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Abstract 
Summary: Metastases form by dispersal of cancer cells to secondary tissues. They cause a vast ma-

jority of cancer morbidity and mortality. Metastatic clones are not medically detected or visible until later 

stages of cancer development. Thus, clone phylogenies within patients provide a means of tracing the 

otherwise inaccessible dynamic history of migrations of cancer cells. Here we present a new Bayesian 

approach, PathFinder, for reconstructing the routes of cancer cell migrations. PathFinder uses the clone 

phylogeny and the numbers of mutational differences among clones, along with the information on the 

presence and absence of observed clones in different primary and metastatic tumors. In the analysis of 

simulated datasets, PathFinder performed well in reconstructing migrations from the primary tumor to 

new metastases as well as between metastases. However, it was much more challenging to trace mi-

grations from metastases back to primary tumors. We found that a vast majority of errors can be cor-

rected by sampling more clones per tumor and by increasing the number of genetic variants assayed. 

We also identified situations in which phylogenetic approaches alone are not sufficient to reconstruct 

migration routes. 

Conclusions: We anticipate that the use of PathFinder will enable a more reliable inference of migration 

histories, along with their posterior probabilities, which is required to assess the relative preponderance 

of seeding of new metastasis by clones from primary tumors and/or existing metastases. 

Availability: PathFinder is available on the web at https://github.com/SayakaMiura/PathFinder. 

Contact: s.kumar@temple.edu 

 

1 Introduction 

Metastasis (μεθιστάναι, in Gr., to change or transfer) is the spread of ab-

normal cells from the initiated (the primary tumor) anatomical site to sec-

ondary tissues. Cancer is estimated to cause worldwide more than 1.8 mil-

lion deaths a year (Siegel et al., 2020). More than 90% of cancer morbid-

ity and mortality are due to metastases (Welch and Hurst, 2019). Primary 

tumor cells may seed metastases both locally and at a distance, including 

different organs, and cells from metastases may also seed new tumors. 

Over time, cells in primary tumors and metastases undergo mutations, 

producing extensive intra- and inter-tumor genetic heterogeneity observed 

in patients (Williams et al., 2019). The genetic variation found in tumors 

can be used to infer evolutionary relationships of cancer clones within pa-

tients as well as migration paths of cancer cells that have seeded and 

formed metastases (El-Kebir et al., 2018; Chroni et al., 2019; Alves et al., 

2019; Miura et al., 2018; Somarelli et al., 2020). Essentially, the genetic 

heterogeneity of tumors and cancer clones is becoming a valuable tool to 

map the origin and progression of cancer in patients. In these efforts, mo-
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lecular evolutionary and phylogenetic approaches are useful for decipher-

ing how cancer cells evolve, and the pathways of their move from the site 

of origin to other anatomical sites (Miura et al., 2020; Somarelli et al., 

2017; Alves et al., 2019; Chroni et al., 2019; El-Kebir et al., 2018). 

 For example, Figure 1a shows a phylogeny of five observed clones 

(C1-C5), and their tumor locations in a patient with colorectal cancer 

(CRC2 patient) (Leung et al., 2017). In this patient, the primary (P) tumor 

was found in the colon and metastasized to the liver (M). Based on the 

clone phylogeny and the location of observed clones, Leung et al. (2017) 

concluded that a polyclonal migration event seeded the metastasis in the 

colon. That is, multiple genetically different clones from the colon seeded 

the metastasis. In this example, ancestral clones A3 and A4 are the pro-

genitors of the two clones that seeded the metastasis in the liver (Leung et 

al., 2017).   

Because both Leung et al. (2017) and Zafar et al. (2019) inferred two 

P→M cell migration paths (Fig. 1b), the ancestral clone location (ACL) 

is estimated to be P for both A3 and A4. Zafar et al. (2019) used 

MACHINA, a computational approach in which the number of migration 

events, as well as the number of tumors acting as the source of migration 

clones, are minimized (El-Kebir et al., 2018). In counting the number of 

migration paths, MACHINA considers multiple cell migrations between 

the same two tumors (co-migrations) as a single one migration event. The 

minimization of the number of migration events is equivalent to the max-

imum parsimony principle in molecular phylogenetics; it is used to infer 

ancestral states and phylogenetic trees. However, the maximum parsi-

mony approach of MACHINA does not use the information on the amount 

of genetic differentiation among clones, which varies extensively in clone 

phylogenies, as seen in Figure 1a. Some observed clones show a minimal 

difference from their ancestral progenitor clones (e.g., C2 from A2), 

whereas others show much larger differences (e.g., C3 from A3). There-

fore, a probabilistic approach is likely to improve the accuracy of migra-

tion histories inferred, beyond those made possible by the maximum par-

simony approaches.  

