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Abstract

Tissue geometry is an important influence on the evolution of many biological tissues. The local curvature of an
evolving tissue induces tissue crowding or spreading, which leads to differential tissue growth rates, and to changes
in cellular tension, which can influence cell behaviour. Here, we investigate how directed cell motion interacts with
curvature control in evolving biological tissues. Directed cell motion is involved in the generation of angled tissue
growth and anisotropic tissue material properties, such as tissue fibre orientation. We develop a new cell-based
mathematical model of tissue growth that includes both curvature control and cell guidance mechanisms to investigate
their interplay. The model is based on conservation principles applied to the density of tissue synthesising cells at or
near the tissue’s moving boundary. The resulting mathematical model is a partial differential equation for cell density
on a moving boundary, which is solved numerically using a hybrid front-tracking method called the cell-based particle
method. The inclusion of directed cell motion allows us to model new types of biological growth, where tangential
cell motion is important for the evolution of the interface, or for the generation of anisotropic tissue properties. We
illustrate such situations by applying the model to simulate both the resorption and infilling components of the bone
remodelling process, and provide user-friendly MATLAB code to implement the algorithms.
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1. Introduction

Understanding the mechanisms controlling the gen-
eration of biological tissue is an important challenge
in biomechanics and mechanobiology (Ambrosi et al.,
2019) with key applications in tissue engineering and
developmental biology (O’Brien, 2011, Dzobo et al.,
2018). Tissue geometry influences the generation of
new tissue, particularly the rate of tissue growth and the
organisation of tissue material (Curtis and Varde, 1964,
Dunn and Heath, 1976, Kollmannsberger et al., 2011).
Several tissue growth experiments show that the rate of
tissue progression is strongly dependent on tissue curva-
ture. These findings apply to bioscaffold pore infilling
(Bidan et al., 2013, 2016, Guyot et al., 2014, Ripamonti
and Roden, 2010), wound healing (Poujade et al., 2007,
Rolli et al., 2012), tumour growth (Lowengrub et al.,
2010), and bone remodelling (Martin, 2000, Alias and
Buenzli, 2018). This proportionality of growth rate and
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curvature may be caused by the crowding and spread-
ing of cells and tissue material due to spatial constraints,
and curvature-dependent tissue surface tension influenc-
ing cell proliferation rates (Nelson et al., 2005, Rum-
pler et al., 2008, Haeger et al., 2015, Alias and Buenzli,
2017, Buenzli et al., 2020).

In addition to the collective influence of curvature
on tissue progression, other factors such as mechan-
ical or chemical cues in the environment as well as
cell-scale geometrical features can induce individual
cell responses including directed cell migration. Me-
chanical cues include viscoelasticity (Chaudhuri et al.,
2016), surface stiffness (Pelham and Wang, 1997, Lo
et al., 2000, Discher et al., 2005, Engler et al., 2006),
or surface mechanical stretch (Trepat et al., 2007,
Livne et al., 2014). Chemical cues include signalling
molecules inducing attractive or repulsive chemical gra-
dients (Haeger et al., 2015), and cell-scale geometrical
cues include geometrical guidance such as curvotaxis
(Callens et al., 2020) and surface roughness gradients
(Martin et al., 1995, Deligianni et al., 2001). While
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the collective influence of curvature on tissue growth
and the effects of environmental cues on cell guidance
mechanisms are well studied in isolation, how these pro-
cesses interact during the generation of new biological
tissue remains poorly understood.

In this work we develop a new mathematical model
which explicitly includes both the collective influence
of curvature and directed cell guidance mechanisms.
The addition of directed cell guidance allows us to
model new types of biological growth, which cannot be
generated by existing mathematical models where the
tissue interface progresses in the normal direction only
(Bidan et al., 2013, Guyot et al., 2014, Alias and Buen-
zli, 2017, Callens et al., 2020).

Indeed, the growth of several tissues involves directed
cell motion where cells move tangentially along the tis-
sue surface (Figure 1). For example, shells, horns, and
tusks with a spiralling structure are generated by tis-
sue being secreted at an angle to the base membrane
(Figure 1a) (Skalak et al., 1982, 1997). Tangential cell
velocity may also be responsible for the generation of
anisotropies in tissue material properties by aligning tis-
sue fibrils with respect to the cells motion (Figure 2).
In lamellar bone, the so-called twisted plywood struc-
ture of collagen fibrils may be due to the osteoblasts
(bone secreting cells) changing direction of motion dur-
ing bone infilling (Martin et al., 2004) (Figure 1c). Fi-
nally, tangential cell motion is suspected to occur in
bone resorption to keep osteoclasts at the front of the
resorption cone (Figure 1c).

Mathematically, the evolution of smooth interfaces
can be described by the normal velocity of the inter-
face only (Sethian, 1999). However, biological tissue
interfaces may develop cusps and sharp edges (Skalak
et al., 1997, Alias and Buenzli, 2017, Goriely, 2017).
When these move at an angle to their base, one is re-
quired to consider a more general tissue interface ve-
locity that includes a tangential component to avoid the
emergence of singularities in the governing equation for
tissue growth velocity (Skalak et al., 1997).

