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Abstract 25 

Clonal populations of cells continuously evolve new genetic diversity, but it takes a significant 26 

amount of time for the progeny of a single cell with a new beneficial mutation to outstrip both its 27 

ancestor and competitors to fully dominate a population. If genotypes with these driver mutations 28 

can be discovered earlier—while they are still extremely rare—it may be possible to anticipate 29 

the future evolution of these populations. For example, one could diagnose the likely course of 30 

incipient diseases, such as cancer and bacterial infections, and better judge which treatments will 31 

be effective, by tracking rare drug-resistant variants. To test this approach, we replayed the first 32 

500 generations of a >70,000-generation Escherichia coli experiment and examined the 33 

trajectories of new mutations in eight genes known to be under positive selection in this 34 

environment in six populations. By employing a deep sequencing procedure using molecular 35 

indexes and target enrichment we were able to track 236 beneficial mutations at frequencies as 36 

low as 0.01% and infer selection coefficients for 180 of these. Distinct molecular signatures of 37 

selection on protein structure and function were evident for the three genes in which beneficial 38 

mutations were most common (nadR, pykF, and topA). We detected mutations hundreds of 39 

generations before they became dominant and tracked beneficial alleles in genes that were not 40 

mutated in the long-term experiment until thousands of generations had passed. Therefore, this 41 

targeted adaptome sequencing approach can function as an early warning system to inform 42 

interventions that aim to prevent undesirable evolution.  43 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.196832doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.196832
http://creativecommons.org/licenses/by/4.0/


Introduction  44 

New genetic variation naturally arises in lineages of cells and organisms during genome 45 

replication and repair. These de novo mutations are the main drivers of adaptive evolution in 46 

many populations, particularly those with little or no recombination or standing genetic variation. 47 

In large laboratory populations of asexual microbes, numerous lineages with different beneficial 48 

mutations arise and contend within a population before any one outcompetes the ancestor and its 49 

competitors [1–3]. This ‘clonal interference’ leads to heterogeneous populations with many 50 

lineages simultaneously adapting via distinct sets of mutations, though often these mutations are 51 

in a small subset of genes that are under the strongest selection [4–6].  52 

 In human cancers and chronic microbial infections, single cells clonally expand in a similar 53 

fashion by evolving driver mutations that lead to disease progression and drug resistance. Both 54 

solid tumors and blood cancers have been shown to be genetically heterogeneous [7–9]. De novo 55 

mutations within these cell populations are responsible for neoplastic progression [10], 56 

differences in responses to chemotherapy [11], and relapse [12]. Populations of Pseudomonas 57 

aeruginosa and other bacteria that persistently infect the lungs of cystic fibrosis patients become 58 

increasingly invasive and antibiotic resistant over time [13–15]. In these cases, there are also 59 

specific genetic loci that are repeatedly mutated in different individuals. Better predicting the 60 

future evolution of each of these types of cell populations and others would inform treatment 61 

decisions and improve medical outcomes. 62 

 Cells used in biomanufacturing are also prone to evolving unwanted genetic heterogeneity 63 

[16,17]. Typically, these cells have been heavily engineered to optimize the titer of a product of 64 

interest at the expense of rapid cellular replication [18,19]. Therefore, there are strong selective 65 

pressures for ‘escape mutations’ that cause production to decline. Usually escape mutations 66 
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directly inactivate one or more key genes in the engineered pathway. The resulting nonproducing 67 

cells can become dominant during the many cell divisions that are necessary to scale these 68 

processes up to large bioreactors [20–22]. The ability to predict the future evolution of 69 

nonproducing cells before attempting scale-up could guide strain design decisions and thereby 70 

improve the efficiency of industrial processes. 71 

Evolution experiments conducted in controlled laboratory environments reproduce key 72 

aspects of microbial evolution that are observed in chronic infections and bioreactors [23,24]. In 73 

theory, profiling rare mutations in the earliest stages of clonal interference using high-throughput 74 

DNA sequencing should allow one to anticipate the future evolution of these populations. 75 

However, these studies have generally been limited by sequencing depth and per-base error rates 76 

to reliably identifying mutations that are present in at least one sample at a frequency above ~1-77 

10% when they have already succeeded in becoming dominant [1,3,25,26]. Theory and 78 

simulations predict that many more highly beneficial mutations evolve in these populations but 79 

never reach such high frequencies before they are driven extinct [4,6], and recent studies that 80 

track the evolution of barcoded lineages of microbes show that this is the case [27,28]. 81 

Here, we used methods for selectively increasing sequencing depth and lowering sequencing 82 

error rates to deeply profile the initial burst of rare beneficial mutations in laboratory populations 83 

of E. coli. We directly identified diverse beneficial mutations in six genes when they were orders 84 

of magnitude lower in frequency and hundreds of generations earlier than could be accomplished 85 

by standard metagenomic sequencing methods. By comparing our results to the long history of a 86 

>70,000-generation E. coli evolution experiment that used the same ancestral strains and nearly 87 

identical culture conditions [29], we evaluate the potential of this type of targeted adaptome 88 

analysis for anticipating the future evolution of cell populations. 89 
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 90 

