location of the visual field cor-
responding to their retinal-to-LGN inputs (retinotopy), and

secondarily by selectivity for low-level stimulus features such
as orientation (13), spatial frequency (14), and chromaticity
(15). In higher visual cortical tissue, neurons cluster according
to selectivity for object categories such as bodies (16), scenes
(17), and faces (18).

An important next goal for the field is to build new ANN
models that can explain all of these spatial properties, while
still explaining the individual neuronal responses. While retino-
topy is already partly explained by current deep ANNs (by
their initial anatomy), in the present work, we started by ask-
ing if new deep ANN models could naturally explain the most
salient and well-established spatially-grounded characteristic
of high level cortex – the IT face processing network.

The IT face processing network is a constellation of highly
robust hallmarks that have emerged from decades of extensive
studies in humans and non-human primates on the role of
the ventral stream in processing images of faces (18–26). The
most detailed neurophysiological studies of face processing
have been carried out in non-human primates, and the most
salient hallmarks that have emerged from that prior work are:
the existence of IT neurons that respond more to face than to
non-face objects ("face neurons") (27, 28), the spatial clustering
of face neurons into one to three "face patches" within each
level of IT (pIT, cIT, aIT) (23, 29, 30), and the preferential
interconnectivity of these face-patches as demonstrated via
anatomy and electrical stimulation (31). In addition, it has
also been found that invariance to face pose increases along
the IT hierarchy (19), paralleling the increase in invariance
for non-face objects along the hierarchy (8). Together, these
hallmarks are collectively referred to as the IT face processing
network (22, 26, 32).

Again, current deep ANN models do not explain all the
hallmarks of the face processing network, especially its spa-
tial structure. So what kind of new computational model
is needed? The empirically observed spatial organization of
neural selectivity in cortical tissue (above) is often considered
to be something that might be explained by wiring-length
minimization (33). Indeed, wiring-cost minimization inspired
the use of self-organizing maps to model the development and
geometry of early visual cortex maps for stimulus parameters
such as orientation and direction of motion (34, 35). While
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Fig. 1. TDANNs as models of the primate ventral visual stream. A) The ventral visual stream is a series of hierarchically organized cortical areas (1). Each stage of visual
processing is schematically illustrated on the right as a two dimensional cortical sheet, conceptualizing the spatial arrangement of the output neurons in each area. The
dominant feedback, feedforward and recurrent connections are crudely schematized with arrows. pIT, posterior inferior temporal cortex; cIT, central; aIT, anterior; RGC, retinal
ganglion cell; LGN, lateral geniculate nucleus (adapted from 1). B) TDANNs are a family of deep artificial neural networks adapted from current deep ANN architectures that are
simultaneously optimized to solve a set of visual recognition tasks ("general visual object recognition") and to also minimize a spatial correlation cost (see Fig. 2). Here, as a
base ANN architecture, we use a feedforward only network, AlexNet (2). In the present work, the TDANNs were only required to minimize that spatial correlation cost for neurons
within each of its two upper layers FC6 (= model "cIT") and FC7 (= model "aIT"). It was previously shown that, after general visual recognition training, those two layers of this
base architecture (AlexNet) contain artificial neurons that, among all the model layers, are the best predictors of neuronal activity in monkey IT (1). In standard deep ANNs such
as this one, the only spatial organization of model units is retinotopy for lower layers (here CONV1 through CONV5), but the spatial layout of the different types of neurons
(features) in each of those layers is not specified. Even more problematic, in higher, fully connected layers (here FC6 and FC7), the base model has no spatial organization at
all – only a list of model neuron response types (N1, N2, etc.) – so it cannot be compared to spatial characteristics of IT. C) To build deep ANNs with predicitons of spatial
organization (TDANNs), prior to training, each model unit (Ni) in each of the two IT layers (FC6 and FC7) is randomly assigned to a spatial position in an artificial cortical tissue
map (a separate 10mm x 10mm map for each layer, see Materials and Methods). During training, the artificial neurons each remain in their initialized position, but their weights
(connection strengths with the previous layer) are updated to accomplish correct category assignment of the foreground object in the image (at the output layer, not shown)
while also minimizing the spatial correlation costs (see text). Because of this, the TDANN model neurons (N1, N2, etc., illustrated in tissue map) are not expected to precisely
correspond to the features in a trained version of the base ANN. Gray panel shows data recorded in monkey IT (adapted from 3) with approximate boundaries of pIT, cIT, and
aIT. Each dot is a recording location and color indicates relative selectivity for faces (red) vs. non-face object (blue). Note one dominant face patch in each sub-region of IT.

these models recapitulate the geometry of the topographic
maps to an impressive degree, they are limited in their ex-
planatory power. Instead of considering the high-dimensional
space of real world images, self-organizing map models assume
a drastically reduced space of stimuli generated by a small
number of parameters such as retinal position and stimulus
orientation. This approach becomes intractable for higher
visual areas in which the stimulus parameters of interest are
poorly understood. Thus, the kinds of self-organizing maps
that have thus far been described do not accurately explain
the responses of IT neurons to natural images and they do
not explain IT spatial organization.

Here, we sought to overcome these limitations by adopting
the underlying theoretical idea (wiring cost minimization),

but building upon recent advances in ANN models (1, 12, 36).
Notably, that prior deep ANN modeling work has already
qualitatively demonstrated the presence of at least some "face
neurons" within model IT (36) and more recent studies have
demonstrated the existence of face-selective units in deep
ANNs (37–39). However, the correspondence of face processing
in ANNs and the primate ventral stream has not been tested
systematically. Moreover, no prior work has explicitly modeled
the spatial organization of IT at the single neuron level. In
particular, while a given layer of a deep ANN may have units
selective for images of faces (qualitatively similar to monkey
"face neurons"), the spatial arrangement of those units cannot
be evaluated unless they are embedded in a physical space.
In this work, we comprehensively investigate the response
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properties of face neurons in ANNs using the same measures
from the neuroscience literature.

To build new ANN models with topographic structure that
can be compared with brain data, we here modify specific deep
ANNs by defining the spatial position of each model unit in a
two-dimensional space representing the cortical sheet (Fig. 1).
We then optimize the synaptic weight parameters of these
networks to solve general visual recognition problems (similar
to recent prior work) while also minimizing a proxy for wiring
cost (old theoretical idea, novel implementation). We refer to
this class of models as topographic deep ANNs (TDANNs).

After successfully building specific, functioning TDANNs,
we tested whether they recapitulate well-established features
of the primate IT face processing network. Indeed, we find
that TDANNs naturally reproduce the key empirical hallmarks
that together define the face processing network: the existence
of face-selective units in model IT (27, 28); the topographic
arrangement of those face-selective units that, without param-
eter tuning, naturally have the same spatial extent as primate
face patches (40, 41); stronger fMRI-detectable selectivity of
face patches than for most other object categories (25, 42);
connectivity between face-selective regions at different stages
of the visual hierarchy (31); and the emergence of viewpoint
invariance throughout the IT face processing network (19).
Further, we empirically find that these phenomena emerge
when the networks are optimized for all tested types of nat-
uralistic experience, but not for highly unnatural experience.
Overall, these results show that the IT face processing network
could be a consequence of a basic hierarchical anatomy along
the ventral stream, selection pressure on the visual system to
accomplish general object recognition, and selection pressure
to minimize neural wiring length.

Results

TDANN models retain high performance on general visual
recognition while also reducing wiring costs. To test our over-
arching hypothesis (that the IT face sub-network might be an
emergent consequence of the visual system to solve general
visual recognition while also minimizing wiring costs), we first
had to engineer deep ANN models that could successfully
implement these underlying goals. Specifically, we asked if
we could build deep ANN models that solve two challenges:
general visual recognition and wiring cost minimization. Given
the computational difficulty of directly minimizing wiring costs,
we implemented a spatial correlation rule as a proxy of that
cost within specific layers of the ANN model (Fig. 2; see Ma-
terials and Methods for details). In building these models, our
underlying rationale was that in any hierarchical anatomy (i.e.,
pIT, cIT, aIT), there is evolutionary/developmental pressure
to minimize general visual recognition errors and minimize
wiring cost, and that wiring cost minimization pressure can
be approximated as a pressure to have neurons with similar
response profiles located physically nearby each other, which
is implemented as a spatial correlation rule. The one free
parameter of the spatial correlation rule (i.e., the fall off of
response similarity per mm of cortical tissue) was derived
from actual monkey data (Fig. 2A). Importantly, this scaling
parameter was not derived from IT face patches. Instead, it
is known to be a general phenomenon of IT cortex (43, 44; we
re-confirmed this in Fig. 2A with 2B where all face neurons
are excluded from the analysis).

