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Abstract30

The collective control programmes (CPs) that exist for many in-31

fectious diseases of farm animals rely on the application of diagnostic32

testing at regular time intervals for the identi�cation of infected an-33

imals or herds. The diversity of these CPs complicates the trade of34

animals between regions or countries because the de�nition of freedom35

from infection di�ers from one CP to another. In this paper, we de-36

scribe a statistical model for the prediction of herd-level probabilities37

of infection from longitudinal data collected as part of CPs against38

infectious diseases of cattle. The model was applied to data collected39

as part of a CP against bovine viral diarrhoea virus (BVDV) infec-40

tion in Loire-Atlantique, France. The model represents infection as a41

herd latent status with a monthly dynamics. This latent status de-42

termines test results through test sensitivity and test speci�city. The43

probability of becoming status positive between consecutive months is44

modelled as a function of risk factors (when available) using logistic45

regression. Modelling is performed in a Bayesian framework, using46

either Stan or JAGS. Prior distributions need to be provided for the47

sensitivities and speci�cities of the di�erent tests used, for the proba-48

bility of remaining status positive between months as well as for the49

probability of becoming positive between months. When risk factors50

are available, prior distributions need to be provided for the coe�-51

cients of the logistic regression, replacing the prior for the probability52

of becoming positive. From these prior distributions and from the lon-53

gitudinal data, the model returns posterior probability distributions54

for being status positive for all herds on the current month. Data55

from the previous months are used for parameter estimation. The im-56

pact of using di�erent prior distributions and model implementations57

on parameter estimation was evaluated. The main advantage of this58

model is its ability to predict a probability of being status positive in a59

month from inputs that can vary in terms of nature of test, frequency60

of testing and risk factor availability/presence. The main challenge61

in applying the model to the BVDV CP data was in identifying prior62

distributions, especially for test characteristics, that corresponded to63

the latent status of interest, i.e. herds with at least one persistently in-64

fected (PI) animal. The model is available on Github as an R package65

(https://github.com/AurMad/STOCfree) and can be used to carry66

out output-based evaluation of disease CPs.67
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1 Introduction68

For many infectious diseases of farm animals, there are control programmes69

(CPs) that rely on the application of diagnostic testing at regular time inter-70

vals for the identi�cation of infected animals or herds. In cattle, such diseases71

notably include infection by the bovine viral diarrhoea virus (BVDV) or by72

Mycobacterium avium subspecies paratuberculosis (MAP). These CPs are ex-73

tremely diverse. Their objective can range from decreasing the prevalence of74

infection to eradication. Participation in the CP can be voluntary or com-75

pulsory. The classi�cation of herds regarding infection status can be based76

on a wide variety of testing strategies in terms of the nature of the tests used77

(identi�cation of antibodies vs. identi�cation of the agent), the groups of78

animals tested (e.g. breeding herd vs. young animals), number of animals79

tested, frequency of testing (once to several times a year, every calf born...).80

Even within a single CP, surveillance modalities may evolve over time. Such81

di�erences in CPs were described by van Roon et al. (2020a) for programmes82

targeting BVDV infections and by Whittington et al. (2019) for programmes83

against MAP.84

Di�erences in surveillance modalities can be problematic when purchas-85

ing animals from areas with di�erent CPs because the free status assigned86

to animals or herds might not be equivalent between CPs. A standardised87

method for both describing surveillance programmes and estimating con�-88

dence of freedom from surveillance data would be useful when trading animals89

across countries or regions. While inputs can vary between programmes, the90

output needs to be comparable across programmes. This is called output-91

based surveillance (Cameron, 2012). Probabilities measure both the chance92

of an event and the uncertainty around its presence/occurrence. If well de-93

signed, a methodology to estimate the probability of freedom from infection94

would meet the requirements of both providing a con�dence of freedom from95

infection as well as of being comparable whatever the context.96

Currently, a common quantitative method used to substantiate freedom97

from infection to trading partners is the scenario tree method (Martin et al.,98

2007). The method is applied to situations where there is a surveillance99

programme in place, with no animals or herds con�rmed positive on testing.100

What is estimated with the scenario tree method is the probability that the101

infection would be detected in the population if it were present at a chosen102

design prevalence. The output from this approach is the probability that103

infection prevalence is below the design prevalence given the negative test104
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results (Cameron, 2012). Therefore, this method is well suited for situations105