Results 91 

Replaying the beginning of a long-term evolution experiment 92 

We tracked new mutations in nine replicate E. coli populations that were propagated via daily 93 

serial transfers in glucose-limited minimal medium for 500 generations. Our experiment used the 94 

same E. coli strains as the Lenski long-term evolution experiment (LTEE) and similar growth 95 

conditions (see Methods). Each population was inoculated with a 50/50 mixture of the two 96 

neutrally marked LTEE ancestor strains to visualize the initial selective sweep [30]. Most 97 

populations maintained a roughly equal representation of descendants of both ancestral strains 98 

through the first 300 generations (Fig. 1). These dynamics are in agreement with what has 99 

previously been observed in studies of the LTEE, where few mutations reach a high frequency in 100 

the first few hundred generations of evolution [3]. 101 

 102 

 103 
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Figure 1. Replaying the first selective sweep of a long-term evolution experiment. Nine E. 104 
coli populations were initiated from equal mixtures of two variants of the ancestral strain that 105 
differ in a neutral genetic marker for arabinose utilization (Ara). We observed the evolutionary 106 
dynamics of these populations over ~500 generations of regrowth from 75 daily 1:100 serial 107 
transfers by periodically plating dilutions of each population on indicator agar. The ratio of Ara+ 108 
cells (pink colonies) to Ara– cells (red colonies) diverges from 1:1 when descendants of one 109 
ancestor type accumulate enough of a fitness advantage due to de novo beneficial mutations that 110 
they take over. We focused further analysis on six of the nine populations (thick lines). 111 
 112 

Reconstructing the trajectories of new beneficial mutations 113 

We next performed deep sequencing of eight genes at ~25 generation increments over all 500 114 

generations of the evolution experiment for four of the nine populations. These eight genes 115 

(nadR, pykF, topA, spoT, fabR, ybaL, hslU, and iclR) are known to be targets of selection in the 116 

LTEE [3,31]. Illumina libraries containing molecular indexes [32] were prepared for sequencing 117 

and enriched for the regions of interest using solution based hybridization [33]. Consensus 118 

sequence reads were generated based on groups of reads with identical molecular indexes and 119 

aligned to the E. coli genome to predict mutations, including using split-read mapping to identify 120 

transposon insertions and large deletions (Fig. 2A). The enrichment procedure was effective. In 121 

the sample with the median number of total consensus reads, the average coverage depth across 122 

each of the eight genes of interest exceeded 5,000 (Fig. 2B). After analyzing patterns in mutation 123 

frequencies over time to eliminate other systematic biases (see Methods), we were able to track 124 

the evolution and competition of 180 de novo mutations, including when many were present in 125 

less than 0.1% of the cells in a population (Fig. 2C, Fig. 3). 126 
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127 
Figure 2. Profiling many beneficial mutations in the first selective sweep by deep 128 
sequencing. (A) Schematic of the deep sequencing approach. Genomic DNA is directly isolated 129 
from the E. coli populations and prepared for Illumina sequencing with unique molecular indexes 130 
(colored ends attached to red/green double stranded DNA). DNA fragments matching the 131 
targeted genome regions (green centers) are captured by probes (blue) bound to magnetic beads 132 
and other sequences are washed away (red centers). Reads with the same unique molecular 133 
index, which were amplified from the same original genomic DNA fragment, are used to 134 
construct a consensus read to eliminate sequencing errors. Consensus reads are mapped to the 135 
reference genome to call sequence variants. (B) Enrichment of reads mapping to eight genes 136 
known to be early targets of selection in this environment from the long-term evolution 137 
experiment. The final coverage depth of consensus reads in and around these genes is shown for 138 
a typical sample (population A7 at 500 generations). (C) Frequency trajectories for mutations in 139 
the eight targeted genes as well as the sum total frequency in population A1 over the complete 140 
time course of the evolution experiment. When a mutation was not detected at a time point, its 141 
trajectory is shown as passing through a frequency of 0.0001% (outside of the graphed region). 142 
(D) Mutation frequency trajectories for population A1 during the window from 133 to 213 143 
generations when mutations were first reaching detectable frequencies as they outcompeted the 144 
ancestral genotype. At time points when a mutation was not detected, its frequency is shown as 145 
0.001% (at the bottom of the plot). (E) Estimate of average population fitness between the time 146 
points in the window when mutations were first detected. The frequency trajectories of the 147 
beneficial mutations in the initial sweep shown in D were used to jointly estimate population 148 
fitness and the individual selection coefficients of each mutation. Error bars are 95% confidence 149 
intervals on fitness estimations.  150 
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 151 
Figure 3. Frequency trajectories of mutations in the remaining populations. The same plots 152 
described in Figure 2C-E for population A1 are shown for populations A2, A3, and A7 (top three 153 
sets of panels). For populations A6 and A9, sequencing was only performed at time points during 154 
the selective sweep window so only the plots corresponding to Figure 2D-E are shown (bottom 155 
two sets of panels). 156 
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 Mutation trajectories in all four populations exhibited a burst of genetic diversity in the 157 

targeted genes followed by loss of this diversity. The initial dynamics are expected to be largely 158 

driven by new genotypes that each evolve a single beneficial mutation very early in the 159 

experiment. If their descendants escape stochastic loss, they will gradually increase in frequency 160 

over the first few hundred generations as they outcompete the ancestral genotype. Once the 161 

population becomes dominated by these first-step mutants, their frequency trajectories plateau 162 

because of clonal interference: they are now mainly competing against one another and are 163 

relatively evenly matched. In populations A1, A2, and A7, the total frequencies of the mutations 164 

we identified sums to 50-62% at generation 270, indicating that each population is mostly 165 

composed of genotypes with a single mutation in one of the focal genes. We recovered less of 166 

the initial beneficial mutation diversity in population A3 where this sum was only 13%. 167 