In this article, we describe a computational method, named as 

PathFinder, that uses not only the evolutionary relationship but also the 

genetic differentiation among clones to infer migration paths. The 

importance and significance of a probabilistic approach are evident from 

the toy example shown in Figure 2. When the branch length information 

is not available, ACL for ancestral clone A2 can be P, M1, or M2, making 

it impossible to distinguish among the three possible migration histories 

(Fig. 2a.I-III). However, when observing the clone phylogeny with 

branch lengths, we see that ancestral A2 and observed C2 clones are 

genetically identical. So, one would intuitively infer that A2 is found in 

the same tumor as does the observed clone C2, i.e., ACL for A2 is likely 

M1 (Fig. 2b). 

Consequently, the most likely migration history is P→M1→M2. The 

PathFinder approach, described in the next section, predicts that the 

P→M1→M2 path is much more likely than the other two possibilities. In 

contrast, MACHINA infers independent seedings of the two metastases 

from the primary tumor (P→M1 and P→M2) as the most probable migra-

tion scenario. This is because MACHINA does not use branch lengths and 

minimizes the number of sources that contribute seed clones. Therefore, 

the inference of the origin and movements of tumor clones will benefit 

from the use of a probabilistic approach. 

PathFinder employs a Bayesian statistical molecular phylogenetic 

framework for inferring ancestral states (ACLs) and generates clone 

migration pathways between tumors that have the highest posterior prob-

abilities (PPs). PathFinder’s probabilistic approach enables us to select 

from alternative hypotheses of clone migrations statistically. For example, 

PathFinder will allow one to distinguish between the polyclonal seeding 

and reseeding events (Fig. 1b and 1c, respectively) as well as the source 

of seeding of new tumors, i.e., primary tumor versus metastasis (e.g., Fig. 

2). Such distinctions are essential for our understanding of metastasis. It 

is now becoming clear that metastatic processes are complex with multi-

ple clones seeding tumors, multiple tumors acting as the source of migra-

tions, and even bidirectional seeding events occurring (Sanborn et al., 

Figure 1. (a) A phylogeny of cancer cells in a metastatic colorectal cancer patient (CRC2 pa-

tient); redrawn from Zafar et al. (2019). Cancer cells with the same genotype comprise clones 

(C1-C5), and the lengths of branches are proportional to the number of sequence differences 

between clones. The phylogeny is rooted on the germline sequence, which represents a healthy 

and not-mutated cell sequence (Normal). Here, the primary tumor was found in the colon and 

contained three clones (C1, C2, and C4), whereas the metastatic tumor occurred in the liver and 

contained two clones (C3 and C5). In addition to the presence of five clones in this patient, this 

phylogeny shows that at least four other clones existed (ancestral clones, A1 – A4). (b) Migra-

tion history in which two different clones from the colon, together or at different times, migrated 

to the liver and seeded metastases. This solution was inferred by Leung et al. (2017) and, further 

supported by Zafar et al. (2019) who applied the MACHINA approach (El-Kebir et al., 2018). 

(c) An alternative migration history in which clones travelled from colon to liver, but also from 

liver to colon, after the formation of the metastasis from clones from the primary tumor. This 

migration history was inferred by MACHINA when the  number of tumor sources of seed 

clones was not constrained (El-Kebir et al., 2018). 

Figure 2 Clone phylogeny (a) without branch lengths and (b) with branch lengths. In panel a, three possible migration histories are shown, because the ancestral clone A2 may have 

been present in the primary tumor or in one of the two metastases. In panel b, the most likely migration history is shown based on the clone phylogeny with branch lengths, because 

A2 is nearly identical to clone C2 (and genetically different from clones C1 and C3). Branch lengths provide crucial information. The information deducted by branch lengths can be 

used into giving insight for choosing the most likely migration path (P→M1→M2). 
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2015; Choi et al., 2017; Hoadley et al., 2016; Gundem et al., 2015; Eirew 

et al., 2015; Brown et al., 2017)  

In the following, we present the PathFinder approach. Then, we show 

its accuracy in inferring metastatic migration histories by using computer-

simulated datasets in which metastases were seeded by only single clones 

(monoclonal) or by multiple clones (polyclonal), and seeding sources in-

cluded metastases, in addition to primary tumors. We compare the perfor-

mance of PathFinder with MACHINA. We also assessed the impact of 

minimization of tumor-sources and preference of co-migration pathways, 

which are used in MACHINA, on PathFinder’s probabilistic inferences 

(El-Kebir et al., 2018). Finally, we applied PathFinder in the analysis of 

datasets from patients with basal-like breast cancer to show its utility 

(Hoadley et al., 2016). 

2 Methods 

2.1 The PathFinder Method 

PathFinder assumes that the clone phylogeny, the alignment of clone se-

quences, and the anatomical locations of every observed clone are known. 

