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ABSTRACT

A challenge in neuroscience is to describe the contribution of the brain anatomical wiring to the1

emergence of coordinated neural activity underlying complex behavior. Indeed, patterns of remote2

coactivations that adjust with the ongoing task-demand do not systematically match direct, static3

anatomical links. Here, we propose that observed coactivation patterns, known as Functional4

Connectivity (FC), can be explained by a linear diffusion dynamics defined on the brain architecture5

and driven by control regions. Our model, termed structure-informed FC, is based on a novel6

interpretation of functional connectivity according to which different sets of brain regions controlling7

the information flow on a fixed anatomical wiring enable the emergence of state-specific FC. This8

observation leads us to introduce a framework for the identification of potential control centers in the9

brain. We find that well-defined, sparse and robust sets of control regions, which partially overlap10

across several task conditions and resting-state, produce FC patterns comparable to empirical ones.11

In conclusion, this work introduces a principled method for identifying brain regions underlying the12

task-specific control of brain activity.13
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Significance statement14

Understanding how brain anatomy promotes particular patterns of coactivations among neural regions is a key15

challenge in neuroscience. This challenge can be addressed using network science and systems theory. Here, we16

propose that coactivations result from the diffusion of information through the network of anatomical links connecting17

brain regions, with certain regions controlling the dynamics. We translate this hypothesis into a model called18

structure-informed functional connectivity, and we introduce a framework for identifying control regions based on19

empirical data. We find that our model produces coactivation patterns comparable to empirical ones, and that distinct20

sets of control regions are associated with different functional states. These findings suggest that controllability is an21

important feature allowing the brain to reach different states.22

Keywords Brain - Connectome - Structure - Function - Controllability - Control regions23

Classification Biological sciences - Neuroscience24
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Introduction25

Recently, approaches combining Magnetic Resonance Imaging (MRI) and network science emerged in order to26

characterize links among neural Regions of Interest (ROIs) [1, 2]. Most studies focus either on structural connections27

or on functional interactions, which capture two distinct aspects of brain connectivity. On the one hand, diffusion28

MRI (dMRI) with tractography [3] enables the mapping of white matter pathways and describes the anatomical29

links between ROIs. This structural description of the human brain forms a network called the connectome [4, 5].30

On the other hand, the Blood-Oxygenation-Level Dependent (BOLD) signal in functional MRI (fMRI) provides an31

estimate of brain activity in grey matter areas [6]. The matrix of pairwise Pearson’s correlation coefficients between32

regional BOLD time series is a common tool to quantify functional connectivity (FC) among ROIs [1, 2]. Unlike the33

connectome, functional connectivity varies over short timescales and across resting-state and task conditions [7].34

An important challenge in neuroscience is to characterize the relationship between the connectome and functional35

connectivity [8, 9, 10, 11]. Several approaches have been proposed in the literature in order to elucidate this36

relationship in macroscale brain networks and understand the importance of the anatomical organization in promoting37

particular patterns of activity. Along with methods based on graph signal processing and spectral decompositions38

[12, 13], it has been proposed that describing the link between the connectome and FC requires a model of information39

flow between ROIs [14]. For instance, models based on random walks and diffusion on the connectome have been40

able to partly reproduce resting-state FC [15, 16, 17]. Viewing the brain as a dynamical system allows us to study the41

controllability of this system, i.e. its ability to account for context-dependent control signals in order to affect the42

overall state of the brain. [18, 19, 20]. The framework of network controllability requires to define input regions,43

i.e. ROIs capable of integrating control signals [21]. Earlier work demonstrated that any single input region was44

theoretically sufficient to get controllability of the connectome [18, 22, 23]. One shortcoming is that although45

controllable in theory, some configurations are practically unfeasible as they would require excessive control energy.46

Moreover, several pieces of evidence from the fields of motor and cognitive control suggest that sets of regions47

are responsible for the control of brain activity [24, 25, 7, 26, 27]. Despite these advances in brain communication48

modelling and connectome controllability, an integrated explanation for the emergence of multiple FC patterns from49

the static structure of the connectome is still lacking.50

Here, we develop a principled approach modelling state-specific FC on the connectome. We leverage the observation51

that the Gramian matrix used in controllability studies [28, 18] corresponds to the covariance matrix of the activities52

in the different nodes of a network, assuming a linear transition dynamics among them. This observation brings us53

to introduce the concept of structure-informed FC, i.e. the pairwise functional correlation matrix derived from the54

structure of the connectome. Since this matrix depends on the choice of input nodes, we show that it is possible to55

identify the set of input ROIs maximizing the mapping between structure-informed and empirical FC in different56

states. Using dMRI and fMRI data (resting-state and 7 tasks) from the Human Connectome Project [29], we find that57

sparse input sets produce FC matrices that are comparable to empirical ones. Moreover, we show that the identified58

sets are well defined, stable, and state-specific. We discuss their properties and the fact that the method is able to59
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capture the singularity of resting-state compared to the other task-related conditions. Overall, our approach relies60

on a model linking structure and function in brain networks in order to identify possible subsets of brain regions61

underlying task-specific control.62

Results63

Structure-informed functional connectivity64

In order to investigate how the connectome shapes Functional Connectivity (FC), we study the covariance matrix of65

a linear dynamics defined on the connectome. In a network of n nodes, let x(k) be the n-dimensional state-vector66

containing the activity level of each node at time k. The trajectory of x is governed by the following equation:67

x(k + 1) = Ax(k) + Bu(k) (1)

Here, the n × n system matrix A describes the interactions among the nodes of the network, the columns of the68

n ×m input matrix B are canonical vectors identifying the m input nodes and u(k) is an m-dimensional vector69

providing the value of external input signals at time k.70

When the inputs to the system, i.e. the signals in u, are white noise signals, it can be shown that the steady-state71

covariance matrix of the states, Σ = Cov(x) satisfies the following Lyapunov equation (see Methods for the72

derivation) :73

Σ = AΣAT + BBT (2)

Here, we see that the solution Σ depends on the structure of the network and the dynamical model through the system74

matrix A, and on the set of input nodes defined by B (Figure 1A). The solution to Equation (2) is known as the75

controllability Gramian. Here, in contrast to previous studies where Σ is used to derive quantitative control properties76

of individual nodes in the network [28, 18, 30], we interpret the Gramian as the state-covariance matrix obtained77

by stochastic excitation of the system through a set of control nodes. This allows us to relate it to the concept of78

functional connectivity. Indeed, after variance normalization, Σ becomes a correlation matrix Σ̃ (see Methods) and79

constitutes the FC matrix associated with the network and its dynamics, which we term the Structure-Informed FC80

and denote FSI :81

FSI := Σ̃ (3)

Using the mathematical relation between the network structure and the correlation matrix of the system, we turn to82

the problem of identifying the set of control inputs defined by B, given an empirical FC matrix Femp obtained from83

external recordings of the system. For that, we formulate the optimization problem84
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B∗ = arg max
B

sim (FSI ,Femp)

such that m ≤ U (4)

where FSI is a function of B, m is the number of columns of B, i.e. the cardinality of the input set, and U is an upper85

bound to be fixed in order to control the number of input nodes.86

In the present work, we apply this approach to connectomes and FC matrices extracted from MRI data (Figure 1B).87

We consider a diffusion dynamics to model interactions among ROIs in the connectome (see Methods) as suggested88

in previous studies on large-scale brain communication [15, 14]. The similarity between FSI and Femp is computed89

as the entry-wise Pearson’s correlation coefficient r, following previous work [15, 16, 17, 31, 32]. We refer to this90

measure of similarity between two FC matrices as the correlation score in this manuscript. For the optimization, we91

use a genetic algorithm that iteratively combines multiple candidate input sets in order to form a near-optimal one92