During the training of each TDANN model, we enforced
the spatial correlation rule for units in the model’s final two
fully-connected (FC) layers (layers FC6 and FC7). For the
base architecture used here (AlexNet, 2), these two layers
were already known to be the best predictors of neuronal
activity in IT after image general visual recognition training
(1). Because most of the relevant monkey data is from cIT and
layer FC6 is a better predictor of cIT than FC7 (Fig. S10), we
focus on layer FC6 (model cIT), but we include results from
layer FC7 (model aIT) where comparison between adjacent
layers is warranted (e.g. Fig. 5 and S8). Hereafter, we refer
to layer FC6 as model "cIT" and FC7 as model "aIT". For
the baseline TDANN training, we optimized the network to
solve an interleaved set of 914 visual image categorization
tasks that included just one face category (our operational
definition of "general visual recognition"). These categories
were constructed using a dataset consisting of naturalistic
images, subsampled from the non-vehicle-related ImageNet
(45) images and the Labeled Faces in the Wild (LFW) images
(46). We refer to this as the "crudely ecological" dataset. We
trained twenty such TDANN models, each of which has the
same base architecture but randomly, and thus differently,
initialized parameters.

We found that, compared to the non-topographic control
ANN models (which had the same architecture without a
spatial cost), each TDANN model achieved nearly the same
level of general visual recognition performance on the held out
validation images (Fig. S1D) while each model also adhered to
the spatial correlation rule (Fig. 2). The degree to which the
TDANNs adhered to this rule can be visualized in Fig. 2D,
which shows the model cIT units from one exemplar TDANN
model. In this case, the closer the model units are in the
"cortical tissue", the more similar their response patterns were
as encouraged by the spatial correlation rule. Interestingly,
the model cIT units did not perfectly align with this rule and
showed a similar degree of divergence from the rule (black
dots spread around green line in Fig. 2D) as the actual IT
neurons (Fig. 2A,B) even though the degree of variability was
not directly dictated by the rule.

We also asked, do TDANN models actually have lower
wiring costs? Indeed, we found that, under some simple
assumptions about total wiring length needed to implement
fully trained models, the TDANN models do indeed have lower
wiring costs than regular fully trained ANN models of the
same base architecture (see Supplementary Information for
details). Because this is just one of many ways to analyze
wiring costs and it is challenging to optimize for such costs
directly, this line of work will be continued in follow-up studies
(e.g. Jozwik et al., unpublished). In the present work, our
main result is that the addition of a spatial correlation rule
within each level of the IT hierarchy is sufficient to reproduce
the hallmarks of the IT face network (below) and it also tends
to reduce overall network axonal wiring costs.

TDANN category-selectivity maps mirror the spatial organiza-
tion of primate IT cortex. In human and macaque higher visual
cortex, "face neurons" and "body neurons" that respond more
strongly to images of faces or bodies than to non-face and
non-body objects are not scattered randomly across IT cortex,
but are instead spatially organized. The presence of face units
in current (non-topographic) deep ANNs is a topic of active
research, but several studies suggest that current baseline
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Fig. 2. Empirically observed spatial correlation of IT neuronal response profiles and
spatial loss function for TDANN models. A) The response profile of each IT neuron
is a list of measurements each corresponding to the mean response of one of 5760
images (mean over∼50 repetition tests of that same image; 47). Here, each black
dot is the Pearson correlation of the response profiles of a pair of neuronal sites
recorded in monkey IT, plotted against the physical distance between those two sites
(measured approximately tangentially to the cortical surface). To remove the effects of
noise and repetition variability, the correlation values were normalized by the split-half
reliability of the neurons across image repetitions of the images. The blue line is
the mean over each 0.25 mm wide spatial window. B) Analysis of the same IT data,
except that all face-selective neurons (d′ > 0.65) were removed, demonstrating that
the dominant spatial correlation profile from (A) is a general phenomena of IT cortex
and is not simply a result of face patches. In all panels, the target spatial correlation
profile for the TDANN models is overlaid as a green line (referred to as the "zero loss"
line in C). C) The target response correlation spatial profile for the model units in
model cIT and in model aIT. The zero loss curve was parameterized to approximate
the actual IT response correlation spatial profile (A, see Materials and Methods for
details). A TDANN model incurs the lowest overall spatial loss when all its pairs of
units fall exactly along the green curve – pairs of model units that fall off that profile in
either direction incur higher loss (colored lines). D) Data from one examplar TDANN
model cIT after training to optimize for visual recognition and for this spatial loss. Each
black dot represents a pair of model cIT units.

ANN models do indeed contain face neurons (37–39), and
we confirm that here with methods that operationally match
those used in primate and human neuroscience experiments
(Fig. S2). However, those current ANN models cannot explain
the spatial organization of face-selective units because they
are non-topographic. Here, we ask if the class of TDANN
models predicts not only the presence of face units, but their
spatial organization as well.

We first investigated the spatial pattern of category selectiv-
ity over TDANN model IT neurons by evaluating each model’s
neuronal responses to images of faces, bodies, and other ob-
jects from four standard image test sets (25, 40–42) that have
previously been used to localize category-selective regions in
humans and macaques (Fig. 3, 4). We investigated responses
to these images in the TDANN model cIT (see Materials and
Methods). As detailed below, evaluation of the resultant cate-
gory preference maps suggests close correspondence to several
of the key spatial organizational features reported in humans
and macaques when measured with similar or identical image

sets.

TDANN units selective for faces and bodies cluster into patches,
while other standard categories do not form strongly selective clus-
ters. We first investigated the spatial pattern of face selectivity,
where a unit was defined as face-selective if the d′ of its re-
sponse to images of faces vs. images of non-face objects was
greater than a threshold of d′ > 0.85. This threshold was
selected to correspond to the threshold of d′ > 0.65 used in
(40) after simulating the addition of Poisson noise to model re-
sponses (see Materials and Methods for details). We found that
face-selective units in the TDANN model cIT were spatially
clustered in a similar fashion to the clustering of face-selective
neurons in the macaque middle face patch (23, 40). Fig. 3
shows this for one example TDANN model (using one initial
seed for training) and Fig. S3 shows more from differently
initialized TDANN models. We also found that when different
operational definitions of face selectivity were used (i.e., dif-
ferent image sets comprised of monkeys, human children, and
human adults), the dominant cluster of face-selective neurons
was localized to the approximately the same region of the map
(Fig. 3A). The reliability of the spatial pattern of face selectiv-
ity over all differently initialized TDANN models and across
different stimuli used to measure face selectivity is provided
in Fig. S14A (see Supplementary Information for details).

It should be stressed that even though TDANN cIT and aIT
layers were not explicitly constructed to contain face patches,
they nearly all exhibited face patches (Fig. 3, S3; quantified
below). Nevertheless, because these model layers were con-
structed to produce neural response selectivity maps that tend
to be spatially smooth (see Fig. 2 and Materials and Methods),
perhaps it logically follows that TDANN cIT and TDANN
aIT must contain face patches? It does not, as evidenced by
the brain: some, but not all object categories, show fMRI-
level spatial clustering. In particular, besides the category of
faces, fMRI studies have thus far found reproducible regions
of interest for categories of bodies, scenes, color, and words
(16, 17, 25). Moreover, in some cases, such clustering has been
verified at the single neuron level in monkeys (43, 48, 49).
Importantly however, fMRI studies also show that other stan-
dard object categories (e.g., cars, musical instruments, rocks,
etc.) do not yield observable clusters in humans (42, 50, 51).
Thus, we asked, do TDANN cIT and TDANN aIT predict
these same trends? To answer this question, we performed
contrast analyses that mimicked fMRI experiments on each
model using a functional localization stimulus set including
images of faces, bodies, houses, cars, and musical instruments
(25).

Fig. 4A shows maps of selectivity (d′ > 0.85) for three
of the categories in the functional localization stimulus set:
faces (red), bodies (blue), and cars (yellow), for one example
TDANN model cIT. Maps of selectivity to the other categories
and for other TDANN model cITs are included in the Sup-
plementary Information (Fig. S6) but omitted here for clarity.
To more directly compare the topology of category selectivity
in our models to results obtained with fMRI, we simulated
high-resolution (0.5mm isotropic) fMRI maps by smoothing
each model’s spatial pattern of neural activation for each im-
age with a 1mm Gaussian kernel (Fig. 4A, lower) and then
recomputed category selectivity on a per-voxel level, where
selectivity was defined by a threshold: t > 10. Qualitatively,
we observed that there were more face- and body-selective
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Fig. 3. Face selectivity maps from macaque cIT and trained TDANN model cIT. A)
Spatial distribution of face-selective responses in the TDANN cIT layer of a single
representative TDANN model, as assessed by four different face selectivity test image
sets (40, 25, 42, 41, from left to right). In each case, face-selective units (d′ > 0.85)
are shown in red; non-face object-selective units (d′ < −0.85) are shown in blue;
units that are not strongly biased to either of those categories (−0.85 ≤ d′ ≤ 0.85)
are shown in yellow. When different test sets are used to probe the responses of
the model neurons, its face selectivity map is not identical, yet the locations of the
dominant clusters of face-selective units remain largely the same. B) An enlarged
view of the dominant model cIT face-patch in panel A (left) and actual neurophysiology
data from the monkey middle face patch (cIT; middle, 40) shown at identical spatial
scales. Rightmost panel shows purity of face selectivity as a function of distance from
the center of the dominant cIT face patch in monkey (black, 40) and TDANN models
(green; here an average of 20 TDANN models with different weight initializations prior
to training; purity curves of individual models can be found in Fig. S4). The gray
shaded region for macaques and green shaded region for the models indicate the
standard error of mean (SEM). All scale bars, 2mm.

units than car- and instrument-selective units in both the
native neural maps (Fig. 4A upper), and the fMRI-simulation
voxel maps (Fig. 4A lower, 4B and S6). This result was robust
across maps from models with different randomly-initialized
weights: we observed clear face- and body-selective patches in
18 of the 20 randomly-initialized models, where a patch was
identified as the presence of at least 10 spatially connected
voxels selective for the category.

