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30 Abstract

31 The collective control programmes (CPs) that exist for many in-
32 fectious diseases of farm animals rely on the application of diagnostic
33 testing at regular time intervals for the identification of infected an-
34 imals or herds. The diversity of these CPs complicates the trade of
35 animals between regions or countries because the definition of freedom
36 from infection differs from one CP to another. In this paper, we de-
37 scribe a statistical model for the prediction of herd-level probabilities
38 of infection from longitudinal data collected as part of CPs against
39 infectious diseases of cattle. The model was applied to data collected
a0 as part of a CP against bovine viral diarrhoea virus (BVDV) infec-
a tion in Loire-Atlantique, France. The model represents infection as a
a2 herd latent status with a monthly dynamics. This latent status de-
43 termines test results through test sensitivity and test specificity. The
aa probability of becoming status positive between consecutive months is
a5 modelled as a function of risk factors (when available) using logistic
a6 regression. Modelling is performed in a Bayesian framework, using
a7 either Stan or JAGS. Prior distributions need to be provided for the
a8 sensitivities and specificities of the different tests used, for the proba-
a9 bility of remaining status positive between months as well as for the
50 probability of becoming positive between months. When risk factors
51 are available, prior distributions need to be provided for the coeffi-
52 cients of the logistic regression, replacing the prior for the probability
53 of becoming positive. From these prior distributions and from the lon-
54 gitudinal data, the model returns posterior probability distributions
55 for being status positive for all herds on the current month. Data
56 from the previous months are used for parameter estimation. The im-
57 pact of using different prior distributions and model implementations
58 on parameter estimation was evaluated. The main advantage of this
59 model is its ability to predict a probability of being status positive in a
60 month from inputs that can vary in terms of nature of test, frequency
61 of testing and risk factor availability /presence. The main challenge
62 in applying the model to the BVDV CP data was in identifying prior
63 distributions, especially for test characteristics, that corresponded to
64 the latent status of interest, i.e. herds with at least one persistently in-
65 fected (PI) animal. The model is available on Github as an R package
66 (https://github.com/AurMad/STOCfree) and can be used to carry
67 out output-based evaluation of disease CPs.
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e« 1 Introduction

eo For many infectious diseases of farm animals, there are control programmes
70 (CPs) that rely on the application of diagnostic testing at regular time inter-
71 vals for the identification of infected animals or herds. In cattle, such diseases
72 notably include infection by the bovine viral diarrhoea virus (BVDV) or by
73 Mycobacterium avium subspecies paratuberculosis (MAP). These CPs are ex-
72 tremely diverse. Their objective can range from decreasing the prevalence of
75 infection to eradication. Participation in the CP can be voluntary or com-
76 pulsory. The classification of herds regarding infection status can be based
7z on a wide variety of testing strategies in terms of the nature of the tests used
s (identification of antibodies vs. identification of the agent), the groups of
7o animals tested (e.g. breeding herd vs. young animals), number of animals
so tested, frequency of testing (once to several times a year, every calf born...).
s1 Even within a single CP, surveillance modalities may evolve over time. Such
s2 differences in CPs were described by van Roon et al. (2020a) for programmes
s targeting BVDV infections and by Whittington et al. (2019) for programmes
s against MAP.

85 Differences in surveillance modalities can be problematic when purchas-
ss ing animals from areas with different CPs because the free status assigned
sz to animals or herds might not be equivalent between CPs. A standardised
ss method for both describing surveillance programmes and estimating confi-
so dence of freedom from surveillance data would be useful when trading animals
90 across countries or regions. While inputs can vary between programmes, the
o1 output needs to be comparable across programmes. This is called output-
e based surveillance (Cameron, 2012). Probabilities measure both the chance
s of an event and the uncertainty around its presence/occurrence. If well de-
o« signed, a methodology to estimate the probability of freedom from infection
os would meet the requirements of both providing a confidence of freedom from
o6 infection as well as of being comparable whatever the context.

o7 Currently, a common quantitative method used to substantiate freedom
e from infection to trading partners is the scenario tree method (Martin et al.,
oo 2007). The method is applied to situations where there is a surveillance
wo programme in place, with no animals or herds confirmed positive on testing.
11 What is estimated with the scenario tree method is the probability that the
102 infection would be detected in the population if it were present at a chosen
103 design prevalence. The output from this approach is the probability that
s infection prevalence is below the design prevalence given the negative test
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s results (Cameron, 2012). Therefore, this method is well suited for situations
ws where populations are free from infection and those who want to quantify
w7 this probability of freedom from infection, e.g. for the benefit of trading
ws partners (Norstrom et al., 2014).

100 In a context where disease is controlled but still present, it would only
1o be safe to trade with herds that have an estimated probability of freedom
u1 from infection that is deemed sufficiently high or, equivalently, a probability
12 of infection that is deemed sufficiently low. Identifying these herds involves
us  estimating a probability of infection for each herd in the CP and then defining
ua  a decision rule to categorise herds as uninfected or infected based on these
s estimated probabilities.

116 In this paper, we propose a method to estimate herd level probabilities
uz of infection from heterogeneous longitudinal data generated by CPs. The
us  method predicts herd-month level probabilities of being latent status positive
1o from longitudinal data collected in CPs. The input data are test results, and
120 associated risk factors when available. Our main objective is to describe
121 this modelling framework by showing how surveillance data are related to
22 the probabilities of infection (strictly speaking, probabilities of being latent
23 status positive) and by providing details regarding the statistical assumptions
122 that are made. A secondary objective is to compare two implementations of
125 this modelling framework, one in JAGS (Plummer, 2003) and one in Stan
126 (Stan Development Team, 2021), for the estimation of these probabilities of
127 being latent status positive. The comparison is performed using surveillance
g data collected as part of a CP against BVDV infection in Loire-Atlantique,
120 France. The challenges of defining prior distributions and the implications
130 of using different prior distributions are discussed. The functions to perform
11 the analyses described in this paper are gathered in an R package which is
132 available from GitHub (https://github.com/AurMad/STOCfree).

s 2 Materials and methods

2 2.1 Description of the model
135 2.1.1 Conceptual representation of surveillance programmes

136 Surveillance programmes against infectious diseases can be seen as imperfect
137 repeated measures of a true status regarding infection. In veterinary epidemi-
138 ology, the issue of imperfect testing has traditionally been addressed using


https://github.com/AurMad/STOCfree
https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.197426; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

130 latent class models. With this family of methods, the true status regarding
o infection is modelled as an unobserved quantity which is linked to test results
w1 through test sensitivity and specificity. Most of the literature on the sub-
2 ject focuses on estimating both test characteristics and infection prevalence
13 (Collins & Huynh, 2014). For the estimations to work, the same tests should
s be used in different populations (Hui & Walter, 1980), the test characteristics
us should be the same among populations, and test results should be condition-
us ally independent given the infection status (Toft et al., 2005; Johnson et al.,
w7 2009) ; although some of these assumptions can be relaxed in a Bayesian
us framework. Latent class models can also be used to estimate associations
1o between infection, defined as the latent class, and risk factors when the test
10 used is imperfect (Fernandes et al., 2019). In the study by Fernandes et al.
151 (2019), the latent class was defined using a single test, through the prior
52 distributions put on sensitivity and specificity. When using latent class mod-
153 els with longitudinal data, the dependence between successive test results
s in the same herds must be accounted for. In the context of estimating test
155 characteristics and infection prevalence from 2 tests in a single population
s from longitudinal data, Nusinovici et al. (2015) proposed a Bayesian latent
157 class model which incorporated 2 parameters for new infection and infection
158 elimination. The model we describe below combines these different aspects
150 of latent class modelling into a single model.