(see Methods). To mitigate the lack of optimality guarantee, we run the algorithm multiple times. We denote the set93

of ROIs consistently selected across runs as the consensus input set.94

We provide an illustration of the method based on simulated data in Figure 1C. First, we simulate 2000 time steps of95

a diffusion process driven by white noise on a graph composed of n = 10 nodes (m = 3 input nodes), with edge96

weights uniformly distributed between 0 and 1. Using these time series, we compute the associated FC matrix Femp.97

Then, we solve Problem 4 for U varying from 1 to n. We observe that the method retrieves the correct input set and98

produces an FC matrix that is similar to the empirical one.99

Linking the connectome to multiple functional states100

We apply our approach and solve Problem 4 with empirical MRI data of 100 unrelated individuals. The data was101

acquired and preprocessed by the Human Connectome Project (HCP) consortium [29]. For each individual, we extract102

a connectome and FC matrices for resting-state and seven tasks (Figure 1B). The tasks are labelled as emotional103

processing, gambling, language processing, motor task, relational processing, social cognition and working memory.104

Each task required an active participation from the individuals. Although the properties of resting-state FC are known105

to be fundamentally different from that of task FC [33], we deliberately choose to treat resting-state in the same way106

as task conditions in order to test whether our approach is able to distinguish it. For simplicity, we refer to both107

resting-state and task conditions as states in the remainder of the manuscript. Finally, we use the brain parcellation108

introduced by Destrieux et al. [34] and composed of n = 164 ROIs including subcortical structures and cerebellum.109

For the group-level analysis, we compute an average connectome and an average FC matrix Femp for each state (see110

Methods). In order to study the stability of our results with respect to the number of input ROIs, we solve Problem 4111

with U increasing from 1 to n. For each upper bound U , we define the consensus input set as the set of ROIs selected112

at least 25 times over 30 optimization runs.113

Figure 2A shows the correlation score between Femp and FSI using the consensus input set. The curves increase114
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Figure 1: Overview of the approach. A) In order to investigate how the connectome shapes functional connectivity,

we define a diffusion dynamics on the connectome (purple) and excite it with uncorrelated signals (white noise, red).

Depending on the set of input nodes (orange) driving the dynamics, the output signals (green) present correlations

patterns that are similar to empirical data. B) Data processing workflow. (Top row) We extract the connectome using

diffusion imaging (dMRI) and tractography. Nodes correspond to Regions of Interest (ROIs) from a predefined

automatic parcellation. (Bottom row) At each ROI, we also retrieve the fMRI BOLD time serie and compute the

functional connectivity matrix Femp between these signals. This step is repeated for 7 tasks and resting-state. C)

Example on simulated data. We start from a network of n = 10 nodes, with uniformly distributed random weights on

the edges. (Top row) We choose a set of m = 3 input nodes, simulate the noise diffusion process and compute the

empirical functional connectivity matrix Femp. (Bottom row) Our framework applied to the network identifies the

correct set of input nodes and generates a structure-informed functional connectivity matrix FSI comparable to the

empirical one.
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with U , up to small drops due to the heuristic nature of the optimization (see Methods), until they reach a plateau at115

values ranging from r = 0.54 for resting-state to r = 0.7 for the motor task. We can compare these values with three116

baselines (see Methods for details about the baselines definition). The first one is the correlation score between Femp117

and the adjacency matrix of the connectome. The second is the plateau correlation obtained by applying our approach118

to a randomly re-labelled connectome and keeping Femp ordered, in order to break the ROI-to-ROI correspondence119

between structure and function while maintaining the network properties of the connectome. The third baseline is120

the maximum correlation score between FSI and Femp obtained with random input sets having the same average121

cardinality as the identified sets. In Figure 2A, we draw for each baseline the highest value across states and see that122

our approach produces a better matching for all states.123

Figure 2B shows that the consensus input set is empty for all states until we allow the selection of at least 19 input124

nodes. Then its size stabilizes between m = 35 for the working-memory task (WM) and m = 58 for resting-state.125

These values are lower than the number of input nodes selected when applying our approach to a randomly re-labelled126

connectome (Baseline 2, m = 64, minimum across states and randomizations). To evaluate the consistency of127

identified input sets across optimization runs, we report in Figure 2C the evolution of the average Jaccard index. The128

Jaccard index J between two sets S1 and S2 measures the overlap between these sets and is computed as129

J(S1,S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(5)

with J = 0 indicating no overlap and J = 1 indicating perfect overlap. The average Jaccard index J̄ is computed130

over all pairs of the 30 optimised input sets. We observe that the method selects consistent input sets (J̄ ≥ 0.85) when131

U ≥ 70.132

We also perform an individual-level analysis in the following way. We apply the method to each individual and set133

U = N in order to reduce the computational cost of the optimization. We therefore obtain one consensus input set134

and one correlation score for each individual and for each state. In Figure 2D, we notice that the correlation scores are135

lower than at the group-level, for all states. A repeated measures ANOVA determines that the mean correlation score136

differs significantly between states (F (7, 693) = 27.928, p < 10−25, Greenhouse-Geisser corrected). The variance137

in each condition does not significantly differ (Levene’s test, p > 0.5), and a post-hoc analysis after visual inspection138

confirms that the mean correlation score in resting-state is significantly different than in any task condition (Tukey’s139

HSD, p < 0.005). The post-hoc analysis also reveals that the mean correlation score significantly differs between140

the language task and the motor task (Tukey’s HSD, p < 0.005). Figure 2E shows the variability of the size of the141

consensus input set in the population. The relational processing task and the resting-state display a higher variability142

in the number of input ROIs selected than other states. In Figure 2F, we evaluate the variability of the consensus input143

set in the population by computing the average Jaccard index J̄ over all pairs of the 100 consensus input sets (one for144

each individual). We observe a moderate overlap of the consensus input set across individuals (J̄ ≈ 0.6, expected145

value of J for randomly chosen sets with cardinality m = 40 : E{J} ≈ 0.14, see Methods for the derivation).146
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Figure 2: Relating structure-informed and empirical functional connectivity : Group-level analysis and individual-

level variability. A) Correlation score between structure-informed and empirical functional connectivity with respect

to the number of input nodes allowed U (group-level). FSI is obtained using the consensus input set. Dashed lines

represent baselines corresponding to the similarity between Femp and (1) the adjacency matrix of the connectome,

(2) FSI based on a re-labelled connectome and (3) FSI obtained with a random input set (see Methods). B) Size of

the consensus input set with respect to the number of input nodes allowed U (group-level). The grey line denotes

the identity function y = x. The dashed blue line corresponds to the minimum number of input nodes selected for

Baseline 2, over all conditions and all randomizations. C) Average Jaccard index between the 30 input sets identified

by the optimization algorithm with respect to the number of input nodes allowed U (group-level). D) Variability across

individuals of the correlation score between structure-informed and empirical correlation matrices, with U = N . E)

Variability of the size of the corresponding consensus input set. F) Average Jaccard index of consensus input sets

across individuals.
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Analysis of input ROIs across functional subsystems147

At the group-level, we turn our attention to the ROIs composing the input sets that we identified. In Figures 3A148