 After around 300 generations, there is a steady decline in the frequencies of most mutations 168 

in the eight targeted genes. At this point, new more-fit genotypes that have evolved from the 169 

single-step mutants begin to exert their influence and displace them. Many of the most successful 170 

second-step genotypes are descended from cells that already have a mutation in one of the 171 

targeted genes. The original mutations serve as markers for the further expansion of these 172 

subpopulations after a period during which their frequencies stagnate or decrease, but the new 173 

beneficial mutations responsible for this further increase in fitness are outside of the genomic 174 

regions we surveilled. The converse situation, in which a beneficial mutation in one of the eight 175 

focal genes appears in a cell with an untracked beneficial mutation elsewhere in the genome, also 176 

occurs in a few cases. Most strikingly, a new mutation in pykF that only appears after 300 177 

generations in population A3 rapidly increases in frequency and becomes dominant, strongly 178 

suggesting that it appeared in a genetic background with a prior, unknown beneficial mutation.  179 
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 180 

Selection coefficients can be inferred from initial mutation trajectories 181 

We next sought to calculate the fitness benefits of individual mutations by tracking how rapidly 182 

their frequencies rose early in the experiment when they were largely competing versus the 183 

ancestral genotype because all new mutations in the population were still rare. To that end, we 184 

performed additional sequencing on six populations (including the four already sequenced at 25 185 

generation increments) at ~13-generation increments in a time window from 133 to 213 186 

generations (Fig. 2D, Fig. 3). We were able to track a total of 161 mutations during this time, 187 

including 56 that were not identified in the complete time courses. More than 95% of these 188 

mutations occurred in just three of the targeted genes: nadR, pykF, and topA (Fig. 4A). 189 
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 190 
Figure 4. Characteristics of beneficial mutations in the initial selective sweep. (A) Total 191 
number of beneficial mutations in each targeted gene identified in the window time courses from 192 
133 and 213 generations for all six E. coli populations that were profiled. (B) Distribution of 193 
selection coefficients of beneficial mutations determined from the window time courses in the 194 
three genes that were the dominant targets of selection. Vertical red lines show the mean of each 195 
distribution. (C) Spectrum of beneficial mutation types in the three genes that were the dominant 196 
targets of selection in the window time courses. 197 
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 We were able to estimate a selection coefficient for each of the 161 mutations predicted in 198 

the window time courses by fitting a binomial logistic model to the counts of reads supporting 199 

the variant versus reference sequences over time. In all populations, there is a slight deceleration 200 

in the rate at which the frequencies of the new mutations increase at generation 166 and later that 201 

coincides with the onset of clonal interference (Fig. 2E, Fig. 3), At this point, genotypes with 202 

beneficial mutations begin to make up an appreciable fraction of the population and compete 203 

against one another rather than effectively only versus their ancestor. After correcting for this 204 

increase in overall population fitness (see Methods), the mean selection coefficient that we 205 

inferred for the tracked mutations in all six populations was 6.32% with a standard deviation of 206 

0.74%. Although the distributions of selection coefficients estimated for mutations in nadR, 207 

pykF, and topA overlap (Fig. 4B), there was a significant stratification among these genes. 208 

Mutations in nadR were 0.27% more beneficial than mutations in topA, on average, and this 209 

difference was significant (p = 0.024, Kolmogorov-Smirnov test). In turn, mutations in topA 210 

were 0.39% more beneficial than those in pykF (p = 0.00035, Kolmogorov-Smirnov test). The 211 

six mutations in other genes (spoT, yijC, and ybaL) for which we were able to estimate selection 212 

coefficients were roughly as beneficial as mutations in nadR, pykF, and topA. 213 

  214 

Beneficial mutations reveal different signatures of selection on gene function 215 

Of the 236 mutations that we were able to track in complete or window time courses, 218 were 216 

in the nadR, pykF, or topA genes. The large sets of beneficial mutations in these genes gave us 217 

the statistical power to test for several signatures of molecular evolution to predict what types of 218 

changes in the function of each gene improved E. coli fitness in this environment. Each of the 219 

three genes exhibited a distinct spectrum of beneficial mutations (Fig. 4C). In some cases, 220 
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different types of mutations were also unevenly distributed throughout the sequences of these 221 

three commonly hit genes and had noticeably different effects on bacterial fitness (Fig. 5A).  222 

223 
Figure 5. Mutations in the three genes that were the dominant targets of selection. (A) 224 
Locations and properties of all mutations found in each of the three genes that were the dominant 225 
targets of selection during the evolution experiment. Colors represent the type of mutation. 226 
Symbols indicate whether each mutation was detected in the window time course, the complete 227 
time course, or both. The reading frame of each gene is shown above each panel with protein 228 
domains labeled. Vertical dashed grey lines represent the start and end of each gene. Error bars 229 
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are 95% confidence limits on selection coefficients determined for the mutations detected in the 230 
window time courses. Horizontal red lines represent the average selection coefficient for all 231 
mutations in a gene. Mutations that were only detected in the complete time course are shown in 232 
the band below each graph because they do not have estimated selection coefficients. (B) 233 
Structural context of mutations in PykF. Sites of nonsymonymous mutations are highlighted by 234 
showing space-filling models of the substituted amino acid residues. All four subunits of the 235 
PykF homotetramer are shown. (C) Structural context of mutations in the catalytic core of TopA. 236 
Sites of nonsymonymous mutations are highlighted by showing space-filling models of the 237 
substituted amino acid residues. Only domains D1-D4 are present in the structure. The DNA 238 
strand interacting with TopA is shown as a stick model. 239 