160 We propose using a class of models called Hidden Markov Models (HMM,
11 see Zucchini et al. (2017)). Using surveillance programmes for infectious dis-
162 eases as an example, the principles of HMMs can be described as follows:
163 the latent status (class) of interest is a herd status regarding infection. This
16a  status is evaluated at regular time intervals: HMMs are discrete time mod-
165 els. The status at a given time only depends on the status at the previous
s time (Markovian property). The status of interest is not directly observed,
17 however, there exists some quantity (such as test results) whose distribution
s depends on the unobserved status. HMMs have been used for decades in
160 speech recognition (Rabiner, 1989) and other areas. They have also been
7o used for epidemiological surveillance (Le Strat & Carrat, 1999; Touloupou
et al., 2020), although not with longitudinal data from multiple epidemiolog-
172 ical units such as herds. The model we developed is therefore a latent class
173 model that takes into account the time dynamics in the latent status. The
7o probability of new infection between consecutive time steps is modelled as a
175 function of risk factors.

176 Figure 1 shows how surveillance programmes are represented in the model
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Figure 1: Conceptual representation of the implementation of a surveillance
programme within a herd. The focus of the model is the latent status regard-
ing infection, which is modelled at the herd-month level. This status partly
depends on risk factors and determines test results. In this diagram, risk
factors are represented as green dots when present and available test results
as blue shaded squares. The model predicts a probability of infection for the
most recent month in the surveillance programme using all the data collected
for the estimation of model parameters.

177 as a succession of discrete time steps. The focus of this model is a latent
s status evaluated at the herd-month level. This latent status is not directly
179 observed but inferred from its causes and consequences incorporated as data.
180 'The consequences are the test results. Test results do not have to be available
181 at every time step for the model to work, although the estimation will be
1.2 ore accurate with a large number of test results. The causes of infection are
183 risk factors of infection. The model estimates this latent status monthly, and
18 predicts it for the last month of data. These herd-month latent statuses will

s be estimated /predicted from test results and risk factors recorded in each
186 herd.

17 2.1.2 Modelling framework, inputs and outputs

188 The model is designed to use longitudinal data collected as part of surveil-
10 lance programmes against infectious diseases. In such programmes, each herd
10 level status is re-evaluated when new data (most commonly test results, but
101 may also be data related to risk factors) are available. The model mimics
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102 this situation by predicting the probability of a positive status for all herds
103 in the CP on the last month of available data. Data from all participating
10 herds up to the month of prediction are used as historical data for parameter
105 estimation (Figure 1).

106 The estimation and prediction are performed within a Bayesian frame-
17 work using Markov Chain Monte Carlo (MCMC). The model encodes the
ws relationships between all the variables of interest in a single model. Each
190 variable is modelled as drawn from a statistical distribution. The estimation
200 requires prior distributions for all the parameters in the model. These priors
200 are a way to incorporate either existing knowledge or hypotheses in the es-
202 timation. For example, we may know that the prevalence of herds infected
203 with BVDV in our CP is probably lower than 20%, certainly lower than 30%
200 and greater than 5%. There are different ways of specifying such constraints
205 Using statistical distributions. We will briefly describe two that are used in
206 different places in our modelling framework. The first one consists in using a
207 Beta distribution. The Beta distribution is bounded between 0 and 1, with
208 2 parameters o and § determining its shape. With the constraints specified
200 above, we could use as a prior distribution Beta(a = 15,3 = 100)'. The
210 second one consists in using a normal distribution on the logit scale. The
211 principle of the logit transformation is to map probabilities that are bounded
212 between 0 and 1 onto an interval that extends from —oo to 400 . Quantities
213 defined on the logit scale, can be mapped back onto the probability scale us-
21 ing the inverse logit transformation 2. This is extremely convenient because
215 it allows the use of normal distributions on the logit scale, whose mean and
216 standard deviation have an intuitive meaning. With the constraints specified
217 above, we could use as a prior distribution a Normal(u = —2,0% = 0.09) .
218 If we do not know anything about this infection prevalence (which is rare), we
210 could use a Beta(a =1, = 1) prior, which is uniform between 0 and 1 ; or
20 a Normal(p = 0,0? = 10) on the logit scale. From the model specification,

!The Beta(a = 15,8 = 100) distribution has a mean of 0.13 and a standard deviation
of 0.03. In R, it can be plotted using the following instructions curve(dbeta(x, 15,
100))

2The logit transformation is defined as logit(p) = In(7%;) and the inverse logit trans-

formation is defined as logit™!(x) = 1_71; A value of 0 on the logit scale corresponds to
a probability of 0.5.
3The logit ' Normal(p = —2,02 = 0.09) distribution has a mean of 0.12 and a

standard deviation of 0.03. In R, it can be plotted using the following instructions
curve (STOCfree: :dnorm_logit(x, -2, .3)).
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221 the prior distributions and the observed data, the MCMC algorithm draws
222 samples from the posterior distributions of all the variables in the model.
223 These posterior distributions are the probability distributions for the model
224 parameters given the data and the prior distributions. MCMC methods are
225 stochastic and iterative. Each iteration is a set of samples from the joint pos-
226 terior distributions of all variables in the model. The algorithm is designed
227 to reach the target joint posterior distribution, but at any moment, there is
228 no guarantee that it has done. To overcome this difficulty, several indepen-
220 dent instances of the algorithm (i.e. several chains) are run in parallel. For a
230 variable, if all the MCMC draws from the different chains are drawn from the
231 same distribution, it can be concluded that the algorithm has reached the
232 posterior distribution. In this case, it is said that the model has converged.
233 The focus of our model is the monthly latent status of each herd. This
230 latent status depends on the data on occurrence of risk factors and it affects
235 test results. The data used by the model are the test results and risk factors.
236 At each iteration of the MCMC algorithm, given the data and priors, a herd
237 status (0 or 1) and the coefficients for the associations between risk factors,
238 latent status and test results are drawn from their posterior distribution.

230 In the next 3 sections, the parameters for which prior distributions are
200 Tequired, i.e. test characteristics, status dynamics and risk factor parameters,
221 are described. The outputs of Bayesian models are posterior distributions for
222 all model parameters. Specifically, in our model, the quantities of interest
a3 are the herd level probabilities of being latent status positive on the last
a4 test month in the dataset as well as test sensitivity, test specificity, infection
205 dynamic parameters and parameters for the strengths of association between
26 risk factors and the probability of new infection. This is described in the
227 corresponding sections.