(motor task) and 3B (resting-state), we can follow the evolution of the number of selections of each ROI when the149

maximum cardinality U of the input set increases. We point out that when U is incremented, we perform the new150

optimization runs while ignoring previously computed solutions in order to assess the consistency of successively151

computed solutions. A first observation is that the selection of input ROIs is stable, that is once a region is selected152

it is typically selected again for higher values of U , as indicated by the horizontal red lines. Moreover, dark red153

pixels for a given ROI indicate that it is consistently selected across 30 independent optimization runs for a fixed U .154

We make a second observation by grouping ROIs according to the functional subsystems defined by Yeo et al. [35]155

and presented in Figure 3C (we include the cerebellum in the "subcortical" subsystem for visualization). Regions156

belonging to limbic and subcortical subsystems are selected together, up to some exceptions. These observations are157

also valid for the other tasks (corresponding figures are available in Supplementary material, Figure S1).158

Recent studies investigated how the connectome shapes functional connectivity at the level of subsystems and showed159

that the coupling between structure and function is stronger for some subsystems than others [36, 32, 37]. In Figure160

3D, we use the consensus input sets identified at the group-level and compute the correlation score between the entries161

of FSI and Femp associated with the subsystems of Figure 3C. The results indicate that the association is the greatest162

in the frontoparietal lobe during the motor task (r = 0.82). Moreover, the visual and subcortical subsystems show163

low correlation scores for all states, while resting-state shows low correlation scores in all subsystems.164

Analysis of input ROIs across states165

Next, we compare the composition of the identified input sets across states, at the group-level. Since we observed in166

Figure 2A that the correlation score reaches a plateau when U increases, we set U = N for this analysis. Moreover,167

we increase the number of optimization runs to 100 to evaluate more precisely the selection of each ROI. Thus, we168

obtain 100 input sets for each condition.169

Figure 4A depicts the number of selections of each ROI across states. Blue lines indicate ROIs that have been170

selected at least 90 times for all states. These ROIs mostly correspond to subcorticals (accumbens nucleus, amygdala,171

hippocampus, pallidum, thalamus and subcallosal gyrus) and limbic regions (medial orbital sulcus, gyrus rectus172

and left suborbital sulcus). Regions of the default mode network (pericallosal sulcus, right suborbital sulcus and173

left posterior-ventral part of the cingulate gyrus) and of the somatomotor system (right paracentral lobule) complete174

the set of ROIs consistently selected across states. A cortical view of these regions is shown in Figure 4B. A table175

gathering the detailed numerical results by ROI is available at the end of the Supplementary materials and in the176

extended data.177

In order to visualize the divergence of input sets across states, we use a dimensionality reduction method to project178

in two dimensions the n-dimensional binary vectors indicating which ROIs belong to each input set (t-distributed179
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Figure 3: Analysis across functional subsystems (group-level). A) (resp. B) Evolution of the number of selections

(from 0-white, to 30-red) of each Region of Interest (ROI) with respect to the number of input nodes allowed U for the

motor task (resp. for resting-state). ROIs are arranged according to the functional subsystems described by Yeo and

colleagues [35]. The cerebellum is included in the "subcorticals" subsystem for visualization and corresponds to the

last two lines (left and right hemispheres). Corresponding figures for the other tasks are available in Supplementary

Figure S1. C) Cortical localization of Yeo’s subsystems. D) Correlation between structure-informed and empirical

functional connectivity with U = N , splitted into Yeo’s subsystems. Structure-informed functional connectivity is

computed using the consensus input set.
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Figure 4: Analysis across functional states. A) Table summarizing the most frequently selected ROIs for each task.

ROIs that are consistently selected at least 90 times over 100 runs for all functional states are highlighted in blue. ROIs

are grouped according to Yeo’s functional subsystems. The cerebellum is included in the "subcorticals" subsystem for

visualization and corresponds to the last two lines (left and right hemispheres) B) Cortical view of ROIs consistently

selected across all tasks and resting-state.C) Two-dimensional projection of all input sets (100 runs, 8 states). We use

the t-distributed Stochastic Neighbor Embedding algorithm (t-SNE, see Methods) in order to visualize the Jaccard

similarity among all input sets. Each data point represents one such input set, and their proximity is proportional to

their similarity.

Stochastic Neighbor Embedding, see Methods). In Figure 4C, each data point represents one identified input set (100180

runs, 8 states), and the proximity with each other is indicative of their overlap (Jaccard similarity). We distinguish181

clusters of points corresponding to different states. In particular, the cluster corresponding to resting-state is isolated.182

Among task conditions, there is a partial overlap of the clusters, with the input sets related to the social cognition task183

being more isolated from the others. A comparative cortical view of input ROIs for each condition is provided in184

Figure 5.185
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Figure 5: Cortical surface view of state-specific input ROIs. Over 100 runs of the optimization algorithm with U = N ,

we depict for each task the number of times each ROI is selected. Regions that were consistently selected across

all states (≥ 90 selections) are shown in blue. Detailed numerical results by ROI are available at the end of the

Supplementary materials, as well as in the extended data.
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Topological properties of input ROIs186

In order to gain further insight into the topological properties of input ROIs in the connectome, we analyze the187

statistical association of the number of selections of each ROI with two nodal metrics : the weighted degree and188

modal controllability. The weighted degree of a node describes the strength of the connections with its neighbors,189

while modal controllability describes the ability of a node to drive the network towards hard-to-reach states requiring190

much control energy (see Methods and Refs [28, 18] for further details about modal controllability). For all tasks and191

resting-state, we report in Table 1 the correlation between these nodal metrics and the number of selections of ROIs.192

On the one hand, we find a significant inverse relationship between weighted degree and number of selections (lowest193

association: Spearman’s ρ = −0.3963 in resting-state, p < 10−7 for all states), which suggests that low-degree194

ROIs are selected more often. On the other hand, we find a significant proportional relationship between modal195

controllability and number of selections (lowest association: Spearman’s ρ = 0.4769 in resting-state, p < 10−10 for196

all states), indicating that ROIs having a high modal controllability are selected more frequently.197

Table 1: Spearman’s rank correlation between the number of selections of each ROI (out of 100 independent

optimization runs, with U = N , group-level) and two nodal coefficients: the strength (weighted degree) and the

modal controllability [28]. EMO: emotional processing, GAM: gambling, LAN: language processing, MOT: motor

task, REL: relational processing, REST: resting-state, SOC: social cognition, WM: working-memory.

Spearman’s ρ EMO GAM LAN MOT REL REST SOC WM

Weighted degree −0.5190 −0.4873 −0.4937 −0.4621 −0.4866 −0.3963 −0.4415 −0.5014

Modal Control 0.6149 0.5767 0.5672 0.5517 0.5803 0.4769 0.5305 0.5801

Robustness of consensus input sets198

Finally, we study the robustness of the link between structure-informed (FSI ) and empirical (Femp) functional199

connectivity when the consensus input set is attacked. Here, an attack refers to the removal of a ROI from the initial200

input set, not from the connectome. We start from the correlations between FSI and Femp obtained at the group-level201

with U = N (Figure 2A). We progressively remove nodes from the consensus input set until it becomes empty. After202

each removal, we compute the correlation score obtained with the attacked input set. Since we previously observed203

that low-degree (resp. high modal controllability) ROIs are more likely to be part of the input set, the removal ordering204

is fixed by increasing order of weighted degree (resp. by decreasing order of modal controllability). In addition, we205

report the results related to 50 random removal sequences.206

In Figure 6, we show the results for the motor task and the resting-state. We observe that the correlation score between207

FSI and Femp decreases slowly with the number of nodes removed from the consensus input set, no matter the208

removal ordering. For the motor task (resp. for resting-state), up to 75% (resp. 40%) of the nodes can be removed209

from the consensus input set before we reach correlation scores comparable to the three baselines previously defined210

(see Methods). Similar observations are valid for the other tasks (see Supplementary Figures S2 and S3).211
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Figure 6: Robustness analysis. A) (resp. C)) Evolution of the correlation between structure-informed FSI and

empirical functional connectivity Femp as a function of the number of ROIs removed from the consensus input set.