 The E. coli nadR gene has three distinct functions related to NAD biosynthesis: (1) the N-240 

terminal domain is a helix-turn-helix that binds to DNA so that it can act as a negative 241 

transcriptional regulator of NAD salvage and transport pathways; (2) the internal domain is an 242 

NMN adenylyltransferase [34]; and (3) the C-terminal domain is predicted to have 243 

ribosylnicotinamide kinase activity [35]. Large deletions, frameshifts from small insertions or 244 

deletions (indels), insertions of transposable insertion sequence (IS) elements, and base 245 

substitutions creating stop codons dominate the nadR mutational spectrum (Fig. 4C). These 246 

disruptive mutations, which are expected to result in complete loss of gene function, are 247 

significantly overrepresented versus nonsynonymous base substitutions in the first two domains 248 

of the gene compared to the remainder (11.4 odds ratio, p = 4.2 × 10−6, one-tailed Fisher's exact 249 

test) (Fig. 5A). Yet, there is no evidence of a greater selection coefficient for disruptive 250 

mutations compared to nonsynonymous mutations overall (p = 0.19, one-tailed Kolmogorov-251 

Smirnov test). These results suggest that complete inactivation of nadR yields the maximum 252 

benefit possible for a mutation in this gene, through disrupting all three of its distinct functions 253 

may not be necessary for achieving this full benefit. Consistent with this prediction, deletion of 254 

nadR is highly beneficial in the LTEE environment [36]. 255 

 Pyruvate kinase 1 (pykF) catalyzes the final step of glycolysis, transferring a phosphate group 256 

from phophoenolpyruvate (PEP) to ADP to generate pyruvate and ATP. It is a key enzyme in 257 
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regulating glycolytic flux [37,38]. We observed an intermediate representation of disruptive 258 

mutations in pykF, fewer than in nadR but more than in topA (Fig. 4C). Interestingly, 259 

nonsynonymous base substitutions in pykF tend to have a larger selection coefficient than 260 

disruptive mutations (p = 0.00390, Kolmogorov-Smirnov test) (Fig. 5A). This finding is in 261 

agreement with a recent study of various pykF alleles that arose in the LTEE which found that 262 

nearly all pykF point mutations were more beneficial than deletion of the pykF gene, both in the 263 

ancestor and in evolved genetic backgrounds [39]. PykF forms a homotetramer in which each 264 

polypeptide is folds into three structural domains [40,41]. The central domain C forms the active 265 

site at the interface with domain B and the binding site for the allosteric effector fructose 1,6-266 

bisphosphate at the interface with domain A. The nonsynonymous mutations that we observed 267 

are more concentrated than expected in domain C versus the other structural domains (p = 268 

0.0050, one-tailed binomial test) (Fig. 5B). Overall, these results suggest that complete 269 

inactivation of pykF is highly beneficial in the environment of our evolution experiment, but 270 

mutations that alter its activity—likely in ways that reduce glycolytic flux—are even more so. It 271 

has been suggested that reducing pykF activity is beneficial in the similar glucose-limited 272 

conditions of the LTEE because this allows more PEP to be used for import of glucose into cells 273 

by the phosphotransfer system [42]. 274 

 DNA topoisomerase I (topA) relaxes negative supercoiling introduced into the chromosome 275 

by replication and transcription [43]. The mutations we observed in topA are almost exclusively 276 

single-base substitutions (Fig. 4C), suggesting that modulating the activity of this enzyme 277 

provides a fitness benefit. Indeed, complete loss of topA function is lethal to E. coli without 278 

compensatory mutations in DNA gyrase [44,45]. The structure of E. coli TopA consists of four 279 

N-terminal domains (D1-D4) that make up the catalytic core and five C-terminal zinc finger and 280 
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ribbon domains (D5-D9) [46]. The few out-of-frame indels and the large deletion that we 281 

observe truncate TopA within domains D7-D9, which interact with single-stranded DNA and 282 

RNA polymerase but are not critical for catalysis. Considering only the catalytic core, we find 283 

that nonsynonymous mutations are concentrated in domains D1 and D4 versus D2 and D3 (p = 284 

0.0060, one-tailed binomial test) (Fig. 5C). D1 and D4 together form the ssDNA binding groove 285 

leading to the active site, and D1 also forms part of the active site at its interface with D3 [47]. 286 

Several base substitutions in topA have been shown to increase positive supercoiling in evolved 287 

