
WormPose: Image synthesis and convolutional networks for pose estimation in C.
elegans

Laetitia Heberta, Tosif Ahameda, Antonio C. Costab, Liam O’Shaugnessyb, Greg J. Stephensa,b∗
aOIST Graduate Univerisity,

Onna, Okinawa 904-0495, Japan
bDepartment of Physics and Astronomy,

VU University Amsterdam,
1081HV Amsterdam, The Netherlands

An important model system for understanding genes, neurons and behavior, the nematode worm
C. elegans naturally moves through a variety of complex postures, for which estimation from video
data is challenging. We introduce an open-source Python package, WormPose, for 2D pose estima-
tion in C. elegans, including self-occluded, coiled shapes. We leverage advances in machine vision
afforded from convolutional neural networks and introduce a synthetic yet realistic generative model
for images of worm posture, thus avoiding the need for human-labeled training. WormPose is effec-
tive and adaptable for imaging conditions across worm tracking efforts. We quantify pose estimation
using synthetic data as well as N2 and mutant worms in on-food conditions. We further demonstrate
WormPose by analyzing long (∼ 10 hour), fast-sampled (∼ 30 Hz) recordings of on-food N2 worms
to provide a posture-scale analysis of roaming/dwelling behaviors.

INTRODUCTION

All animals, including humans, reveal important and
subtle information about their internal dynamics in their
outward configurations of body posture, whether these
internal dynamics originate from gene expression [1],
neural activity [2], or motor control strategies [3]. Es-
timating and analyzing posture and posture sequences
from high-resolution video data is thus a general and im-
portant problem, and the basis of a new quantitative ap-
proach to movement behavior (for reviews see e.g. [4, 5]).

The roundworm C. elegans, important on its own as a
model system (see e.g. [6]), provides an illustrative exam-
ple, where “pose” can be identified as the geometry of the
centerline extracted from worm images [7]. Even with a
relatively simple body plan, identifying the centerline
can be challenging due to coiling and other self-occluded
shapes, Fig. 1. These shapes occur in important behav-
iors such as an escape response [8, 9], among mutants
[10] and are a yet unanalyzed component in increasingly
copious and quantitative recordings such as the Open
Worm Movement Database [11].

Classical image skeletonization methods can be used
to identify the worm centerline for non-overlapping
shapes [7] and are employed in widely-used worm track-
ers because of their simplicity and speed. For coiled
or self-overlapping postures, more advanced statistical
models combine image features such as edges with a
model of the worm’s centerline [10, 12–14]. However,
such image features are not always visible and are not
robust to changes in noise or brightness, often requiring
data-specific engineering which reduces portability. An-
other recent technique utilizes an optimization algorithm

∗ Corresponding author: g.j.stephens@vu.nl

by searching for image matches in the “eigenworm” pos-
ture space [9], but is limited in efficacy by the slow na-
ture of multi-dimensional image search and by the low
resolving power of a comparison metric, which uses only
a binary version of the raw image.

With the ability to extract complex visual information
about articulated objects, methods built from convolu-
tional neural networks (CNNs) offer a new, promising
direction. CNNs are the foundation for recent, remark-
able progress in markerless body point tracking [15–17],
including worm posture [18, 19]. However, intensive la-
beling requirements by human annotators, even if as-
sisted by technology [20], as well as the ambiguity of
which or exactly how many points to label, offer a bar-
rier to the usefulness of CNNs in posture tracking and
beyond. Body point marking is challenging in the case
of worm images where the annotation task is to label
enough points along the worm body to reconstruct the
posture. While human annotators can quickly pinpoint
the extremities of the worm body, other landmarks are
less obvious. In some recordings, it is even difficult to
distinguish the worm head from the tail, which makes the
labeling error-prone and imprecise. Furthermore, the la-
beling is specific to the recording conditions and can be
hard to generalize across changes in resolution, organ-
ism size, background, illumination, and to rare posture
configurations not specifically isolated.

We describe an algorithm, WormPose, for pose esti-
mation in C. elegans containing two principal advances:
(1) We create a generative model of worm shape which
we combine with a new technique for producing syn-
thetic but realistic worm images. These images are used
for network training, thus circumventing the difficulty
and ambiguity of human labeling, and can be easily
adapted to different imaging conditions (2) We develop
a CNN to reliably transform worm images to a centerline

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

2

curve. We demonstrate our approach using the on-food
behavior of N2 and mutant worms and use our results
to provide a new posture-scale analysis of roaming and
dwelling behavioral states.

METHODS

Code Availability: WormPose is open-source and
free with a permissive 3-Clause BSD License. The
source code and is available here: https://github.com/
iteal/wormpose, and can be installed from the Python
package index: https://pypi.org/project/wormpose.

Data Requirements: Our focus is on resolving coiled,
overlapping, blurred, or other challenging images of a
single worm. We assume that the input data consists
of videos of a single moving worm and that most of the
non-coiled frames are analyzed beforehand, for example
by Tierpsy tracker [21]. For each (non-coiled) frame, we
require the coordinates of equidistant points along the
worm centerline, ordered from head to tail, and the worm
width for the head, midbody, and tail (defined in [22]).
We also use the recording frame rate. WormPose 1.0
does not detect the head of the worm, so we also expect
that the labeled frames provide the head-tail position at
regular intervals throughout the video.

Processing Natural Images: From a dataset de-
scribed as above, we process worm images to focus on
the worm object of interest. Broadly, we first segment
the worm in the image and set all non-worm pixels to
a uniform color. Then we either crop or extend to cre-
ate a square image of uniform size with the worm in the
center, cleaned of noise and non-worm objects.

The specific process of segmenting a single worm in an
image can be adapted to each recording condition. For
concreteness, we provide a simple OpenCV [23] imple-
mentation that is sufficient for most videos of the Open
Worm Movement Database [11]. Raw images from the
video are first processed by a Gaussian Blur filter with a
window size of 5 pixels, and then thresholded with an au-
tomatic Otsu threshold to separate the background and
the foreground. The morphological operation ”close” is
applied to fill in the holes in the foreground image. We
use a connected components function to identify the ob-
jects belonging to the foreground. To focus on objects
located at the center of the image, we crop the thresh-
olded image on each side by an amount consisting of
15% of the size of the image. We isolate the largest
blob in this cropped image as the worm object of inter-
est. We calculate the background color as the average of
the background pixels of the original image, and assign
this background value to all pixels that do not belong to
the worm object. All processed images are then either
cropped or extended to be the same width and height,
with the worm object set in the center. We set the de-
fault value for the processed image size as the average
worm length of the biggest worm in the dataset, a size

large enough to encompass all examples. Alternatively,
the image size can be set by the user, and the images
will be resized with linear interpolation, which is useful
to speed up computation on large images. The minimum
image size is 32× 32 pixels.