Dashed lines represent the three baselines (see Methods), i.e. the correlation between Femp and (i) the adjacency

matrix of the connectome, (ii) FSI based on a re-labelled connectome and (iii) FSI obtained with a random input set.

We consider 50 random removal orderings. B) (resp. D)) Same analysis, with removal ordering fixed by increasing

weighted degree and decreasing modal controllability.
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Discussion212

In this work, we studied the structure-function relationship in brain networks [8, 10, 11] across different task conditions213

as well as in resting-state. We showed that functional connectivity (FC), i.e. the coactivations among brain regions,214

can be explained by the correlations between the activities of these regions resulting from a linear dynamics spreading215

through the structure of the brain. This model, termed structure-informed FC, happens to be mathematically linked to216

the Gramian matrix used in controllability studies [28, 18, 30]. This provides a novel interpretation of FC in which217

we can leverage control theory to explain state-specific FC configurations arising from a fixed anatomical architecture.218

We thus proposed that different groups of regions controlling a diffusion dynamics through the wiring diagram of219

the brain are responsible for FC matrices corresponding to different states. We introduced a principled approach to220

test this hypothesis and found that sparse and stable groups of control regions, which partially overlap across states,221

generate FC matrices that are statistically comparable to empirical ones.222

Combining brain communication models and linear controllability223

In this study, we considered a Laplacian diffusion dynamics to model the information flow between ROIs, following224

previous work [15]. While most studies on brain communication dynamics focused on the mechanisms governing225

the information flow in the absence of external intervention [16, 38, 39, 32, 40], it has been pointed out that the226

connectome is a controllable network capable of integrating context-dependent signals [20]. Earlier work on the227

controllability of the connectome typically fixed the transition matrix A (Equations 1-2) as the adjacency matrix of228

the connectome [28, 18, 30]. This is a common approach, but we should stress that it is possible to define multiple229

flow dynamics upon a fixed network structure [41]. Here, we suggest that combining a model of information flow [14]230

with the ability to modulate it through control regions [18] can improve our understanding of the structure-function231

relationship across functional states. Future research should investigate how other communication dynamics influence232

our results. For instance, we also tested our approach with A being the adjacency matrix of the connectome and233

obtained similar results with significant overlap in the computed consensus input sets (see Supplementary Table S1234

for a comparison). Alternative dynamics such as decentralized (i.e. directed) brain communication models [16, 39]235

could provide complementary insights into the structure-function relationship in the human brain.236

As in former connectomic studies [15, 28, 18, 30], our approach relies on linear time-invariant modelling (Equation237

1). Despite the known non-linearities of neural dynamics [42], first-order approximations have been proved useful238

in capturing various aspects of brain functioning at different spatio-temporal scales [43, 44, 45]. In addition, time-239

invariance implies that the structure of the system does not evolve over time. Although the white matter architecture240

evolves over long timescales [46, 47], significant changes in the topology of the connectome are not expected over the241

duration of an MRI scan. Assuming linearity and time-invariance allowed us to derive an analytical expression of242

structure-informed FC (Equation 3). Since the heuristic optimization computes this matrix a large number of times in243

order to find a near-optimal input set, relying on an efficiently solved analytical expression of structure-informed244

FC rather than simulating the system at each iteration is computationally beneficial, although the computational245
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cost remains a limitation of our framework. In sum, we argue that linear and time-invariant modelling of functional246

connectivity constitutes a reasonable and computationally tractable approach. Future studies are required to assess247

how much these assumptions can or should be relaxed in light of more realistic models compatible with the biology.248

Similarly to previous studies in the field of brain communication dynamics and controllability, we considered in this249

work a coarse-grained parcellation spanning the entire brain [15, 18]. We suggest that the proposed method is also250

suitable at the level of subregions, provided that there exists an appropriate linear time-invariant model describing the251

dynamics at this scale, and we encourage future research in that direction.252

Well-defined sets of control regions drive state-specific functional connectivity253

In our analyses, we identified sparse groups of regions that are thought to support the control of state-specific brain254

activity. The fact that our method finds such sparse input sets (Figure 2B), i.e. that empirical FC can be explained255

more simply from the true connectome structure than from a randomly re-labelled network, suggests the fitness of our256

model, in line with Occam’s razor principle. Our model also captured differences between states in terms of their257

respective input sets (Figure 4C), supporting the idea that different states are triggered by partially overlapping yet258

distinct sets of control regions. Because our approach involves a heuristic optimization algorithm, we assessed the259

consistency of the identification procedure (Figure 3A-B) and the robustness of the identified input sets (Figure 6).260

Moreover, we found that ROIs having low degree and high modal controllability, which are topological properties261

associated with the brain structure independently of any activation measure, have a higher probability to be part of an262

input set (Table 1). Together, these results suggest that the identified input ROIs play a central role in driving FC263

across the white matter wiring.264

Importantly, this role does not imply that identified ROIs systematically match the active areas traditionally detected265

in fMRI analyses. For example, the primary motor cortex (M1) is not part of the input set of the motor task (Figure 5),266

although it displays strong activation in the functional data. This activation results from the fact that M1 forms a hub in267

the motor task, receiving projections from multiple regions, including the somatosensory and parietal cortices as well268

as premotor areas, and sending output commands to the periphery. This “centrality” however does not entail that M1269

is part of the set of drivers that put the brain in a state that is suitable for motor control. In this regard, our findings are270

supported by recent experimental evidence in mice showing that thalamic inputs are essential to drive the motor cortex271

during movement execution [48]. A similar example is that of Wernicke’s area, which was not part of the input set of272

the language processing task (Figure 5) but whose activation is often associated with language understanding. More273

generally, the fact that drivers are preferentially ROIs with low degree and high modal controllability is consistent274

with the idea that reaching demanding states requires the control of decentralized and distributed areas, which in turn275

influence the whole system including hubs, such as M1 or Wernicke’s area [21, 18, 26, 27, 49].276

In order to gain a better insight into the role of the ROIs that we identified, we turn our attention to the drivers common277

to all states. The presence of subcortical structures (including basal ganglia, amygdala, hippocampus and thalamus)278

in the input set of all states is consistent with their strong contribution to whole-brain communication [50], motor279
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control [51], language processing [52], reward-related processing [53] and cognition in general [54]. Anatomical280

and physiological evidence established the existence of cortico-subcortical loops supporting functionally segregated281

systems [55]. Within these loops, which include the anterior cingulate and dorsolateral prefrontal cortices that have282

been designated as cognitive control centers [24, 56, 25], subcortical structures are thought to modulate the process283

of action selection, given afferent cortical signals [54]. Regarding the other identified regions, we provided in our284

analyses a numerical assessment of their consistency in the context of our model. Their functional relevance remains285

to be further validated in neurophysiological studies involving tailored experimental protocols, and the present work286

can guide future research investigating brain regions that underlie task-specific control.287

Distinguishing resting-state from task conditions288

In this study, we applied our approach to both resting-state and task-based FC without a priori distinction, although289

their properties are different [33] and resting-state was the only condition that did not require any active involvement290

of the individuals. Interestingly, our method captured the singularity of resting-state in several regards : the matching291

between structure-informed and empirical FC is lower (Figure 2A-D) and requires more input regions (Figure 2B-E).292