Moreover, quantitative analyses support our qualitative ob-
servations. We found more units selective for faces and bodies
than to any other category (Fig. 4C, left) and more fMRI-
level clustering for those same categories (Fig. 4C, right) . A
one-way ANOVA indicated a statistically significant difference
between the percentage of selective units across different cate-
gories (F (4, 95) = 27.06, p = 5.40 × 10−15). Post-hoc Tukey’s
honest significant difference (HSD) tests indicated that the
percentages of selective units for face and body were signifi-
cantly higher than for other categories (both ps < 0.05). In
addition, there was no significant difference in the percentage
of units selective for faces and bodies when compared directly
(p > 0.05). As a measure of the degree to which category-
selective regions appear to be clustered in fMRI-like maps, we
also defined a "cluster strength" metric for each object category
as the sum of the contrast magnitude of the largest cluster in

the smoothed maps (see Materials and Methods for details).
Using this metric, TDANN model cITs predict that face- and
body-selective neurons are more strongly clustered (as mea-
sured at the level of reproducible fMRI ROIs) than neurons
for other object categories in the test set, F (4, 95) = 9.51,
p = 1.64 × 10−6 (Fig. 4C, right). Post-hoc testing (Tukey’s
HSD test) confirmed that TDANN cITs predict faces and bod-
ies were significantly more strongly clustered than the other
object categories, cars and instruments (both ps < 0.05). We
found that the TDANN model cIT predicted no significant
difference in cluster strength for faces and for bodies when
compared directly, p > 0.05.

Perhaps not surprisingly, we found that the model’s ability
to predict cluster strength for any tested category was strongly,
but not perfectly, related to the fraction of model units that
were selective for that category (Fig. S7). In other words, the
greater the number of category-selective units that the model
predicted should be found, the greater the predicted fMRI
cluster strength for that category. In particular, most TDANN
cIT models predicted high percentage of units selective for
faces (median: 7.5%, range: 4.2-21.5% over 20 models) and
bodies (median: 10.4%, range: 3.9-17.8%), and low percent-
ages of units selective for instruments (median: 1.8%, range:
0.6-4.4%). While nearly all TDANN models predicted fMRI
patches for faces (18 of 20 models) and bodies (20 of 20 mod-
els), they rarely predicted model patches for instruments (5 of
20).

To further investigate the existence of selective clusters
for a broader range of categories, we tested the selectivity of
TDANN model cIT units with the test stimulus set used in
(42), which is comprised of gray-scale images of 20 different
categories, including faces and bodies. Similar to the findings
in (42), we did not find other regions that are as strongly
clustered as face patches (Fig. 4D). Significant differences
were found among the cluster strength of categories (one-
way ANOVA, F (19, 380) = 8.18, p = 4.01 × 10−16). Tukey’s
HSD post-hoc tests indicated that face-selective units were
significantly more clustered than any other category (all ps
< 0.05). We note that while the cluster strength for bodies
in the model cIT was lower with this stimulus set (Fig. 4D),
the body-selective units identified with this stimulus set were
localized to the same body sub-regions in Fig. 4A,B.

We note that, unlike primate brains (42, 49), the TDANN
layers did not show patches selective for scenes. This may not
be surprising as the TDANNs were designed as a model of
foveal vision (i.e., the central 8 visual degrees; see Materials
and Methods for details) and thus was not intended to model
visual areas with peripheral biases in which scene-selectivity
is often reported (52–54) (Also see Discussion).

Face- and body-selective patches in TDANN model cIT layers often
appear adjacent to or overlapping each other. Given the presence
of clear face- and body-selective patches in the model cIT
layer for nearly all random initializations, what is the spa-
tial relationship between them? In humans and non-human
primates, body-selective regions are typically found adjacent
to or partially overlapping with face patches (30, 55). We
observed a similar spatial relationship between face-selective
and body-selective units in the TDANN model cITs. Body-
selective TDANN units were often localized near clusters of
face-selective units, or intermixed with the face-selective popu-
lation (Fig. 4A, upper). Quantitative analysis supports the ob-
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Fig. 4. Category selectivity of TDANN model cIT. A) Model unit category selectivity maps (upper; each dot is a model unit) and simulated fMRI maps (lower) in a representative
TDANN model. All panels are the same 10mm x 10mm cIT tissue map from a single TDANN model. The left three maps show selectivity measured in response to test images
of faces (red), bodies (blue), and cars (yellow), respectively (see Materials and Methods). The rightmost plots show the superposition (collapse) of the three preceding plots.
Units that were selective for both faces and bodies (d′

faces > 0.85 and d′
bodies > 0.85) are shown in purple. Each simulated fMRI map is an estimate of the fMRI map that

would result from the same image test sets for faces, bodies, and cars, given the spatial arrangement and selectivity patterns of the neural units in the model (see Methods for
details). The white-colored plus and star markers indicate the locations of peak selectivity for faces and bodies, respectively. B) Additional simulated fMRI collapse maps from
four other TDANN models, each with a different random initialization. C) Left: Mean percentage of category-selective units (d′ > 0.85) over all TDANN model cITs (n=20).
Right: mean cluster strength of category-selectivity over all TDANN model cITs (n=20). This measure approximates standard fMRI ROI analysis by first selecting the largest
cluster in each layer from a subset of test images, and then testing with new images (see Materials and Methods). D) Same as C, but using a different standard fMRI image test
set with more categories (16). Categories under the bar yielded barely measurable clusters. Except in (D), all analyses were done with the test images from (25). In C and D,
error bars indicate the SEM over the 20 TDANN model runs.

servation that body-selective regions are closer to face-selective
regions than expected by chance. We first determined the peak
selectivity points for face and body as the center of the most
selective 1 mm circular region in each layer (see Materials and
Methods for details). The example peak selectivity points are
shown as white-colored plus markers for faces and stars for
bodies in Fig. 4A and 4B. We then measured the distances
between the peak selectivity points of face and body for each
cIT layer of all 20 randomly initialized models and found that
the mean distance of peak face- and body-selectivity points
was smaller than the mean distance between two random
points, and was lower than the 98% confidence interval for
two random points.

To better compare these results to the fMRI literature
in which these patterns were observed in primates, we also
investigated the voxel-level overlap in the smoothed maps
described above. Visual inspection suggests that the clusters
of face-selective voxels were generally adjacent to clusters of
body-selective voxels (Fig. 4A, lower), and in many cases these
patches partially overlapped one another (Fig. 4B, S6).

TDANN model cIT face patches are similar in spatial profile to
macaque cIT face patches. We found that both the spatial scale
of the model cIT face clusters and the rate at which face-
selectivity fell off with distance from the cluster center were
similar to precise measures of these parameters in the monkey
cIT face patch (aka "middle face patch"; 40). While the spatial
constraint applied during TDANN model training should lead
to some spatial biasing of similarly responding units, it does
not guarantee a precise match between the spatial structure of
macaque and model cIT face patches. To more precisely com-
pare the spatial structure of TDANN model cIT and macaque
cIT face patches, we computed the spatial profile of the model
face patches and compared with the measurements reported
in (40). One such measurement is the purity curve, which de-
scribes how the fraction of units that are deemed face-selective
(by a standardized criterion) falls off as a function of distance
from the spatial location with the highest concentration of
face-selective units (40). We computed the proportion of face-
selective units (purity) in each 1mm x 1mm region of model
cIT, then plotted purity as a function of distance from the
maximally-selective region (see Materials and Methods for de-
tails). We found that these purity curves were similar to those
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reported from single-unit analyses in the macaque middle face
patch (40) in spatial profile, spatial scale, and peak/trough
purity values (Fig. 3B, right).

Model face-patch units are highly interconnected with face-patch
units in other layers. Face patches are sub-regions within each of
the three levels of macaque IT (i.e., pIT, cIT, aIT) (41), which
is a hierarchical, densely interconnected network that is a
continuation of the hierarchical ventral stream (4). Prior work
suggests that face patches are preferentially connected with
each other across those three levels rather than being equally
connected to all neurons in the levels above and below. Specif-
ically, electrical microstimulation of neurons within a single
face patch elicits strong activity in other face patches, while
microstimulation of neurons located outside of face patches
fails to do so (31). To evaluate the interconectivity of the
TDANN model cIT and aIT face patches, we mimicked the
stimulation paradigm described in (31). Specifically, we sim-
ulated microstimulation of neurons both inside and outside
of the face patches in model cIT (Fig. 5, S11) and assessed
the spatial pattern of microstimulation-evoked responses in
model aIT (see Materials Methods). We found that stimula-
tion of model units within each model cIT face patch drove
a high level of activity of model units in face patches in the
subsequent model layer, model aIT (Fig. 5B). However, stim-
ulation of model cIT locations outside of the face patch did
not lead to a significant increase in the activity of face patch
units in model aIT (Fig. 5C). A paired t-test across the 20
randomly-initialized models revealed that within-patch model
cIT stimulation led to substantially higher activity in the
model aIT face patches than stimulation outside of model cIT
face patches, t(19) = 5.78, p < 0.001 (Fig. 5D), providing
evidence of interconnectivity of TDANN face patches in suc-
cessive layers. It is worth stressing that this connectivity was
not built into the TDANN models and prior to training, all
TDANN models started with each model cIT unit connected
to each model aIT unit with random weights (see Materials
and Methods).