Using this information, PathFinder will infer the location for every ances-

tral clone (ACL) by using a Bayesian approach and build clone migration 

histories. For simplicity, we use a phylogeny containing three clones (C1, 

C2, and C3) that are found in a primary tumor (P) and two metastases (M1 

and M2), respectively (Fig. 3). In this phylogeny, the normal cells serve as 

the outgroup, and there are two ancestral clones (A1 and A2) for which the 

anatomical location is not known. PathFinder infers ACLs for A1 and A2 

by advancing the Bayesian approach of ancestral state inference (Yang et 

al., 1995) (Fig. 3). In this case, we estimate branch lengths of the clone 

phylogeny by using the clone sequence alignment along with the estimates 

of ACLs. In this joint inference, the instantaneous rates of state changes 

between the presence and absence of variants are assumed to be equal, and 

between different tumor states are assumed to be equal as well. 

In this case, 𝑥1, 𝑥2, and 𝑥3 represent the location of clones C1, C2, and 

C3, respectively. 𝑦1 and 𝑦2 are the ACLs of clones A1 and A2. Vector 𝒙 =

 (𝑥1, 𝑥2, 𝑥3) and 𝒚 =  (𝑦1, 𝑦2). The probability of observing a given con-

figuration of 𝒙 is  

 

𝑓(𝒙; 𝒃) = ∑ ∑ 𝑃𝑦1
× 𝑃𝑦1𝑥1

(𝑏1) × 𝑃𝑦1𝑦2
(𝑏2) × 𝑃𝑦2𝑥2

(𝑏3) × 𝑃𝑦2𝑥3
(𝑏4)𝑦2𝑦1

, 

[eq. 1] 

where 𝒃 =  (𝑏1, 𝑏2, 𝑏3, 𝑏4) is the vector of branch lengths in the example 

clone phylogeny derived from clone sequence alignment. Here, 𝑃𝑖𝑗(𝑏𝑘) is 

the probability that the given clone will remain in the same location (i = j) 

or move to a different location (i ≠ j) after 𝑏𝑘 substitutions on branch 𝑘. To 

compute 𝑃𝑖𝑗(𝑏𝑘), we use a mathematical model of instantaneous state 

change in which the probability of movement from any locations to another 

location is equal.  

Pursuing the Bayesian approach for computing the posterior probability 

of each possible configuration for two ancestral clones 𝒚 = (𝑦1, 𝑦2), we 

write: 

  𝑓(𝒚|𝒙; 𝒃) = 𝑓(𝒚)𝑓(𝒙|𝒚; 𝒃) 𝑓(𝒙; 𝒃)⁄ ,      [eq. 2] 

where 𝑓(𝒚) is the prior probability of occurrence of 𝒚 and is given by 

  𝑓(𝒚) =  𝑃𝑦1
× 𝑃𝑦1𝑦2

(𝑏2).           [eq. 3] 

The conditional probability of observing 𝒙 for a given set of ancestral clone 

locations 𝒚 is: 

  𝑓(𝒙|𝒚; 𝒃) = ∑ 𝑃𝑦1𝑥1
(𝑏1) × 𝑃𝑦2𝑥2

(𝑏3) × 𝑃𝑦2𝑥3
(𝑏4).𝑦1

     [eq. 4] 

Using this information, we compute the posterior probability of the pres-

ence of an ancestral clone (e.g., A2) in the metastasis M1 by 

𝑃𝑃(A2 in M1) =  𝑓(𝑦2 = M1|𝒙; 𝒃) = ∑ 𝑓(𝒚)𝑓(𝒙|𝒚; 𝒃)𝒚;𝑦1=𝑀1 𝑓(𝒙; 𝒃)⁄ .

                              [eq. 5] 

Similarly, we compute the posterior probability of the presence of A2 in 

metastasis M2 and primary tumor P. The ACL for A1 will then be the lo-

cation with the highest posterior probability. By default, PathFinder as-

sumes that the seeding events began from the primary tumor, e.g., (El-

Kebir et al., 2018), so we set ACL(A1) = P. 

In the explanation above, for simplicity purposes, each clone was as-

sumed to be present in only one location. However, in tumor datasets from 

patients, we often encounter the same clone in multiple locations. For these 

datasets, we include each such clone in the clone phylogeny as many times 

as the number of different locations in which it is present. We append a 

data column to the clone sequence alignment, which contains the tumor 

location. In this way, tips of the clone phylogeny are distinguished by their 

location in the phylogeny used in PathFinder. 

After estimating PP of all ACLs for all the ancestral clones in the clone 

phylogeny, we traverse the clone tree to generate all possible migration 

histories (MH) as directed graphs of cell migrations whenever ACLs are 

not the same for the pair of nodes connected by a branch. The probability 

Figure 4. Examples of clone seeding scenarios used for generating simulated 

data (El-Kebir et al., 2018), arranged by complexity: single clones migrating 

from single tumor-sources (mS, monoclonal single-source seeding) or from mul-

tiple tumors (pS:, polyclonal single-source seeding), and multiple clones migrat-

ing from multiple sources (pM, polyclonal multi-source seeding) or migrating 

from metastasis back to primary (pR, polyclonal reseeding). Redrawn from 

Chroni et al. (2019). 