LTEE strains [48,49]. The exact reason that this change in supercoiling is beneficial is unknown, 288 

but it may be linked to increasing the expression of ribosomal RNAs [48], altering gene 289 

regulation responses to starvation or stress [49], and/or increasing gene expression divergently 290 

transcribed operons [50]. 291 

 292 

Discussion 293 

We examined bacterial evolution during the initial stages of clonal competition when there is a 294 

burst of beneficial genetic diversity as many new subpopulations with different mutations evolve 295 

and begin to displace the ancestral genotype. We focused on eight genes known to accumulate 296 

adaptive mutations in the >70,000 generation Lenski long-term evolution experiment (LTEE) 297 

with E. coli that used nearly the same environment as our experiments. The only difference was 298 

that we added four times as much of the limiting nutrient (glucose). By combining Illumina 299 

sequencing of reads that incorporate molecular indexes for error correction, hybridization-based 300 

capture of DNA encoding these genes, and dense temporal sampling, we were able to identify 301 

more beneficial mutations and track them at much lower frequencies than is possible with 302 

standard metagenomic sequencing. We detected a total of 236 mutations in the focal genes: 180 303 
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in the complete time courses of four populations and 161 in the window time courses of these 304 

populations and two others, with 105 mutations overlapping between the two sets.  305 

 By densely sampling and deeply sequencing E. coli populations, we were able to characterize 306 

many beneficial mutations that never reach the detection limits of standard Illumina sequencing 307 

before they become casualties of clonal interference. Only 13 of the 180 mutations we detected 308 

in the complete time courses ever achieved a frequency of 5% or more, which can be reliably 309 

distinguished from noise by standard metagenomic sequencing, and only seven were this 310 

common for 100 or more generations, such that they were likely to be detected by a typical time-311 

sampling scheme. Considering both the complete and window time courses we characterized 177 312 

and 27 mutations that never reached 1% or 0.1% thresholds, respectively, at any of our sampled 313 

time points. Our success in recovering rare variants meant that we discovered more examples of 314 

beneficial mutations in the three commonly mutated genes (topA, pykF, and nadR) than have 315 

been reported in many prior studies of the evolution of the twelve LTEE populations 316 

[3,31,36,42,51,52]. These large sets of mutations enabled us to identify distinct molecular 317 

signatures of adaptation in each protein. 318 

 We profiled evolution driven by mutations in eight genes known to be targets of selection in 319 

the LTEE. Mutations in four of these (topA, pykF, spoT, and fabR) reach high frequencies within 320 

the first 1,000 generations of the LTEE in multiple populations [3,52]. Mutations in the other 321 

four (hslU, nadR, ybaL, and iclR) are also common in the LTEE, but they typically occur later 322 

(often within the first 2,000 to 10,000 generations) [3,31]. Nearly all mutations in these genes in 323 

our evolution experiment were in topA, pykF, and nadR, but we also found multiple mutations 324 

that were similarly beneficial in spoT, fabR, and ybaL. Mutations in nadR were more widespread 325 

than expected in our experiment and may be more likely to completely disrupt its function than 326 
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beneficial alleles that evolve in the LTEE [51]. Mutations in spoT and fabR were rarer than 327 

expected from the LTEE. One possible explanation for these slight differences is the increased 328 

concentration of glucose in our experiment compared to the LTEE. These minor deviations are 329 

also reminiscent of how changing a different aspect of the environment (temperature) re-focuses 330 

the mutations of largest benefit that succeed early onto different subsets of genes, nearly all of 331 

which eventually accumulate beneficial mutations later in the LTEE environment, in related 332 

evolution experiments [53,54]. Despite these subtle differences, we were still able to account for 333 

majority of the genetic variation present in three of four of the four populations that we profiled 334 

over the entire 500 generations by analyzing evolution in the eight candidate genes. 335 

 We also wanted to understand to what extent we gained early warning of driver mutations by 336 

deeply profiling evolution in genes we expected to be under strong selection. In general, we were 337 

able to begin tracking most mutations when they were above a frequency of 0.01%. This level of 338 

profiling enabled us to first detect mutations an average of 75, 152, and 290 generations before 339 

they surpassed frequencies of 0.1%, 1%, and 5%, respectively. Under the conditions of our 340 

experiment these intervals take roughly 11, 23, and 44 days, respectively; so, even though we 341 

made these predictions retrospectively, there would have been sufficient time to complete the 342 

DNA isolation, library preparation, sequencing, and analysis steps quickly enough for this 343 

approach to give early warning of specific genetic variants driving evolution of these 344 

populations. The amount of lead time becomes disproportionately longer at higher frequencies 345 

due to clonal interference between beneficial mutations. The chances and timescales of earlier 346 

detection are expected to increase even more when there are ecological interactions or spatial 347 

structure that further slow the takeover of new variants, as has been demonstrated and discussed 348 

in other microbial evolution experiments [26,55,56]. 349 
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 A further prediction is that the genes in which we observe early, but unsuccessful beneficial 350 

mutations will sustain mutations again and again until they are successful in a population's 351 

evolutionary future. This prediction is limited by the nature of epistatic interactions. In the LTEE 352 

and other microbial evolution experiments, diminishing returns epistasis dominates between 353 

beneficial mutations in different genes [57–61]. That is, mutations in one gene that improve the 354 

fitness of the ancestor tend to still be beneficial to evolved genotypes containing beneficial 355 

mutations in other genes, just less so than when those other mutations are not present. 356 

Subpopulations with mutations in both nadR and pykF evolve by 20,000 generations in all 12 357 