28 2.1.3 Latent status dynamics

210 Between test events, uninfected herds can become infected and infected herds
250 can clear the infection. The model represents the probability of having a
251 positive status at each time step as a function of the status at the previous
22 time step (Figure 2). For the first time step when herd status is assigned,
253 there is no previous status against which to evaluate change. From the second
254 time step when herd status is assigned, and onwards, herds that were status
255 negative on the previous time step have a certain probability of becoming
256 status positive and herds that were status positive have a certain probability
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Figure 2: Modelling of infection dynamics. The diagram shows hypothetical
latent statuses (0 for negative; 1 for positive) as a function of time in month,
with examples of all possible transitions. m = p(S; = 1) is the probability
of being status positive at the first point in time, 7 = p(S; = 1|S;_1 = 0) is
the probability of becoming status positive and 7 = p(S; = 1|S;-1 = 1) is
the probability of remaining status positive.

257 of remaining status positive.

258 These assumptions can be summarised with the following set of equa-
20 tions!. The status on the first time step (S;) is a Bernoulli event with a
260 normal prior on the logit scale for its probability of occurrence:

S1 ~ Bernoulli(m) (1)

261
logit(mi) ~ Normal(fix,,02) (2)
262 From the second time step when herd status is assigned, and onwards,

263 a positive status is also a Bernoulli event (S;) with a probability of occur-
26a Tence that depends on the status at the previous time step as well as on
26s the probability of becoming status positive and the probability of remain-
266 1ing status positive. In this case, the probability of becoming status positive
27 is 71 = p(S; = 1/S;-1 = 0) and the probability of remaining positive is
268 T — p(St = 1’5,5,1 = 1).

Sy ~ Bernoulli(m;) (3)

4Statuses are estimated/predicted at the herd-month level. Herd is omitted from the
notation to facilitate reading. S; should be read as Sp; where h represents the herd.
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269

if S; 1 =0
M= (4)
T S =1
270
logit(t1) ~ Normal(pr,, 02 (5)
logit(t2) ~ Normal(p,, o2 (6)
272 Therefore, the status dynamics can be completely described by 7y, 71 and

273 T9.

27za 2.1.4 Incorporation of information on risk factors for new infec-
275 tion

276 The probability of new infection is not the same across herds. For example,
277 herds that introduce a lot of animals or are in areas where infection preva-
s lence is high could be at increased risk of new infection (Qi et al., 2019).
270 Furthermore, the association between a given risk factor and the probability
280 of new infection could be CP dependent. For example, the probability of
2s1  introducing infection through animal introductions will depend on the infec-
232 tion prevalence in the population from which animals are introduced. As a
283 consequence, estimates for these associations (as presented in the literature)
28¢ could provide an indication about their order of magnitude, but their preci-
285 sion may be limited. On the other hand, the CPs which are of interest in this
236 work usually generate large amounts of testing data which could be used to
g7 estimate the strengths of association between risk factors and new infections
g8 within a given CP. The variables that are associated with the probability of
280 new infection could increase the sensitivity and timeliness of detection.

200 When risk factors for new infection are available, the model incorporates
201 this information by modelling 77 as a function of these risk factors through
202 logistic regression, instead of the prior distribution for 7.

logit(Tin) = Xni0 (7)
203 where Xj; is a matrix of predictors for herd A at time ¢ and 0 is a vector
204 Of coefficients. Normal priors are used for the coefficients of the logistic
205 Tegression.

0; ~ Normal(p;, o;) (8)

10
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Figure 3: Relation of the model latent status to test result. Sensitivity is the
probability of a positive test result in a status positive herd. Specificity is
the probability of a negative test result in a status negative herd.

206 2.1.5 Test characteristics

207 'The model allows the inclusion of several test types but for the sake of clarity,
208 we show the model principles for only one test type. These principles can be
200 extended to several tests by specifying prior distributions for all tests.

300 Tests are modelled as imperfect measures of the latent status (Figure 3).
;1 Test sensitivity is the probability of a positive test result given a positive
w02 latent status (Se = p(T' = 1|S = 1), refers to true positives) and test speci-
303 ficity is the probability of a negative test result given a negative latent status
20s  (Sp=p(T = 0[S = 0), refers to true negatives).

305 Test result at time ¢ is modelled as a Bernoulli event with probability
36 p(T}) of being positive.

T; ~ Bernoulli(p(Ty)) 9)

307 The relation between the probability of testing positive, the probability
;08 Of a positive status, test sensitivity and test specificity is the following:

) = 10
p(1i) {Se if S, =1 (10)

300 Information or hypotheses regarding test characteristics are incorporated
310 in the model as priors modelled by Beta distributions:

Se ~ Beta(Se,, Sey) (11)

11
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311

Sp ~ Beta(Spa, Spy) (12)

a2 2.1.6  Prediction of a probability of infection in JAGS

a1z In JAGS, a specific step was needed in order to predict the final probability
s of being status positive given historical data and a test result on the month of
a5 prediction, when such a test result was available. In Stan, this step was not
a1e necessary because the forward algorithm directly predicted the probability
a1z of being status positive in the last month. In explaining how predictions are
sis performed in JAGS, we use the following notation: ¢ is the predicted value
310 for y, 3 is the estimated value for 3. The equation y= 3.z means that the
20 predicted value for y is equal to x (data) times the estimated value for £.

321 The model predicts herd-level probabilities of being latent status positive
322 on the last month in the data mimicking regular re-evaluation as new data
323 come in. If there is no test result available on this month, the predicted
224 probability of being status positive (called 7;) is the predicted status on the
325 previous month times 7y, if the herd was predicted status negative or times
26 7 if the herd was predicted status positive (Table 1)°. This can be written

327 aS:
3 o 7y if S, =0
T = p(S|St-1, Te, T2) = A (13)
: Fo if Sy =1
328 where:
71 = logit 1 (X,0) (14)
320 If a test result was available, the prediction must combine information

330 from the test as well as previous information. The way to estimate this
san predicted probability from p(S;) and test results can be derived from Table 1.
;2 The predicted probability of being status positive can be computed as:

(1—Se).p(S;y) T =0
&\ G (1-Se).p(S;)+Sp.(1-p(5;)) b
p(St|Tt7St) = pSe_p(gf)) 8 f (15)
SerBnra-spapEy 1= 1
333 where T; = 1 when the test at time t is positive, T; = 0 when it is negative

5Here 71; is predicted from herd-month specific risk factors while 7 is the same for all
herds and estimated from historical data.

12
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Table 1: Probability of test result by herd status. Cells on the first row are
test positive herds with true positives on the left-hand side and false positives
on the right-hand side. Cells on the second row are test negative herds with
false negatives on the left-hand side and true negatives on the right-hand

side.
Herd status;
+ -
<+ Se.m (1 —=Sp)(1 —m)
£ - (1—Se)m Sp.(1 —m)

;3¢ 2.1.7 Model implementations

a5 The pre-processing of the data and the analysis of the results of the Bayesian
16 models were done in R (R Core Team, 2020). The HMM was implemented
337 in both JAGS and Stan.

338 The model was initially implemented in JAGS, which performs Bayesian
130 inference using Gibbs sampling (Plummer, 2003). The model equations were
a0 directly translated into JAGS code. The runjags R package (Denwood,
31 2016) was used to interface R and JAGS.