Many existing models of geometric control of tis-
sue growth consider the geometry of the tissue substrate
only, so that cell guidance mechanisms and cell crowd-
ing effects are not modelled explicitly (Skalak et al.,
1982, 1997, Rumpler et al., 2008, Bidan et al., 2012,
2013, Gamsjager, 2013, Guyot et al., 2014, Goriely,
2017, Ehrig et al., 2019). Here, we consider the cell-
based mathematical model of Alias and Buenzli (2017),
which explicitly accounts for curvature-induced cell
crowding and spreading, and we generalise this model
to allow for tangential cell motion. We derive the
model from general conservation properties imposed

on cells, which allows us to explicitly include cell be-
haviours. To our knowledge, no mathematical model
currently includes both the effect of curvature on col-
lective cell crowding and spreading and tangential cell
motion mechanisms.

The model of Alias and Buenzli (2017) is also ex-
tended to three dimensions and the governing equations
are derived in covariant form. The model derived is
a partial differential equation (PDE) for the density of
cells to be solved on a moving boundary, which repre-
sents the evolving tissue surface. This problem is nu-
merically solved to explore several situations in which
tangential cell guidance mechanisms are added. We
demonstrate that with the addition of tangential cell ad-
vection, new biologically relevant tissue growth phe-
nomena can be modelled, such as bone resorption and
the generation of different fibre orientations in lamellar
bone.

2. Description of the model

Tissue growth usually occurs by cells synthesising
new tissue close to the tissue’s interface. To determine
general evolution equations for the density of tissue-
synthesising cells subject to normal and tangential mo-
tion, we consider the case where the tissue-synthesising
cells are attached to the tissue interface and described
by a surface density, ρ (number of cells per unit sur-
face). The motion of the interface transports the cells in
space and the cells may additionally move laterally with
respect to the material points of the surface. The motion
of the interface is considered to be due to new tissue
being synthesised in the wake of these surface-bound
cells (Figure 2). This situation occurs for example in
wound healing, bone remodelling, bioscaffold pore in-
filling, and tumour growth (Guyot et al., 2014, Bidan et
al., 2013, Lowengrub et al., 2010, Poujade et al., 2007,
Rumpler et al., 2008) where tissue-synthesing cells are
located at or near the tissue interface. The normal veloc-
ity of the tissue interface, unn where n is the outward-
facing unit surface normal, is given by

un = kρ, (1)

where k is the tissue-synthesising cells’ secretory rate
(volume of new tissue synthesised per unit time per cell)
(Buenzli, 2015). Tissue resorption can also be mod-
elled by assuming k to be negative. During the evolu-
tion of the tissue, the interface may stretch locally de-
pending on its curvature (Figure 2a), and this will in-
duce changes in cell density. Convex areas of the tissue
substrate result in cells spreading whereas concave areas
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Figure 1: Tangential cell movement in tissue growth. (a) Shells grow by secretion of new tissue at their base (mantle) at an angle to create spiralling
structures (reproduced with permissions from Goriely (2017)). (b) In lamellar bone, successive tissue layers possess different collagen fibril
orientations which suggest changes in the tangential motion of osteoblasts during bone formation (reproduced with permissions from Pazzaglia et
al. (2012) and Schrof et al. (2014)). (c) Resorption cavities during bone resorption maintain a stable resorption front shape at the tip. Since the
dissolution process of bone by osteoclasts is expected to occur in the normal direction, this suggests osteoclasts are subject to cell guidance signals
toward the cavity centerline. An example of the serial section of a cutting cone, immunostained (black) for an osteoclastic marker, obtained from
Lassen et al. (2017) and schematic of an evolving Haversian system, after Jaworski and Hooper (1980).

of the tissue substrate result in cells crowding. In addi-
tion, cell guidance mechanisms superimpose lateral cell
motion with respect to the tissue interface. Directional
tissue growth may therefore result from a combination
of interface motion and lateral cell motion (Figures 2b
and 3).

The tissue interface is denoted by S (t) and ρ(rS , t) de-
notes the surface density of the tissue-synthesising cells,
at position rS on S (t). We formally define ρ(rs, t) by
considering an infinitesimal element of surface δS at
position rs of S (t), and the number of cells living on
this area, δN. It is important to choose δS small enough
to capture heterogeneous densities but large enough to
contain a sufficient number of cells to define a continu-

ous surface density of cells, such that

ρ =
δN
δS

. (2)

We now derive a conservation law for the surface den-
sity of cells living on the evolving surface as the tissue
evolves. To do so, we consider the material derivative
of ρ following the material trajectories, rS (t), of the sur-
face S (t), defined as(

∂ρ

∂t

)
m

=
d
dt
ρ (rS (t), t) .

The material derivative obeys standard rules of differen-
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Figure 2: Schematic illustrating the crowding and spreading effect
of curvature and the influence of tangential motion for tissue mate-
rial properties; (a) shows only movement in the normal direction and
the resulting changes in density; (b) includes both curvature control
and cell guidance, meaning the cells crowd and spread and also un-
dergo directed motion, creating anisotropies in tissue material proper-
ties (thin orange lines).

tiation, so that differentiating Equation (2) gives(
∂ρ

∂t

)
m

=
1
δS

(
∂δN
∂t

)
m
−

ρ

δS

(
∂δS
∂t

)
m
. (3)