where populations are free from infection and those who want to quantify106

this probability of freedom from infection, e.g. for the bene�t of trading107

partners (Norström et al., 2014).108

In a context where disease is controlled but still present, it would only109

be safe to trade with herds that have an estimated probability of freedom110

from infection that is deemed su�ciently high or, equivalently, a probability111

of infection that is deemed su�ciently low. Identifying these herds involves112

estimating a probability of infection for each herd in the CP and then de�ning113

a decision rule to categorise herds as uninfected or infected based on these114

estimated probabilities.115

In this paper, we propose a method to estimate herd level probabilities116

of infection from heterogeneous longitudinal data generated by CPs. The117

method predicts herd-month level probabilities of being latent status positive118

from longitudinal data collected in CPs. The input data are test results, and119

associated risk factors when available. Our main objective is to describe120

this modelling framework by showing how surveillance data are related to121

the probabilities of infection (strictly speaking, probabilities of being latent122

status positive) and by providing details regarding the statistical assumptions123

that are made. A secondary objective is to compare two implementations of124

this modelling framework, one in JAGS (Plummer, 2003) and one in Stan125

(Stan Development Team, 2021), for the estimation of these probabilities of126

being latent status positive. The comparison is performed using surveillance127

data collected as part of a CP against BVDV infection in Loire-Atlantique,128

France. The challenges of de�ning prior distributions and the implications129

of using di�erent prior distributions are discussed. The functions to perform130

the analyses described in this paper are gathered in an R package which is131

available from GitHub (https://github.com/AurMad/STOCfree).132

2 Materials and methods133

2.1 Description of the model134

2.1.1 Conceptual representation of surveillance programmes135

Surveillance programmes against infectious diseases can be seen as imperfect136

repeated measures of a true status regarding infection. In veterinary epidemi-137

ology, the issue of imperfect testing has traditionally been addressed using138
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latent class models. With this family of methods, the true status regarding139

infection is modelled as an unobserved quantity which is linked to test results140

through test sensitivity and speci�city. Most of the literature on the sub-141

ject focuses on estimating both test characteristics and infection prevalence142

(Collins & Huynh, 2014). For the estimations to work, the same tests should143

be used in di�erent populations (Hui & Walter, 1980), the test characteristics144

should be the same among populations, and test results should be condition-145

ally independent given the infection status (Toft et al., 2005; Johnson et al.,146

2009) ; although some of these assumptions can be relaxed in a Bayesian147

framework. Latent class models can also be used to estimate associations148

between infection, de�ned as the latent class, and risk factors when the test149

used is imperfect (Fernandes et al., 2019). In the study by Fernandes et al.150

(2019), the latent class was de�ned using a single test, through the prior151

distributions put on sensitivity and speci�city. When using latent class mod-152

els with longitudinal data, the dependence between successive test results153

in the same herds must be accounted for. In the context of estimating test154

characteristics and infection prevalence from 2 tests in a single population155

from longitudinal data, Nusinovici et al. (2015) proposed a Bayesian latent156

class model which incorporated 2 parameters for new infection and infection157

elimination. The model we describe below combines these di�erent aspects158

of latent class modelling into a single model.159

We propose using a class of models called Hidden Markov Models (HMM,160

see Zucchini et al. (2017)). Using surveillance programmes for infectious dis-161

eases as an example, the principles of HMMs can be described as follows:162

the latent status (class) of interest is a herd status regarding infection. This163

status is evaluated at regular time intervals: HMMs are discrete time mod-164

els. The status at a given time only depends on the status at the previous165

time (Markovian property). The status of interest is not directly observed,166

however, there exists some quantity (such as test results) whose distribution167

depends on the unobserved status. HMMs have been used for decades in168

speech recognition (Rabiner, 1989) and other areas. They have also been169

used for epidemiological surveillance (Le Strat & Carrat, 1999; Touloupou170

et al., 2020), although not with longitudinal data from multiple epidemiolog-171

ical units such as herds. The model we developed is therefore a latent class172

model that takes into account the time dynamics in the latent status. The173

probability of new infection between consecutive time steps is modelled as a174

function of risk factors.175

Figure 1 shows how surveillance programmes are represented in the model176

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Conceptual representation of the implementation of a surveillance
programme within a herd. The focus of the model is the latent status regard-
ing infection, which is modelled at the herd-month level. This status partly
depends on risk factors and determines test results. In this diagram, risk
factors are represented as green dots when present and available test results
as blue shaded squares. The model predicts a probability of infection for the
most recent month in the surveillance programme using all the data collected
for the estimation of model parameters.