Generating Worm Shapes: We generate realistic
worm shape through a Gaussian Mixture Model (GMM)
Fig. 2(A), which we fit to a collection of resolved body
postures obtained from previous analysis [7, 9]. The use
of a generative model of body shapes enables the gener-
ation of an arbitrarily large training set for the network,
with shapes that respect the overall correlations between
body parts while generalizing to more complex postures.
We parameterize worm shape by a 100-dim vector of

angles ~θ, formed by measuring the angle between 101
points equally spaced along the body’s centerline. Un-
coiled shapes were obtained using classical image track-

ing to extract ~θ directly from images [7]. Coiled shapes
were obtained in [9] by searching the lower-dimensional
space of eigenworm projections (d = 5, obtained through

Principal Component Analysis of the space of {~θ}), to
find the combination of eigenworm coefficients that best
matches a given image and projecting these back into

the ~θ space. Using the classical image analysis results

from [7] allows us to expand the space of possible ~θ be-
yond the one captured by the first 5 eigenworms used in
[9]. We use an equal population of coiled and uncoiled
postures from N2 worms foraging off-food and sample
uniformly according to the body curvature as measured
by the third eigenworm projection, a3. This yields a

training set of ∼ 15000 ~θ vectors. We fit the GMM
through an Expectation-Maximization algorithm which
finds the set of N Gaussian components that maximizes
the likelihood (see e.g. [24]). The full model is param-
eterized by the mean and covariance of each Gaussian,
and the weight associated with each Gaussian compo-
nent. We assess the trade-off between model complexity
and accuracy with Akaike’s information criterion, which
indicates that N ∼ 250 − 275 components would be an
appropriate choice, Fig.(S2). We train the GMM using
sklearn.mixture.GaussianMixture from scikit-learn in
Python [25] with 270 components.

Generating Synthetic Images: We build a synthetic
image generator to produce a worm image with a specific
posture and with the same appearance as a reference
image, Fig. 2(B). Such synthetic images have a similar
appearance to real images processed as described above.

We exclusively use classical image processing tech-
niques, including image warping and alpha blending, to
effectively bend a known worm centerline from a refer-
ence image into a different posture. The reference image
is typically of a non-overlapping worm, with its associ-
ated labeled features: (1) the skeleton as a list of NS co-
ordinates (Sx, Sy) equidistant along the centerline, and
(2) the worm width at three body points: head, midbody
and tail. To create a new synthetic image we first draw a

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

3

centerline ~θ of size 100 from the GMM worm shape gen-
erator. We produce target skeleton coordinates {Sx, Sy}
through the transformation

Sx(i+ 1) = Sx(i) + dS cos θi (1)

Sy(i+ 1) = Sy(i) + dS sin θi

for i = 1, 2 . . . NS . The length element dS is determined
by dividing the worm length of the reference image by
NS − 1 and we set the origin by centering the skele-
ton in the middle of the target image, Fig. 2(A, right).
If needed, the target skeleton is resampled to have the
same number of points NS as the reference skeleton. We
use the labeled width for the head, midbody and tail
to calculate the worm width (in pixels) at all skeleton
points ww(i):

ww[0:head]=head_width

ww[head:midbody]=interp(head_width, midbody_width)

ww[midbody:tail]=interp(midbody_width, tail_width)

ww[tail:Ns-1]=tail_width

In a “reverse skeletonization”, we take small rectangu-
lar image patches of size (l, w) from the reference image
and add them along the target skeleton, Fig. 2(B). Along

each skeleton we create rectangles with l̂ oriented along
the direction formed by the skeleton points i and i+step,
and width w(i) = wmultiplier × ww(i). The parameter
step determines the length l of the rectangle. For each
pair of rectangles, we find the affine transformation that
maps a rectangle in the reference image to a rectangle in
the target image using the function getAffineTransform
from OpenCV [23]. If step is too small (equal to 1), the
patches will not overlap which will create discontinuities
in the synthetic image, but if step is too large, then the
patches could be larger than the amount of curvature of
the worm. In practice, we set step = 1/16 × NS . We
set wmultiplier = 1.2, which means the rectangle width
will be larger than the actual worm width to include
background pixels around the worm body.

For each pair of source-target rectangles, we use the
function warpAffine from OpenCV [23] to project the
pixels from the rectangle in the source image to the co-
ordinates of the target rectangle in the target image. We
combine the transformed patches into a single cohesive
worm image by iteratively updating a mask image cre-
ated from the overlapping regions. For each transform,
we add the values of the new transformed image con-
taining one patch to the current full image. We then
multiply by the mask image set to 1 for non-overlapping
areas and 0.5 for overlapping areas. We draw the rect-
angles from the worm tail so that the last rectangles will
be of the worm head, as this configuration is more likely
to occur naturally.

The overlapping areas combine seamlessly because of
the blending, but some protrusions are still visible, es-
pecially when the target pose is very coiled. We elim-
inate these artifacts by masking the image with a gen-
erated image representing the expected worm outline.

This mask image is created by drawing convex polygons
along the target centerline of the desired worm width,
complete with filled circles at the extremities. We apply
a median filter with a window size of 3 to smooth the
remaining noise due to the joining of the patches. Fi-
nally, all non-worm pixels are set to a uniform color: the
average of the background pixels in the reference image.

To add diversity to the synthetic images, we include a
set of (optional) augmentations. We translate the target
skeleton coordinates by a uniform value between 0 and
5% of the image size. We vary the worm length uni-
formly between 90% and 110%, and the worm thickness
multiplier between 1.1 and 1.3. We randomly switch the
drawing order from head to tail or the contrary, so that
each is equally probable. Finally, we add an extra Gaus-
sian blur filter at the end of the process 25% of the time,
with a blur kernel varying between 3% and 10% of the
image size or 13 pixels, whichever is smaller.

In WormPose, the Python implementation of the im-
age generator is optimized for speed and memory allo-
cation. Generating a synthetic image of a large size will
be slower than a smaller one. It is also faster to limit
the number of reference images, as some calculation is
cached. The generation is usually split into several pro-
cesses, and we use a maximum of 1000 reference images
per process, chosen randomly. The number of skeleton
points NS from the reference image is flexible and de-
pends on the dataset. If NS is too small (NS . 20), the
synthetic worm image will be too simplistic compared to
the real images. On the other end, increasing NS too
much will decrease the performance, and the resulting
synthetic image will not benefit in detail. We routinely
use 50 . NS . 100.