Moreover, the input set related to resting-state is distinct from that of task conditions (Figure 4C) and includes more293

regions belonging to the frontoparietal subsystem and to the default mode network (Figure 4A).294

Accumulating evidence from fMRI studies speculate that resting-state FC forms a “standard” architecture in which295

segregated functional subsystems are represented, and which supports the transfer of information related to the296

implementation of tasks [57, 58, 35, 33, 7, 59]. This could explain why, from a controllability viewpoint, our results297

distinguish rest (the passive, default state) from task conditions (the active, target states). Following the hypothesis298

that resting-state connectivity supports task implementation, an extension of this study consists in applying our299

framework to the graph structure defined by resting-state FC instead of the connectome, in order to investigate which300

brain regions drive the rest-to-task transitions.301

Conclusion and future work302

This report presented a system-theoretic framework for identifying potential state-specific control regions through303

a model linking structure and function in human brain networks. In this respect, it linked concepts of brain304

communication dynamics and connectome controllability. We expect that future research, for instance in clinical305

populations, will further validate the proposed approach by studying the impact of neurological deficits and lesions on306

the identified control regions. This work could in turn guide physiological studies investigating the role of particular307

regions in controlling brain processes. Future work should also analyze individual differences in the identified control308

regions and their possible relation to behavior.309
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Methods310

Dataset311

We retrieved the preprocessed “100 unrelated subjects” dataset of the Human Connectome Project (HCP) database312

(https://db.humanconnectome.org/), HCP 1200 release [29]. All individuals (54 females, 46 males, 22-36 y.o.)313

gave written informed consent to the HCP consortium. Scanning protocols were approved by the local Institutional314

Review Board at Washington University in Saint Louis. Acquisition parameters are detailed in previous HCP reports315

[60, 29, 61]. Preprocessing consisted of HCP minimal preprocessing pipelines [61]. We applied further processing316

steps in agreement with previously published studies using HCP data [49, 32, 62].317

Parcellation We used the cortical parcellation introduced by Destrieux and colleagues [34] and composed of 148318

non-overlapping Regions of Interest (ROIs). Subcortical structures (thalamus, caudate nucleus, putamen, pallidum,319

hippocampus, amygdala, accumbens nucleus) and cerebellum were extracted using the FMRIB Software Library [63]320

and added to the parcellation for completeness, bringing the number of ROIs to n = 164.321

Connectome reconstruction The processing of diffusion data was conducted for each individual using state-of-the-322

art methods implemented in the MRtrix3 toolbox [64]. In summary, a tissue-segmented image was generated (MRtrix323

command 5ttgen) in order to perform Anatomically-Constrained Tractography [65]. Then, multi-shell, multi-tissue324

response functions were computed (MRtrix command dwi2response msmt_5tt) in order to inform the Constrained325

Spherical Deconvolution (MRtrix command dwi2fod msmt_csd) [66]. Probabilistic tractography (MRtrix command326

tckgen) was performed using a second-order integration over fiber orientation distributions (iFOD2 method [67]) to327

allow for a more precise fiber tracking through crossing regions. This produced an initial tractogram composed of328

10 millions streamlines that was corrected (SIFT2 approach [68], MRtrix command tcksift2) in order to obtain329

a more biologically meaningful representation of white matter tracts by computing an appropriate cross-sectional330

area multiplier for each streamline. Eventually, we built the adjacency matrix S of the connectome by computing331

the fiber density between each pair of previously defined ROIs (MRtrix command tck2connectome with option332

-scale_invnodevol). The group-average adjacency matrix is obtained as the entrywise average of the K = 100333

individual-level adjacency matrices. Both group-average and individual matrices were kept unthresholded.334

Empirical functional connectivity We included fMRI data acquired during resting-state and seven tasks : emo-335

tional processing (EMOTION), gambling, language processing (LANGUAGE), motor response (MOTOR), rela-336

tional processing (RELATIONAL), social cognition (SOCIAL) and working memory (WM) [29]. Resting-state337

Blood-Oxygenation-Level Dependent (BOLD) time series were filtered in forward and reverse directions (1st-order338

Butterworth, bandpass = [0.001,0.08] Hz) [69]. We did not regressed out the global signal. For both resting-state and339

task fMRI, the voxel time series were then z-scored and averaged in each ROI using the Connectome Workbench340

toolbox [70] and excluding outlier time points outside 3 standard deviations from the mean (Workbench command341

-cifti-parcellate). Empirical functional connectivity (FC) matrices Femp were obtained by computing Pearson’s342
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correlation coefficient between each pair of resulting time series. For each task, FC matrices of both fMRI phase343

encoding directions (left-to-right and right-to-left) were averaged in order to reduce the effect of artifactual noise. For344

resting-state, the four resulting matrices (2 scans, 2 phase encoding directions) were averaged for the same reason.345

The group-average FC matrix (for each task and resting-state) is obtained as the entrywise average of the K = 100346

individual-level FC matrices. Both group-average and individual matrices were kept unthresholded.347

State correlation matrix of a linear diffusion process driven by white noise348

We consider the following linear discrete-time invariant dynamics :349

x(k + 1) = Ax(k) + Bu(k) (6)

We excite the system with white noise signals u, and we assume that x is centered, A is stable, the input signals350

are not correlated with the initial state of the system (i.e. E{x(0)uT (k)} = 0, ∀k) and input signals in u have unit351

variance. We compute the steady-state covariance matrix Σ = Cov(x) of System (6) as follows :352

Σ(k + 1) = E
{
x(k + 1)xT (k + 1)

}
= E

{
(Ax(k) + Bu(k)) (Ax(k) + Bu(k))T

}
= AE

{
x(k)xT (k)

}
AT + AE

{
x(k)uT (k)

}
BT

+ BE
{
u(k)xT (k)

}
AT + BE

{
u(k)uT (k)

}
BT

= AΣ(k)AT + BBT using the assumptions on u(k)

⇒ Σ = AΣAT + BBT in steady-state

We notice that excitation signals with non-unit variance would result in a scaling of matrix B, which would not affect353

further results.354

Defining P as the diagonal matrix containing only the diagonal entries of Σ (i.e. the states variances), we can apply a355

symmetric normalization to the steady-state covariance matrix to obtain a pairwise correlation matrix that we use as a356

model of functional connectivity:357

Σ̃ = P−1/2ΣP−1/2

FSI := Σ̃

In this study, we consider the particular case of a diffusion process unfolding on the connectome, as proposed by358

Abdelnour and colleagues [15]. The state transition matrix A has therefore the following form:359

A = e−βL
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Here, with D being the diagonal matrix of the weighted degree of the ROIs, the matrix L = D−1/2(D− S)D−1/2 is360

the normalized Laplacian of the connectome. The parameter β ∈ R+
0 accounts for the sampling time with respect to361

the associated continuous-time system. While its value can be chosen arbitrarily, we choose here to fix it a priori to362

β = 0.72s in order to match the sampling rate of the empirical fMRI data used in this work [29]. In order to stabilize363

System (6), as done in several studies [18, 71] (see the detailed discussion in [30]), the entries of matrix A were364

further divided by 1 + λmax(A), where λmax(A) is the largest eigenvalue of A. In our case, the smallest eigenvalue365

of L is always 0 since the Laplacian of an unsigned graph is positive semi-definite, and always possesses a zero366

eigenvalue [72]. Therefore, λmax(e−βL) is always equal to 1.367

Finding the optimal set of control regions : Genetic Algorithms368

Given the combinatorial nature of the optimization Problem 4, we must resort to heuristic methods in order to approach369

optimal solutions, without guarantee of optimality. A convenient choice is the family of genetic algorithms [73].370