LTEE populations, and cells that also contain a mutation in topA are found in six of the LTEE 358 

populations at this point [31]. By this time, mutations in ybaL and spoT are also found in nine 359 

and six LTEE populations, respectively. So, for five of the six genes in which we detected 360 

multiple mutations in the initial burst phase, it is likely that nearly all of them would have 361 

eventually accumulated beneficial mutations if we continued our experiment.  362 

 The genes in which we did not detect multiple mutations (fabR, iclR, and hslU) likely 363 

represent other scenarios. Mutations in fabR transiently appear within the first 2,000 generations 364 

of the LTEE [52]. They interact unfavorably with beneficial mutations in spoT and other genes, 365 

such that a fabR mutation essentially precludes further adaptation by mutating the other set of 366 

genes and vice-versa [52,62]. So, fabR mutations are unlikely to re-emerge in the future of these 367 

populations. On the other hand, mutations in iclR and hslU appear to either require the presence 368 

of mutations in other genes to become highly beneficial or may not be able to experience any 369 

mutations that are beneficial enough to make them competitive early on in the LTEE. Of the 12 370 

LTEE populations, 11 have cells mutations in iclR and 11 have mutations in hslU by 20,000 371 

generations, which makes them more common than mutations in spoT and ybaL in the long run.  372 
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 The nature of epistasis and the limits that it imposes on predicting the future evolution of a 373 

cell population could be further probed using our approach in several ways. One could repeat the 374 

evolution experiment beginning with genotypes containing different first-step beneficial 375 

mutations as starting points to more finely map the fitness landscape. One could also interrogate 376 

the diverse collections of cells containing different beneficial alleles that we have evolved, by 377 

taking the 150-generation populations and further evolving them under different conditions to 378 

map genotype by environment effects, for example. Such experiments might also reveal latent 379 

beneficial mutation in other genes (e.g., iclR and hslU) that were able to outcompete the ancestor 380 

in our experiment but remained below the detection limit because they were not as beneficial as 381 

mutations in topA, pykF, and nadR in this environment. There is precedent for changes in the 382 

environment deflecting selection to different subsets of the same genes. In an offshoot of the 383 

LTEE that began with a clone that had spoT, topA, and pykF mutations, selection was focused on 384 

hslU, iclR, or nadR depending on changes in temperature [54].  385 

 Alternative and complementary methods exist for deeply profiling the evolutionary 386 

possibilities inherent in the fitness landscape of a cell, i.e., its evolvome. We tracked spontaneous 387 

beneficial mutations within targeted genome regions, or a portion of what one could more 388 

specifically describe as the adaptome [63]. Amplicon sequencing can also capture mutations in a 389 

subset of the genome with deep coverage. We used hybridization-based enrichment, which did 390 

not require any experimental optimization for different targets and is less likely to introduce 391 

biases in inferring the frequencies of mutations, like IS insertions, that change amplicon sizes 392 

[64]. With enough input DNA and enough sequencing, our approach could be scaled to more 393 

genes or the whole genome. Tracking the frequencies of barcoded cells and their progeny has 394 

been used to characterize the statistical properties of much larger collections of naturally 395 
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occurring beneficial mutations and when they are much rarer within populations [27,28]. 396 

However, one must barcode individuals in the population to apply this method, which may be 397 

difficult in certain cell types or in clinical samples, and additional genome sequencing after an 398 

experiment is completed is required to discover the identities of the beneficial mutations linked 399 

to barcodes. Other methods such as deep-mutational scanning [65] or CRISPR-enabled trackable 400 

genome engineering [66] can simultaneously interrogate large libraries of mutants to map 401 

evolvomes. However, since they artificially construct variant libraries, they do not necessarily 402 

provide information about which genetic variants are accessible by spontaneous mutations and 403 

would therefore be expected to contribute the most to a cell's adaptome.  404 

 Exhaustively mapping paths that clonal evolution is likely to follow is of particular interest 405 

and utility in systems that evolve repeatedly from a defined starting point. These range from 406 

bioreactors that are seeded with the same strain in different production runs to lung infections in 407 

cystic fibrosis patients that start from similar, but not identical, opportunistic pathogens. The 408 

ability to identify mutations in key genes while they are still very rare may also be used to 409 

improve the early detection and predicting drug resistance in other human infections and cancer. 410 

The evolutionary dynamics will be more complex in many of these systems, but they may also 411 

unfold more slowly. For example, biofilm formation and the necessity of invading already 412 

colonized niches will slow the dynamics of competition. This potentially makes the therapeutic 413 

window for detecting incipient evolution by profiling the adaptome even greater.  414 

 415 

Materials and Methods 416 

Evolution experiment 417 
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Strains and growth conditions are derived from the Lenski long-term evolution experiment 418 

[29,67]. Nine clonal isolates of E. coli B strain REL606 and nine of strain REL607 were grown 419 

overnight at 37°C with orbital shaking over a one-inch diameter at 120 RPM in 10 mL of Davis 420 

Minimal (DM) media containing 100 µg/L glucose (DM100). This is a slightly higher 421 

concentration of glucose than the 25 µg/L glucose (DM25) used in the LTEE. Day 0 cultures 422 

containing 10 mL of fresh DM100 were inoculated with 50 µL of one REL606 culture and 50 µL 423 

of one REL607 culture for overnight growth in the same conditions. The remaining culture 424 

volume was archived at −80°C with 2 mL dimethyl sulfoxide (DMSO) added as cryoprotectant. 425 

Daily transfer of 100 µL of overnight culture to 10 mL of fresh DM100 and archival of the 426 

remaining culture volume in the same way continued through 75 daily transfers. Periodically 1 427 