Network architecture and training: For reasons
ranging from motion blur to self-obscured postures, it is
often difficult to discern the worm’s head from the tail,
such as in Fig. 3(A). Images with similar worm shape
but opposite head-tail locations have quantitatively dif-
ferent centerlines, thus providing a challenge to network
training. To handle this ambiguity, we design a loss
function that minimizes the difference between the net-
work prediction θ̂ and the closest of two labels: θa and
θb = flip(θa)+π, representing the same overall pose but
with swapped locations of the head and tail, Fig. 3(B).
The output training error is the minimum of the root
mean square error of the angle difference d(θ1, θ2) be-

tween the output centerline θ̂ and the two training labels
{θa, θb} (Fig. 3(C)) with

ε(α, β) = atan2(sin(α− β), cos(α− β))

d(θ1, θ2) =

√√√√ 1

N

N∑
i=1

ε(θ1i, θ2i)2 (2)

The learned function is therefore a mapping between the
input image and a worm pose without regard to head-
tail location, which we determine later with the aid of
temporal information.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

4

For each dataset, we generate 500k synthetic images
for training, and randomly select 10k real preprocessed
images for evaluation. When training, we use a batch
size of 128. We train for 100 epochs and save the model
with the smallest error on the evaluation set. We use the
Adam optimizer [26] with a learning rate of 0.001.

Post-Prediction: Image Error and Outlier Detec-
tion For real data, the lack of labeled data for coiled
worm images means that we cannot directly evaluate the
accuracy of the network predictions. Instead, we lever-
age our ability to generate synthetic images and apply
an image error measure between the input image and
the two synthetic images generated from the two possi-
ble predicted centerlines. We generate synthetic worm
images representing the two predictions, using the near-
est labeled frame in time as a reference image. We crop
the synthetic images to the bounding box of the syn-
thetic worm shape plus a padding of 2 pixels on each
side, and apply a template matching function between
this synthetic image representing the prediction and the
original image. We use the matchTemplate function
from OpenCV [23] with the normalized correlation coef-
ficient method, which translates a template image across
a source image and compute the normalized correlation c
at each location. The result is a correlation map, of a size
Size(source)− Size(template) + 1, with values ranging
between c = −1 (perfect anti-correlation, as would occur
in a pair of reversed-intensity black and white images)
and c = 1 (perfect correlation). We use the maximum
value |c|max to define the image error 1− |c|max and the
location of |c|max to estimate the predicted skeleton co-
ordinates. Frames with an image error above a threshold
value will be discarded.

To select the threshold (potentially different for each
different dataset), we plot the image error distribution
on a selection of labeled frames. Comparing images
with their reconstructed synthetic image based on their
(trusted) labels shows a distribution of low error values,
Fig. S3. We select an image error threshold with a de-
fault value 0.3, which retains the majority of the predic-
tions while removing obviously incorrect reconstructions.

Post-Prediction: Head-Tail Assignment Once the
network is trained, we can predict the centerline in full
video sequences, the resulting postures having a random
head-tail assignment. For each image, we augment the

predicted centerline θ̂ with the head-tail switched center-

line θ̂flipped = flip(θ̂)+π. We use temporal information
and the labeled frames to determine the final worm pose
as either one of these two centerlines, or we discard the
frame entirely in low-confidence cases.

We first create segments with near-continuous poses
by using an angle distance function between adjacent

frames, distance(θ1, θ2) =
1

N

∑N−1
n=0 |ε(θ1n, θ2n)|, with ε

from Eq. 2. We start with the first frame and assign
its head position randomly. We then calculate the an-
gle distance between this centerline and the two possible

options in the next frame. If the distance is higher than
a threshold (we use 30◦), we cannot reliably assign the
head position by comparing to this adjacent frame. We
calculate the distance on the following frames (maximum
0.2s in the future) until we cannot find any frame that
is close enough to the last aligned frame, we then start
a new time segment with a random head-tail orienta-
tion. After this first process, we obtain temporal seg-
ments with a consistent head-tail position, possibly with
small gaps containing outlier results to be discarded. To
increase confidence in the results, we discard segments
that are too small (less than 0.2 seconds).

While the worm pose is consistent in these segments,
there are still two possible head-tail orientations per seg-
ment: we use the labeled data from the non-coiled frames
to pick the correct solution. We align the whole segments
with the labeled data by calculating a cosine similarity
between the head to tail vector coordinates of the pre-
diction and the available labels. We finally align the re-
maining unaligned segments with no labels by comparing
them to the neighbor segments that have been aligned
before: we also calculate the cosine similarity between
the head to tail vector between the two closest frames of
the aligned and unaligned segment.

Post-Prediction: Interpolation For an optional post-
prediction step, we interpolate small gaps (max gap = 3
frames), using a third-order spline interpolation method.
Points in the vicinity of missing frames are generally
noisier. We employ a weighted interpolation method
in which points in the vicinity of missing frames are
assigned progressively lower weights: within a win-
dow (frames around = 3 frames) around each gap, the
weight is progressively lower starting from half the nor-
mal weight and linearly decreasing to 0 at the missing
frame. Since we cannot measure the angle error in each
frame directly, we estimated the ratio between the stan-
dard deviation of the angles σθ and that of the angular
error η, using network predictions in synthetic worm im-
ages. This allows us to use the standard deviation of
the angles as a scale for the magnitude of the errors,
which we use to set the weights assigned to each frame.
The ratio between angular error η and the standard de-
viation of the angles σθ averages at ∼ 5%, and we set
set the weights as w = 1/(δσθ), where δ = 0.02, such
that the range of weights captures the variability in an-
gle errors, Fig. (S1). Smaller δs result in less smooth
interpolations. Segments with less than 30 consecutive
resolved frames are discarded. Spline interpolation is
done using the scipy.interpolate.UnivariateSpline
function from Scipy [27]].

Post-Prediction: Smoothing For an optional post-
prediction step, we smooth the angle time series using a
Savitsky-Golay filter with third-order polynomials in 7
frame windows, using the scipy.signal.savgol filter
function from Scipy [27].

Implementation: In Fig. 4 we show a schematic
of the full computational process which we implement

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

5

in a Python package “WormPose”, with source code:
https://github.com/iteal/wormpose and documen-
tation: https://iteal.github.io/wormpose/. We op-
timize for speed via intensive use of multiprocessing
and also for big video files that do not fit into mem-
ory. We provide default dataset loaders: for the Tierpsy
tracker [21] and for a simple folder of images. Users can
add their own dataset loader by implementing a sim-
ple API: FramesDataset reads the images of the dataset
into memory, FeaturesDataset contains the worm fea-
tures for the labeled frames, and FramePreprocessing
contains the image processing logic to segment the
worm in images and to calculate the average value of
the background pixels. A custom dataset loader is
typically a Python module exposing these three ob-
jects, which then can be loaded into WormPose by
the use of Python entry points. A simplified exam-
ple of adding a custom dataset is available in the
source code repository: https://github.com/iteal/
wormpose/tree/master/examples/toy_dataset. We
provide a tutorial notebook with sample data and an
associated trained model, which can be tested in Google
Colaboratory. We also include an optional interface
to export results in a custom format: for the Tierpsy
tracker dataset, we can export the results to the Worm
tracker Commons Object Notation (WCON) format.

