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Abstract

Generative adversarial networks (GANs) are known to be a powerful tool
in order to correct image aberrations, and even predict entirely synthetic
images. We describe and demonstrate a method to use GANs trained from
multi-modal magnetic resonance images as a 3-channel input. The training
of the generative network was performed using only healthy images together
with pseudo-random irregular masks. The dataset consisted of just 20 people.
The resulting model was then used to detect anomalies real patient images in
which the anomaly was a tumour. The search was performed using no prior
knowledge of the tumour location, if indeed a tumour was present. Resulting
accuracies are observed to vary significantly on the size of the anomaly. The
area under the receiver operator characteristic curve is observed to be greater
than 0.75 for anomaly sizes greater than 4 cm2.

Introduction

Generative adversarial networks (GANs) consist of a generator network designed
to produce simulated data and a discriminator network designed to discriminate
real from synthetic images. The generator and discriminator networks are trained
together in a zero sum game, with the ideal result that the generator network is
able to produce entirely realistic images. Such networks have been proven to be
extremely versatile, with usage examples varying from image correction [1], and
background removal [2], to the generation of new works of entirely new images from
a text description [3]. The training of such networks from scratch often requires
10s of thousands to more than 100,000 images to achieve acceptable performance.

In the context of medical imaging, GANs have already been used to correct
distortions in images, standardise images from different scanners [4], and even
generate entire synthetic 3D brain volumes [5]. When training GANs it is common
to use a network that has been pre-trained with a large dataset, and subsequently
perform a fine-tuning on the available dataset. This has led to reliable complete
images being generated from masked magnetic resonance images (MRI) [6]. A
review of 150 publications detailing the use case of GANs for medical imaging is
given in Ref. [7].

In this work, we detail the training of a GAN using the method of partial
convolutions [8] with healthy MRI images of the brain from just 20 patients. The
partial convolution layer involves performing the convolution operation only on
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regions of the image in which a mask is present to some degree, where the mask
has been initialised to block random parts of training images for the GAN to
complete. Crucially, this also means the mask is updated based on whether the
convolution was able to condition its output on at least one valid input value.
Ideally, successive applications of the method mean that the mask eventually
disappears.

The model, once trained, was then used to scan a separate set of images via a
custom search algorithm, in which the location of a tumour and indeed whether a
tumour is present is not provided to the model. The ability of the algorithm to
identify anomalous areas of the scan arising from the presence of a tumour is then
assessed.

Method

A dataset consisting of 20 patients from The Cancer Imaging Archive was used [9,
10]. For each patient MRI scans from two different time points were performed,
using a variety of modalities. The two time points corresponded to within 90 days
of chemo-radiotherapy treatment completion and at a clinically determined point
of progression. The MRI modalities contained in the dataset consisted of T1-
weighted (pre- and post-contrast agent), T2-weighted, fluid-attenuated inversion
recovery (FLAIR), apparent diffusion coefficient (ADC), normalised cerebral blood
flow, normalised relative cerebral blood volume, and standardized relative cerebral
blood volume. While the manufacturer and model was not always the same, the
dataset was found to be consistent in terms of pixel spacing (0.6875mm) and axial
slice spacing (6.5mm). Multihance was also found to be consistently used as the
contrast agent.

In order to ensure that only the brain volume was processed as input to the
neural network, a brain mask was generated from NiLearn [11] on the basis of the
T1-weighted MRI images (post contrast). In the event that NiLearn was unable to
provide a mask for a patient MRI scan, the data point was skipped. A three-channel
image was then created using the FLAIR (red-channel), ADC (green-channel), and
dT1 (blue-channel) images, where dT1 is the difference between the T1-weighted
images pre- and post-contrast. The provided tumour mask was then used to
separate healthy axial slices and slices in which a tumour was present. Example
images in which a tumour was present are shown in Fig. 1, after application of
the brain volume mask. The total dataset of 308 images was then obtained which
were split into training (n=109), test (n=104), and validation (n=95) on the basis
of axial slice number modulo 3.