µL of culture was diluted 10,000-fold in sterile saline and plated on tetrazolium arabinose (TA) 428 

agar to allow growth of ~200 colonies. REL606 and REL607 differ by a mutation in an 429 

arabinose utilization gene that makes REL606 (Ara−) colonies red and REL607 (Ara+) colonies 430 

pink [29]. The ratio of red to pink colonies was used to monitor these populations for selective 431 

sweeps [62,68]. 432 

 433 

DNA isolation and library preparation 434 

Genomic DNA (gDNA) was isolated from frozen population samples by first thawing each 15 435 

mL conical tube on ice. Of the ~12 mL total volume of culture plus cryoprotectant, 1.2 mL was 436 

transferred to a 2 mL cryovial and refrozen. The remaining ~10.8 mL was centrifuged at 6,500 × 437 

g at 4°C for 15 minutes. The resulting cell pellets were transferred with a volume of remaining 438 

solution to 1.7 mL Eppendorf tubes. Then, gDNA was isolated using the PureLink Genomic 439 
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DNA Mini kit (Life Technologies). For each sample, 1 µg of gDNA was randomly fragmented 440 

on a Covaris S2 focused-ultrasonicator.  441 

 Illumina libraries were constructed using the Kappa Biosystems LTP Library Preparation Kit 442 

with the following modifications. End-repaired, fragmented DNA was T-tailed (rather than A-443 

tailed) in a 50 µl reaction including 10 mM dTTP and 5 units of Klenow fragment, exo– (New 444 

England Biolabs). Illumina adapters containing 12-base molecular indexes were ligated to the T-445 

tailed fragments as previously described [32], except full-length adapter sequences containing 446 

unique external sample barcodes were directly ligated to the T-tailed dsDNA inserts to reduce 447 

the risk of cross-contamination between samples. The full list of DNA sequence adaptors used is 448 

provided in Table S1.  449 

 450 

Probe design and target capture 451 

Oligonucleotide probes consisting of 60-base xGen Lockdown probes (Integrated DNA 452 

Technologies) were designed to tile across each of the eight genes of interest including upstream 453 

promoter elements. Probes for each gene were compared to the entire E. coli B strain REL606 454 

reference genome (GenBank: NC_012967.1) [69] using BLASTN [70]. The starting positions of 455 

all probes in a set were shifted by one base at a time until every probe had only a single 456 

significant predicted binding location (match with E-value < 2×10−5). The sequences of the final 457 

set of 242 probes are provided in Table S2.  458 

 Capture was performed using a SeqCap EZ Exome Enrichment kit v3.0 (NimbleGen) with 459 

several modifications to the protocol. First, 18 to 20 population samples with unique barcodes 460 

were pooled together in a single capture reaction that contained a total of 1 µg of library DNA 461 

from all samples, 1 mmol of a universal blocking oligo, and 1 mmol of a degenerate barcode 462 
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blocking oligo. The sequences of these blocking oligos are provided in Table S3. Second, after 463 

hybridization for 72 h, DNA fragments hybridized to the biotinylated probes were recovered 464 

using MyOne Streptavidin C1 Dynabeads (Life Technologies). Third, a final 8-cycle PCR step 465 

was performed with HiFi Hotstart DNA Polymerase (Kappa Biosystems).  466 

 467 

Sequencing and read processing 468 

Paired-end 101- or 125-base sequencing of the final libraries was performed on an Illumina 469 

HiSeq 2000 at the University of Texas at Austin the Genome Sequencing and Analysis Facility 470 

(GSAF). Read sequences have been deposited into the NCBI Sequence Read Archive 471 

(PRJNA601748). Raw reads were used to generate Consensus Sequence Reads (CSR) using 472 

custom Python scripts that carried out the following steps. First, the beginning of each read was 473 

evaluated for the presence of the expected 5′-end tag, consisting of the random twelve-base 474 

molecular index (MI) followed by four fixed bases (5′-N12CAGT). Read pairs lacking the correct 475 

5′-end tag on either read were discarded. For remaining read pairs, the MIs from each read were 476 

concatenated to create a 24-base dual-MI that uniquely identifies the original DNA fragment that 477 

was amplified and sequenced. To group all reads corresponding to the same initial DNA 478 

molecule, a FASTA file of all dual-MIs was used as input into the ustacks program from the 479 

Stacks software pipeline (Version 1.48) [71] with the following options: a single read was 480 

sufficient to seed a stack, a single mismatch within the 24 base MI was allowed in assigning a 481 

read to a stack, secondary reads and haplotypes were disabled, and stacks with high coverage 482 

were preserved. Then, CSRs were generated for all MI groups sequenced at least twice by taking 483 

the straight consensus of all reads that were merged into that stack. If no base exceeded 50% 484 

frequency at a given position in this set of reads, then that base was set as unknown (N). 485 
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 486 

Variant calling 487 

We used the breseq pipeline [52,72,73] (version 0.26.0) to call single-nucleotide variants (SNVs) 488 

and structural variants (SVs) from the CSRs. We divided the genome sequence of the ancestral 489 

E. coli REL606 strain into two types of reference regions for mapping in this analysis. The eight 490 

regions of the genome tiled with probes—extended with hundreds of bases of flanking sequence 491 

on both sides—were input as "targeted" sequences, and the remainder of the genome with the 492 

identical eight regions masked to degenerate N bases was supplied as a "junction-only" reference 493 