The first term on the right hand side of Equation (3)
corresponds to changes in density induced by changes
in the number of cells residing in δS . The second
term on the right hand side of Equation (3) describes
changes in cell density due to local changes in the area
of the portion of interface δS during its evolution. In
the first term, the number of cells may change due to
proliferation, death, or net transport from the surround-
ing portions of the surface. The change in cell number
due to proliferation and elimination can be expressed
by (P − A)δN(t) where P is the per capita proliferation
rate, and A is the per capita cell elimination rate. The
cell elimination rate may model cell death (apoptosis),
detachment from the surface (for example anoikis), or
embedment into the tissue. To describe the influence of
tangential motion of the cells on cell density changes
at position rs, we introduce the tangential flux of cells,
J(rS , t). This cell flux is measured with respect to ma-
terial points of the surface, which are themselves trans-
ported in space. It represents the number of cells cross-
ing the boundary C of δS per unit length per unit time
(Figure 3a). The total number of cells leaving and enter-
ing δS is thus calculated by the line integral of the flux
of cells along C, where C is the curve surrounding δS ,
with unit normal given by t̂ (Figure 3a). Therefore, the

total rate of change of cell number in δS is(
∂δN
∂t

)
m

= −

∮
C

J · t̂ dl + (P − A)δN(t). (4)

Since δS is a small element of surface, the line integral
in Equation (4) can be written in terms of the surface
divergence of J, which can be formally defined as

∇S · J =
1
δS

∮
C

J · t̂ dl, as δS → 0 (5)

(Arnoldus, 2006). Thus, in the limit of an infinitesi-
mally small area of the interface δS , the change in den-
sity due to the change in number of cells in δS in Equa-
tion (3) is given by

1
δS

(
∂δN
∂t

)
m

= −∇S · J + (P − A)ρ. (6)

Equation (6) represents the fact that the surface diver-
gence of the flux on a curved manifold is related to lo-
cal changes in surface density (Arnoldus, 2006), much
like, in the Euclidean space, the divergence of the flux
is related to local changes in volumetric density.

To evaluate the second term of on the right hand
side of Equation (3), we examine the rate at which δS
changes following the material trajectories of S (t). This
depends on the local mean curvature,

κ = ∇S · n, (7)

and is given by(
∂(δS )
∂t

)
m

= δS (unκ + ∇S · uS ) . (8)

where uS is the tangential component of the surface ve-
locity and u (Figure 3). Equation (8) is derived using
the equation for the change of a material area element
over time from Batchelor (1976), see Appendix A for
details. In our notation, κ is defined such that κ < 0
indicates concavity and κ > 0 indicates convexity.

Substituting Equations (6) and (8) into Equation (3),
we find that the evolution of the surface density of cells
following material trajectories of the interface is gov-
erned by(

∂ρ

∂t

)
m

= −∇S · J − ρunκ − ρ∇S · uS + (P − A)ρ. (9)

If cell migration includes advection and diffusion, the
tangential flux of cells can be written as

J = ρvS − D∇S ρ, (10)
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Figure 3: (a) Schematic of two dimensional surface portion being considered. The curve C surrounding δS is illustrated as well as its outward
facing normal t̂. (b) One dimensional schematic of portion of interface being examined. The normal and tangential components of the surface
velocity are annotated in blue and green respectively. Illustrative cells are included in orange, with the tangential flux of cells into δS annotated in
orange. The grey arrows indicate the material trajectories of the surface. Cell trajectories and normal trajectories are also annotated.

where vS is the tangential velocity of the cells with re-
spect to the surface and −D∇S ρ corresponds to lateral
diffusive flux along the curved interface where ∇S is the
surface gradient of ρ, that is the derivative of ρ on the
manifold S (t) (Pressley, 2010). In this case, the evo-
lution of the surface density of cells, Equation (9) be-
comes(

∂ρ

∂t

)
m

= D∇2
S ρ − ∇S · (ρvS ) − ρ∇S · uS

− ρunκ + (P − A)ρ.
(11)

It is possible to determine the rate of change of cell
density following other trajectories than the material
points of the interface. The evolution equation for cell
density takes a particularly convenient form when ex-
pressed following trajectories normal to the interface at
each time (Figure 3). We can relate the derivatives of ρ
along the normal and material trajectories by(

∂ρ

∂t

)
n

=

(
∂ρ

∂t

)
m
− us · ∇S ρ (12)

where (∂/∂t)n represents the time derivative along the
normal trajectories, that is trajectories perpendicular to
the surface at all times (Wong et al., 1996). Substituting
Equation (11) into Equation (12) gives(

∂ρ

∂t

)
n

= D∇2
S ρ − ∇S · (ρ(vS + uS ))

− ρunκ + (P − A)ρ.
(13)

The first term on the right hand side of Equation (13)
is the Laplace-Beltrami operator applied to the surface

density of cells and describes the tangential diffusion of
cells along the curved tissue surface (Berger, 2002). The
second term describes the influence of tangential veloc-
ities of the cells vS and of the tissue surface uS , respec-
tively. The fourth term encapsulates the collective cell
crowding or spreading effect of curvature, and the last
term describes the gain or loss of cells from the group
of tissue-synthesising cells. Equations (11) and (13) are
general conservation equations for cells moving by ad-
vection and diffusion with respect to a surface which is
itself moving and deforming. In Appendix B, we show
that these equations are a generalisation of similar con-
servation equations of surface-bound quantities derived
in the literature without tangential advection.