RESULTS

Pose estimation from wild-type and mutant worm
recordings

We quantify WormPose using synthetic data as well
as (N=24) wild-type N2 worm recordings and (N=24)
AQ2934 mutants from the Open Worm Movement
Database. The synthetic data analyzed here was not
used for training and consists of 600k images. We choose
N2 for general interest and AQ2934 (with gene mutation
nca-2 and nRHO-1) for the prevalence of coiled shapes.
For the AQ2934 dataset, we used all of the available
videos. For the N2 dataset, we selected 24 videos ran-
domly from the large selection in the Open Worm Move-
ment Database, but with a criterion of a high ratio of
successfully analyzed frames from the Tierpsy Tracker
(in practice ranging between 79% to 94%). Videos where
there are very few analyzed frames may signal that the
worm goes out of frame, or that the image quality is
so low that no further analysis is possible. Images are
sampled at rate fs ∼ 30 hz for ∼ 15 min in duration, re-
sulting in 600k frames from each dataset. We set the
image size to 128 × 128 pixels. We train distinct mod-
els for each dataset and then predict all images from
each dataset. We show the cumulative distribution of
the image error in Fig. 5(A), including typical (input
and output) worm images for various error values. For
additional context, we also show the image error cal-
culated on synthetic image data not used in training.

Errors in the synthetic data are larger than those for
N2 worms because we have more (and more compli-
cated) coiled postures in the synthetic data generator.
In Fig. 5(B), we use our image generator to show the
error in mode values for synthetic data, the only data
for which we have ground truth for the centerlines. The
“error worms” (worm shapes representing mode values
with δai = 1.0) are essentially flat and we report even
smaller median mode errors δã = (0.36, 0.34, 0.38, 0.34)
(see [9] for a comparison). We provide scripts to down-
load these datasets from Zenodo, as well as trained mod-
els: https://github.com/iteal/wormpose_data.

Comparison with previous approaches

The only comparable open-source, coiled-shape solu-
tion is detailed in previous work from some of the current
authors [9] (hereafter noted as RCS from an abbreviation
of the title). RCS was designed before the widespread
application of CNNs and was evaluated entirely on pos-
tures from N2 worms. For coiled frames, RCS employs a
computationally expensive pattern search in the space
of binarized down-scaled worm images, thus ignoring
texture and other greyscale information. A temporal
algorithm then matches several solutions across frames
to resolve ambiguities. We apply RCS to the N2 and
mutant AQ2934 datasets analyzed above. The mutant
dataset is especially challenging as a large proportion
of coiled frames require the slow pattern search algo-
rithm. We split each video into segments of approxi-
mately 500 frames to parallelize the computation on the
OIST HPC cluster and obtain results in approximately
one week while running 100 cluster jobs simultaneously.
For comparison, WormPose applied to the mutant data
completed in approximately a day while running only one
job on a GPU node with an Nvidia Tesla V100 16GB,
with the majority of the time spent on network train-
ing. Ultimately we obtained posture estimates for 98%
of the frames of the mutant dataset and 99.8% of the N2
dataset.

Unfortunately, a lack of ground truth posture se-
quences means that we cannot directly compare the
posture estimates of RCS and WormPose. Posture se-
quences are fundamental to RCS and this information
is not contained in the image generator of WormPose.
However, we can leverage the image error between the
original image and the predicted posture (without head
information), Fig. S4(A). While WormPose is dramati-
cally faster and uses no temporal information (a possible
route for future improvement), we obtain very similar
image reconstruction errors for both methods. For a
closer examination, we also show example frames where
both methods have a small image error (< 0.3) but a
large angle or mode difference, Fig. S4(B). One source
of these discrepancies are coiled loop-like postures where
both methods struggle to recover the correct pose. An-
other discrepancy results from crossings such as illus-

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

6

trated in Fig. 1 where RCS’s temporal matching algo-
rithm picks the wrong solution, perhaps a reflection of
loss of information upon binarization.

Posture-scale analysis of roaming/dwelling behavior

We further demonstrate WormPose by exploring pre-
viously unanalyzed N = 14 longtime (T ∼ 10 h, fs ∼
30 hz) recordings of on-food N2 worms. The length
of these recordings renders impractical previous coiled
shape solutions [9, 10] and therefore fine-scale posture
analysis of behavior.

On food-rich environments, worms typically switch be-
tween two long-lasting behaviors: a roaming state, in
which worms move abundantly on the plate at higher
speeds and relatively straight paths; and a dwelling
state, in which worms stay on a local patch with lower
speeds and higher angular speeds [28, 29]. Roaming
and dwelling states can last for tens of minutes so long
recordings are essential and we leverage our ability to
obtain high-resolution posture tracking to explore their
fine-scale behavioral details.

To identify roaming and dwelling states consistent
with previous work [29], we fit a Hidden Markov Model
to the centroid and angular speed averaged in 10 s win-
dows, which yields a high speed, low angular speed state
(roaming) and a high speed, low angular speed state
(dwelling), Fig. 6(A). We estimate the frame-by-frame
directionality of the worm’s movement by subtracting

the angle of the velocity vector ψ = tan−1
(

vy

vx

)
(where

vx and vy are the x and y components of the centroid
velocity) by the overall tail-to-head worm angle on the
plate Ψ, obtained by averaging the angle along the body,
∆ψ = ψ−Ψ. The distribution of ∆ψ is bimodal, indica-
tive of switching between forward (∆ψ ≈ 0 rad) and re-
versal (∆ψ ≈ π rad) movement, Fig. 6(B). As in previous
observations [28, 29], worms mostly move forward in the
roaming state, while dwelling exhibits a larger fraction
of backward locomotion.