(to which reads are mapped without variant calling). All 116 samples were analyzed using 494 

breseq in polymorphism prediction mode with all bias, minimum allele frequency, and read-495 

count filters disabled. Evidence items in the Genome Diff (GD) files for all samples were 496 

combined using the gdtools utility program to generate a single merged GD file with each piece 497 

of evidence listed a single time, regardless of how many times it was detected in different 498 

samples. We then re-ran breseq using the same parameters except that this GD file was supplied 499 

as an input user-evidence file to force output of variant and reference information for these 500 

putative variants in every sample. Then, we extracted the number of variant reads supporting 501 

each putative variant allele and the total number of reads at that reference location from the GD 502 

file output by breseq and performed subsequent statistical tests and fitting steps in R (version 503 

3.2.2) [74]. Scripts and data files for this analysis are available in GitHub 504 

(https://github.com/barricklab/adaptome-capture). 505 

 Since this original analysis was conducted at the level of breseq evidence (i.e., single 506 

columns of read pileups on the reference genome or instances of new sequence junctions), we 507 

next merged sets of observations that were consistent with a single mutational event when they 508 
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also had frequency trajectories that tracked together. To identify these candidates for merging, 509 

we analyzed each of the six window (generation 133 to 213) and four complete (generation 0 to 510 

500) time courses separately. We only considered mutations that exceeded a threshold frequency 511 

of 0.03% at some time during each time course as candidates for merging. Read alignment (RA) 512 

evidence items were merged when they were located within 6 base pairs of one another and 513 

within a normalized Canberra distance of 0.1 between the vectors of their frequency observations 514 

across all of the time points in a dataset. All RA evidence pairs of this kind were found to co-515 

occur in the same sequencing reads. For these cases, the read counts for the first linked mutation 516 

were used to represent the entire event. For example, if a deletion of three base pairs was 517 

predicted by missing bases at positions x, y, and z; then the frequency of missing the first base 518 

(x) was assigned to the entire three-base deletion mutation. For new junction (JC) evidence we 519 

performed the same merging procedure but allowed linked mutations to be within a larger 520 

window of 20 base pairs and within a normalized Canberra distance of 0.5. JC pairs passing 521 

these criteria were only merged if they were also consistent with an IS-element insertion in terms 522 

of their relative orientation and spacing. In this case the variant and total read counts were added 523 

together for the two different junctions, as the junctions on each side of the inserted IS element 524 

provide independent information for estimating the frequency of this type of mutation. 525 

 526 

Time course filtering and selection coefficient estimation 527 

After merging evidence of genetic variants into lists of putative mutations, we further eliminated 528 

putative evolved alleles from consideration using several filtering steps. For the complete time 529 

courses, we first required that non-zero frequencies be observed for a mutation in samples from 530 

at least two different time points. We next applied a filter to eliminate spurious variants that can 531 
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be recognized as arising from systematic sequencing or alignment errors because they do not 532 

exhibit the correlated changes in frequency over time expected for the frequency trajectories of 533 

real mutations [1]. Specifically, we required that the time-series of estimated frequencies for a 534 

mutation over all analyzed time points have an autocorrelation value ≥ 0.55. 535 

 For the window time courses, we further required that the estimated frequency of a putative 536 

mutation be ≥ 10–4 at each of the last three time points that were sequenced (generations 193, 537 

206, and 213). Then, we fit a binomial logistic model with slope and x-intercept terms to the time 538 

courses of counts of variant and reference (total minus variant) observations for each mutation. 539 

We filtered out any mutations for which this fit had an AIC < 200, Bonferroni-corrected p-value 540 

for the slope differing from zero of > 0.05, or an x-intercept < –15. The slope fit from the 541 

frequency trajectory of each mutation is an estimate of the selection coefficient of each mutation, 542 

assuming the trajectories reflect competition purely against the ancestral strain. However, in the 543 

latter half of the window time courses we detected a significant deviation from linearity for all 544 

mutation trajectories, indicating that the overall population fitness had increased to a degree that 545 

it decreased the rate at which all newly evolved genotypes with beneficial mutations increased in 546 

frequency. The figures show the best models for a stepwise increase in population fitness 547 

between the sequenced time points that improved the fits for all mutations in each population 548 

considered separately. Because there was significant uncertainty in these estimates and the 549 

fitness trajectories are expected to be highly similar between different populations, we used a 550 

consensus model with one step-wise increase in fitness over time that best improved the fits for 551 

all mutations from all populations to correct the estimated selection coefficients for this effect.  552 

 553 

Mutation statistics and plots 554 
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One nadR mutation from population A2 was a noticeable outlier in terms of its large apparent 555 

fitness benefit of 9.2%. Given that the next-highest observed selection coefficient for a mutation 556 

was 8.0%, it is likely that the lineage with this nadR mutation also sustained a secondary 557 

beneficial mutation early enough that they rose to detectable frequencies together. Therefore, we 558 

removed this mutation before analyzing or graphing the characteristics of the set of likely single-559 

step mutations. Graphs were generated in R using the ggplot2 package [75]. 560 

 561 

Protein structure analysis 562 

Structural domains in NadR, PykF, and TopA were defined according to UniProt and papers 563 

reporting x-ray crystal structures. Mutations in PykF were mapped onto Protein Data Bank 564 

structure 4YNG [41]. Mutations in TopA were mapped onto Protein Data Bank structure 1MW8 565 

[47]. Protein structures were visualized using Pymol v2.3.5 (Schrödinger LLC). 566 
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