The tangential velocities of both the surface and the
cells in Equation (13) can be chosen to describe mul-
tiple biological tissue evolution scenarios. The tangen-
tial velocity vS can represent for example epithelial cells
moving with respect to a basal membrane which may it-
self be transported in space with velocity u. Biological
situations where cells are not physically transported by
a moving tissue interface may be modelled by assum-
ing that there is no tangential movement of the interface
(uS = 0) while cells may still have tangential velocity
(vS , 0). This can occur in the case of bone resorp-
tion for example, where material points of the bone in-
terface do not move laterally but osteoclasts living on
the interface may (Lassen et al., 2017). It is important
to note that although the velocity of the tissue surface
and the cells may not be distinguishable for modelling
the evolution of the tissue interface and changes in cell
density, the distinction between these velocities can be
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important for modelling the tissue material properties
produced (Figure 2b, Buenzli (2016)), as we will illus-
trate in our application of the model to bone formation.

In our applications, for simplicity in the numerical so-
lution, we will look at two dimensional problems where
the interface is described by a one-dimensional tissue
interface, that is, a curve in two-dimensional space. In
these situations, Equation (13), can be written as(

∂ρ

∂t

)
n

= D
∂2

∂l2
ρ − ρunκ −

∂

∂l
(ρ(vS + uS )) . (14)

where ∂/∂l is the derivative with respect to the arc
length of the surface, which is the one dimensional
equivalent of the surface divergence and surface gra-
dient (Redžić, 2001). In the applications presented in
Section 3, we solve the coupled equations (1) and (14),
where the tangential cell velocity is given various forms
and the ensuing behaviour is analysed.

2.1. Numerical method
Solving Equations (1) and (14) requires solving a

PDE on a moving boundary where the boundary mo-
tion is coupled with the PDE solution. To achieve this,
we use an efficient hybrid computational method, the
cell-based particle method (CBPM), developed in Le-
ung and Zhao (2009), Leung et al. (2011) and Hon et
al. (2014). In this method, the interface is represented
by Lagrangian marker particles which are each associ-
ated with a grid cell of an underlying Eulerian grid with
grid cell length ∆x. The grid is used to redistribute
the particles along the moving interface to maintain
quasi-uniform sampling. Furthermore, scalar quanti-
ties, such as cell density, can be associated directly with
the marker particles (Leung and Zhao, 2009). This is
an advantage over level-set like methods, which require
additional scalar fields similar to the level-set function
to represent surface-bound quantities (Alias and Buen-
zli, 2019). The interface is evolved over discretised
timesteps ∆t by advecting the marker particles accord-
ing to a velocity field. Local quadratic least squares in-
terpolation of the interface and of the surface density of
cells is then used to estimate the interface curvature and
to evaluate spatial derivatives. The reader is referred to
the Supplementary Information, Hon et al. (2014), Le-
ung and Zhao (2009), Leung et al. (2011), and Hegarty-
Cremer (2020) for more details.

3. Results

We now apply our mathematical model to cases of
tissue growth where the inclusion of tangential cell ad-
vection allows us to model new biologically relevant

situations. First, we validate the numerical method by
solving simplified equations which test the two migra-
tion mechanisms of Equation (14), that is tangential cell
advection and diffusion, as well as the crowding and
spreading effect of curvature. These solutions are com-
pared with analytic solutions. Then we model bone pore
infilling and explore the generation of different orienta-
tions of collagen fibrils in infilled osteons, as illustrated
in Figure 1b. Finally, we model bone resorption, where
osteoclasts tunnel through old bone tissue and investi-
gate the influence of tangential cell velocity for the sta-
bility of travelling-wave-like resorption fronts observed
during the resorption of cortical bone.

3.1. Validation of the numerical method

To validate our implementation of the CBPM for
solving Equation (14), we compare numerical simula-
tions to analytical solutions in a simple setting where
density is decoupled from the normal speed of the inter-
face, that is we replace Equation (1) with un = c, where
c is a constant. We also set D = 0 and choose a circular
initial interface with initial radius R0. In this case, the
interface remains a circle at all times and it expands in
the normal direction with radius R(t). We parameterise
the circle using the arc length l and solve for ρ on the
domain −π < l < π. The governing equations become

dR
dt

= c (15)

∂ρ

∂t
+ vS

∂ρ

∂l
=
∂vS

∂l
ρ − ρcκ. (16)

We assume an arbitrary initial cell density distribution
ρ(l, 0) = ρ0(l) and an initial radius R(0) = R0, and im-
pose periodic boundary conditions ρ(−π, t) = ρ(π, t).
The solution for R(t) is

R(t) = ct + R0, (17)

so that κ(t) = 1/(ct + R0). To test the advection term
in Equation (14), we assume that cells are subject to the
tangential cell velocity field vS = −al where a is con-
stant. The governing equation for ρ becomes a quasilin-
ear advection equation, which can be solved using the
method of characteristics (Evans, 2010), giving

ρ(l, t) =
ρ0(leat)R0eat

ct + R0
. (18)

We test numerically both dilution of cells without ad-
vection, a = 0, and dilution of cells with advection,
a , 0. Figure 4 compares this analytical solution to the
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Figure 4: Expanding circle with un = 0.035 and with or without tangential velocity: comparison between CBPM simulations and exact solutions.
(a) and (b) Solution obtained using CBPM with vS = 0 and vS = 0.1l, respectively, with interface shown at regular time intervals (∆T = 1). (c) and
(d) Exact and CBPM solution density representation over arc length parameter at t = 10 with vS = 0 and vS = 0.1l, respectively. The discretisation
used is ∆x = 0.01 and ∆t = 0.01.

numerical solution obtained using the CBPM. In Fig-
ure 4, the initial condition for density is piecewise con-
stant such that ρ = 0.5 when π/8 < |l| < 3π/8 and ρ = 0
elsewhere. There is excellent alignment between the an-
alytic solution in Equation (18) and the one obtained
by the CBPM both with and without tangential veloc-
ity. The small discrepancies are due to some degree
of smoothing of the numerical solution, which origi-
nates from the local interpolation step of the CBPM. As
expected, if the numerical discretisation is refined, the
match improves (data not shown).