Here, the steps involved in the genetic algorithm that we used are i) generating a random population of admissible371

input sets, ii) selecting the best input sets in the population, iii) breeding a new generation of solutions by crossovers372

between selected input sets, iv) applying random modifications in the new population to avoid getting trapped in a373

local optimum and v) repeating the process until no more improvement is achieved after a given number of iterations.374

In the present study, we used the Matlab implementation of genetic algorithms, from the Global Optimization Toolbox,375

with default options and parameters. The Matlab code used to produce the results in this report is available online376

(https://github.com/bchiem42/Structure-informed-FC).377

Baselines378

In order to assess how well our approach maps structure to function, we provide three baseline values.379

Baseline 1 This is the Pearson’s correlation coefficient between the vectorized upper-triangular of the adjacency380

matrix of the connectome S and the empirical FC matrix Femp, without any transformation.381

Baseline 2 We randomly re-label the ROIs of the connectome matrix S while keeping Femp unchanged, and then382

apply our method. This null-model breaks the ROI-to-ROI correspondence between structure and function and383

preserves all network properties of the connectome. In the results, we report the maximum correlation score obtained384

over 30 random re-labelling.385

Baseline 3 In order to assess the usefulness of solving the optimization Problem 4 to identify optimal input sets, we386

compute the correlation score between Femp and FSI obtained with an input set drawn uniformly at random, with387

cardinality m ∈ [37, 43], following the result depicted in Figure 2B. In the results, we report the maximum correlation388

score obtained over 30 random input sets.389
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Modal controllability390

Given a system defined on a network of n nodes, modal controllability is a nodal property that quantifies the ability

of a single node to steer the system towards states requiring substantial input energy [28, 18, 30]. We compute the

modal controllability φi of node i from the eigenvalues λ and the eigenvectors v of the adjacency matrix S of the

connectome :

φi =
n∑
j=1

(
1− λ2j (S)

)
v2ij

In this work, we computed modal controllability using the Matlab implementation provided by the authors of [18].391

2D visualization of input sets using t-distributed Stochastic Neighbor Embedding392

In a network of n nodes, we represent an input set as an n-dimensional binary vector indicating which node is393

selected (1) or not (0). In order to visualise how multiple input sets relate to each order, we can use dimensionality394

reduction to embed the n-dimensional vectors in two dimensions. In particular, the t-distributed Stochastic Neighbor395

Embedding [74] aims at finding a low-dimensional representation of high-dimensional vectors while preserving their396

local structure, such that similar vectors are represented by close points in 2D and vice-versa, with high probability.397

In this work, we used the Jaccard index to measure the similarity between vectors.398

Expected value of Jaccard index399

We consider a set of n elements from which we draw two subsets S1 and S2 having the same cardinality m and400

whose elements are chosen uniformly at random. We denote the number of common elements between S1 and S2 as401

|S1 ∩ S2| = k. The corresponding Jaccard index is402

J(S1,S2) =
k

2m− k
Now, the probability that the number of common elements is exactly k is403

P (|S1 ∩ S2| = k) =

(
m
k

)(
n−m
m−k

)(
n
m

)
since we have

(
n
m

)
choices for the elements of S1 and

(
m
k

)(
n−m
m−k

)
choices left for the elements of S2. Therefore, the404

expected value of Jaccard index between two random sets of size m drawn from n elements is405

E{J(S1,S2)} =
m∑
k=0

(
m
k

)(
n−m
m−k

)(
n
m

) k

2m− k

For n = 164 and m = 40 (see Figure 2E), we obtain E{J} ≈ 0.1389.406
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Supplementary materials586

Table S1: Comparison between two linear dynamics : the Laplacian diffusion dynamics used in the main manuscript

(DIFF), and the dynamics defined by fixing the transition matrix A to the adjacency matrix of the connectome (ADJ).

In both cases, we performed 100 runs of the optimization algorithm, with U = N . The Jaccard index J is computed

between the consensus input sets (>= 90 selections) obtained with the two dynamics.
EMO GAM LAN MOT REL REST SOC WM

Mean correlation score : DIFF 0.66 0.67 0.68 0.7 0.65 0.54 0.63 0.68

Mean correlation score : ADJ 0.7 0.7 0.69 0.71 0.7 0.62 0.68 0.69

J(DIFF,ADJ) 0.92 0.88 0.88 0.87 0.92 0.86 0.77 0.93

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.07.10.197046doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197046
http://creativecommons.org/licenses/by-nc-nd/4.0/


EMOTION

20 40 60 80 100 120 140 160
Number of input nodes allowed

R
eg

io
ns

 o
f I

nt
er

es
t

GAMBLING

20 40 60 80 100 120 140 160
Number of input nodes allowed

0

5

10

15

20

25

30

N
um

be
r o

f s
el

ec
tio

ns

LANGUAGE

20 40 60 80 100 120 140 160
Number of input nodes allowed

R
eg

io
ns

 o
f I

nt
er

es
t

RELATIONAL

20 40 60 80 100 120 140 160
Number of input nodes allowed

0

5

10

15

20

25

30

N
um

be
r o

f s
el

ec
tio

ns

SOCIAL

20 40 60 80 100 120 140 160
Number of input nodes allowed

R
eg

io
ns

 o
f I

nt
er

es
t

WM

20 40 60 80 100 120 140 160
Number of input nodes allowed

0

5

10

15

20

25

30

N
um

be
r o

f s
el

ec
tio

ns

DA
VA

VIS

SOM

LIM
FP

DM

SUB

DA
VA

VIS

SOM

LIM
FP

DM

SUB

DA
VA

VIS

SOM

LIM
FP

DM

SUB

Figure S1: Analysis across functional subsystems (group-level). Evolution of the number of selections (from 0-white,

to 30-red) of each Region of Interest (ROI) with respect to the number of input nodes allowed U for different tasks

(MOTOR and REST are presented in the main manuscript). ROIs are arranged according to the functional subsystems

described by Yeo and colleagues [35]. The cerebellum is included in the "subcorticals" subsystem for visualisation

and corresponds to the last two lines (left and right hemispheres)
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Figure S2: Robustness analysis. Evolution of the correlation between structure-informed FSI and empirical functional

connectivity Femp as a function of the number of ROIs removed from the consensus input set. Dashed lines represent

the three baselines, i.e. the correlation between Femp and (i) the adjacency matrix of the connectome, (ii) FSI

based on a re-labelled connectome and (iii) FSI obtained with a random input set. We consider 50 random removal

orderings.
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Figure S3: Robustness analysis. Evolution of the correlation between structure-informed FSI and empirical functional

connectivity Femp as a function of the number of ROIs removed from the consensus input set. Dashed lines represent

the three baselines, i.e. the correlation between Femp and (i) the adjacency matrix of the connectome, (ii) FSI based

on a re-labelled connectome and (iii) FSI obtained with a random input set. The removal ordering is fixed either by

increasing weighted degree or decreasing model controllability.
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1 Left Fronto-marginal gyrus and sulcus 5 2 0 0 3 99 5 0 DMN