342 The model was then implemented in Stan (Stan Development Team,
a3 2021). Stan is a newer and more efficient way of performing Bayesian infer-
saa ence using Hamiltonian Monte Carlo. However, Stan does not allow latent
as  discrete parameters to be modelled directly. Therefore, for the Stan imple-
us mentation of our model, the forward algorithm (Baum & Eagon, 1967) was
w7 adapted from Damiano et al. (2018). The cmdstanr R package (Gabry &
us  Cesnovar, 2020) was used to interface R and Stan.

w0 2.2 Application of the model to a control programme
350 for BVDYV infection in cattle

31 2.2.1 Data

32 'The model was evaluated on data collected for the surveillance of BVDV
;53 infection in dairy cattle in Loire-Atlantique, France. Under the programme,
s« each herd was tested twice a year with a bulk tank milk (BTM) antibody
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355 ELISA test. For each campaign of testing, tests were performed for all herds
36 over a few weeks. Data on the number of cattle introduced into each herd
;57 with the associated date of introduction were also available. For the model
s evaluation, test data of 1687 herds from the beginning of 2014 to the end
350 Of 2016 were used. Risk factor data collected between 2010 and 2016 were
0 available to model (possibly lagged) associations between risk factors and the
31 latent status.

62 2.2.2 Test results

363 Test results were reported as optical density ratios (ODR). These ODR values
36 were discretised in order to convert them into either seropositive (antibodies
s detected) or seronegative (no antibodies detected) outcomes. The choice of
6 the threshold to apply for the discretisation as well as the sensitivity and
367 specificity of this threshold for the detection of seropositivity were based on
ses the ODR distributions from test data collected outside of the study period.
10 The overall ODR distribution was modelled as a mixture of underlying ODR
a0 distributions for seropositives and seronegtaives. The details of the method
snn used are provided as supplementary material.

sz 2.2.3 Selection of risk factors

a3 A difficulty in the evaluation of putative risk factors was that Bayesian models
sz usually take time to run, especially with large datasets as used here. It was
a5 therefore not possible to perform this selection with our Bayesian model.
sze 10 circumvent this problem, logistic models as implemented in the R glm
sz function (R Core Team, 2019) were used®. The outcome of these models was
ars  seroconversion defined as a binary event, and covariates of interest were risk
sro  factors for becoming status positive as defined through the 7y variable. All
30 herds with 2 consecutive test results whose first result was negative (ODR
;s1 below the chosen threshold) were capable of seroconverting. Of these herds,
12 the ones that had a positive result (ODR above the chosen threshold) on
;83 the second test were considered as having seroconverted. The time of event
s« (seroconversion or not) was considered the mid-point between the 2 tests.

385 Two types of risk factors of new infection were evaluated: infection through
s cattle introductions and infection through neighbourhood contacts (Qi et al.,

6The functions used to perform this evaluation are included in the STOCfree package.
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37 2019). Cattle introduction variables were constructed from the number of an-
;s imals introduced into a herd on a given date. In addition to the raw number of
10 animals introduced, the natural logarithm of the number of animals (+1 be-
300 cause In(0) is not defined) was also evaluated. This was to allow a decreasing
;01 effect of each animal as the number of animals introduced increased. Regard-
302 ing the neighbourhood risk, the test result data were used. For each testing
33 campaign, the municipality-level prevalence of test positives (excluding the
s0a  herd of interest) was calculated, and is subsequently termed ’local preva-
305 lence’. It was anticipated that when local seroprevalence would increase, the
306 probability of new infection in the herd of interest would increase as well.
307 For all candidate variables, a potential problem was delayed detection,
38 which relates to the fact that a risk factor recorded at one point in time may
300 be detected through testing much later, even if the test is sensitive. For ex-
wo ample, if a trojan cow (a non-PI female carrying a PI calf) is introduced into
s1 a herd, the lactating herd will only seroconvert when the PI calf is born and
w02 has had contact with the lactating herd. Therefore, for each candidate vari-
w3 able, the data were aggregated between the beginning of an interval (labelled
was lagl, in months from the outcome measurement) and the end of this inter-
ws val (labelled lag2, in months from the outcome measurement). Models with
we all possible combinations of time aggregation between lagl and lag2 were
w7 Tun, with lagl set to 0 and lag2 set to 24 months. The best variables and
w8 time aggregation interval were selected based on low AIC value, biological
wo plausibility and suitability for the Bayesian model.

a0 2.2.4 Bayesian models

a1 Four different Bayesian models were considered. For all models, historical
a2 data were used for parameter estimation and the probability of infection on
a3 the last month in the dataset was predicted.

ss Model 1 - Perfect test, no risk factors: in order to evaluate the monthly
a5 dynamics of seropositivity and seronegativity, the Bayesian model was run
a6 without any risk factors and assuming that both test sensitivity and test
a7 specificity were close to 1. The prior distributions for sensitivity and speci-
as  ficity were Se ~ Beta(10000, 1) (percentiles: 5 = 1, 50 = 1, 95 = 1) and
a0 Sp ~ Beta(10000, 1). Regarding infection dynamics, prior distributions were
20 specified for the prevalence of status positives (also test positives in this sce-
21 nario) on the first testing time logit(p(Sy)) ~ N(0,10) (on the probability
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w22 scale - percentiles: 5 =0, 50 = 0.5, 95 = 1), the probability of becoming status
23 positive logit(m) ~ N (—3,1) (percentiles: 5 = 0.01, 50 = 0.047, 95 = 0.205),
224 and the probability of remaining status positive logit(my) ~ N (2.2,0.05) (per-
25 centiles: 5 = 0.893, 50 = 0.9, 95 = 0.907). The same prior distribution for 7
s26  was used in all models. The motivation for this choice was the fact that tests
227 were performed every 6 months in all herds. The consequences of choosing
228 this prior was that infected herds had a small probability of changing status
29 between consecutive months (median probability = 0.1), but after 6 months,
s0 the probability of still being positive was 0.95 = 0.53, at which time the
w31 status was updated with a new test result.

i22 Model 2 - Imperfect test, no risk factors: the objective of this model
133 Wwas to incorporate the uncertainty associated with test results in both pa-
s3a  rameter estimation and in the prediction of the probabilities of infection. The
w35 priors for test sensitivity and specificity were selected based on the ODR dis-
136 tributions for seronegatives and seropositives identified by the mixture model.
a3r The following prior distributions were used: Se ~ Beta(10,1) (percentiles:
s b = 0.741, 50 = 0.933, 95 = 0.995) and Sp ~ Beta(10,1). For the status
130 dynamics parameters, the same prior distributions as in Model 1 were used.

w0 Model 3 - Perfect test, risk factors: in order to quantify the association
w1 between risk factors and the probability of becoming status positive if the
w2 test were close to perfect, the Bayesian model was run with the risk factors
a3 identified as associated with seroconversion on the previous step, and using
sas  the same priors for sensitivity, specificity and 75 as in Model 1. The priors for
as  risk factors were specified as normal distributions on the logit scale. The prior
ws for the intercept was 6; ~ N(—3,1) (on the probability scale - percentiles: 5
a7 = 0.01, 50 = 0.047, 95 = 0.205). This represented the prior probability of a
sg  new infection in a herd purchasing no animal and with a local seroprevalence
s 0f 0. The priors for the other model coefficients were centred on 0 with a
w0 standard deviation of 2. On the logit scale, values of -4 (2 standard deviations
1 in this case) correspond to probabilities close to 0 (logit(-4) = (0.018) and
w2 values of 4 to probabilities that are close to 1 (logit(4) = (0.982).

w3 Model 4 - Imperfect test, risk factors: in order to quantify the asso-
ssa  clation between risk factors and the probability of becoming status positive
ss5  while incorporating test imperfection, the Bayesian model was run with the

16


https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.10.197426; this version posted August 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

500 -

400 -

300-

200 -

Number of herds tested

100~

.. M . ﬂ L. | m. .