Figure 3. A phylogeny of three clones (C1, C2, and C3) found in three tumors (P, 

M1, and M2). Clone relationships with branch lengths (b’s) are shown, along with 

the locality in which each clone is found. A1 and A2 are the ancestral clones, and 

“Normal” refers to the germline/non-cancer cell sequence. 
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of migration history, PMH, is simply the product of the posterior probabili-

ties of all the ACLs involved in that history. By default, the graph with the 

highest PMH is chosen to represent the migration history. By the way, if a 

clone phylogeny is not strictly bifurcating, i.e., some nodes give rise to 

more than two descendants, then PathFinder will explore all possible sets 

of candidate bifurcations for each polytomy (e.g., three alternative bifurca-

tions for a polytomy involving three branches) to select the ACL that re-

ceives the highest PP by applying equations 1-5 to alternative phylogenies. 

Alternatively, one may sum the probability of each cell migration edge 

over all possible migration histories and then assemble a consensus migra-

tion history (cMH). One may specify a threshold PP to consider an ACL to 

be included in the candidate list for generating a collection of possible 

MHs; we used a cut-off of 0.15, but similar results were obtained by using 

0.05. In the final reconstruction, the researcher has the option only to retain 

migration edges that showed an edge probability of 0.5 or higher, which 

we found to be very effective in removing spurious edges. With this option, 

we found that maximum probability MH was as accurate as cMH (see Fig. 

8). It is worth noting that PathFinder reports all the alternative migration 

histories and their normalized probabilities such that the sum of probabili-

ties from all alternative migration histories considered is 1. The software is 

programmed in python and available for use on Windows machines 

(https://github.com/SayakaMiura/PathFinder); a Linux version is being de-

veloped.  

2.2 Assembly and Analysis of Computer Simulated Data  

To evaluate and benchmark the performance of PathFinder, we used an 

independently available data collection that has been analyzed in multiple 

studies (El-Kebir et al., 2018; Chroni et al., 2019). This collection consists 

of datasets simulated with clone evolution and tumor growth models under 

various scenarios. For these datasets, the number of tumors sampled varied 

from 5 to 7, which we refer to as t5 datasets, and between 8 and 11, which 

we refer to as 8-tumor datasets t8 dataset. Overall, the number of tumors 

was 5–11, the number of clones was 6–26, and the number of single nucle-

otide variants (SNVs) was 9–99 (El-Kebir et al., 2018).  

The complexity of the simulated datasets varied based on the number of 

tumor clones migrating, the number of tumor sites acting as sources and/or 

recipients of migration, and the number of metastatic clones migrating back 

to the primary tumor. In total, we tested PathFinder on 80 simulated da-

tasets and four seeding scenarios determining the complexity of migration 

paths (Fig. 4). The datasets are available from https://github.com/raphael-

group/machina. More details about these datasets can be found in El-Kebir 

et al. (2018) and Chroni et al. (2019). 

PathFinder software was used to analyze these datasets to generate con-

sensus migration histories (cMH) using the options noted above. For com-

parative analysis, we retrieved MACHINA results from the PMH-con ap-

proach applied by Chroni et al. (2019). PMH-con was chosen because it 

showed the highest accuracy when compared to PMH-TR and a Bayesian 

biogeographic approach (BBM) (Chroni et al. 2019). Settings in PMH-con 

included constrained of the primary tumor at the root of the tree, and no 

restrictions were placed on the possible seeding scenarios and the number 

of migrations and comigrations. 

In all of these analyses, similar to Chroni et al. (2019) approach, the fo-

cus was on the accuracy of inference of migration histories when the clone 

sequences and phylogeny are already known. Errors are usually involved 

in de-convoluting clones from bulk sequencing data, and in imputing miss-

ing data and correcting false positives and false negatives in single-cell se-

quences exist. However, an analysis of those errors is beyond the scope of 

our article. 

2.3 Accuracy measurements 

For each migration history, we recorded migration paths inferred correctly 

(true positives; TPs), migration paths not found (false negative; FNs), and 

incorrect migration paths (false positives; FPs). We then computed F1-

score for each dataset, which is the harmonic mean of precision and recall:  

  

F1 = 2 × 
precision × recall

precision + recall
  

where 

precision(G, G*) = 
TP

TP + FP
  

 

and 

recall(G, G*) = 
TP

TP + FN
  

 

F1’s were estimated for individual migration histories inferred. When mul-

tiple migration histories were inferred for a dataset, F1 represented the sim-

ple average of F1’s of each migration history. For a collection of datasets, 

the average F1 was also the arithmetic mean of the dataset-specific F1’s. 