To validate our implementation of the CBPM for
problems that include diffusive transport, we solve
the diffusion equation on a stationary circle using the
CBPM. With a sinusoidal initial condition ρ0(l) = 0.5 +

0.5 sin(l) and periodic boundary conditions the analytic
solution is given by

ρ(l, t) = 0.5 + 0.5 sin(l)e−4Dt. (19)

The results of the CBPM are compared with this solu-
tion at different times in Figure 5. Again, there is an
excellent agreement between the solutions.

3.2. Circular bone pore infilling

We now consider the case of a circular bone pore be-
ing infilled by a population of osteoblasts distributed
uniformly along the pore’s perimeter. This can be
thought of as the infilling of a cortical bone osteon seen
in a transverse cross section. New bone tissue is grad-
ually produced such that the initial interface is moving
inwards while retaining a circular shape. As infilling
proceeds, the density increases as a result of the sys-
tematic effect of curvature (Buenzli, 2014, 2016). We
examine three cases of tangential cell velocity: no tan-
gential velocity, constant tangential cell velocity, and
time-dependent tangential cell velocity such that cells
reverse their motion with respect to the interface at spe-
cific times (Figure 6). By rotation symmetry, in these
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Figure 5: Analytic (solid line) and CBPM (points) solutions for diffu-
sion around a stationary circle. The discretisation used is ∆x = 0.01
and ∆t = 0.01.

simulations, the density remains uniform at all times,
but it is time dependent due to the shrinkage of the bone
surface area as infilling proceeds.

The evolution of density and interface position is the
same across the three cases (Figures 6a–c). However,
the cell trajectories in space are distinct, and this cre-
ates different tissue material properties (Figures 6d–f).
To visualise cell trajectories in Figures 6d–f, cells are
stained either in blue or in yellow. This is achieved in
the CBPM by assigning a new scalar property to each
marker particle, which is simply advected along the cell
trajectories. In Figure 6d, cells have no tangential mo-
tion hence their trajectories are moving along straight
radial lines. However, in Figures 6e and 6f, the cells
move tangentially to the surface, thus their trajectories
spiral inwards. The results in Figure 6f illustrate how
one may explain a change in anisotropic tissue material
properties. As collagen fibrils secreted by osteoblasts
may be weaved according to the directionality induced
by cell migration, the change in cell trajectory orienta-
tion could be used to describe the change in collagen fi-
bre orientation in lamellar bone and the consequent ply-
wood structure (as illustrated in Figure 1b).

3.3. Bone resorption in basic multicellular units

We now examine the resorption phase of a bone re-
modelling event as another example where the tangen-
tial velocity of cells may be important for the evolution
of the tissue interface. In bone resorption, bone tissue
is removed by osteoclasts attached to the bone surface.
The resorption of bone matrix by osteoclasts creates a

cavity which maintains consistent cellular organisation
and shape at the resorption front (Figure 1c) (Jaworski
and Hooper, 1980, Ryser et al., 2009, Buenzli, 2010,
2011, 2014, Buenzli et al., 2012, Lassen et al., 2017).
We apply our tissue growth model to this situation to
show that to maintain this stable travelling resorption
front, directed tangential osteoclast motion is required
(Figure 1c).

Recent works have suggested that osteoclasts at the
front of basic multicellular units may remain at this po-
sition for a long period of time (Lassen et al., 2017),
unlike previous suggestions that osteoclasts move down
the cavity walls (Burger et al., 2003, Buenzli et al.,
2012). We show here, based on simple numerical simu-
lations, that a stable resorption front requires cell guid-
ance mechanisms to steer osteoclasts back toward the
tip of the cavity (Figure 1c). Without such directed
motion, the cavity rapidly expands out and osteoclasts
move away from each other (Figure 7a). Figures 7b
and 7c show numerical simulations where two differ-
ent types of signals are used to steer osteoclasts back
toward the tip of the cavity. The first signal modelled
can be thought of as haptotaxis, which is a cell guidance
mechanism in response to adhesion gradient on the sub-
strate generated by cell binding to substrate molecules
(Davies, 2013). The second is chemotaxis, which de-
scribes cell guidance through a chemical gradient (Mur-
ray, 2002).

Osteoclasts work in close contact with other cells lin-
ing the cavity walls, called reversal cells, which may
provide haptotactic signals such as receptor activator of
nuclear factor kappa-B ligand (RANKL) (Martin et al.,
2004, Lassen et al., 2017). Here we assume the hap-
totactic signal induces a tangential velocity to the os-
teoclasts, vs = a l, where l is the arc length measured
along the cavity wall from the tip and a is a positive
constant. This is similar to Section 3.2 where l > 0 on
the upper part of the cavity and l < 0 on the lower part
of the cavity. Using this form of tangential cell veloc-
ity, it can be seen from Figure 7b, that a stable resorp-
tion front is formed. Between t = 0 and approximately
t = 3 days, there is a transient period, where the shape
of the resorption front evolves until a balance between
the advection-induced crowding and curvature-induced
spreading of the osteoclasts is achieved. After this tran-
sient, the cell density profile and the cavity front shape
is maintained as it progresses through the bone tissue.