2 Left Inferior occipital gyrus and sulcus 0 0 0 0 0 0 0 0 VIS

3 Left Paracentral lobule and sulcus 92 99 97 97 99 11 90 97 SOM

4 Left Subcentral gyrus (central operculum) and sulci 0 0 0 0 0 0 1 0 SOM

5 Left Transverse frontopolar gyri and sulci 97 28 0 53 86 100 100 2 DMN

6 Left Anterior part of the cingulate gyrus and sulcus 
(ACC) 1 0 0 2 8 97 2 0 DMN

7 Left Middle-anterior part of the cingulate gyrus and 
sulcus (aMCC) 1 1 0 0 0 2 3 0 VA

8 Left Middle-posterior part of the cingulate gyrus and 
sulcus (pMCC) 1 3 1 0 5 0 1 0 SOM

9 Left Posterior-dorsal part of the cingulate gyrus (dPCC) 100 97 10 85 100 97 100 53 DMN

10 Left Posterior-ventral part of the cingulate gyrus (vPCC) 100 100 100 100 99 96 100 100 DMN

11 Left Cuneus 0 0 0 0 0 0 4 0 VIS

12 Left Opercular part of the inferior frontal gyrus 0 0 0 0 0 0 0 0 VA

13 Left Orbital part of the inferior frontal gyrus 97 86 80 84 75 99 26 54 DMN

14 Left Triangular part of the inferior frontal gyrus 1 0 0 2 0 17 0 0 DMN

15 Left Middle frontal gyrus 0 0 0 0 0 0 0 0 FP

16 Left Superior frontal gyrus 0 0 0 0 0 0 0 0 DMN

17 Left Long insular gyrus and central sulcus of the insula 100 100 86 98 100 2 100 100 VA

18 Left Short insular gyri 9 6 1 2 8 5 22 2 VA

19 Left Middle occipital gyrus 0 0 0 0 0 0 0 0 VIS

20 Left Superior occipital gyrus 0 0 0 0 0 0 0 0 VIS

21 Left Lateral occipito-temporal gyrus 0 0 0 1 0 0 0 0 VIS

22 Left Lingual gyrus, ligual part of the medial occipito-
temporal gyrus 0 0 0 0 0 0 0 0 VIS

23 Left Parahippocampal gyrus, parahippocampal part of 
the medial occipito-temporal gyrus 100 100 100 99 100 98 100 99 SUB

24 Left Orbital gyri 11 5 0 9 3 97 2 3 LIM

25 Left Angular Gyri 0 1 0 0 0 39 0 0 DMN

26 Left Supramarginal gyrus 0 0 0 0 0 1 0 0 VA

27 Left Superior parietal lobule 0 0 0 0 0 0 0 0 DA

28 Left Postcentral gyrus 0 0 0 0 0 0 0 0 SOM

29 Left Precentral gyrus 0 0 0 0 0 0 0 0 SOM

30 Left Precuneus 0 0 0 1 0 4 0 0 DMN

31 Left Straight gyrus 100 100 100 100 100 100 100 100 LIM

32 Left Subcallosal area 100 100 100 100 100 100 100 100 SUB

Number of selections by task
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33 Left Anterior transverse temporal gyrus 23 18 37 4 32 0 19 19 SOM

34 Left Lateral aspect of the superior temporal gyrus 1 1 8 1 0 0 0 0 SOM

35 Left Planum polare of the superior temporal gyrus 99 100 100 100 100 71 100 99 LIM

36 Left Planum temporale or temporal plane of the superior 
temporal gyrus 0 1 0 0 2 0 0 0 VA

37 Left Inferior temporal gyrus 0 0 0 1 0 22 0 0 LIM

38 Left Middle temporal gyrus 0 0 0 0 0 4 0 0 DMN

39 Left Horizontal ramus of the anterior segment of the 
lateral sulcus 64 29 26 21 25 97 10 15 DMN

40 Left Vertical ramus of the anterior segment of the lateral 
sulcus 36 15 6 11 9 99 8 3 DMN

41 Left Posterior ramus of the lateral sulcus 1 1 0 0 3 0 0 1 SOM

42 Left Occipital pole 0 0 5 7 0 100 0 0 VIS

43 Left Temporal pole 100 100 100 100 100 99 84 76 LIM

44 Left Calcarine sulcus 0 0 0 0 0 0 0 0 VIS

45 Left Central sulcus 0 0 0 0 0 0 0 0 SOM

46 Left Marginal branch of the cingulate sulcus 1 0 0 1 3 0 0 2 VA

47 Left Anterior segment of the circular sulcus of the insula 99 94 7 88 89 100 98 77 DMN

48 Left Inferior segment of the circular sulcus of the insula 3 16 3 1 13 0 14 3 VA

49 Left Superior segment of the circular sulcus of the insula 1 1 0 0 0 0 1 0 VA

50 Left Anterior transverse collateral sulcus 100 100 100 100 50 100 50 100 LIM

51 Left Posterior transverse collateral sulcus 0 3 85 82 0 0 0 68 VIS

52 Left Inferior frontal sulcus 0 0 0 0 0 0 0 0 FP

53 Left Middle frontal sulcus 0 0 0 0 0 65 0 0 FP

54 Left Superior frontal sulcus 0 0 0 0 0 20 0 0 DMN

55 Left Sulcus intermedius primus 99 84 3 4 95 99 34 0 DMN

56 Left Intraparietal sulcus and transverse parietal sulci 0 0 0 0 0 0 0 0 DA

57 Left Middle occipital sulcus and lunatus sulcus 0 0 0 0 0 0 0 0 VIS

58 Left Superior occipital sulcus and transverse occipital 
sulcus 0 0 0 0 0 0 0 0 VIS

59 Left Anterior occipital sulcus and preoccipital notch 0 0 1 1 0 0 0 0 VIS

60 Left Lateral occipito-temporal sulcus 1 0 1 0 0 0 0 0 DA

61 Left Medial occipito-temporal sulcus and lingual sulcus 1 2 13 8 0 0 0 1 VIS

62 Left Lateral orbital sulcus 6 2 0 2 0 100 2 0 FP

63 Left Medial orbital sulcus 100 100 100 100 100 100 100 100 LIM

64 Left Orbital sulci 26 3 1 62 67 100 94 9 FP

65 Left Parieto-occipital sulcus 0 0 0 0 0 0 83 0 VIS

66 Left Pericallosal sulcus 100 100 95 100 100 100 100 98 DMN
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67 Left Postcentral sulcus 0 0 0 0 0 0 0 0 DA