2014 2015 2016
Date of test

Figure 4: Distribution of the test dates between 2014 and 2017 in 1687 herds
from Loire-Atlantique, France.

s Tisk factors identified as associated with seroconversion using the same priors
w7 as in Model 1 for tests characteristics and the same priors as in Model 3 for
w8 infection dynamics and risk factors.

450 Each model was run in both Stan and JAGS. For each model, 4 chains
w0 were run in parallel. For the Stan implementation, the first 1 000 iterations
w1 were discarded (warmup). The model was run for 500 more iterations with
w2 every iteration stored for analysis. This yielded 2 000 draws from the poste-
a3 rior distribution of each parameter. For the JAGS implementation, the first
ss 15 000 MCMC iterations were discarded (burn-in). The model was run for
ses 10 000 more iterations of which 1 in 20 was stored for analysis. This yielded
we 2 000 draws from the posterior distribution of each parameter. For all mod-
w7 els, convergence was assessed visually using traceplots. Each distribution was
ses summarised with its median and 95% credibility interval.

w 3 Results

o 3.1 Test results

a1 Between the beginning of 2014 and the end of 2016, there were 9725 available
a2 test results, reported as ODRs, from 1687 herds. Most herds were tested
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a3 in February and September (See Figure 4). The cut-off of 35 used in the
sra CP seemed to discriminate well between the distributions associated with
a5 seronegative and seropositive herds respectively, and was therefore retained
azs in the remainder of the analysis. Using this threshold, there were 44.1%
sz of seropositive tests between 2014 and 2016. The associated estimated test
sre sensitivity and specificity were 0.978 and 0.949 respectively. However, in
aro the Bayesian models 2 and 4, because there was considerable uncertainty
i0 regarding the assumptions made, sensitivity and specificity were modelled
w1 using Beta(10, 1) prior distributions (percentiles: 5 = 0.741, 50 = 0.933, 95
g2 = 0.995).

s 3.2 Selection of risk factors

ss  Risk factors related to animal introductions and seroprevalence were evalu-
ses  ated with logistic models. The model outcome was a seroconversion event.
w6 A first step of the analysis was, for each variable, to identify the time in-
se7  terval that was the most predictive of an observed seroconversion. Figure 5
w8 presents the AIC values associated with each possible interval for the vari-
a9 ables In(Number of animals introduced + 1) and local seroprevalence.

490 For the animal introduction variables, for the same time interval, the
w1 AlCs of the models of the untransformed number of animals were higher
w2 than the ones for the log transformed values (not shown). It can also be
w3 noted that considering longer intervals (further away from the diagonal) was
wa usually better than considering short intervals (close to the diagonal). It
s0s may be that some herds never buy any animal while, on average, herds that
w6 buy once have already done it in the past. In this case, it is possible that
w07 the infection was introduced several times, while it is not possible to know
a8 which animal introduction was associated with herd seroconversion. This
w9 could explain the apparent cumulative effect of the number of introductions.
soo The cells that are close to the diagonal are associated with short intervals.
so1 Considering one month intervals, the probability of infection was highest for
so2 introductions made 8 months from the month of seroconversion.

503 Local seroprevalence was evaluated from data collected in 2 different test-
so4 INg campaigns per year, as shown in Figure 4. For this reason, in the investi-
sos gation of lagged relationships between local seroprevalence and the probabil-
sos 1ty of seroconversion, the maximum local seroprevalence was computed, and
sor  not the sum as for the number of animals introduced. The strength of as-
sos sociation between local seroprevalence and herd seroconversion was greatest
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Figure 5: AIC values associated with logistic models of the association be-
tween 2 variables and the probability of seroconversion between 2 tests. Each
coloured row represents the end of the interval that is closest to the current
month and each column the end of the interval that is the furthest in the
past. For example, the line at the bottom represents intervals that end on the
current month: the first column is for the interval that started and ended on
the current month (length of one month) and the last column is for the inter-
val between 24 months ago and the current month. The variable evaluated
on the left-hand side panel is the sum of the In(number of animals introduced
+ 1) between lagl and lag2. The variable evaluated on the right-hand side
panel is the max of the local seroprevalence between lagl and lag2.

soo for local seroprevalence 9 months prior to herd seroconversion.

510 A final multivariable logistic model with an animal introduction variable
siu and a local seroprevalence variable was constructed. In the choice of the
si2 time intervals to include in this model, the following elements were consid-
si3 ered. First, the Bayesian model runs with a monthly time step. Aggregating
sie data over several months would result in including the same variable sev-
sis eral times. Secondly, historical data may sometimes be limited. Having
sie  the smallest possible value for the end of the interval could be preferable.
siz For this reason, the variables considered for the final model were the nat-
sis. ural logarithm of the number of animals introduced 8 months prior to the
sio month of seroconversion as well as the local seroprevalence 9 months prior
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Table 2: Results of the final logistic model of the probability of seroconversion
between consecutive tests. The risk factors retained in the model were the
logarithm of the number of animals introduced in the herd 8 months before
seroconversion and the local seroprevalence 9 months before seroconversion.

lagl lag2 Estimate p-value

Intercept - - -1.96 < 0.001
In(Number animals introduced +1) 8 8 0.38 < 0.001
local seroprevalence 9 9 4.59 < 0.001

s20 t0 the month of seroconversion. The results of this model are presented in
s21 Table 2. All variables were highly significant. The model intercept was the
s22 probability of seroconversion in a herd introducing no animals and with local
s23 seroprevalence of 0 in each of the time intervals considered. The probabil-
s24 ity of seroconversion between 2 tests corresponding to this scenario was of
s2s (0.124. Buying 1, 10 or 100 animals increased this estimated probability to
s26 (.171, 0.866 and 1 respectively. Buying no animals and observing a sero-
s27  prevalence of 0.2 (proportion of seropositives in the dataset) was associated
s2e with a probability of seroconversion of 0.261.

2 3.3 Bayesian models

s30 Running the different models for the 1687 herds with 3 years of data on
a1 the first author’s laptop (CPU: Intel Core i5-8350U, RAM: 16 Go, Win-
522 dows 10) took significantly more time in JAGS (3 to 4.5 hours) than in Stan
533 (around 1 hour). In models 3 and 4, the candidate covariates were the nat-
s3« ural logarithm of the number of animals introduced 8 months before status
s3s evaluation /prediction as well as the local seroprevalence 9 months before.
s3s ' The 95% credibility interval for the estimated coefficient associated with lo-
s37 cal seroprevalence included 0. This variable was therefore removed from the
s3s  models and only cattle introductions were considered.

s33. 3.3.1 Model parameters

ss0 For Models 1 and 3, in which the test was assumed to be perfect, the 4 chains
sa1 of each model converged and mixed well regardless of the programme used
sa2 for Bayesian inference. For Models 2 and 4, in which wider distributions
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Figure 6: Traceplots for test sensitivity in Models 1 and 2 estimated in Stan
and JAGS. Each color represents one of 4 chains run for each model.

sa3 were assumed for test characteristics, the chains converged and mixed well
saa for the Stan version, but mixing was poor for the JAGS version. As an
sa5 illustration, Figure 6 represents the traceplots for test sensitivity in Models
1 and 2 with both the Stan and JAGS version of the models. In the JAGS
version of Model 2, autocorrelation is visible in the traceplot for sensitivity,
despite the fact that only one iteration in 20 (thinning of 20) was kept for
analysis. Figure 7 and Table 3 show the distributions of model parameters
sso  for the 4 models. Although the JAGS model tends not to converge as well,
ss1 the parameter estimates are similar between the Stan and JAGS versions of
ss2 the models.