Alternatively, we model chemotaxis by projecting a
velocity gradient field, such as one created by a gra-
dient of chemical concentration −b∇C, onto the cavity
surface and taking this projection as the tangential ve-
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Figure 6: Circular pore infilling results with cell secretion rate k = 7.8125e−06 mm/day and with varying tangential cell velocity. In each figure the
initial interface is the outermost ring and the interface is shown at regular time intervals (∆T = 3 days). The top figures show density and interface
position while the bottom figures show cell trajectory tracking and interface position with a single cell trajectory annotated in orange. (a) Infilling
circle without tangential velocity. (b) Infilling circle with tangential velocity vs = 0.0025 mm/day. (c) Infilling circle with tangential velocity
vs = 0.0025 mm/day when t < 12.5 days and vs = −0.0025 mm/day when t ≥ 12.5 days. The location of the change of direction is emphasised in
a red dashed circle. The discretisation used is ∆x = 0.001 mm, ∆t = 0.075 days.

locity,
vS = −b∇C · τ. (20)

Indeed, active osteoclasts remain bound to the in-
terface, therefore they can only explore the tangen-
tial component of the chemical gradient field. This
gradient could be due to signalling molecules de-
rived from mechanically-stimulated osteocytes embed-
ded in bone matrix, that steer osteoclasts toward spe-
cific areas of bone needing repair (Turner et al., 1994,
Marotti, 2000, Ryser et al., 2009, Lerebours and Buen-
zli, 2016), such as high mobility group box protein 1
(HMGB1) (Yang et al., 2008) and colony-stimulating
factor 1 (CSF-1) (Harris et al., 2012), or it may be due
to other chemotactic molecules from the bone microen-
vironment, such as monocyte chemoattractant protein-1
(MCP-1/CCL2) (Wu et al., 2013), and the chemorepuls-
ing sphingosine-1-phosphate (S1P) (Ishii et al., 2010).
For the results presented here, we simply take −b∇C =

[0,−2.5 sgn(y)y2], which is a velocity field in the y di-
rection with streamlines pointing towards the centerline

of the cavity. Figure 7c shows that, similarly to the hap-
totaxis results, stable resorption front behaviour is ob-
tained after an adjustment period between t = 0 and
t = 3 days.

Both forms of cell guidance signal result in stable
resorption fronts, but they lead to different resorption
cavity shapes, indicating that the type of signal is also
important for the resorption front. The chemotactic sig-
nal results in a wider distribution of osteoclasts around
the resorption front compared to the haptotactic signal,
which results in a high concentration of cells on a nar-
row portion of the interface. Due to coupling, these dif-
ferences in cell densities are reflected in the shape of
the resorption fronts. However, the speed of these re-
sorption fronts is comparable, with the haptotactic sig-
nal canal reaching x ≈ 0.345 mm at t = 12 days and
the chemotactic signal canal reaching x ≈ 0.34 mm at
t = 12 days. These speeds align well with expected
speeds of resorption cavities (30-40µm/day) (Jaworski
et al., 1981, Lassen et al., 2017).
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Figure 7: Bone resorption results with different forms of tangential cell advection. The time is shown in days and the spatial unit is mm. The
resorption rate is 0.025 mm/day (k = −0.025). (a) Resorption front behaviour with no tangential velocity pulling cells. (b) Haptotactic signal:
arc length dependent tangential velocity. The proportionality constant between the arc length distance and the tangential velocity is a = 0.6.
(c) Chemotactic signal: tangential velocity determined by the projection of an external gradient field on the interface. The discretisation used is
∆x = 0.00375, ∆t = 0.02.

4. Conclusion

Tangential cell motion generated by cell guidance
mechanisms is important in several situations of tis-
sue growth, such as growth occurring at an angle with
respect to the tissue surface, and the generation of
anisotropic tissue properties. We have developed a new
mathematical model for tissue growth under collective
curvature control to incorporate such directed cell guid-
ance mechanisms by including tangential cell motion.
The model is derived from conservation principles ap-
plied to the surface density of tissue-synthesising cells.
This derivation results in a PDE for cell density on a

moving boundary, which is coupled with the bound-
ary motion. The governing equations are expressed
in covariant form, that is, they are independent of a
choice of surface parameterisation and coordinate sys-
tem. We solve the model numerically using a hybrid
front-tracking computational method, the CBPM, and
find good agreement with analytic solutions.

Experimentally, the interaction between curvature
control of tissue growth and directed cell motion is dif-
ficult to investigate, due to the challenge of controlling
evolving tissue geometries. Crowding and spreading ef-
fects on rates of tissue progression are a consequence
of space constraints that may be masked by cell be-

10

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.10.197020doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197020


havioural influences in experiments. The development
of mathematical models that account for such collec-
tive effects can help disentangle geometric and cell be-
havioural influences of tissue growth (Cai et al., 2007,
Alias and Buenzli, 2018, Buenzli et al., 2020). The ex-
ample of bone tissue resorption developed in this pa-
per (Figure 7) illustrates the importance of taking into
consideration both the mechanistic influence of curva-
ture on osteoclast density, and the tangential motion of
osteoclasts with respect to the bone interface. Without
accounting for the mechanistic influence of curvature,
the presence of a driving force steering osteoclasts to-
ward the centerline of the resorption cavity would not be
highlighted. Without tangential motion of osteoclasts at
the tip of bone resorption cavities, our results suggest
that stable cavity shapes are not possible.