Our high-resolution posture measurements provide a
unique opportunity to dissect the fine-scale details of
these long time scale behaviors. We leverage the inter-
pretability of the eigenworm decomposition of the center-
line angles [7] to assess the properties of the body wave.
The first two eigenworms (a1 and a2) capture the undu-
latory motion of the worm: the angle between these two

modes φ = −tan−1
(

a2

a1

)
is the overall phase of the body

wave, while its derivative, φ̇ = ω is the body wave phase
velocity. The third eigenworm, a3, captures the overall
turning amplitude of the worm: |a3| ' 10 correspond to
Ω-like turns [7, 9]. In Fig. 6(C) we show the distribution
of phase velocities ω and turning amplitudes a3. Roam-
ing worms typically exhibit higher body wave phase ve-
locities in both forward (ω > 0) and backward (ω < 0)
locomotion, Fig. 6(C, left), as well as a larger fraction

of deep Ω-turns (|a3| ' 10). This posture-scale analysis
is somewhat contradictory to the centroid-level analysis,
which characterizes dwelling as a state in which worms
increase their rate of reversals and reorientation events
[28, 29]. Note that the detailed posture-level analysis
was only made possible through WormPose, allowing us
to measure the coiled shapes as well as get a more con-
tinuous and less noisy estimate of the body wave phase
velocity.

To further dissect the nature of reversal events in the
roaming and dwelling states, we compute the cumula-
tive distribution of the reversal run lengths, Fig. 6(D).
Reversals in the roaming state are typically longer than
in dwelling, which exhibits extremely short run lengths.
The low phase velocities in dwelling also indicate that
such reversals result in an insignificant translation of the
worm’s body. This suggests that most of the reversals
measured through a centroid-based analysis in fact cor-
respond to incoherent body motions, such as head oscil-
lations or short retractions. Indeed, we count the fre-
quency of body waves that travel all the way across the
body, Fig. 6(E), and find that the frequency of full-body
waves is extremely small in dwelling when compared to
the roaming, for which coherent body movements are
much more frequent. While dwelling states at the cen-
troid level exhibit larger reversal rates, the nature of
these reversals is very different from the coherent body
wave reversals found during roaming. We believe that
this posture-level analysis, made possible by applying
WormPose to long recordings, will ultimately enable a
deeper understanding of the underlying control mecha-
nisms for roaming and dwelling behaviors.

DISCUSSION

WormPose enables 2D pose estimation of C. elegans by
combining a CNN with a synthetic worm image genera-
tor for training without manually labeled data. Our ap-
proach is especially applicable to complex, coiled shapes,
which have received less attention in quantitative anal-
yses even as they occur during important turning be-
haviors and in a variety of mutants. We also intro-
duce an image similarity, which leverages the synthetic
worm generator to assess the quality of the predicted
pose. Once trained, the convolution computation is fast
and could enable real-time, coiled-pose estimation and
feedback [30]. The computational pipeline is optimized
to analyze large datasets efficiently and is packaged in
an easy to use, install and extend, open-source Python
package.

With common imaging resolutions, the determination
of the worm’s head-tail orientation is surprisingly sub-
tle. Our approach uses the presence of labeled trusted
frames from traditional tracking methods which rely on
brightness changes or velocity. An appealing alterna-
tive would be to estimate the head location directly.
For example, [31] uses a network to regress the coor-

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

7

dinates of C. elegans head and tail. In addition, CNN’s
that estimate keypoint positions [15], [16], [17] are now
widely available. However, such current general tech-
niques applied to ambiguous worm images result in low-
confidence head-tail location probabilities, especially for
blurry, low-resolution or self-occluded images. Training
for this task is noisy and slow to converge, suggesting
that there is simply not enough visual information in a
single image.

Our posture model necessitates a library of examples
which we obtained from N2 worms. Some strains how-
ever have different postures such as lon-2 or dpy which
are longer and shorter than N2, respectively. In particu-
lar, lon-2 can make more coils due to its longer body, and
our posture model does not represent the wider variety
of possible postures. Of course, we can always augment
the posture library. But a more general solution is to
create a physical model of the worm [32].

Our approach follows advances in human eye gaze and
hand pose estimation where it is difficult to obtain ac-
curate labeled data. 3D Computer Graphics are often
employed to create synthetic images [33] with increasing
realism [34]. Synthetic images for human pose estima-
tion have also been created by combining and blend-
ing small images corresponding to the body limbs of
a labeled image, to form new realistic images [35]. To
bridge the similarity gap between the real and the syn-
thetic domain, Generative Adversarial Networks (GAN)
techniques alter such computer-generated images [36] or

directly generate synthetic images from a source image
and a target pose [37]. Models of the deformable source
object (e.g. human limbs) are often encoded into such
generative networks to avoid unrealistic results. Some of
these ideas have been recently applied to laboratory or-
ganisms [18], including C. elegans, but have avoided the
fundamental complexity of self-occluding shapes. Out-
side of the laboratory, [38] proposes an end-to-end ap-
proach to estimate zebra pose using a synthetic dataset
and jointly estimating a model of the animal pose with a
texture map. Another approach is to adversarially train
a feature discriminator until the features from the syn-
thetic and real domain are indistinguishable [39, 40]. In
both humans and animals, we expect that the combina-
tion of physical body models and image synthesis will be
important for future progress in precise pose estimation.

ACKNOWLEDGMENTS

We acknowledge funding from the Vrije Universiteit
Amsterdam and The Okinawa Institute of Science and
Technology Graduate University. We thank Mathijs
Rozemuller (AMOLF) for code testing and for providing
a tutorial dataset, as well as Jarlath Rodgers (Univer-
sity of Toronto) and Kelimar Diaz Cruz (Georgia Tech)
for code testing. We are also grateful for the help and
support provided by the Scientific Computing section of
Research Support Division at OIST.

[1] N. Niepoth and A. Bendesky, How natural genetic vari-
ation shapes behavior, Annual Review of Genomics and
Human Genetics 21 (2020), 10.1146/annurev-genom-
111219-080427.

[2] S. Musall, M. T. Kaufman, A. L. Juavinett, S. Gluf, and
A. K. Churchland, Single-trial neural dynamics are dom-
inated by richly varied movements, Nature Neuroscience
22, 1677 (2019).

[3] T. Ahamed, A. C. Costa, and G. J. Stephens, Capturing
the Continuous Complexity of Behavior in C. elegans,
bioRxiv (2019), 10.1101/827535.

[4] G. J. Berman, Measuring behavior across scales. BMC
biology 16, 23 (2018).

[5] A. E. X. Brown and B. de Bivort, Ethology as a physical
science, Nature Physics 14, 653 (2018).

[6] J. M. Gray, J. J. Hill, and C. I. Bargmann, A circuit
for navigation in Caenorhabditis elegans. Proceedings of
the National Academy of Sciences of the United States
of America 102, 3184 (2005).

[7] G. J. Stephens, B. Johnson-Kerner, W. Bialek, and
W. S. Ryu, Dimensionality and dynamics in the behavior
of c. elegans, PLOS Computational Biology 4, 1 (2008).

[8] J. L. Donnelly, C. M. Clark, A. M. Leifer, J. K. Pirri,
M. Haburcak, M. M. Francis, A. D. T. Samuel, and
M. J. Alkema, Monoaminergic orchestration of motor
programs in a complex C. elegans behavior. PLoS Bi-
ology 11, e1001529 (2013).