In Model 1, the prior distribution put on sensitivity and specificity was
very close to 1. With this model, the latent status corresponded to the test
sss  result. In effect, it modelled the monthly probability of transition between
BTM test negative and BTM test positive. In this case, the median (per-
centile 2.5 - percentile 97.5) probability of becoming status positive between
consecutive months was 0.032 (0.030 - 0.034). This represents a probability
of becoming status positive over a 12 month period of 0.323 (0.310 - 0.340).
For status positive herds, the monthly probability of remaining positive was
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Figure 7. Parameters prior and posterior distributions for the 4 Bayesian models. Model 1: Perfect test,
no risk factor; Model 2: Imperfect test, no risk factor; Model 3: Perfect test, risk factor; Model 4: Imperfect
test, risk factor. The only risk factor included is the logarithm of the number of animals introduced + 1.
In Models 1 and 2, the probability of becoming status positive is modelled with 7. In Models 3 and 4,
the probability of becoming positive is modelled using logistic regression. From these models, logit~ 11
is the probability of becoming positive when no animal is introduced (i.e. model intercept). 7o models
the increase in the probability of becoming positive with the number of animals introduced. The last
row of the Figure represents the posterior distribution for 72 as well as the corresponding increase in the
probability of becoming positive with the number of animals introduced.
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Table 3: Median (2.5%, 97.5%) of the parameter posterior distributions used
in the 4 Bayesian models evaluated. Model 1: Perfect routine test; Model
2: Perfect routine test and risk factors; Model 3: Imperfect routine test and
risk factors; Model 4: Imperfect routine test, confirmatory testing and risk

factors.

Model Inference Se Sp 7 / logit™10, (23 Ty

Model 1 Stan 1(1-1) 1(1-1) 0.032 (0.03-0.034) - 0.948 (0.945-0.951)
JAGS 1 (1-1) 1(1-1) 0.032 (0.03-0.034) - 0.948 (0.945-0.951)

Model 2 Stan 0.982 (0.968-0.994)  0.946 (0.934-0.957) 0.018 (0.016-0.021) - 0.958 (0.954-0.96)
JAGS 0.967 (0.953-0.982) 0.954 (0.943-0.965) 0.018 (0.015-0.02) - 0.958 (0.955-0.961)

Model 3 Stan 1(1-1) 1(1-1) 0.028 (0.026-0.031)  0.615 (0.508-0.716) 0.948 (0.945-0.95)
JAGS  1(1-1) 1(1-1) 0.028 (0.026-0.031) 0.613 (0.508-0.721) 0.947 (0.944-0.95)

Model 4 Stan 0.979 (0.966-0.989) 0.948 (0.937-0.959) 0.015 (0.013-0.018) 0.725 (0.596-0.842) 0.957 (0.954-0.96)

JAGS  0.969 (0.956-0.982) 0.955 (0.943-0.965) 0.015 (0.013-0.018) 0.731 (0.606-0.856) 0.957 (0.954-0.96)

se1 of 0.948 (0.945 - 0.951) which represents a probability of still being status
sz positive 12 months later of 0.526 (0.507 - 0.547).

563 In models 2 and 4, a Beta(10, 1) distribution was used as a prior for test
sea Sensitivity and specificity. Despite this distribution spanning a relatively
ses large interval (percentiles: 5 = 0.741, 50 = 0.933, 95 = 0.995), all models
ses converged to high values for both sensitivity and specificity. As noted above,
se7  convergence was not as good for the JAGS versions of the models, although
ses  the JAGS and Stan estimates are close. Interestingly, for model parameters
seo Trelated to status dynamics and risk factors, the Stan and JAGS estimates
s7o - were almost identical for all models. Adding test imperfection to the models
s71 resulted in a decrease in the probability of becoming positive (from 0.032 to
sz 0.018 between models 1 and 2; from 0.028 to 0.015 between models 3 and 4)
573 as well as in an increase in the probability of remaining positive (from 0.948
sz t0 0.958 between models 1 and 2; from 0.948 to 0.957 between models 3 and
s7s 4). The most likely reason is that, in some herds, some negative tests arising
s76 1N a sequence of positive tests were considered as false negatives resulting in
s77 longer sequences of positive status and, as a consequence, fewer transitions
s7e  from negative to positive status.

579 In models 3 and 4, a risk factor of becoming status positive was incor-
sso  porated into the estimation. The model intercept (#;) was much lower than
ss1  the estimate from the logistic model estimated in the variable selection step.
ss2 This was due to the different time steps considered (1 month vs. half a year).
ss3  On the other hand, the estimate for the association between the natural log-
ssa arithm of the number of animals introduced and the probability of becoming
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sss  positive was higher. This association is plotted in the bottom right-hand
sss side panel of Figure 7. The probability of becoming latent status positive
ez between 2 months goes from 0.015 when introducing no animal (logit~'6,
sss in Table 3) to greater than 0.3 for 100 animals introduced. This suggests
ss0  that including the number of animals introduced into the prediction of herd
so0 Statuses could increase the sensitivity of detection.

so1 3.3.2 Predicted probabilities of infection

s Figure 8 shows the distributions of herd-level probabilities of infection pre-
so3 dicted by the 4 Bayesian models, using Stan and JAGS. These probability
sos distributions are bimodal for all models. The left-hand side corresponds to
sos herds that were predicted status negative on the month before the month of
sos prediction. These are associated to becoming status positive, i.e. 7. The
so7 right-hand side of the distributions corresponds to herds that were predicted
sos status positive on the month before the month of prediction. These are asso-
so0 ciated to remaining status positive, i.e. 75. Figure 9 shows the distributions
soo Of the predicted probability of being status positive for 4 herds. It can be
o1 seen that herds that were consistently negative (positive) to the test had
02 extremely low (high) probabilities of being status positive. Accounting for
s03 the number of animals introduced increased the probability of infection in
s« the herds that were test negative. An important difference between JAGS
sos and Stan was that in JAGS latent statuses are explicitly represented as a
s0s binary variable. As a consequence, herds can jump between status positive
sz and status negative on the month before the month to predict, leading to
s0s bimodal distributions for the predicted probability of being status positive.
s0o This does not happen with Stan where the latent status is represented by a
s10 continuous variable. Therefore, the predicted distributions can be different
s11 between the 2 models. This can be seen for the herd at the bottom left of
612 Figure 9.