Our mathematical model describes the joint evolu-
tion of the tissue interface and tissue-synthesising cell
density. The example of bone pore infilling in Fig-
ure 6 illustrates that directed motion of cells can gen-
erate anisotropies in tissue material properties. While
we did not model tissue generation explicitly, our model
may be coupled with more detailed tissue generation
mechanisms that include creation and destruction of tis-
sue material at moving interfaces, as well as tissue mat-
uration mechanisms, based on bulk and surface mass
balance (Cumming et al., 2010, Buenzli, 2015, 2016).
Our model thus provides a basis for further explorations
into the relationship between the spatial organisation of
anisotropic tissue material properties, and the dynam-
ics of their creation. Biological experimental data often
takes the form of tissue samples or biopsies represent-
ing single snapshots in time of the state of the tissue.
This type of data contains detailed spatial information
about the organisation of a tissue, but it does not of-
fer a detailed picture of its time evolution. The provi-
sion of mathematical links between features recorded
in the state of a tissue and the dynamics of its forma-
tion may allow us to deduce how a tissue has been pro-
duced given an analysis of its material properties. In
bone tissues, for example, several features of bone for-
mation are recorded, such as osteocyte density (Buenzli,
2015), mineral density (Buenzli, 2016, Lerebours et al.,
2020), and tetracycline labels and lamellae, which pro-
vide information about past location of the bone inter-
face (Martin et al., 2004, Buenzli, 2014, Andreasen et
al., 2018). This type of information is used in bioarche-
ology to estimate archaeological age and activity (Buck-
berry and Chamberlain, 2002, Maggiano et al., 2008,
Mays, 2010). An analysis of lamellae patterns in bone
cross sections could provide more information about os-
teoblast behaviour, and provide more insights in cases

of irregular bone formation patterns such as drifting os-
teons (Robling and Stout, 1999, Maggiano, 2012) and
bone disorders.

Discretising PDEs on moving boundaries is a chal-
lenging problem of applied mathematics. In this pa-
per, we restricted our model to two dimensional applica-
tions for simplicity. Clearly, applications of our model
to three-dimensional tissue growth are of interest (Fig-
ure 1) (Guyot et al., 2014, Goriely, 2017, Ambrosi et
al., 2019, Ehrig et al., 2019). Sophisticated techniques
have been developed to simulate the evolution of inter-
faces in three-dimensional complex systems (Sethian,
1999, Tryggvason et al., 2001, Glimm et al., 2001, Shin
and Juric, 2002, Osher and Fedkiw, 2003, Du et al.,
2006, Leung and Zhao, 2009, Hon et al., 2014). While
the level-let-like method developed in (Alias and Buen-
zli, 2019) for curvature-controlled tissue growth may be
suitably adapted to include tangential cell velocity, the
CBPM of Hon et al. (2014) used in this work is also
applicable to three-dimensional interfaces.
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Appendix A. Evolution of local surface area

We start with the equation for the rate of change of
a vector area element (δS = nδS ) of a material surface
from Batchelor (1976),(

∂(δS)
∂t

)
m

= δS(∇ · u) − (∇u)δS, (A.1)

where ∇u is the Jacobian matrix of u. Following Stone
(1990), we take the inner product with n, to obtain an
expression for the change in local surface area, δS , over
time, (

∂(δS )
∂t

)
m

= δS
[
∇ · u − nT(∇u) n

]
. (A.2)

The right hand side of Equation (A.2) corresponds to
subtracting to the total divergence of u, that is, to the
trace of the Jacobian matrix of u, the normal component
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of the trace, nT(∇u) n. This gives the surface divergence
operator of u, so that(

∂(δS )
∂t

)
m

= δS∇S · u (A.3)

Decomposing u into its tangential and normal compo-
nents, u = unn + uS , one gets(

∂(δS )
∂t

)
m

= δS (∇S · (unn) + ∇S · uS )

= δS (unκ + ∇S · uS ) (A.4)

where the second equality in Eq (A.4) uses the fact that
the surface divergence of the unit normal vector is the
mean curvature of the surface, κ = ∇S · n (Goldman,
2005), and that the surface gradient is perpendicular
to n, so that n · ∇S un = 0.

Appendix B. Comparison with the literature

In multiphase physico-chemical systems, similar evo-
lution equations to Equation (11) are derived for the sur-
face transport of surfactants at the interface between two
phases (Stone, 1990, Wong et al., 1996, Xu and Zhao,
2003). A difference between such physical systems and
the biological systems we are modelling is the coupling
between the surface velocities and the cell density via
Equation (1). Cell density affects interface evolution,
whereas in multiphase physico-chemical systems, sur-
face evolution is usually assumed to be independent of
surfactant density. Furthermore physico-chemical sys-
tem models do not consider the tangential velocity of a
surfactant with respect to the surface.

In Stone (1990), surfactant mass balance equations
are derived, however the nature of the time derivative of
surfactant density is unclear (Wong et al., 1996). Time
derivatives in Stone (1990) implicitly represent changes
following paths normal to the interface. The surfac-
tant mass balance results obtained in Wong et al. (1996)
make the nature of the time derivative explicit by be-
ing derived using an explicit parameterisation of the in-
terface. The parameterisation is general in the sense
that the coordinate system is not necessarily bound to
the material points of the interface. If we set vS = 0,
A = P = 0 in Equation (13), we fall back on Equa-
tion (7) from Stone (1990) following normal trajecto-
ries, and Equation (5b) from Wong et al. (1996) equa-
tion if the timelines of their parameterisation are taken
to be following the normal trajectories of the surface.