[9] O. D. Broekmans, J. B. Rodgers, W. S. Ryu, and G. J.
Stephens, Resolving coiled shapes reveals new reorienta-
tion behaviors in C. elegans, eLife 5, e17227 (2016).

[10] S. Nagy, M. Goessling, Y. Amit, and D. Biron, A
generative statistical algorithm for automatic detection
of complex postures, PLOS Computational Biology 11,
e1004517 (2015).

[11] A. Javer, M. Currie, C. W. Lee, J. Hokanson, K. Li, C. N.
Martineau, E. Yemini, L. J. Grundy, C. Li, Q. Ch’ng,
W. R. Schafer, E. A. A. Nollen, R. Kerr, and A. E. X.
Brown, An open-source platform for analyzing and shar-
ing worm-behavior data, Nature Methods 15, 645 (2018).

[12] E. Fontaine, J. Burdick, and A. Barr, in 2006 Interna-
tional Conference of the IEEE Engineering in Medicine
and Biology Society (2006) pp. 3716–3719.

[13] N. Roussel, J. Sprenger, S. Hendricks Tappan, and
J. Glaser, Robust tracking and quantification of c. ele-
gans body shape and locomotion through coiling, entan-
glement, and omega bends, Worm 3, 00 (2015).

[14] Y. Guo, L. N. Govindarajan, B. Kimia, and T. Serre,
Robust pose tracking with a joint model of appearance
and shape, (2018), arXiv:1806.11011 [cs.CV].

[15] Mathis, Alexander, Mamidanna, Pranav, Cury, Kevin
M, Abe, Taiga, Murthy, Venkatesh N, Mathis, Mackenzie
Weygandt, and Bethge, Matthias, DeepLabCut: mark-
erless pose estimation of user-defined body parts with
deep learning, Nature Neuroscience 21, 1281 (2018).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

8

[16] Pereira, Talmo D, Aldarondo, Diego E, Willmore, Lind-
say, Kislin, Mikhail, Wang, Samuel S H, Murthy, Mala,
and Shaevitz, Joshua W, Fast animal pose estimation
using deep neural networks, Nature Methods 16, 117
(2019).

[17] J. M. Graving, D. Chae, H. Naik, L. Li, B. Koger, B. R.
Costelloe, and I. D. Couzin, DeepPoseKit, a software
toolkit for fast and robust animal pose estimation using
deep learning, eLife 8 (2019), 10.7554/elife.47994.

[18] S. Li, S. Günel, M. Ostrek, P. Ramdya, P. Fua, and
H. Rhodin, Deformation-aware unpaired image transla-
tion for pose estimation on laboratory animals, (2020),
arXiv:2001.08601.

[19] L. Wang, S. Kong, Z. Pincus, and C. Fowlkes, in The
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops (2020).

[20] K. Bates, S. Jiang, S. Chaudhary, E. Jackson-Holmes,
M. L. Jue, E. McCaskey, D. I. Goldman, and H. Lu,
Fast, versatile and quantitative annotation of complex
images, BioTechniques 66, 269–275 (2019).

[21] A. Javer, M. Currie, C. W. Lee, J. Hokanson, K. Li, C. N.
Martineau, E. Yemini, L. J. Grundy, C. Li, Q. Ch’ng,
W. R. Schafer, E. A. A. Nollen, R. Kerr, and A. E. X.
Brown, An open-source platform for analyzing and shar-
ing worm-behavior data, Nature Methods 15, 645 (2018).

[22] A. Javer, L. Ripoll-Sánchez, and A. E. Brown, Pow-
erful and interpretable behavioural features for quantita-
tive phenotyping of caenorhabditis elegans, Philosophical
Transactions of the Royal Society B: Biological Sciences
373, 20170375 (2018).

[23] G. Bradski, The OpenCV Library, Dr. Dobb’s Journal
of Software Tools (2000).

[24] C. M. Bishop, Pattern Recognition and Machine Learn-
ing (Information Science and Statistics) (Springer-
Verlag, Berlin, Heidelberg, 2006).

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, Scikit-learn: Machine learning in Python, Journal
of Machine Learning Research 12, 2825 (2011).

[26] D. Kingma and J. Ba, Adam: A method for stochas-
tic optimization, International Conference on Learning
Representations (2014).

[27] E. Jones, T. Oliphant, P. Peterson, and et al., SciPy:
Open source scientific tools for Python, (2001–).

[28] J. Ben Arous, S. Laffont, and D. Chatenay, Molecular
and sensory basis of a food related two-state behavior in
C. elegans, PLoS ONE 4, 1 (2009).

[29] S. W. Flavell, N. Pokala, E. Z. Macosko, D. R. Albrecht,
J. Larsch, and C. I. Bargmann, Serotonin and the neu-
ropeptide PDF initiate and extend opposing behavioral
states in C. elegans, Cell 154, 1023 (2013).

[30] J. B. Lee, A. Yonar, T. Hallacy, C.-H. Shen, J. Mil-
loz, J. Srinivasan, A. Kocabas, and S. Ramanathan, A
compressed sensing framework for efficient dissection of
neural circuits, Nature Methods 16, 126 (2019).

[31] M. R. Mane, A. A. Deshmukh, and A. J. Iliff, Head and
tail localization of c. elegans, (2020), arXiv:2001.03981
[cs.CV].

[32] N. Cohen and T. Ranner, A new computational method
for a model of c. elegans biomechanics: Insights
into elasticity and locomotion performance, (2017),

arXiv:1702.04988 [physics.bio-ph].
[33] S. Kearney, W. Li, M. Parsons, K. I. Kim, and

D. Cosker, in IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2020).

[34] J. Mu, W. Qiu, G. D. Hager, and A. L. Yuille, in The
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2020).

[35] G. Rogez and C. Schmid, Image-based synthesis for
deep 3d human pose estimation, International Journal
of Computer Vision 126, 993 (2018).

[36] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind,
W. Wang, and R. Webb, in The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR)
(2017).

[37] G. Balakrishnan, A. Zhao, A. V. Dalca, F. Durand, and
J. Guttag, in 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (IEEE, 2018).

[38] S. Zuffi, A. Kanazawa, T. Berger-Wolf, and M. Black, in
2019 IEEE/CVF International Conference on Computer
Vision (ICCV) (2019) pp. 5358–5367.

[39] A. Lahiri, A. Agarwalla, and P. K. Biswas, Unsupervised
domain adaptation for learning eye gaze from a mil-
lion synthetic images: An adversarial approach, (2018),
arXiv:1810.07926 [cs.CV].