Detailed comparison of individual neural units in TDANN
model cIT face patches with face neurons in macaque IT. Do
the similarities between our models and macaque IT extend
beyond topographical phenomenology? To address this ques-
tion, we compared the responses of "neurons" in model cIT
face patches to the responses of actual "face neurons" recorded
in macaque IT. We made three types of comparisons: response
predictivity, pairwise response correlations over images (a.k.a.
signal correlations), and face identity and viewpoint invariance.

TDANN model cIT face-patch units predict the neural responses of
individual face-selective neurons in macaque. Prior work (1, 36)
has shown that non-topographic models trained on general
visual recognition lead to model "IT" layers that accurately
explain/predict the firing rates in macaque IT. Would the same
be true with TDANN IT layers despite the additional spatial
constraints imposed during training? The spatial loss function
that we applied here to create the new TDANN models during
training encourages units in close proximity to have responses
that are similar to each other (Fig. 2). One concern from
applying this spatial loss function is that since the response
properties of all the model IT units will be altered, the resulting
TDANN model face neurons might not be as good at explaining
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Fig. 5. Simulated electrical stimulation inside model cIT face patches leads to fMRI-
detectable activation of model aIT face patches. A) Maps of face-selectivity in model
cIT (upper) and aIT (lower) of an example TDANN model (located as described in
Materials and Methods). Orange lines demarcate the boundaries of face patches
and are replotted in B and C. B) Electrical stimulation inside of the model cIT face
patch (upper) and the observed responses in model aIT (lower). See Materials and
Methods for details on simulated stimulation. The red plus marker in the model
cIT map indicates the simulated stimulation site and the color map represents the
stimulated activation of units around the stimulation site in cIT (upper) and in aIT
(lower). C) Stimulation outside of the face patch in model cIT does not lead to an
appreciable increase in the activity of model aIT face patch units. D) Quantification:
Mean activation of the model aIT face patch units for stimulation inside (left) and
outside (right) of model cIT face patch (mean across 20 randomly-initialized TDANN
models; in each case, all face-selective regions in cIT and aIT were identified and its
boundary was defined as described in Materials and Methods). Error bars indicate
the SEM.

the IT face neurons as model neurons from prior studies. We
tested how well different populations of model units predict the
neuronal activity of macaque face-patch neurons in response
to a set of 3,200 images of photorealistic 3D objects drawn
from eight natural categories (i.e., animals, boats, cars, chairs,
faces, fruits, planes, and tables) with variations in the object
position, scale, and pose (47).

We investigated the response profiles of macaque face-
selective neurons (d′ > 0.5) and TDANN model cIT face-patch
face-selective units (d′ > 0.66) to different categories (Lower
d′ threshold values were used in order to ensure sufficient
numbers of face neurons). Fig. 6A shows the standardized
responses of macaque face neurons (upper) and a subset of
model face units (lower) (see Fig. S9 for the full set responses).
We observed that the face images elicited stronger responses
across both macaque face neurons and model face units rel-
ative to the images of non-face objects. We also found that
model cIT face-patch units can explain neuronal responses to
images of both faces and non-face objects (Fig. 6B), where the
Pearson correlation between the profile of category responses
for neurons and model units was 0.97.

We also tested the ability of TDANN model cIT face-patch
units (d′ > 0.85) to predict responses of face-selective neu-
rons in macaque IT (d′ > 0.65). (47) notes that most of
these face-selective neurons are likely belonging to the IT face
patches. Following the procedure in (36), we used a simple
partial least squares (PLS) regression to predict the activity
of each recorded macaque face-selective neuron from a linear
combination of model face-patch units. The predictivity scores
were then measured as the noise-corrected Pearson correlation
between the actual and predicted responses of each neuron on
a held-out set of images. We found that model cIT face-patch
units explained the activity of macaque face-selective neurons
well. The median correlation between predicted activity and
actual activity was 0.623 ± 0.016 (mean ± std) across 20 mod-
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els with different random initializations. Fig. S10A shows an
example distribution of the neural predictivity scores for one
exemplar model.

We additionally tested the ability of model cIT face-patch
units to explain face-patch neurons in macaque IT using the
data collected in (40). Unlike (47), the neurons recorded in
(40) are specifically localized within or nearby face patches.
We used a subset of the neural data that was collected: 250
images spanning macaque faces, human faces, scenes, objects,
and body parts. We used cross-validated Ridge regression
to predict the activity of each recorded macaque face-patch
neuron from a sparse linear combination of model face-patch
units. The median predictivity score (noise-corrected) was
0.645 ± 0.032 (mean ± std) across 20 models with different
random initializations. In other words, about 42 percent
of the explainable visually-driven response variance of face
neurons is explained (predicted) by the TDANN model cIT
(this is comparable to other (non-topographic) deep ANN
models on similar tests, unpublished). However, it should
be noted that these results likely underestimate TDANN’s
ability to explain face-patch neuron responses due to the low
number of images that were available to map the model units
to the recorded neurons (see Materials and Methods for more
details). Nevertheless, the model cIT face-patch units could
fit the activity of macaque face-patch neurons well overall.

These results suggest that the addition of a spatial loss
term during model training does not prevent the formation
of face-selective model units in ANN models of the ventral
stream and it does not degrade the functional similarity of
these units to face-selective macaque neurons. Does it degrade
the ability of the total distribution of model units to predict
the activity of a broad population of IT neurons?

To answer this question, we next investigated the ability
of all model units to predict IT macaque neurons regardless
of face selectivity (Fig. S10B). We compared the predictivity
of model units in the model cIT to units from model aIT,
as well as earlier model layers whose activity might more
closely reflect that of early and intermediate visual areas. A
one-way ANOVA revealed a significant difference between the
quality of fits from different TDANN model layers (green line
in Fig. S10B), F (6, 133) = 23788.7, p < 1 × 10−198, and post-
hoc tests indicated that fit correlations were higher in model
cIT than in all earlier layers (all ps < 0.05). Furthermore, fit
correlations from model aIT were significantly higher than fits
from all layers earlier than CONV5 (all ps < 0.05).

We also compared layer-wise fits between the TDANN
and non-topographic control ANN models. We conducted
a 2-way ANOVA (model type × layer) which indicated a
main effect of model type, F (1, 126) = 56.7, p = 8.47 × 10−12

and a significant interaction between layer and model type,
F (6, 126) = 39.4, p = 1.11 × 10−26. A post-hoc test indicated
that some of the TDANN layers are better in explaining
the neural responses than the control model layers (CONV3,
CONV5, and model aIT; all ps < 0.05). Yet, overall there was
no significant difference between other layers of TDANN and
control models (p < 0.05).

The response similarity of model cIT face neurons is similar to the
response similarity of monkey IT neurons. Having established that
the TDANN models explain neuronal responses at a level
consistent with prior ANN models, we further tested if the
additional spatial constraint resulted in model units that were
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Fig. 6. Comparison of monkey IT face neurons and TDANN model IT face neurons.
A) Upper panel: Example response profiles over images from eight object categories
of a set of face-selective neurons randomly sampled from macaque IT face-selective
neurons (n = 40, 47). Neural responses were measured as the average firing rate
from 70 to 170ms post-image onset (baseline-subtracted using each site’s response
to blank gray image as the baseline; see experimental details in (47)). Lower panel:
Responses of a randomly-selected sample of face-selective neurons (d′ > 0.85)
"recorded" from TDANN model cIT face-patches (n = 160; see Fig. S9 for the full
set of model responses). The responses of each neuron/unit were standardized as
z-scores over 512 held-out test images. B) Mean response (over images) within each
of the eight object categories for monkey IT face-selective neurons (n = 40) and
face-selective neurons from TDANN model cIT face patches (n = 685). Error bars
indicate the SEM over neurons or model units. C) Facial identity and viewpoint tuning
in macaque and TDANN model cIT/aIT face patches, following the conventions of
(19). Left panel: Mean (over neurons) identity tuning widths for neurons sampled
from monkey face patches (left; ML/MF and AM) and neurons sampled from TDANN
face patches (right; model cIT and model aIT). Smaller tuning half-widths indicate
greater identity selectivity. Right panel: Mean (over neurons) of standard deviations of
head orientation tuning depth. Tuning depths close to 0 (and thus smaller standard
deviations of tuning depths) indicate greater viewpoint invariance. Error bars indicate
the SEM over model units. The values for macaque face patches were reproduced
from the reported values in (19).

more (or less) correlated with each other than the actual pairs
of IT face-selective neurons from the same face patch. We
computed the mean pairwise correlation between responses
from model units in TDANN cIT face patches (1 patch from
each of the 20 models) and compared to the mean pairwise
correlation of neurons in 7 macaque face patches from 2 dif-
ferent monkeys. For both model units and macaque neurons,
correlations were computed over a set of natural images used in
prior studies (40). The mean pairwise correlation of macaque
face-selective neurons from the same patch (r = 0.59 ± .04)
was not significantly different from the mean pairwise cor-
relations of face-selective model units from the same patch
(r = 0.54 ± .01), independent samples t-test t(25) = 0.89, p
= 0.41, suggesting that the TDANN model face-patch units
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exhibit similar correlation structure to face-patch neurons in
macaque IT.