2.4 Analysis of an Empirical Data Set 

We applied PathFinder to A1 and A7 datasets from two patients with ba-

sal-like breast cancer (Hoadley et al., 2016). The A1 dataset included eight 

clones from a primary and four metastases (329 SNVs), whereas the A7 

dataset consisted of ten clones from primary and five metastases (478 

SNVs) (Hoadley et al., 2016). We used clone phylogenies that were rooted 

using the germline sequences (normal cells) as outgroups. We conducted a 

tumor migration inference analysis in PathFinder. 

Figure 5. Incomplete clone sampling causes multiple errors. The clone that traveled 

from M1 to M3 (panel a) was not sampled, so a P→M3 seeding event was inferred 

(false positive), instead of a P→M1 (false negative) and a M1→M3 (false negative) 

(panel b). These three errors cannot be corrected by any computational methods, be-

cause there  is no way to assess the presence of the ancestral clone A2 without a 

branching point in the clone phylogeny.   
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3 Results and Discussion 

3.1 Single-source, monoclonal seeding (mS) 

The monoclonal (m) seeding of metastases represents the simplest scenario 

of migration histories. In this case, each metastasis was seeded by only one 

clone, and it received clones from only one tumor (single source, S). First, 

we analyzed the t5 datasets consisting of 5-7 tumors. PathFinder produced 

correct migration histories for 9 out of 10 datasets (average F1 = 0.975). 

There was only one error in one dataset in which a P→M3 seeding event 

was predicted, instead of P→M1→M3. We found this error to be due to 

insufficient sampling of clones that were present in M1 (Fig. 5). The miss-

ing clone originated in the primary tumor and was the ancestor of the clone 

that seeded tumor M3. Therefore, more extensive sampling of clones from 

each anatomical site would be needed to eliminate such errors.  

In the t8 datasets, there was an increase in the number of tumors (8-11), 

the number of clones (19.2), as well as the size of the migration histories. 

The average number of migration paths for these datasets was 7.6, as com-

pared to 4.1 for t5 datasets. For these datasets, PathFinder produced correct 

migration histories for seven datasets (average F1 = 0.92). In one of the 

three datasets for which PathFinder MH contained errors, the problem was 

caused by the non-sampling of some key primary tumor clones. This prob-

lem can only be remedied by sampling more clones per anatomical site. 

For the other two datasets, PathFinder errors were unavoidable because 

different clones with identical sequences existed in two source tumors, 

making it impossible for any computational method to distinguish which 

tumor provided the seed clones. In practical data analysis, it may be possi-

ble to mitigate such errors by sampling more genomic sites (SNPs) that can 

distinguish clones.  

These results show that the inference of migration histories of a large 

number of anatomical sites increases the complexity of migration paths and 

requires more extensive clone sampling and the number of SNPs. 

3.2 Single-source, polyclonal seeding (pS) 

Next, we present results from the analysis of datasets in which multiple 

clones seeded metastasis, polyclonal seeding (p). However, all the seeding 

clones came from the same source (S) for a given metastasis (of course, 

different sources may seed different metastasis). In the simulated data, 2-3 

clones seeded each metastasis. PathFinder produced correct results for 

eight of the t5 datasets (F1 = 0.95). In the t8 datasets, we observed errors in 

four migration histories (F1 = 0.95). The average number of migration paths 

for these datasets was 9.1 as compared to 5.5 for t5 datasets. For two of the 

t8 datasets, computational errors were unavoidable because of incomplete 

sampling of clones. The error in the third dataset was caused by the fact 

that the ancestral clone A2 was equally different from its descendant clones 

found in two tumors (M1 and M4). In this case, PathFinder’s probabilistic 

approach predicted the ACL to M1 or M4 with similar probabilities, result-

ing in two equally likely possibilities: P→M4→M1 and P→M1→M4 (Fig. 

6). For such data, the phylogeny alone is not sufficient, and we need addi-

tional information (e.g., mutational signatures, (Christensen et al., 2020)) 

to remedy the lack of resolution.  

3.3 Multiple-source, polyclonal seeding (pM)  

Next, we explored even more complex and realistic migration histories, in 

which each metastasis was seeded by multiple clones (2-3, polyclonal p) 

that came from multiple tumors (M). For the t5 datasets, PathFinder pre-

dicted correct migration histories for 50% of the datasets (F1 = 0.92), with 

errors found in other datasets again caused by an incomplete sampling of 

clones, making it computationally impossible to reconstruct some of the 

migrations. Therefore, a more accurate migration history inference would 

require more extensive sampling of clones from each tumor.  