[40] F. Kuhnke and J. Ostermann, Deep head pose estimation
using synthetic images and partial adversarial domain
adaption for continuous label spaces, 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) ,
10163 (2019).

[41] L. R. Rabiner, Tutorial on Hmm and Applications, Pro-
ceedings of the IEEE 77, 257 (1989).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

9

1 (head) N (tail)
body segment

�

−�

0

2�

 (r
ad

)
�

��

��

A B C

FIG. 1. The nematode C. elegans naturally exhibits a variety of coiled shapes which challenge the determination of the
centerline posture, a fundamental component for quantitative behavioral understanding. (A) An exemplar collection of
images displaying coiled shapes. (B) Instantaneous worm pose encoded as the centerline curve parameterized by tangent
angles θ = (θ1, . . . θi, . . . θN) ordered from head to tail. (C) Standard image processing techniques extract the centerline
by morphological operations or image features analysis and have not been able to differentiate solutions with very different
centerlines (red, grey) that occur with coiled posture. The correct centerline (red) can be determined by close visual inspection
(A), however high-throughput analysis necessitates a pose estimation algorithm which is robust to fluctuations in brightness,
blur, noise, and occlusion.

2
2

1 1

33

Synthetic imageAffine
transform

Template image

A

B
Gaussian mixture model of postures

body segment body segment

Target skeleton

FIG. 2. We combine a generative model of worm posture with textures extracted from real video to create realistic yet synthetic
images for a wide variety of natural postures, including coils, thus avoiding the need for manually-annotated training data.
(A) We model the high-dimensional space of worm posture (left)by Gaussian mixtures (middle) constructed from a core set of
previously analyzed worm shapes [9]. To each generated posture we add a global orientation (chosen uniformly between 0 and
2π), and we randomly assign the head to one end of the centerline. (right) We use the resulting centerline (angle coordinates)
to construct the posture skeleton (pixel coordinates). (B) We warp small rectangular pixel patches along the body of a real
template image (left) to the target centerline (middle), producing a synthetic worm image (right). Overlapping pixels are
alpha-blended to connect the patches seamlessly. Unwanted pixels protruding from the target worm body are masked and the
background pixels are set to a uniform color. Finally, the image is cleaned of artifacts through a medium blur filter.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

10

head ? body segment

A

body segment

B

body segment

head ?
C

FIG. 3. We train a convolutional network to associate worm images with an unoriented centerline to overcome head-tail
ambiguities which are common due to worm behaviors and imaging environments. (A) An example image with a seemingly
symmetrical worm body. (B) We associate each training image to two possible centerline geometries, resulting in two equivalent

labels: θa and θb = flip(θa) + π, corresponding to a reversed head/tail orientation. (C) We compare the output centerline θ̂
to each training centerline through the root mean squared error of the angle difference d(θ1, θ2) (Eq. 2) and assign the overall

error as loss = min(d(θ̂, θa), d(θ̂, θb)).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

11

Network
predict

Pose without head decision

Pose with head decision

2. Predict

3. Process

Video
frames

Partial
labels

Crop and
process

All frames

Resolve head tail
time
?

?

Train network on
synthetic images.

Evaluate on
real images.

Generate synthetic
labelled images

1. Train

Labelled frames

Discard bad results

Prediction Original

Compare

0. Data

? ? ?

time

FIG. 4. The WormPose pipeline. (0) We use classical image processing methods to extract partial labels of simple, non-coiled
postures, and then apply a CNN-based approach to complete the missing frames which result from complex images. We
analyze each video recording with a three-step pipeline. (1) We generate synthetic data with the visual appearance of the
target images but containing a wider range of postures, Fig. 2. We use this synthetic data to train a deep neural network
to produce the centerline angles from a single image. During training, we periodically evaluate the network on real labeled
images and keep the model that best generalizes. (2) We predict the entire set of target images. The images are first cropped
and processed to look more visually similar to the synthetic images: background and any non-worm pixels are set to a uniform
color. For each such processed image, the trained network predicts the centerline angles for both possible head-tail orientations.
(3) Our algorithm produces a full image as output and we discard inaccurate results using a pixel-based comparison with
the input image. Finally, we resolve the head-tail orientation by comparing adjacent frames. Once trained, the WormPose
pipeline is rapid and robust across videos from a wide variety of recording conditions.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

12

wild	type
mutant
synthetic

image	error

cu
m
ul
at
iv
e	
pr
ob
ab
ili
ty

0.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0
mode	error

fr
eq
ue
nc
y

1.00.0 0.0

0.2

0.1

0.0

0.2

0.1

0.0

A B

2.0 1.0 2.0

FIG. 5. Quantifying the error in pose estimation. (A) We show the cumulative image error of predicted images for different
datasets. We predict 24 videos totaling over 600k frames from N2 wild-type and AQ2934 mutant datasets and calculate
the image error between the original image and the two possible predictions, and keep the lowest value between the two.
For the error calculations here we bypass the postprocessing step so no result is discarded. For interpretability we also
draw representative worm image pairs for different error values and note that predictions overwhelmingly result in barely
discernible image errors. On average, the N2 predictions have a lower image error than the mutant which exhibit much more
coiled challenging postures. We also generate new synthetic images (using N2 as templates, 600k values) not seen during the
training and predict them in the same way. The image error for the synthetic images (which generally include a higher fraction
of complex, coiled shapes) is on average worse than the N2 type, but better than the mutant. (B) Our synthetic training
approach also allows for a direct comparison between input and output centerlines, here quantified through the difference in
eigenworm mode values. As with the images, the differences are also small so that even in the large-error tail of the distribution
the “error worms” (worm shapes representing mode values with δai = 1.0) are essentially flat. The median mode errors are
〈δ~a〉median = (0.36, 0.34, 0.38, 0.34).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

13

x

y

angular speed (º/s)speed (mm/s)
0.00 0.300.10 0.20 0 1208040

roaming
dwelling

P
D

F

0.20

0.00

0.10

0.00

0.03

0.06

20100-10-2030-3

! (s-1) turning amplitude a3

10-1

10-3

P
D

F

10-1

10-3

B
od

y
 w

av
es

 /
 s

A

1mm

10-5

for
ward

rev
ers

al

10-2

10-4

C

B

D

P
D

F

0.06

0.00

0.02

0.04

orientation, ¢Ã (rad)

0 ¼/2 ¼

reversal
run length (s)