Identity selectivity and viewpoint invariance increases in successive
TDANN model layers. In the macaque ventral stream, invariance
to object viewpoint in neural representation that convey visual
information increases from posterior to anterior IT (19), consis-
tent with the cortical hierarchical progression of invariance for
general object representation (8). For coding of face identity
in particular, results suggest that neurons in posterior IT face
patches respond to any facial identity at a given viewpoint,
neurons in anterior face patches respond to a given identity
regardless of viewpoint, and intermediate regions respond sim-
ilarly to mirror-symmetric viewpoints (19). We evaluated
the face viewpoint invariance of the TDANN model cIT and
model aIT face-patch units by presenting images of 25 different
faces at 8 viewpoints each (Fig. S8A, from 19) and computing
identity and viewpoint tuning in face patches.

Following the stimuli and the procedure in (19), identity
tuning width and head orientation tuning depth were com-
puted for each face patch unit across all models (see Materials
and Methods for details). Here, smaller identity tuning width
corresponds to higher selectivity to identities, while smaller
head orientation tuning depth means greater viewpoint invari-
ance. We observed an increasing identity selectivity (Fig. 6C,
left) and an increasing viewpoint invariance (Fig. 6C, right)
from TDANN model cIT to model aIT. Indeed, TDANN
model aIT identity selectivity was significantly greater than
model cIT (p << 0.001, Mann-Whitney U test, Fig. S8B),
and TDANN model aIT viewpoint invariance was significantly
greater than model cIT (p << 0.001, Mann-Whitney U test,
Fig. S8C). These trends are consistent with those reported
for the macaque face path system (19). In summary, the pre-
viously reported trend of increasing identity selectivity and
viewpoint invariance from ML/MF (located in cIT) to AM
(located in aIT) was observed between TDANN model cIT
faces patches and model aIT face patches.

Dependence on visual diet. In this work, each TDANN model
was trained (i.e., evolved or developed; see Discussion) with
naturalistic images from the ImageNet (ILSVRC-2012; 45)
and Labeled Faces in the Wild (LFW; 46) datasets. The
ImageNet dataset used in the ILSVRC-2012 competition is a
large-scale image dataset comprised of 1000 categories built
upon the WordNet (56) synset tree. While its large scale
and diversity has led to substantial advancements in computer
vision, it is not clear whether the ImageNet dataset reflects the
actual visual experience "diet" of primates. For instance, 87 of
the ImageNet classes are different types of vehicles, whereas
there are very few classes of humans or other primates. Even
for humans who, unlike other primates, may be exposed to
some of those vehicle types, it is unlikely that they experience
more vehicles than faces or other humans, especially during
evolution and early visual development.

Recent neuroscience findings (57, 58) suggest that the early
visual experience of primates affects the development of cate-
gorical representations in IT. Extending this idea to models,
we asked if and how the representations in the TDANN model
cITs and aITs depend on their visual experience by training the
networks using datasets with different categorical distributions.
Here, we define the "visual diet" of each TDANN model as
the combination of the set of images used during training and

Cluster Strength ~ 0

Diets Modified from Baseline

Naturalistic Diets Unnatural Diets

A

B

Fig. 7. The effect of visual experience (training) diet on the cluster strength of
category-selectivity (t > 10) in TDANN model cITs. In panel B, the first six diets are
naturalistic: the baseline diet, three diets modified from the baseline diet (modification
1-3; subsets of ImageNet (45) and LFW (46) as shown in panel A), and two entirely
non-overlapping sets of images: Places365 (natural scenes; 59), and Open Images
(naturalistic images; 60), from left to right. The two rightmost diets are highly unnatural:
ImageNet (45) images with randomly shuffled labels (random label) and random
Gaussian noise images (gaussian noise; see Materials and Methods for details). The
plot shows the mean cluster strength (mean over all TDANN models trained with the
indicated diet) for faces (red), bodies (blue), cars (yellow), and instruments (purple).
For each category, the cluster strength was measured using the test images from
(25), using the same (∼fMRI) cluster strength metric as in Fig. 4C. Error bars indicate
the SEM.

the corresponding set of recognition tasks associated (i.e., the
set of ground truth image labels). For this experiment, three
additional modified training sets were constructed from the
ImageNet and LFW datasets by manipulating the frequency
of face- and vehicle-related categories (Fig. 7A) in the training
set. We trained 10 new TDANN models for each visual diet
and compared both the percentages of category-selective units
and the cluster strength of category-selective units in model
cIT and aIT with the same measures we used in the baseline
TDANN models (described in Fig. 4).

We found that in model cIT, there was no significant dif-
ference in either the predicted percentage of units selective
for faces, bodies, cars, and instruments, or the predicted clus-
ter strength for faces, bodies, cars, and instruments (all ps
> 0.2; the first four columns in Fig. S12A and 7B, respec-
tively). However, relative to the baseline diet, the aIT level of
models trained on standard ImageNet (modified diet 1) had a
12.5% smaller percentage of face-selective units (t(28) = 2.01,
p = 0.05), a 9.9% larger percentage of car-selective units
(t(28) = −4.25, p = 0.0002), and no change in percentage
of body-selective units (p > 0.4) (the first two columns in
Fig. S12B). These differences in the proportion of units se-
lective for each category was accompanied by higher cluster
strength for face-selective units (t(28) = 2.46, p = 0.02), a
lower cluster strength for car-selective units (t(28) = −3.53,
p = 0.001), and no change in the cluster strength of body-
selective units (p > 0.5), as shown in Fig. S12C (first two
columns). These results suggest that, for TDANN models, the
training diet has its largest effect at the very highest ("output")
layers (closest to the behavioral task), but they also show that
the core phenomena of clusters of face neurons (and body
neurons) in the more "middle" model layers (approximating
cIT), are relatively robust to (these) changes in diet.
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We also found that the other hallmarks of face processing
were robustly found in TDANN models regardless of the train-
ing diets: the models’ ability to explain the response profiles of
individual macaque face neurons, the inter-connectivity of face
patches, and the increase of viewpoint invariance in successive
layers were unaffected by the choice of visual diet (Fig. S13).

Given the robustness of face-patch properties across differ-
ent categorical distributions, we next asked whether the model
predicts that face patches will appear with even more drastic
changes in the visual diet. In this experiment, we trained
new TDANN models on four additional diets: 1. Places365
(59), 2. Open Images (60) in Tencent ML-Images (61) format,
3. random Gaussian noise images, and 4. ImageNet images
with randomly shuffled labels (see Materials and Methods for
details). We trained ten new models on each dataset. The first
two diets are naturalistic images, but are intended to further
test robustness. The latter two diets are both highly unnatural
in different ways, and were included to test whether the face
patches would appear under nearly any visual task training
regime. Using the same images and measures of face cluster
strength as above (the rightmost four columns in Fig. 7B and
S12A), we found that face clusters still appeared in models
developed on the two natural diets (1 and 2). On the other
hand, we found that training the models with randomly la-
beled naturalistic images or random noise images generally
destroyed the appearance of the face network in the model
(see below for an additional robustness analysis), suggesting
the importance of ecological visual experience.

Robustness of results to operational definition of face selec-
tivity. As a final test of robustness, we asked how strongly the
model’s predictions of face neuron appearance and spatial clus-
tering depend on the images sets that are used to operationally
define face neurons in the first place (i.e. the positive (face)
and negative (non-face) test images). In particular, while all
of the results presented above used standard operational test
images from the neuroscience literature to facilitate direct
comparison with neural and fMRI results, we noticed that
measures of model face selectivity had some dependence on
the operational definition (e.g. Fig. 3A).

To explore the impact of this, we tested how the face se-
lectivity of each TDANN model’s units depended on the test
images. Specifically, for each TDANN model, we computed the
spatial pattern of face selectivity (d’) values over all TDANN
cIT model units using each of the four test sets (25, 40–42),
and we measured the reliability of this pattern of face selectiv-
ity by computing the correlation of the d’ values over all units
(see Supplementary Information for details). Fig. S14B shows
the average reliability scores of the TDANN models trained
with different diet as the mean pair-wise correlation of d’ val-
ues. We observed that the models trained with naturalistic
datasets (leftmost six columns) were relatively highly corre-
lated (mean: 0.42), but not perfectly correlated, suggesting
some dependence on the test sets. We do not know of any
neuroscience study that makes similar comparisons across test
sets, so we cannot ask if this level of (non-perfect) robustness
to the image test set is also found in individual brains. As a
reference, we also found that models trained on very unnatural
diets (rightmost two columns) showed very unreliable patterns
of face selectivity (mean: 0.06), indicating that, while they
may occasionally appear to demonstrate "face selectivity" un-
der one operational definition, it is clearly not face selectivity

as it does not hold up under changes in the details of the test
set. Interestingly, we also found that training with naturalistic
images assigned to random labels showed slightly more reliable
spatial patterns of face selectivity than the random noise train-
ing. This suggests that while learning the semantic meaning of
visuals is important in the emergence of face patches, simply
experiencing naturalistic images may also contribute to the
development of categorical representations.