The GAN model was based on the Keras implementation [12] of the partial
convolution (PConv) method of Ref. [8]. A starting point for the training was
taken from the pre-existing training to the ImageNet dataset [12]. In total 500
epochs were performed with a learning rate of 0.0002, after which improvement
became negligible. Training was performed using the same irregular mask method
of Ref. [12], in which masks are generated from multiple random geometric shapes
and lines. Example masked images are shown in Fig. 2.

In order to detect anomalies, a sequence of scans is made through the image
using rectangular masks of varying size. The model is repeatedly evaluated moving
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Fig 1. Example axial slice from the TCIA dataset [10] of the FLAIR (top-left), ADC
(top-right), and dT1 (bottom-left) images, together with the provided tumour mask
(bottom-right).

Fig 2. Examples of irregular masks made from lines of varying thickness and circles of
varying size applied to the FLAIR channel.

the mask through the image until the entire image has been probed. The presence
of an anomaly is inferred through the value of ak, defined as

ack :=
∑
i

∑
j

(
pcij − ocij

)
, (1)

where k is the mask width of the scan, c is the image channel (dT1, FLAIR
or ADC), i, j are pixels in the mask region, pij is the value of the pixel in the
predicted image and oij is the value of the pixel in the original image. An anomaly
is said to be detected if adT1

k < κ, where κ is a configurable threshold. This then
indicates that increased signal intensity is seen in the image above that expected
by the neural network. The results of scans with k = 50, k = 60, and k = 70 are
combined.
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Results and discussion

A comparison of the predicted images with the original images from the test
dataset using the trained model is shown in Fig. 3. Good agreement can be seen
in the dT1 channel whereas a noticeable reduction in signal intensity is present for
the case of the predicted FLAIR and ADC channels.

Fig 3. Comparison of model predicted images against the ground truth for an image in
the test dataset.

The results of the anomaly scan method described earlier are evaluated using
the axial slice shown in Fig. 1. This is compared against the original image in
Fig. 4. The anomalous area is seen to show good agreement with the area of the
tumour mask in Fig. 1.

The performance of the simple search anomaly detection method was evaluated
using the image slices in which a tumour was determined to be present from the
provided tumour mask. This therefore represents a dataset that is completely
independent from the training, test, and validation samples created from the
healthy images. An anomaly is only considered successfully detected if there is
overlap between the anomalous region and the provided tumour mask. The results
of the simple anomaly scan method described earlier are shown in Fig. 5 as a
function of tumour area, which is determined using the pixel spacing of 0.6875mm
found from the dicom image header. The receiver operator characteristic curves,
shown in Fig. 5 were generated varying the value of κ in the range (−500, 40).
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Fig 4. Comparison of model scan results against an example image with a tumour
present.

Fig 5. Receiver operator characteristic curves for different anomaly sizes.

The values of the area under the curve were determined to be 0.65, 0.75, and 0.77,
cross section area greater than 0, 4, and 7 cm2, respectively. As would be naively
expected, performance is seen to decrease as a function of tumour area, though
consistently remains above the false-positive rate.

The ability of the network to discern anomalies is limited by the amount of
training data, thus improved performance is expected for smaller tumour sizes
with increasing training set size. It will be important to test this assumption with
larger training datasets. An important feature of the method is that no images of
cancerous tissue were used in the training (under the assumption that the provided
tumour masks were accurate), and therefore no labels of whether tumour tissue is
present are relevant. The use of a simple grid search in order to detect anomalies
can be optimised further and is included here to demonstrate the capabilities.
More advanced methods exist and will be useful in subsequent analyses on larger
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datasets (the interested reader is directed to a recent review in Ref. [13]).
It is important to note that while MRI images are used in this example, the

method should be applicable to other modalities. An area under active research
for artificial intelligence is gastrointestinal endoscopy, where AI can be used in the
context of lesion detection and possible cancer regrowth [14]. The potentially large
dataset sizes and variable camera position could potentially make the approach
powerful.

Conclusion

We have demonstrated a method by which a generative adversarial network may
be used to detect tumours with only healthy data used in training. Encouraging
performance is seen from a relatively small dataset of 20 patients together with a
rule-based anomaly detection algorithm. Given the large quantities of available
healthy data, subsequent studies using larger datasets and more advanced anomaly
detection algorithms will be interesting to see the performance limits, especially in
terms of anomaly size.
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