1.00.2 0.6

C
D

F

1.0

0.2

0.4

0.8

0.6

10-1

10-3

10-5 10-7

-2 -1 1 2

E

10-5

FIG. 6. Posture-scale analysis of roaming/dwelling behavior from long recordings reveals that the centroid-derived increase
in the dwelling reversal rate results from incoherent body motions that do not translate the worm’s body. (A) To align with
previous definitions, we identify roaming/dwelling behavior through a Hidden Markov Model of the linear and angular speed,
averaged in 10s windows, and we split the trajectory into two hidden states: a low speed, high angular speed state (dwelling,
blue), and a high speed, low angular speed state (roaming, orange). (A, inset) Example 5 minute centroid trajectories in
the dwelling state (blue) and the roaming state (orange). (B) Dwelling state exhibits a larger fraction of reversals when
compared to roaming. We identify forward and backward motion using the angle between the centroid velocity vector and
the tail-to-head angle obtained by averaging the body angles: ∆ψ < π/2 for forward locomotion, ∆ψ > π/2 for backwards.
(C-E) Posture-scale dynamics indicate that the centroid level characterisation of roaming and dwelling states is incomplete.
(C) Roaming worms exhibit a higher angular speeds in both reversal and forward motion and also a higher fraction of deep
turns (a3 > 10). (D) Cumulative distribution of reversal run lengths in the dwelling (blue) and roaming states (orange). The
roaming state generally exhibits longer reversals than the dwelling state, for which reversal bouts are extremely short. Thick
lines indicate the CDF for the ensemble of worms, while lighter lines are for each worm. (E) The rate of reversal events with
complete body waves is an order of magnitude higher in the roaming state compared to dwelling.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

1

SUPPLEMENTARY MATERIAL

Analysis of roaming and dwelling behavior: To connect to previous analysis on the roaming and dwelling
behavior, we compute the worms speed and angular speed from the centroids ~c = (x, y) position as a function of
time. To simplify the comparison with [29], we downsample the time series to 3 Hz and compute the centroid velocity

as the finite difference between subsequent time points ~v(t) = ~c(t+∆t)−~c(t)
∆t , where ∆t = 1/3 s after downsampling.

The speed is then obtained by taking the norm of the velocity vector s(t) = |~v(t)|, where |.| represents the 2-norm.
The angular speed is computed by estimating the angle between the two vectors defined from three subsequent
points, which gives the change in the tangential component of the velocity. From these estimates, we obtain roaming
and dwelling states by fitting a two-state Hidden Markov Model (HMM) to the speed and angular speed time traces
averaged in 10 s windows (as in [29]). The model is composed of two hidden states, their stationary distributions
π and Markov transition matrices P , and Gaussian emission probabilities conditioned on the current state. Fitting
is performed through an Expectation-Maximization algorithm (Baum-Welch), with the emission probabilities being
Gaussian distributions with a diagonal covariance matrix. The sequence of hidden states is obtained through a
Viterbi algorithm. We use an open-source Python HMM package, hmmlearn, obtained from: https://github.com/
hmmlearn/hmmlearn. For more info on HMMs, see [41].

Analysis on the directionality of the worms movement was done in the following way. At each time point, we
estimated the tangential component of the velocity vector by ψ(t) = tan−1 (vy(t)/vx(t)), and the overall tail-to-head

angle by averaging the centerline angles Ψ(t) = 〈~θ(t)〉. The worms orientation was then obtain by subtracting these
two quantities ∆ψ = ψ −Ψ and normalizing them into the interval [−π2 ,

3π
2] rad.

Posture-level analysis was performed by projecting the centerline angle time series ~θ(t) into the lower dimensional
space of eigenworms, ~a(t), using a canonical set of modes [7]. In this space, the first two eigenmodes capture the
propagation of the body wave along the body. The angle between them, φ(t) = tan−1(a2(t)/a1(t)), defines the phase

of the wave, while its derivative ω(t) = φ̇(t) is the phase velocity. Estimates of the phase velocity are obtained
through fitting a cubic spline to φ, using Scipy’s scipy.interpolate.CubicSpline [27], in order to reduce the noise
in the estimation of ω. We estimated the frequency of complete body waves by finding segments in which the body
wave phase φ did not change sign, and there is a recurrence in cos(φ(t)). We make a conservative estimate of the
body wave frequency by counting peaks in the time series of cos(φ(t)), using the scipy.signal.find peaks function
of Scipy [27], with a prominence 1.95 and a minimum time between peaks of 8 frames.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

2

P
D

F

0.00 0.20.150.10.05
0.00

0.01

0.02

0.03

0.04

0.05

FIG. S1. Probability density function (PDF) of the ratio between the prediction error η and the standard deviation of the
angles used to generated the sample images σθ. Since we cannot measure the angular errors directly, we use the standard
deviation of the angles as a scale, and define the interpolation weights as w = 1/(δσθ), where δ = 0.02. Since we assign
progressively smaller weights at the boundary of missing frames, using δ = 0.02 allows us to have a range of weights that
captures the variability in angle errors (dashed lines correspond to higher and lower weights used, which fall into the lower
and upper tails of the error distribution).

A
IC

 (
x

10
7)

-1.09

-1.08

-1.10

150 200 250 300

gaussian components

training data simulation

µi

µj

µi

0 20 40 60 80 0 20 40 60 80

0

20

40

60

80

4

-4

0

2

-2

A B

FIG. S2. Model selection assessment in the Gaussian Mixture Model (GMM) of worm shapes. (A) Akaike Information
Criterion for GMMs with different numbers of gaussian components. The minimum is attained with N = 270 gaussian

components. (B) Covariance matrix of the space of mean subtracted tangent angles ~θ for the data used in training (left) and
an equal number of simulated angles (right).

image	error

cu
m
ul
at
iv
e	
pr
ob
ab
ili
ty

0.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

wild	type
mutant

1.0

FIG. S3. The cumulative distribution of the image error for all available labeled (and thus uncoiled) frames in the N2 wild-type
and AQ2934 mutant datasets.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

3

image	error

cu
m
ul
at
iv
e	
pr
ob
ab
ili
ty

0.80.60.40.20.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

A B
WormPoseRCS

mutant	(RCS)
mutant	(WormPose)
wild	type	(RCS)
wild	type	(WormPose)

FIG. S4. Comparing WormPose to a reference method (RCS) [9].(A) We show the cumulative image error of predicted images,
similarly to Fig. 5(A). While the image error is similar, WormPose is faster and does not make use of temporal information
(a possible route for future improvement). (B) Qualitative results for a selection of frames where the image error doesn’t
fully describe the discrepancies between the two methods. Very tight loops (top) are challenging for both methods and RCS
typically misidentifies crossings where greyscale information would help (middle and bottom).

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted August 15, 2020. ; https://doi.org/10.1101/2020.07.09.193755doi: bioRxiv preprint

https://doi.org/10.1101/2020.07.09.193755
http://creativecommons.org/licenses/by-nd/4.0/