The migration histories for t8 datasets became much more extensive, 

containing 10.5 migation paths, as compared to 6.8 for t5 datasets. The F1 

score was 1.0 for four of the datasets, 0.90 - 0.96 for four datasets, and 

lower for the remaining two datasets (0.55 and 0.73). In these cases, again, 

Figure 7. Overall performance of PathFinder for different types of (a) migration histories and (b) datasets with small and large number of tumor sites sampled. Standard errors are 

also shown. (C) A tabular comparison of the difference in F1-scores of PathFinder between the seeding scenarios is shown. The z-scores and the corresponding P values are shown 

below and above the diagonal, respectively.  

Figure 6. An example from polyclonal seeding scenario in 

which the migration history inferred by PathFinder was in-

conclusive. Here, the error was caused by the fact that an an-

cestral clone (A2) is equally different from its descendant 

clones in tumors M1 and M4, e.g., branch lengths for C24 and 

C42 clones are very similar (panel a). This results in very sim-

ilar posterior probabilities for two migration paths: 

P→M4→M1 (panel b), and P→M1→M4 (panel c). To over-

come these type of errors, we need other information (e.g., 

mutational signatures) in addition to clone phylogenies. 
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most of the PathFinder errors were due to a lack of sufficient sampling of 

clones required to detect migrations. Also, many key clones sampled from 

multiple tumors were identical that made it difficult to discern the origins 

of seeding clones in the worse performing dataset. Therefore, more exten-

sive sampling of clones and sequencing of additional SNPs will be needed 

to improve the performance of computational methods. 

3.4 Multiple-source, polyclonal seeding and reseeding (pR) 

The most challenging datasets for PathFinder were those in which the pri-

mary tumor was receiving clones back from one or more metastases. That 

is, clones migrated from some metastases back to the primary tumor (re-

seeding events). These pR datasets were also multiple-source (more than 

two tumors). They included multiple (1-2) clones seeding metastases and 

the reseeding events (single or multiple seeding events from metastasis 

back to primary). For the t5 datasets, 60% of the migration paths were en-

tirely correct (F1 = 0.89). In the worst-performing dataset, no seeding 

clones were part of the randomly selected clone sample in one of the source 

tumors, which meant that one could never infer a vast majority of M→M 

seeding events as well as reseeding. The t8 datasets (F1 = 0.75) had an av-

erage number of migration paths of 10.1 as opposed to 7.2 for t5 datasets. 

Datasets with incorrect migration graphs presented similar issues as the 

datasets from the most straightforward seeding scenarios. 

3.5 Performance by the number of tumors and migrations types 

With the sampling of a higher number of tumors (5-7 vs. 8-11), a higher 

number of clones were also sampled from 13.4 to 20 (a 66% increase, on 

average), but the error (=1-F1) increased from 0.09 to 0.16. This increase 

is proportional to the increase in the number of migration events that in-

creased by 63%. Therefore, the higher the number of migration events, the 

more the error in inferring them correctly. Overall, the highest accuracy 

decrease was seen for simulated datasets that involved reseeding. In these 

cases, the error increased from 14% to 31% for t5 and t8 datasets. 

As expected, less complex migration histories (mS type) were much eas-

ier to infer than the complex ones (pR type). The overall accuracy of mS, 

pS, pM, and pR histories are shown in Figure 7. This patterns arose be-

cause P→M migrations were the easiest to infer (F1 = 0.92) followed by 

M→M (F1 = 0.84).  F1 for M→P was more complex, because PathFinder 

predicted no correct M→P paths for 21 datasets. For others, F1 was 1.0. 

The mS migration histories consisted of a lot of P→M migrations (81%), 

along with a small fraction of M→M migrations (19%). In contrast, pS, 

pM, and pR contained many fewer P→M migrations (77%, 64%, and 48%, 

respectively).  

3.6 The usefulness of MACHINA criteria and the performance of 

most probable MHs  

The parsimony approach in MACHINA uses a hierarchical minimization 

scheme which not only strives to generate the most parsimonious migration 

history by minimizing the number of migrations but also optimizes the 

number of co-migrations such that each co-migration is considered a single 

event. Thus, co-migrations, meaning the events of multiple clones migrat-

ing, are preferred. Finally, it minimizes the number of tumors that can act 

as the sources of seeding clones. We tested if this type of multi-level opti-

mality scheme will be beneficial in selecting more accurate migration his-

tories when PathFinder produces multipole MHs with non-zero probabil-

ity.   

 There were 31 (out of 80) datasets for which PathFinder detected mul-

tiple migration histories with different F1 scores (0.07 < P ≤ 0.81). After 

applying MACHINA’s hierarchical optimality scheme, the F1-scores of the 

migration histories inferred did not improve in most of the cases (Fig. 8). 

Overall, the average F1 for the PathFinder’s consensus MH was 0.83, 

which is close to that after applying MACHINA’s scheme. This could be 

taken to mean that the use of a probabilistic approach obviates the need to 

impose a parsimony principle to infer or fine-tune MH inferences. Figure 

8 also shows that the difference between the choice of a consensus MH and 

the one with the highest probability is rather small, as their F1 scores were 

the same (0.83, respectively). So, one may choose to infer either a consen-

sus or the highest probability migration history in biological analyses. 