Discussion

In this work, we tested the hypothesis that the neurobiological
hallmarks of specialized face processing in high level ventral
visual cortex might be an emergent consequence of the ventral
visual stream evolving and/or developing to solve general
visual recognition while also minimizing wiring costs. To test
this hypothesis, we built new artificial neural network models
that implement those two goals. Specifically, we assumed that
the evolutionary/developmental pressure to minimize wiring
cost could be approximated by encouraging physically nearby
neurons to have similar response profiles (see discussion below).
Thus, to test the overall hypothesis, we trained neural networks
to solve real-world visual object categorization tasks (as in prior
work; 36) while also striving for a solution in which neurons
with similar response profiles are physically close to each
other (referred to as a "spatial correlation" cost). We do not
assume that optimization procedure to minimize these costs
(gradient descent training) is emulating the same mechanisms
of evolution and development – only that it provides a way
to apply the two types of fitness pressures on a network of
similar architecture to the ventral stream and observe what
internal representations it tends to develop.

We succeeded in meeting the engineering challenges of
applying these two pressures, which resulted in neural network
models in which the highest layers of those models had artificial
neurons arranged in two physical tissue sheets (cIT) and (aIT)
and their weights are optimized such that the nearby neurons
show similar response profile, and also performed well on
real world object categorization. We refer to these models
as topographic deep artificial neural networks (TDANNs).
We then probed these TDANN models in a manner directly
analogous to neuroscience experiments in humans and non-
human primates to characterize and systematically compare
the empirical neurobiological hallmarks of face processing. We
mostly focused on monkey IT cortex (specifically central and
anterior IT; cIT and aIT) and referenced human data when
comparing fMRI maps. Since a similar network of face patches
are found in human ventral temporal cortex, we expect the
qualitative phenomena will be similar and thus relevant to
both species.

Our results reveal that these TDANNs reproduce many of
the neurobiological hallmarks of face processing in primate
higher visual cortex. Most notably, we observed clustering
of face-selective units into "face patches", that the purity
and spatial extent of those face patches was very similar to
that measured in monkeys, enriched connectivity between
face patches in different model layers, and the emergence
of viewpoint invariance in successively higher face patches.
Furthermore, we observed that neural units in TDANN model
face patches predicted the responses of individual macaque
face-patch neurons, and these predictions were comparably
accurate to those of earlier neural network models of the
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ventral visual stream (1, 12, 36).
To us, the most salient finding was the reliable emergence of

face (and body) patches, even though faces were not explicitly
treated as special and the spatial correlation rule was not tuned
in any way to require those structures to emerge. Indeed, we
tested other standard categories of objects that, a priori, should
have been equally likely to have physical clusters of neurons.
However, we rarely observed the emergence of patches for
those categories, just as prior fMRI work in humans has never
reported patches for these same categories, despite intensive
efforts to do so (42, 50, 51). This salient finding of face
(and body) patches is even more striking when we find that
their emergence is highly robust to the choice of training
diet (experienced images and tasks). However, the TDANN
models predict that highly unnatural visual diets prevent the
formation of these structures (see below).

Taken together, these results show that TDANN models
readily explain the main reported empirical hallmarks of the
IT face processing network, even at a quantitative level. Thus,
those empirical hallmarks do not by themselves imply develop-
mental mechanisms that are orchestrated specifically to create
a face network. Instead, they suggest the hypothesis that some
relatively simple developmental rules might be sufficient, even
over a broad range of natural visual experience (Fig. 7, S12 and
S14). An important caveat is that, because we do not assume
that the training of TDANN models is a mechanistic model
of development, our results do not by themselves rule out the
possibility that evolution has effectively incorporated wiring
cost pressure (pressure that is approximated by the training of
the TDANN) into the genome which then in turn orchestrates
a more detailed construction of the ventral stream, including
face patches. Indeed, empirical evidence on this question is
conflicting (cf. 57 versus 62, 63 and 64).

Regardless of the above, the general inference we draw from
this work is that the functional organization of the ventral
stream as a whole might be understood as resulting from the
need to perform behaviorally important inferences of latent
visual image content (esp. object category) while also minimiz-
ing wiring costs over evolution and/or post-natal development.

Spatial correlation rule as a proxy of wiring cost minimization.
The overarching hypothesis we tested – cortical topographic
organization emerges from solving general visual recognition
in the face of neural wiring costs – is not conceptually new (65–
67). But, to our knowledge it has not been previously tested
in higher visual cortex because our field did not have neural
network models that could reasonably explain and predict
the response patterns of individual IT neurons, let alone the
specific physical arrangement of face-related neurons in the
IT tissue. However, the advent of reasonably accurate, image-
predictive artificial neural network models of the entire ventral
visual stream (1, 12, 36, 68–70) suggested this hypothesis could
now be tested. Our work here builds upon those models and
an overall performance optimization approach (1).

The spatial correlation cost that we developed and required
each TDANN model to minimize is inspired by and consistent
with the hypothesis that the brain should perform its necessary
computations with minimal axonal wiring cost. This frame-
work posits that physical and metabolic constraints have, over
evolution and/or development, favored a spatial organization
of neurons in each cortical area that minimizes the length of
axons and extent of dendritic arbors (71, 72). To implement

this underlying motivation in an engineered model, we did
not directly compute the wiring length cost of each possible
arrangement of all the neurons in an area, but we instead used
an efficient proxy. Specifically, we assumed that wiring cost
minimization should tend to lead to physical arrangements of
neurons in which neurons with similar response profiles are
near to one another, so we could optimize for that goal. The
reasoning here is that the circuit drivers of those response
profiles (as implemented through axonal connections) would
tend to be reduced in this physical arrangement (relative to
a physical arrangement in which, for example, neurons are
randomly arranged in the cortical tissue) (33, 34). Using basic
assumptions about the wiring cost needed to implement any
given arrangement of neurons, we do find that TDANN cIT
layer (optimized with the spatial correlation cost) do indeed
have lower wiring costs than random spatial arrangements of
neurons from the same base architecture (AlexNet) trained
on the same set of categorization tasks (see Supplementary
Information for details). However, an important goal of future
work is to develop and implement more direct methods of
wiring minimization in deep ANN models, and to implement
those methods at all levels of the model ventral stream (not
just within the upper "IT" layers as we have done here). While
we fully expect such models to reproduce the basic findings
described here, they could be even more accurate models of
the entire ventral stream, and would allow a more direct ex-
ploration of the metabolic and physical costs that might have
been most important to shaping its functional organization.

Intuition about neural clustering. We found that the propor-
tion of selective units that emerged for each category, was
highly correlated with the clustering strength of those units
on the cortical surface and thus with the likelihood that mm-
to-cm scale measurements such as fMRI and optical imaging
would detect reliable signals for those categories (Fig. S7).
That is, the TDANN models suggest that it is suboptimal
to form clusters for categories with low numbers of selective
units, such as tools or flowers (Fig. 4). This may be intuitively
seen as a natural consequence of the spatial cost function the
TDANN aims to satisfy, and it remains to be tested if it holds
up under other related cost functions (such as more direct
measures of wiring cost or energetics). But, even if the spatial
clustering itself seems intuitive, that intuition does not at all
explain what determine the fractions of units that are selective
for each category.

We also observe the fraction of selective units, the clus-
tering strength, and the precise spatial location of the model
face patches (e.g. Fig. 3A), are partially dependent on the
operational definition of selectivity used to probe the neural
network, i.e. the image test sets. For instance, TDANNs
robustly predict the face selectivity across different test sets,
but they predict some differences for body selectivity (e.g.
lower clustering strength for bodies with some test sets; see
Fig. 4C,D). To our knowledge this has not been systemati-
cally tested in the ventral stream, and further neuroscience
investigation is needed to identify if the subtle, but reliable
variations seen in the TDANN models are in line with those
in individual brains. Indeed, this is one of several areas where
the TDANN models motivate future experimental work that
would drive further model development.

Our manipulation of the training diet, along with similar
experiments in macaque (57), suggests that visual experience
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is one important influence on the proportion of units selective
for a given category. We are unable, however, to rule out other
possibilities, including factors related to the distribution of
visual features that define a category or yet-to-be-discovered
genetic mechanisms that guide the distribution of category-
selective units (see below).

Dependence on visual diet. We observed that the distribution
of images experienced by the TDANN model and the specific
set of tasks it was asked to perform on those images (together
referred to as the model’s visual "diet") affects the final "adult"
set of neurons and their physical arrangement within the model
cortical tissue. For example, the removal of the face detection
task and the associated images reduced the number of face-
selective units, and it reduced, but did not eliminate, model
face patches. Similarly, the inclusion of ImageNet’s vehicle-
related categories in the diet increased the car-selectivity, but
this effect was most pronounced in the last hidden neural
layer (fc7, model aIT) (Fig. S12). We also observed that the
TDANN layers showed low selectivity to scenes that were not
included as an explicit category during training. Although
some training images may contain scenes as backgrounds, the
general visual recognition task the models were trained on did
not include "scenes" as a target label.