Neither the equations in Wong et al. (1996) nor Stone
(1990) include coupling between the interface speed

and density of cells nor tangential velocity. The deriva-
tion in Alias and Buenzli (2017) includes coupling be-
tween cell density and interface speed, but the cells have
no tangential advection, that is, their only lateral motion
is diffusive. To compare our model with that in Alias
and Buenzli (2017), the cell velocities in Equation (13)
must be chosen such that the cells move along the nor-
mal trajectories of the interface. Therefore, if we set
vS = −uS , the governing equations agree.
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Supplementary Information

S1. Numerical Discretisation

We provide more detail on the numerical method used to solve our mathematical model, the cell-based particle
method (CBPM). As well as the advantages of the CBPM discussed in the main text, the CBPM also allows for
efficient detection and implementation of topological changes during fusion or fragmentation of the interface without
requiring information about the connectivity of the marker particles. This method is of O(N) in computational load,
where N is the number of marker particles. This is to be contrasted with standard level set methods on N × N grids,
which have O(N2) computational load, or O(N log N) for local level set methods (Sethian, 1999). The CBPM method
for solving PDEs on moving boundaries gives approximately conservative solutions (Leung and Zhao, 2009).

The CBPM algorithm is comprised of four main steps: initialisation, movement, resampling, and activation or
deactivation. The initialisation stage declares the set of active marker particles which are used to track the interface,
its geometry, and any associated scalar quantities. Initialisation requires an explicit parameterisation of the initial
surface, γ(m), where m is a parameterisation variable for the one-dimensional surface γ in two dimensional space.
The movement stage requires a velocity field which is used to advect the marker particles, and thus to evolve to
position of the interface. This velocity field can be space and time dependent, and may be determined by external
processes, or be coupled with the evolution of intrinsic properties of the system. In our case, it is intrinsic and
implicitly time dependent since it depends on the surface density of cells. To solve the partial different equation
(PDE) for a scalar quantity residing on the moving interface, each marker particle is supplemented with a scalar
value, which is evolved according to the particular PDE after the motion step of the marker particles.

The resampling stage assures a quasi-uniform sampling of the interface through local interpolation. The local
interpolation of the interface is expressed in a local coordinate system aligned with the local surface unit normal
and calculated using quadratic least squares. The interpolation is used to update the unit normals, curvature, and
any other local surface properties of interest, as well as to resample the active marker particles and calculate spatial
derivatives in Equation (13). Finally, the activation and deactivation stage deactivates marker particles associated
with underlying grid cells which no longer contain part of the interface, and activates marker particles associated with
underlying grid cells into which a portion of the interface has now moved. The activation and deactivation stage also
detects changes due to topological changes of the interface incldugin collision, fusion, or fragmentation. For more
details on the algorithm see to Leung and Zhao (2009), Leung et al. (2011), and Hon et al. (2014). Below we describe
how the method is applied to our problem.

To solve Equations (1) and (13), we first need to choose an advective velocity field in the two dimensional
space. Several choices are possible, including paths normal to the interface at all times, material points of the
interface, and cell trajectories. Since cells may carry intrinsic information and it is expected that the numerical
resolution of cell density changes will be more accurate along these trajectories, we choose to move the marker
particles along cell trajectories. We thus define the intrinsic velocity field that governs the evolution of the surface by

Vγ = unn + vS τ, (S1)

and we use a forward Euler scheme to evolve the positions of the marker particles in time for simplicity. More
advanced time stepping schemes can be devised (Hon et al., 2014, Leung and Zhao, 2009, Leung et al., 2011), but
in practice, moving boundary problems are more sensitive to spatial discretisation accuracy than time discretisation
accuracy (Osher and Fedkiw, 2003). Equation (13) is solved after interface motion using operator splitting with
forward Euler, with the first step solving for curvature control,

ρ∗t = ρt−1 + ∆t(ρκun), (S2)

where the ∗ indicates an intermediary step in the solution for ρt and ∆t is the time step. Given there is a local
interpolation for both the surface and the density values, denoted by

γ̂(m) = α1 + α2m + α3m2, and (S3)

ρ̂(m) = β1 + β2m + β3m2, (S4)
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respectively, we can then calculate the diffusion term of Equation (13) by calculating the Laplace Beltrami operator

∂2ρ̂

∂l2
=

1
g2

∂2ρ̂

∂m2 −
1
g3 τ ·

∂2γ̂

∂m2

∂ρ̂

∂m
(S5)

directly from the second order interpolation, ρ̂(m). In Equation (S5), g is the surface metric, |∂γ̂/∂m|. Similarly to
the Laplace-Beltrami operator, the final term of Equation (13) can be calculated using the local interpolation. The
derivative of vS with respect to l can be calculated either explicitly or via interpolation depending on the form of vS .
The forward Euler method is then used to step the diffusion and advection operators forward in time,

ρt = ρ∗t + ∆t
(
D

(
2b3

g2 −
2a3

g4 (a2 + 2a3m)(b2 + 2b3m)
)
+

−
vs

g
(b2 + 2b3m) − ρ∗t

∂vS

∂l

)
.

(S6)

This concludes the calculation of ρ between timesteps.
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