3.7 Comparisons of PathFinder with MACHINA 

In Figure 9, we show the comparative performance of PathFinder and 

MACHINA approaches. Results for MACHINA were obtained from 

Chroni et al. (2019), who also analyzed the same datasets under the same 

Figure 8. Scatter plot of F1-scores of PathFinder (consensus migration history, 

MH) and (i) of those with MACHINA’s hierarchical (circles) and (ii) of those with 

PathFinder’s most probable MH (triangles). The graph shows the results for which 

PathFinder found multiple alternative MH (31 datasets). 

Figure 9. Comparative performance of 

PathFinder (black bars) and MACHINA 

(gray bars) for (a) different types of migra-

tion histories and (b) datasets with small and 

large number of tumor sites sampled. Stand-

ard errors and p-values by t-test are also 

shown.  
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conditions. For simpler cases that involved single clones migrating from 

single tumors (mS), PathFinder improved upon MACHINA by 2%. For 

datasets with polyclonal seeding (pS), PathFinder improved the perfor-

mance by 9%. In both cases, as noted earlier, many errors are due to insuf-

ficient tumor or SNV sampling, so it is unlikely that one could improve 

this accuracy much more for these two datasets. The same is likely true for 

pM datasets, in which PathFinder performed 10% better than MACHINA. 

These are significant improvements considering that only 7 – 19% of mi-

gration paths were incorrect for these three types of migrations.  For the pR 

datasets, with reseeding, which are the most complicated migration histo-

ries, did not see a noticeable difference between PathFinder and 

MACHINA (Fig. 9a). Finally, PathFinder performed better than 

MACHINA for datasets with small as well as a large number of tumors 

(Fig. 9b). Many of the differences were not statistically significant in the 

t-tests, mainly because of small sample sizes as the number of datasets an-

alyzed is small within categories. 

These results establish the utility of a probabilistic (PathFinder) over a 

parsimony based approach (MACHINA), as the clone migration inferences 

benefited from the use of branch lengths, showing the power of an evolu-

tionary-aware framework on deciphering especially difficult cases with 

multiple clones moving between tumors. At the same time, it is prudent to 

acknowledge that even a parsimony based approach, as developed in 

MACHINA, is adequate for many datasets. 

3.8 Breast cancer analysis 

We applied PathFinder to two published datasets of basal-like breast can-

cer (Patients A1 and A7) (Hoadley et al., 2016). We first discuss the A7 

dataset that contained ten clones from a primary tumor (breast) and five 

metastases (brain, lung, rib, liver, and kidney). The evolutionary relation-

ships of these clones and the associated tumor sites are shown in Figure 

10a. Analyses of these data by PathFinder predicted two migration events 

from primary to metastases (P→M paths) and five migration events be-

tween metastases (M→M paths) (Fig. 10b). All migration events were 

highly supported in the Bayesian analyses (P = 1.0). 

The P→M paths involved seeding events from the breast tumor to lung 

and brain metastases (Fig. 10b; P = 1.0). The breast to lung seeding is in-

ferred because the ancestral clone A1 was estimated to be present in the 

lung tumor with a P = 1.0, because the genetic sequence of observed clone 

C2 is predicted to be the same as that of A1 (Fig. 10a). The brain metastasis 

is also predicted to be seeded by clones from the breast, the clones found 

within the brain (C4) are closer to the ancestral clone A4 than the lung 

clones.  

PathFinder predicted multiple instances of metastasis to metastasis 

(M→M) in this patient (Fig. 10b). This seeding scenario is different from 

the conclusion of Hoadley et al. (2016), who proposed that the primary 

tumor directly seeded all the metastases. We argue that this is not reasona-

ble based on the observed clone phylogeny and the genetic differences be-

tween the clones. We explain it, for example, for the cluster containing 

clones C3, C5, C8, and C9. All of these clones are found in the liver, kid-

ney, and rib metastases. If the migration history proposed by Hoadley et al. 

(2016) were to be accurate, i.e., breast seeded the metastases in the liver, 

kidney, and rib, and we would expect some breast tumor clones to be pre-

sent near their most recent common ancestor (ancestral clones A2 and A3). 

However, no such clones were observed in the phylogeny, and the best 

inference in the absence of additional clone sampling is to posit many seed-

ings between metastases. Overall, PathFinder suggests many more M→M 

seedings than the P→M seedings in this patient. 