«» 4 Discussion
s1a L'his article describes a statistical framework for the prediction of an infection
s15 related status from longitudinal data generated by CPs against infectious

s16 diseases of farm animals. The statistical model developed estimates a herd
s17 level probability of being latent status positive on a specific month, based
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Figure 8: Distributions of predicted probabilities of being status positive for
all herds with the 4 Bayesian models evaluated with Stan and JAGS. Model
1: Perfect test, no risk factor; Model 2: Imperfect test, no risk factor; Model
3: Perfect test, risk factor; Model 4: Imperfect test, risk factor.
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Figure 9: Distribution of predicted probabilities of being status positive on
the month of prediction for 4 herds with the 4 models compared. Model 1:
Perfect test, no risk factor; Model 2: Imperfect test, no risk factor; Model
3: Perfect test, risk factor; Model 4: Imperfect test, risk factor. The title
of each panel corresponds to the sequence of test results (- indicates that a
test result was available on the month before prediction), and the number of
animals introduced 8 months before the month of prediction (risk factor).
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s18 on input data that can vary in terms of the types of test used, frequency
s10 Of testing and risk factor data. This is achieved by modelling the latent
s20 status with the same discrete time step, regardless of the frequency with
s22 which input data are available, and by modelling changes in the latent status
e22  between consecutive time steps. This model therefore fulfils one of our main
623 Objectives which was to be able to integrate heterogeneous information into
s2« the estimation. However, in order to be able to compare the output of this
e2s  model run on data from different CPs, the definition of the latent status
s26 should be the same.

627 The model was implemented in both Stan and JAGS. The first version
2 of the model was in JAGS, in which it was straightforward to translate the
s20 model equations into computer code. However, with this JAGS model, con-
s30 vergence was slow and the chains did not mix well when the prior distri-
e31 butions put on sensitivity and specificity were slightly wide. This led us
632 to develop a Stan version of the model. Stan is a newer programme which
s33 uses Hamiltonian Monte Carlo for performing Bayesian inference (Carpenter
s3a et al., 2017). It was more challenging to write the model in Stan, which does
s35 not support latent discrete parameters. This was achieved by adapting a
s3s Stan implementation of the forward algorithm developed by others (Dami-
37 ano et al., 2018). The Stan implementation is by comparison much faster
s3s and converges better, and should therefore be preferred.

630 When estimated in either JAGS or BUGS, discrete latent state models
sa0 such as HMMs are known to converge slowly; and the autocorrelation in the
a1 draws from the posterior distributions is usually high. Yackulic et al. (2020)
sa2 showed that the marginalisation of the latent states considerably reduces the
sa3 time needed to estimate the parameters of such models while returning the
saa  same estimates. We did not implement this approach in JAGS, although this
sas  would have been possible using the ones {rick, as explained in the article by
sas  Yackulic et al. (2020). The forward algorithm is a type of marginalisation
sa7 that partly explains the better performance of the Stan version of the model.
sas  However, Yackulic et al. (2020) also compared the speed of the marginalised
sa0 versions of their model in different programmes and observed that Stan was
eso orders of magnitude faster than JAGS.

651 In this model, the latent status is mostly defined by the prior distributions
es2 put on the different model parameters. In setting the prior distributions
es3  there are two issues: setting the distribution’s central value (mean, median
ssa ...) and setting the distribution width. Using a prior distribution that does
ess not include the true parameter value can lead to systematic error (bias) or
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ess failure of convergence. Setting prior distributions that are too wide can lead
es7 t0 a lack of convergence, when multiple combinations of parameter values
ess are compatible with the data. This was a problem in the initial modelling
eso  when only the JAGS model was available. In this case, putting narrow prior
seo distributions on test sensitivity and test specificity allowed the model to
1 converge (results not shown). These narrow distributions imply very strong
ss2 hypotheses on test characteristics.

663 The definition of prior distributions for test characteristics that reflect the
ssa latent status of interest is challenging (Duncan et al., 2016). This was appar-
ses ent in our efforts to apply this approach to BVDV infection. For the trade
ss6 Of animals from herds that are free from BVDYV infection, the latent status
ee7 Of interest was the presence of at least one PI animal in the herd. The test
ses data available to estimate the probability of this event were measures of bulk
seo tank milk antibody levels which were used to define seropositivity as a binary
sr0 event. Although milk antibody level is associated with the herd prevalence of
s71 antibody positive cows (Beaudeau et al., 2001), seropositive cows can remain
sz long after all the PIs have been removed from a herd. Furthermore, vaccina-
e73 tion induces an antibody response which may result in vaccinated herds being
e7a positive to serological testing regardless of PI animal presence (Raue et al.,
s 2011; Booth et al., 2013). Therefore, the specificity of BTM seropositivity,
e7e 1.€. the probability for herds with no PI animals to be test negative, is less
sz than 1. More importantly, this specificity depends on the context; i.e. on the
s7s  CP. PI animals can be identified and removed more or less quickly depending
s70 on the CP, the proportion of herds vaccinating and the reasons for starting
es0 vaccination can differ between CPs. Test sensitivity can also be imperfect.
ss1  Continuing with the example of bulk tank milk testing, contacts between
ss2 Pl animals present on the farm and the lactating herd may be infrequent,
ss3  which would decrease sensitivity. In this case, the sensitivity of the testing
esa procedure is the sensitivity of the test for the detection of seroconversion in
sss a group of animals multiplied by the probability that the tested group has
sss seroconverted if there is a PI animal in the herd. The probability of con-
ss7 tact between PI animals and the lactating herd depends on how herds are
sss organised, which could vary between CPs. This problem is alleviated when
ss0 newborn calves are tested because the group of animals tested is the group
so0 in which the infectious animals are most likely to be present. Furthermore,
so1 with BTM testing, the contribution of each seropositive cow to the BTM
s02 decreases as herd size increases which can result in differences in BTM test
03 Sensitivity associated with different herd sizes between CPs.
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694 The effects of using different prior distributions for test characteristics on
sos latent status definition, parameter estimation and probability prediction were
sos evaluated. In models 1 and 3, the dichotomised BTM antibody test results
sor  were modelled assuming perfect sensitivity and perfect specificity. With these
sos assumptions, the latent status was the dichotomised test results. In Models
s0o 2 and 4, the BTM antibody test was assumed to have lower sensitivity and
70 specificity, based on normal distributions associated with seronegativity and
701 seropositivity identified by a mixture model. The latent status in Models
702 2 and 4 can therefore be described as seropositivity. Because overall the
703 probability of changing status was small, assuming an imperfect sensitivity
704 led to isolated negative test results in sequences of mostly positive test results
705 being considered false negatives, as shown by the increase in the estimated
706 value for 7 between Models 1 and 2 and Models 3 and 4. This illustrates
707 that in addition to test characteristics, status dynamics will determine the
708 latent status within herds.

700 A way to obtain information on test characteristics as part of CPs could be
710 to incorporate data from confirmatory testing into the model. In CPs, herds
711 that test positive are usually re-tested in order to rule out a false positive
712 test, and to identify infected animals if needed. The testing procedure used
713 in confirmatory testing usually has a high sensitivity and a higher specificity
712 than routine testing in relation to the gold standard. When incorporated
715 into the model, this high quality information, in conjunction with wider
76 prior distributions on routine testing specificity, should allow the posterior
niz  distribution of the specificity of routine testing to be revised towards the
ns  gold standard. Indeed, if a confirmatory test comes back negative, then
719 the corresponding latent status will become negative with high probability.
720 Given the low probability of becoming status negative between consecutive
71 months, the latent status on the month of routine testing has an increased
722 probability of being negative, leading to a decrease in the specificity of routine
723 testing. Confirmatory testing data was not available for this study. We
724 attempted to evaluate the usefulness of confirmatory testing by simulating
725 confirmatory tests at random after an initial positive test result. The results
726 were not convincing, because simulating test results at random was often not
727 consistent with patterns of test results in individual herds.