Yet, interestingly, we found that models trained with the
standard ImageNet category diet – which seems very non-
natural from a evolutionary task perspective – already contain
large numbers of face- and body-selective units and the clus-
tering of such units (relative to other categories, such as cars
and instruments). Indeed, we noted that even with no face
detection or face discrimination task in the training diet, most
TDANN models showed face-selective neurons in large enough
numbers to result in face patches. One interpretation of these
findings is that the ability to distinguish face shapes, for ex-
ample, may come at least partly for free from the high level
shape features that implicitly result from learning how to solve
a general object-categorization tasks. Another, similar inter-
pretation is that because the naturalistic image sets used in
training all contained at least some images with faces, and the
presence and properties of those faces were likely diagnostic
for some trained categories, the existence of face patches could
reflect the implicit benefit of detecting and/or discriminating
faces for categorizing objects and scenes. Further, our results
also suggest that the strength of face clustering positively
depends on the amount of faces in the visual diet and/or tasks
associated with discriminating faces (we did not attempt to
disentangle those two factors here as that is non-trivial and is
the focus of future work).

Given the robust emergence of face (and body) patches
with a range of diets (above), we began to wonder about the
minimal requirements needed to see their emergence. While we
have not exhaustively tested all the possible variables, we did
find that diets that are strongly unnatural in terms of image
statistics (Gaussian noise images with fixed labels) or are
strongly unnatural in terms of tasks (random labels assigned
to natural images) do not reliably produce face patches in the
TDANN model (Fig. 7, S14).

If one assumes that the TDANN training is very crudely
approximating mostly post-natal development, then the diet
results (above) are at least partially consistent with the finding
that non-human primates deprived of face experience tend
to have weak to non-detectable face patches, and that the

patchiness of the IT functional organization depends on tasks
learned during post-natal development (57). However, in our
opinion, the modeling work is not yet sufficiently advanced to
appropriately engage on these questions, as the model training
is highly non-biological in that it is fully supervised.

Directions for future work. The modeling results presented
here naturally lead to a number of questions for future work:
what is the distribution of different categories that best reflects
the true visual experience of primates? Can we build a more
ecologically balanced set by tuning the distribution based on
the similarity between the brain’s and models’ representations?
Here, we explored a limited range of training diets, as a full
exploration of all possible training diets is beyond the scope
of this work. Future work will be needed to determine how
visual diet affects the development of categorical representa-
tions and the formation of different patches. Studies of that
form will ultimately require: constructing datasets that are
closer to the primate visual experience (73), unsupervised and
or self-supervised model learning methods (74), and compari-
son with data from primates at different stages of post-natal
development (75) and different types of visual experience (57).
This would allow future modeling work to begin to separate
the mechanisms of evolution (i.e. defining a model’s "birth
state") from the mechanisms that are work during post-natal
development and adult learning.

Another future engineering direction is to develop ANN
models that apply spatial/wiring costs at all levels of the
ventral stream – not just within the IT levels as we have done
here. For current deep ANN models, engineering challenges
must be overcome, but progress is underway (76). And a
related direction is to switch from the baseline deep ANN
architecture used here (AlexNet) to other more advanced ANN
architectures that better approximate the recurrent circuitry
both within and beyond the ventral stream (77–79).

On the neuroscience side, the TDANN models already
motivate several new lines of experimental work. For example,
more precise measurements of the dependence of the face and
body patches on the specifics of the image tests sets (outlined
above). Even more interestingly, the TDANN models can
be used to predict sets of images that should best activate
or deactivate tissue regions of IT that lie outside the known
categories. Indeed, older work (80, 81) and more recent work
(82) suggest that, even at the level of fMRI, these other regions
of IT are indeed selective over some image set contrasts. But
the TDANN models likely offer even more precise predictions.

Clearly much remains to be done. Even though the TDANN
models reveal how the hallmark neural phenomena of face
processing might be explained, these models are certainly in-
complete in many aspects. However, they already suggest
new experiments that will in turn lead to new models that
will advance our understanding. Indeed, our field is only at
the cusp of applying such image-predictive models to explore,
predict, test, and ultimately understand these and other nat-
ural phenomena in the visual system. This iterative loop
between engineered models and experiments holds the promise
to elucidate conceptual hypotheses and resolve long standing
debates, and this approach will accelerate as our field adopts
and deploys engineered models even more advanced than those
we deployed here.
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Materials and Methods

Spatial correlation loss function. The spatial correlation rule was
implemented as a proxy of wiring cost minimization within each of
two layers of the ANN architecture (Fig. 2). Here, the underlying
assumption is that the pressure to minimize wiring cost can be
approximated as a pressure to have neurons with similar response
profiles to be adjacent. Inspired by that, we derived the spatial loss
function by considering pairwise similarities of model unit responses
in each layer as a function of their physical distance within the tissue
map of that layer. This heuristic is consistent with observations
that pairwise neuronal correlations in visual cortex decrease as a
function of distance on the cortical surface (83, 84). The specific
loss function we used was parameterized to approximate the actual
IT response correlation spatial profile that were obtained from the
neural recordings (47) in macaque IT cortex (Fig. 2):

L =
∑
i

∑
j 6=i

∣∣∣∣Cij −
1

dij + 1

∣∣∣∣
where Cij is the response profile correlation between the model
units i and j, and dij is their cortical distance in millimeters in the
tissue map.

Assignment of unit tissue positions and model training. The topo-
graphic deep artificial neural networks (TDANNs) in this work are
adaptations of the AlexNet (2) base architecture: five convolutional
layers with max-pooling nonlinearities after layers CONV1, CONV2,
and CONV5, followed by two fully-connected layers (FC6 and FC7;
Fig. 1). In our TDANN implementation, model units in layer FC6
and layer FC7 are assigned initial, random spatial positions in a
10mm x 10mm two-dimensional map, simulating the approximate
amount of cortical tissue in each level of IT devoted to the central
∼8 degrees. Separate, independent model maps were maintained
for each layer. Once training began, the model neurons all remained
physically fixed in the tissue, but the internal synaptic weights to
each neuron were iteratively adjusted to optimize the model image
categorization performance (see below) and to minimize the spatial
loss (above). The overall spatial loss in each layer was set to be
∼0.25 of the overall categorization loss.

Each network was trained using stochastic gradient descent with
a batch size of 256 images, momentum of 0.9 and weight decay
of 0.0005. The learning rate was initialized as 0.01 and decreased
twice by a factor of 10 throughout 100 epochs of training. Twenty
TDANN networks were initially trained with random parameter
initializations. New networks were later trained to explore the
effects of visual diet (see below). As a non-topographic control, ten
networks with the same baseline AlexNet architecture were trained
with the exactly same procedure but without the additional spatial
loss. Unless otherwise noted, all statistics were computed using
data from all models.

Training dataset. The baseline TDANN models were trained with
a set of 914 visual categories from a naturalistic image dataset
collected from the ImageNet dataset used in the ILSVRC-2012
competition (45) and the Labeled Faces in the Wild (LFW) dataset
(46). To construct a training set a bit closer to non-human primate
visual experience, our initial baseline training diet used 913 non-
vehicle-related categories (∼1.17 million images) from the ImageNet
dataset plus one ‘face’ category (9,500 LFW images from the LFW
image set). Thus, the general visual categorization training was for
914 equally weighted categories, one of which was a ‘face’ category.
No face-identification training was performed.

To investigate the effect of visual training diet on category
selectivity in TDANN models, we trained new TDANN models with
one of the three additional training diets (Fig. 7A). Modified diet
1: all ImageNet categories (1000 categories, ∼1.2 million images).
Modified diet 2: Identical to baseline diet except no extra LFW
face category (913 categories, ∼1.17 million images). Modified diet
3: all ImageNet categories plus the one LFW ‘face’ category (1001
categories, ∼1.18 million images). We trained ten new models on
each of these diets.

In addition, we trained new TDANN models with two additional
naturalistic training datasets: Places365 (59) and Open Images
(60). The Places365 dataset consists of 1.8 million naturalistic
scene-centric images assigned to 365 categories. For Open Images,
we used 1.2 million images assigned to 1,134 categories, subsampled
from the Open Images images which were collected as Tencent ML-
Images (61) and re-labeled to match the ImageNet labels. We also
constructed two additional datasets that are strongly unnatural in
terms of image statistics (gaussian noise; Gaussian noise images
with fixed labels) or tasks (random label; random labels assigned
to natural images). For gaussian noise, 1.2 million Gaussian noise
images were generated from random normal distribution (0,1). The
pixel values were clipped to (-1, 1), then rescaled to (0, 255) in
order to represent the RGB values. We also trained new models
with ImageNet images with randomly shuffled labels, which destroys
the semantic relationships between the images and the labels. To
maintain the distribution of the labels in the original dataset, the
labels of the entire training set were randomly shuffled, and then
assigned to the images.