Next, we present the migration history for Patient A1 inferred by Path-

Finder. The A1 dataset included five clones from a primary tumor (breast) 

and four metastases (adrenal, lung, spinal, and liver) (Fig. 11a). Path-

Finder inferred seven P→M, and one M→P paths. There were four more 

migration events (colored in gray, Fig. 11b), but because they were sup-

ported by low values of probabilities (<0.5).  For this dataset, PathFinder 

predicted that all metastases were founded by clones that migrated from 

the primary tumor, which is evident from the structure of the phylogeny 

and consistent with the Hoadley et al.’s conclusions. The ancestral tumor 

sites for the nodes A1, A3, and A4 were predicted to be the primary tumor, 

even though the migration inferences are not highly supported (Fig. 11b). 

For example, the probability of the path to spinal was relatively low 

(0.52). The spinal tumor site contained only clone C9, and its direct ances-

tral node was A1. Although the ancestral tumor site of A1 was predicted to 

be breast (primary), all branches connected to this node A1 were relatively 

long with branch lengths similar to each other. Under this situation, the 

ancestral tumor site cannot be unambiguously determined by the infor-

mation of branch lengths. As a result, the migration event that originated 

from the node A1 obtained low probability support, i.e., the P→M path 

(breast→spinal).  

Similarly, the probabilities of migration paths to adrenal and the lung 

were not very high (0.67 and 0.53, respectively). In these cases, the ances-

tral tumor site at node A3 was challenging to infer by using only the phy-

logenetic information. The ancestral node A3 was leading to many clones 

that were found within the breast, while the lung and adrenal contained 

clone C2 that was directly connected to A3 with a zero branch length. Since 

node A3 was the direct descendant of the root of the phylogeny, the ances-

tral tumor site at the node A3 was likely breast. However, we cannot negate 

the possibility of lung or adrenal as the ancestral tumor sites at this node, 

resulting in low support for these migration paths to lung and adrenal sites.  

Interestingly, PathFinder detected a reseeding event from the lung tumor 

site (P = 1.0) (Fig. 10b). This is because clone C8, observed in the breast 

tumor, is a direct descendant clone of clone C5 that is found within the 

Figure 10. Analysis of Patient A7 with basal-like breast cancer 

(Hoadley et al., 2016). (a) Clone phylogeny and tumor location of 

each clone reported in the original study. Nodes A1-A4 are ancestral 

nodes. (b) Clone migration history predicted by PathFinder. Infer-

ences of migration paths includes many M→M paths, all of which 

have a high P = 1.0. Colors correspond to the tumor location where 

clones were sampled from. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2020. ; https://doi.org/10.1101/2020.07.10.197194doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197194
http://creativecommons.org/licenses/by/4.0/


S. Kumar et al. 

8 

 

lung. Since clone C5 is not observed within any other tumor sites nor C5 

has any other direct descendant clones, only a reseeding event can explain 

this observed pattern. 

Overall, PathFinder predicted alternative migration histories for these 

two empirical datasets, including many seeding events between metastases 

as well as a reseeding event in which a metastatic clone moved back to the 

primary tumor. Our findings are supported by various studies in metastatic 

breast cancer that discuss extensive heterogeneity of tumors as a result of 

seeding or reseeding events by multiple clones between metastases (Yates 

et al., 2017; Savas et al., 2016). Developing PathFinder enabled us to dis-

cover more migration paths between clones and explore alternative migra-

tion histories.  

4 Conclusions 

Accurate computational methods for inferring cell migration routes are 

needed to answer fundamental questions in cancer biology, such as: How 

often do metastatic tumors arise from primary tumors (P→M) versus met-

astatic tumors (M→M)? How often do cells from metastases move back to 

primary tumors (reseeding M→P), and how often do tumors exchange 

clones (M↔M and P↔M)? We also need to know if these propensities 

differ among cancer types and patients. The sequencing of increasing num-

bers of cancer cells and tumors from many patients is poised to provide 

data essential to unravel the complexity of cancer cell movements. These 

data will not be able to fulfil their promise without the development of 

accurate methods to infer migration histories.  

Therefore, the statistical estimation of clone migration histories is vital 

in cancer research as it can model the origin and movements of cancer cells 

between tumors. The only existent method for clone migration inferences 

is based on the maximum parsimony principle (El-Kebir et al., 2018), with 

attempts from researchers to also explore models borrowed from the field 

of biogeography (Alves et al., 2019; Chroni et al., 2019). We have pre-

sented a new Bayesian method that uses the clone phylogeny, including 

clone branch lengths, to estimate most likely migration histories. This ap-

proach increases the accuracy of estimated migration histories, and pro-

vides a direct way to compare alternative possible migration histories.  

 By analyzing the anatomy of errors in the simulated data, we have shown 

that many of the errors were caused by the lack of sufficient sampling of 

clones in each tumor site and a limited number of nucleotide variants for 

each tumor clone. This could be remedied by using clone-specific muta-

tional signatures, structural variants, copy-number alterations, and epige-

netic changes. We hope to integrate such information in the PathFinder 

approach to make it even more accurate, making it more useful as it is be-

coming easier to obtain genomic data from multiple tumors within a pa-

tient.   
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