728 Status dynamics contributed to the estimation of the latent status in
720 several ways. Negative test results interspersed with sequences of positive
720 test results will be classified as latent status positive (i.e. as false negatives)
731 more often as test sensitivity decreases and 7o increases. Positive test re-
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732 sults interspersed with sequences of negative test results will be classified as
723 latent status negative (i.e. as false positives) with increased frequency as
724 test specificity and 7 each decrease. With a perfect test (sensitivity and
725 specificity equal to 1), the model can learn the values of 71 and 75 from the
736 data, and the prior distributions put on these parameters can be minimally
737 informative. With decreasing values for test sensitivity and specificity, the in-
738 formation provided through the prior distributions put on 7; and 75 becomes
730 increasingly important. The informative value of 7 and 75 will increase as
=0 the probability of transition between latent status negative and latent status
71 positive decrease, i.e. when 77 is small and 75 is high.

742 When data on risk factors of new infection are available, the 7 param-
73 eter is modelled as a function of these risk factors using logistic regression.
74 In such a case, prior distributions are put on the parameters of the logistic
75 regression. In the application that we presented, we used a prior distribution
e corresponding to a low probability of new infection in the reference category
77 (intercept: herds which introduced no animals) and we centred the prior dis-
ns tribution for the association with cattle introductions on a hypothesis of no
79 association (mean = 0 on the logit scale). This allowed the model to estimate
750 the association between the risk factor and the latent status from historical
7 data and to use the estimated association to predict probabilities of being
72 latent status positive on the month of prediction. The prior distributions put
753 on test characteristics had a moderate impact on the parameter estimates.
7sa  Between Model 3 and Model 4, considering an imperfect test resulted in a
755 slightly reduced impact of the number of cattle introduced on the probabil-
756 ity of becoming status positive (See curves at the bottom of Figure 7). The
757 most likely explanation for this is that Model 4 allowed the highest level of
s discrepancy between dichotomised test result and latent status, while assum-
70 ing a low probability of changing status between months. This resulted in
760 negative test results in herds that were regularly positive to be classified as
761 latent status positive (false negatives, associated with lower test sensitivity,
762 see Table 3) thereby removing opportunities for new infections in herds that
763 were regularly positive while also buying animals. This would imply that
764 the estimated association from model 4 is more closely associated with new
7es infections than estimates from Model 3 because herds that are regularly test
766 positive have less weight in the estimation. It would also have been possible
7 to base the prior distributions for the model coefficients on published liter-
e ature. Unfortunately, estimates of the strengths of association between risk
69 factors and the probability of new infection are not readily available from
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770 the published literature or are hard to compare between studies (van Roon
et al., 2020b). However, estimates from the literature could allow the prior
2 distributions to be bounded within reasonable ranges.

73 The identification of the most predictive time interval between risk fac-
77 tor occurrence and seroconversion required the evaluation of the associations
775 between the probability of seroconversion on a given month and risk factor
776 occurrence over all possible intervals between this month and the 24 previous
77z months. Although there are several Bayesian methods for such variable selec-
s tion (O'Hara & Sillanpéd, 2009), estimation using MCMC is time consuming
779 and was not feasible in our case. The variables included were therefore iden-
70 tified with logistic models estimated by maximum likelihood for all possible
71 lags. The approach used is related to cross-correlation maps developed for
72 applications in ecology (Curriero et al., 2005), and similar to work conducted
73 in veterinary epidemiology (Bronner et al., 2015). This confirmed the impor-
78a  tance of animal introduction and neighbourhood contacts in new infections
7ss  (Qi et al., 2019). However, in the Bayesian models, the 95% credibility for
786 the association between local seroprevalence and new infection included 0
7ez and this variable was therefore not included. The reason for this was not
758 elucidated in this work. Other risk factors such as herd size, participation in
780 shows or markets, the practice of common grazing have shown a consistent
700 association with the probability of new infection by the BVDV (van Roon
701 et al., 2020b). These variables were not included in our model because the
72 corresponding data were not available. One advantage of our approach is
703 the possibility to choose candidate risk factors to include in the prediction of
s infection based on the data available in a given CP. The associations between
705 the selected putative risk factors and the probability of new infection can be
76 estimated from these data.

707 Given the reasonably good performance of tests for the detection of BVDV
78 infection, the main advantage of incorporating these risk factors was not to
799 complement the test results on a month a test was performed, but rather to
soo enhance the timeliness of detection. Risk factors that are associated with
son new infection will increase the predicted probability of infection regardless
so2 of the availability of a test result. Therefore, when testing is not frequent,
so3 infected herds could be detected more quickly if risk factors of infection are
sos recorded frequently. If the available data on risk factors of new infection
sos captured all the possible routes of new infection, it would be possible to
sos perform tests more frequently in herds that have a higher probability of
soz infection as predicted by our model. In other words, our model could be
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sos used for risk-based surveillance (Cameron, 2012).

809 In the CP from which the current data were used, herds are tested twice
g0 a year. This could lead to a long delay between the birth of PI calves and
s their detection through bulk tank milk testing. We addressed this problem
sz Of delayed detection by proposing a method for the investigation of lagged
s13 relationships between risk factor occurrence and new infections, and by in-
sie cluding lagged risk factor occurrences in the prediction of the probability of
s1s infection. In our dataset, herds purchasing cattle were more likely to have
sis  seroconverted 8 months after the introduction. In the Bayesian model, cattle
s17 introduction was modelled as affecting the probability of becoming status
sie  positive 8 months after the introduction. It can be argued that infection is
s19  present but not detected during this period, as the expression delayed detec-
s20 tion suggests, and that the probability of infection should increase as soon
g1 as risk factor occurrence is recorded. Modelling this phenomenon would be
s22 possible by decreasing the test sensitivity for a period corresponding to the
823 lag used in the current version of the model. This would imply that for this
g2 duration, any negative BTM test result would not provide any information
g2s about the true status regarding infection and that the herd would have an
s26 increased predicted probability of infection. This could be incorporated in
27 future versions of the model.

828 There are several questions related to this modelling framework that
s20 would require further work. The model outputs are distributions of herd
ss0 level probabilities of infection. Defining herds that are free from infection
g31  from these distributions will require decision rules to be developed based on
sz distribution summaries (likely a percentile) and cut-off values. It would also
833 be possible to model the probability of remaining infected between consecu-
s tive tests (72) as a function of the control measures put in place in infected
sss herds. Another area that requires further investigations is the evaluation
s3s  Of the modelling framework against a simulated gold standard to determine
s37 whether it provides an added value compared to simpler methods. The avail-
sss  ability of the model code as a Github repository allows interested users to
830 improve or suggest improvements to our modelling framework. The model
g0 can be used to evaluate the output of disease CP thus aiding the use of
g1 output-based surveillance.
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