Visual test stimuli and neural data. In this work, six different visual
test sets from (19, 25, 40–42, 47) were used. Each stimulus set con-
tains gray-scale or colored images from face and non-face categories,
such as objects and bodies. For neural predictivity analyses, subsets
of stimuli and neural data from (47) and (40) were used. For neural
data, the multi-unit response to each images was recorded from two
macaque subjects as the average firing rate in a 70-170 ms (47) or
60-160 ms (40) window after stimulus onset. All responses were
then baseline subtracted using the background response to blank
gray images (47) or the average firing rate in a 0-50 ms window
after stimulus onset (40). More details for neural data can be found
in (47) and (40).

Simulated fMRI maps. To simulate maps of the same spatial resolu-
tion of high-resolution fMRI, we spatially smoothed the activation
maps with a Gaussian kernel of full width at half maximum 1mm
(Fig. S5). The "voxel" resolution of the smoothed maps was 0.5mm
x 0.5mm. Then, the selectivity metric was computed on a per-voxel
basis to obtain the voxel selectivity maps.

Selectivity metrics. Following the procedure in (40), the model units
were considered category-selective if they preferentially responded
to a given category over other control categories. The control
categories were either non-face objects or all other categories in the
test set, depending on the analysis. Category selectivity of model
units was primarily measured as d′. Selectivity to images of faces
versus objects, for example, was computed as:

d′ =
X̄faces − X̄objects√

σ2
faces

+σ2
objects

2

where X̄faces represents the mean response of a unit to all images
of face objects, X̄objects represents the mean response to all images
of non-face objects, σ2

faces is the variance of the responses to face
objects, and σ2

objects is the variance of the responses to non-face
objects.

For a fair comparison between the macaque neural data and
model units, we chose the category selectivity criterion (d′ > 0.65)
used in (40) and translated the threshold value into the model space
by approximating the known levels of neural trial-by-trial variability
(a.k.a. "noise"). More specifically, we added independent Poisson
noise to each model unit responses and computed d′ values for
both original model responses and noise-simulated model responses.
Then, the relationships between d′ values of original and noise-
simulated responses were fitted to a linear function, which was then
used to compute the d′ threshold value for the models (0.85) that
corresponds to the value from the neural data with noise (0.65). The
threshold of d′ > 0.65 is approximately equivalent to an FSI > 1/3,
where the responses to faces are at least twice as strong as response
to non-face objects, and was derived from macaque middle face
patches by (40). For response profile analysis (Fig. 6, S9), the lower
threshold values were used for both neurons (d′ > 0.5) and models
(d′ > 0.66) to ensure sufficient numbers of face neurons.
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The selectivity for simulated voxels was computed as:

t =
X̄faces − X̄objects√
σ2

faces

Nfaces
+

σ2
objects

Nobjects

where Nfaces is the number of face images and Nobjects is the
number of object images. The selectivity criterion of voxels was
t > 10, p < 0.001.

Model patch definitions. To define model face or body patches, we
computed the mean d′ selectivity of all units in circular regions
with 1 mm radius on each map. The peak selectivity point for
each category was determined as the center of the most selective
circular region. Then, the units within 3 mm distance from the
defined peak selectivity point were used for face- or body-patch unit
analyses. For neural predictivity analyses, only the face-selective
units as defined by d′faces > 0.85 criterion were sampled. For patch
connectivity analyses, we used all voxels that are category-selective
(t > 10, p < 0.001).

Random peak selectivity points. To compare the distances between
peak face- and body-selectivity points to random distances, we
draw 10,000 pairs of random peak selectivity points. To match the
condition with that of actual peak category-selectivity points (see
details in the above section), each of random peak selectivity points
was drawn from a uniform random distribution over [0 mm, 8 mm]
such that each peak point can represent a valid circular region with
1mm radius.

Measurements of purity. Following the procedure in (40), purity was
measured by counting the fraction of face-selective units in every
non-overlapping 1mm x 1mm region of the simulated cortical sheet.
The region with the highest purity was considered the face patch
center, and in every other 1mm x 1mm region, the average distance
to the center was computed. To investigate the purity falloff curve,
all units at each radial distance from the center were binned at 1
mm resolution. Fig. 3B (right, green curve) shows the mean purity
over 20 models in each bin, with an error band representing the
SEM across models.

Measurements of cluster strength. To investigate which category-
selective units form spatial clusters, "cluster strength" was computed
as a measure of how much category-selective regions appear to be
clustered in simulated fMRI maps (Fig. S5). For each layer, we
first computed the selectivity of voxels by contrasting each category
against all other remaining categories, using one half of the images
and corresponding model responses. Then, the region of interest was
defined as the largest contiguous category-selective voxels (t > 10,
p < 0.001). For each ROI, cluster strength was estimated as the
sum of contrast response intensity (mean response to the category
- mean response to other categories) using the other half of the
images and corresponding model responses. Fig. 4C (right) and 4D
show the mean cluster strength over 20 models, with error bands
representing SEM. For this analysis, we used a subset of images
from (25) or (42).

Patch connectivity. For patch connectivity experiments, we first iden-
tified the face-selective regions and their center (orange lines and red
plus marker, respectively, in Fig. 5) using the half of the stimulus
images from (40) for both model cIT and aIT. The center of each
face patch was determined as the center of the most selective 1 mm
circular region in each model area. The face-selective regions were
defined as all category-selective voxels. Then, the stimulation site
in model cIT was defined to be a 4 mm circular region centered at
the identified face-patch center for inside-patch stimulation. For
outside-patch stimulation, the center of the stimulation region was
randomly chosen from outside of any identified face patches in the
map. The stimulation of model cIT units was simulated by setting
the activations of each unit as the product of its maximum activa-
tion values over the other half of images and a spatial decay factor
sampled from the standard normal distribution centered on the
point of stimulation. The units outside of the 4mm circular region
were silenced. The observed response in model aIT was estimated
as the corresponding activations of model aIT units in response to

the simulated activations in model aIT. Fig. 5B,C and S11 show
the resulting maps.

Model prediction of neural responses. To compare the response pro-
files of face neurons and model face units, we first identified face-
selective neurons (n = 40, d′ > 0.5) from all macaque IT neurons
recorded in (47) and face-selective model units (n = 685, d′ > 0.66)
inside the face patches in all 20 TDANN model cIT layers. The
selectivity of neurons and model units were computed using 640
images (a subset of low and medium variation sets in 47). The
responses of identified face neurons and units were measured using
the held-out test images (501 from low variation set).

In addition, we measured the neural predictivity of model units
to evaluate how well the responses of model units to given images
can explain the responses of macaque IT neurons, using neural data
from (47). Linear regression was used to map from model units to
each of neural sites with five of 60%/40% train/test splits. We used
PLS regression procedure with 25 retained principal components.
For each neural site, the predictivity score was estimated as Pear-
son correlation coefficient between actual and predicted responses.
Then, the predictivity score was noise-corrected by normalizing the
correlation coefficient by each site’s trial-by-trial variability. The
variability for each neural site was computed as Spearman-Brown
corrected split-half self-consistency over image presentation rep-
etitions. This procedure was conducted independently for each
randomly-initialized model. We also measured the neural predic-
tivity on responses of macaque IT face-patch neurons from (40).
In this case, Ridge regression procedure was used with 20 splits of
cross validation using 50%/50% train/test splits and 20 retained
principal components. Here, we used Ridge regression instead of
PLS regression as the data is small and sparse. We note that this
particular neural data used a very small set of images (250) that
include faces, bodies, objects, and places. Furthermore, not all
images were shown to all neurons due to experimental constraints.
Due to the small size and sparseness of data, the measured predic-
tivity scores may underestimate the model ability to explain neural
responses. For Fig. S10A, only the face-selective units (d′ > 0.85)
in TDANN model cIT face-patch were used to fit the face-selective
neurons (n = 34, d′ > 0.65). For evaluating the effect of additional
spatial constraints on predictivity (Fig. S10B), all units in each
layer of TDANN and non-topographic control models were used to
compute the predictivity score on the macaque IT neurons.

Viewpoint invariance. To evaluate the emergence of viewpoint in-
variance across successively higher level TDANN face patches, we
investigated the distributions of facial identity and viewpoint tun-
ing in model layer cIT and aIT. For this analysis, we followed the
same procedure described in (19): identity tuning half-widths and
head orientation tuning depths were measured from responses of
face-patch units to the face images with 25 identities and 8 head
orientations (Fig. S8A). The width at half maximum of identity
tuning was computed by sorting the responses to the 25 identities
for each unit and identifying the smallest index among the ones
whose responses are greater than half of the maximum response.
Head orientation tuning depth was measured using face images at
front view and left, right, up and down views at full profile. For
each cell, the preferred orientation, giving the largest mean response,
was identified. Then, the tuning depth was computed using the
mean response to frontal faces (Rfrontal) and the mean response
to full profile faces in the preferred orientation (Rprofile) as below:

Tuning depth =
(Rfrontal −Rprofile)
(Rfrontal +Rprofile)

To compare with the statistics reported in (19), we computed mean
value of identity tuning widths and standard deviation value of head
orientation tuning depths using 20 randomly-initialized models
(Fig. 6C). The distribution of tuning widths and tuning depths were
plotted with a pool of face-patch units in all 20 models (Fig. S8B,C).
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