68 Left Inferior part of the precentral sulcus 0 1 0 0 0 1 0 0 DA

69 Left Superior part of the precentral sulcus 0 0 0 0 0 0 0 0 DA

70 Left Suborbital sulcus 100 99 100 100 100 100 100 98 LIM

71 Left Subparietal sulcus 28 28 6 11 64 18 7 8 DMN

72 Left Inferior temporal sulcus 0 0 0 0 0 12 0 0 DMN

73 Left Superior temporal sulcus 0 0 2 0 0 4 0 0 DMN

74 Left Transverse temporal sulcus 66 81 67 8 79 0 71 44 SOM

75 Left Cerebellum 0 0 0 0 0 61 0 2 CER

76 Left Thalamus 100 100 100 95 100 99 99 100 SUB

77 Left Caudate 36 7 1 53 15 100 12 4 SUB

78 Left Putamen 49 13 1 19 51 100 30 32 SUB

79 Left Pallidum 100 100 100 100 100 100 100 100 SUB

80 Left Hippocampus 100 100 100 100 100 100 100 100 SUB

81 Left Amygdala 100 100 100 100 100 100 100 100 SUB

82 Left Accumbens area 100 100 100 100 100 100 100 100 SUB

83 Right Thalamus 99 100 100 100 99 100 97 100 SUB

84 Right Caudate 24 6 7 20 11 100 8 12 SUB

85 Right Putamen 86 61 30 51 92 100 68 83 SUB

86 Right Pallidum 100 100 100 100 100 100 100 100 SUB

87 Right Hippocampus 100 100 100 100 100 99 100 100 SUB

88 Right Amygdala 100 100 100 100 100 100 100 100 SUB

89 Right Accumbens area 100 100 100 100 100 100 100 100 SUB

90 Right Fronto-marginal gyrus and sulcus 23 2 1 3 15 100 23 4 FP

91 Right Inferior occipital gyrus and sulcus 0 0 0 0 0 0 0 1 VIS

92 Right Paracentral lobule and sulcus 99 98 100 95 100 98 99 98 SOM

93 Right Subcentral gyrus (central operculum) and sulci 1 6 0 1 59 0 1 3 SOM

94 Right Transverse frontopolar gyri and sulci 10 1 1 0 4 100 9 0 DMN

95 Right Anterior part of the cingulate gyrus and sulcus 
(ACC) 1 0 0 0 3 96 1 0 DMN

96 Right Middle-anterior part of the cingulate gyrus and 
sulcus (aMCC) 1 1 0 0 1 1 2 0 VA

97 Right Middle-posterior part of the cingulate gyrus and 
sulcus (pMCC) 0 2 0 0 14 0 1 1 SOM

98 Right Posterior-dorsal part of the cingulate gyrus (dPCC) 100 99 4 31 100 98 100 21 DMN

99 Right Posterior-ventral part of the cingulate gyrus (vPCC) 100 100 100 100 100 5 100 100 DMN

100 Right Cuneus 0 0 0 0 0 0 1 0 VIS

101 Right Opercular part of the inferior frontal gyrus 0 0 0 0 0 0 0 0 VA
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102 Right Orbital part of the inferior frontal gyrus 90 80 100 96 97 100 29 95 DMN

103 Right Triangular part of the inferior frontal gyrus 1 1 5 2 1 8 0 0 FP

104 Right Middle frontal gyrus 0 0 0 0 0 63 0 0 FP

105 Right Superior frontal gyrus 0 0 0 0 0 0 0 0 DMN

106 Right Long insular gyrus and central sulcus of the insula 99 100 100 98 100 1 99 100 VA

107 Right Short insular gyri 14 9 8 1 42 4 55 12 VA

108 Right Middle occipital gyrus 0 0 0 0 0 0 0 0 VIS

109 Right Superior occipital gyrus 0 0 0 0 0 0 0 0 VIS

110 Right Lateral occipito-temporal gyrus 0 0 1 0 0 0 0 0 VIS

111 Right Lingual gyrus, ligual part of the medial occipito-
temporal gyrus 0 0 0 0 0 0 0 0 VIS

112 Right Parahippocampal gyrus, parahippocampal part of 
the medial occipito-temporal gyrus 100 100 100 100 98 57 100 100 SUB

113 Right Orbital gyri 32 15 4 16 35 97 11 35 LIM

114 Right Angular Gyri 0 0 0 0 1 88 0 0 DMN

115 Right Supramarginal gyrus 0 0 0 0 0 0 0 0 VA

116 Right Superior parietal lobule 0 0 0 0 0 0 0 0 DA

117 Right Postcentral gyrus 0 1 0 0 1 0 0 0 SOM

118 Right Precentral gyrus 0 0 0 1 0 0 0 0 SOM

119 Right Precuneus 0 0 0 1 0 0 0 0 DA

120 Right Straight gyrus 100 100 99 99 99 100 100 99 LIM

121 Right Subcallosal area 100 100 100 100 100 100 100 100 SUB

122 Right Anterior transverse temporal gyrus 57 74 68 13 80 0 65 53 SOM

123 Right Lateral aspect of the superior temporal gyrus 0 0 21 0 61 0 0 2 SOM

124 Right Planum polare of the superior temporal gyrus 100 100 100 99 100 52 100 100 LIM

125 Right Planum temporale or temporal plane of the superior 
temporal gyrus 0 1 0 0 1 0 0 2 SOM

126 Right Inferior temporal gyrus 0 0 0 2 0 0 0 0 DA

127 Right Middle temporal gyrus 0 0 0 1 4 27 0 0 DMN

128 Right Horizontal ramus of the anterior segment of the 
lateral sulcus 38 22 42 12 73 95 14 20 VA

129 Right Vertical ramus of theanterior segment of the lateral 
sulcus 24 21 19 15 28 99 14 21 DMN

130 Right Posterior ramus of the lateral sulcus 2 6 2 0 68 0 2 4 SOM

131 Right Occipital pole 0 0 0 0 0 0 0 0 VIS

132 Right Temporal pole 99 100 98 100 100 100 68 100 LIM

133 Right Calcarine sulcus 0 0 0 0 0 0 0 0 VIS

134 Right Central sulcus 0 0 0 0 11 0 0 0 SOM

135 Right Marginal branch of the cingulate sulcus 2 6 0 0 13 0 2 4 VA

136 Right Anterior segment of thecircular sulcus of the insula 96 32 18 71 54 97 55 26 FP
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137 Right Inferior segment of thecircular sulcus of the insula 6 19 2 2 66 0 22 16 SOM

138 Right Superior segment of thecircular sulcus of the insula 1 3 2 1 4 1 8 1 VA

139 Right Anterior transverse collateral sulcus 100 100 100 100 100 100 47 100 LIM

140 Right Posterior transverse collateral sulcus 1 0 71 8 0 0 0 39 VIS

141 Right Inferior frontal sulcus 0 0 0 0 0 0 0 0 FP

142 Right Middle frontal sulcus 0 0 0 0 0 33 0 0 FP

143 Right Superior frontal sulcus 0 0 0 0 0 15 0 0 DMN

144 Right Sulcus intermedius primus 0 0 1 0 1 94 0 0 DMN

145 Right Intraparietal sulcus and transverse parietal sulci 0 0 0 0 0 0 0 0 DA

146 Right Middle occipital sulcus and lunatus sulcus 0 0 0 0 0 0 0 0 VIS

147 Right Superior occipital sulcus and transverse occipital 
sulcus 0 0 0 0 0 0 0 0 VIS

148 Right Anterior occipital sulcus and preoccipital notch 0 0 0 0 2 0 0 2 VIS

149 Right Lateral occipito-temporal sulcus 1 0 7 4 0 0 0 3 VIS

150 Right Medial occipito-temporal sulcus and lingual sulcus 4 10 27 28 1 0 0 48 VIS

151 Right Lateral orbital sulcus 1 2 0 1 3 98 2 2 FP

152 Right Medial orbital sulcus 100 100 100 100 100 100 100 100 LIM

153 Right Orbital sulci 47 61 2 90 65 100 85 64 FP

154 Right Parieto-occipital sulcus 0 0 0 0 1 0 73 0 VIS

155 Right Pericallosal sulcus 100 100 99 99 100 100 100 100 DMN

156 Right Postcentral sulcus 0 0 0 0 0 0 0 0 DA

157 Right Inferior part of the precentral sulcus 0 0 0 0 0 0 0 0 DA

158 Right Superior part of the precentral sulcus 0 0 0 0 0 0 0 0 DA

159 Right Suborbital sulcus 100 100 100 100 100 100 100 100 DMN

160 Right Subparietal sulcus 6 3 1 3 14 39 6 0 DMN

161 Right Inferior temporal sulcus 1 0 0 0 0 89 0 0 DMN

162 Right Superior temporal sulcus 0 0 0 0 0 1 0 0 DMN

163 Right Transverse temporal sulcus 32 33 62 14 75 0 36 50 SOM

164 Right Cerebellum 0 0 0 0 0 39 0 1 CER
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