as a succession of discrete time steps. The focus of this model is a latent177

status evaluated at the herd-month level. This latent status is not directly178

observed but inferred from its causes and consequences incorporated as data.179

The consequences are the test results. Test results do not have to be available180

at every time step for the model to work, although the estimation will be181

more accurate with a large number of test results. The causes of infection are182

risk factors of infection. The model estimates this latent status monthly, and183

predicts it for the last month of data. These herd-month latent statuses will184

be estimated/predicted from test results and risk factors recorded in each185

herd.186

2.1.2 Modelling framework, inputs and outputs187

The model is designed to use longitudinal data collected as part of surveil-188

lance programmes against infectious diseases. In such programmes, each herd189

level status is re-evaluated when new data (most commonly test results, but190

may also be data related to risk factors) are available. The model mimics191
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this situation by predicting the probability of a positive status for all herds192

in the CP on the last month of available data. Data from all participating193

herds up to the month of prediction are used as historical data for parameter194

estimation (Figure 1).195

The estimation and prediction are performed within a Bayesian frame-196

work using Markov Chain Monte Carlo (MCMC). The model encodes the197

relationships between all the variables of interest in a single model. Each198

variable is modelled as drawn from a statistical distribution. The estimation199

requires prior distributions for all the parameters in the model. These priors200

are a way to incorporate either existing knowledge or hypotheses in the es-201

timation. For example, we may know that the prevalence of herds infected202

with BVDV in our CP is probably lower than 20%, certainly lower than 30%203

and greater than 5%. There are di�erent ways of specifying such constraints204

using statistical distributions. We will brie�y describe two that are used in205

di�erent places in our modelling framework. The �rst one consists in using a206

Beta distribution. The Beta distribution is bounded between 0 and 1, with207

2 parameters α and β determining its shape. With the constraints speci�ed208

above, we could use as a prior distribution Beta(α = 15, β = 100)1. The209

second one consists in using a normal distribution on the logit scale. The210

principle of the logit transformation is to map probabilities that are bounded211

between 0 and 1 onto an interval that extends from −∞ to +∞ . Quantities212

de�ned on the logit scale, can be mapped back onto the probability scale us-213

ing the inverse logit transformation 2. This is extremely convenient because214

it allows the use of normal distributions on the logit scale, whose mean and215

standard deviation have an intuitive meaning. With the constraints speci�ed216

above, we could use as a prior distribution a Normal(µ = −2, σ2 = 0.09) 3.217

If we do not know anything about this infection prevalence (which is rare), we218

could use a Beta(α = 1, β = 1) prior, which is uniform between 0 and 1 ; or219

a Normal(µ = 0, σ2 = 10) on the logit scale. From the model speci�cation,220

1The Beta(α = 15, β = 100) distribution has a mean of 0.13 and a standard deviation
of 0.03. In R, it can be plotted using the following instructions curve(dbeta(x, 15,

100))
2The logit transformation is de�ned as logit(p) = ln( p

1−p ) and the inverse logit trans-

formation is de�ned as logit−1(x) = ex

1+ex . A value of 0 on the logit scale corresponds to
a probability of 0.5.

3The logit−1Normal(µ = −2, σ2 = 0.09) distribution has a mean of 0.12 and a
standard deviation of 0.03. In R, it can be plotted using the following instructions
curve(STOCfree::dnorm_logit(x, -2, .3)).
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the prior distributions and the observed data, the MCMC algorithm draws221

samples from the posterior distributions of all the variables in the model.222

These posterior distributions are the probability distributions for the model223

parameters given the data and the prior distributions. MCMC methods are224

stochastic and iterative. Each iteration is a set of samples from the joint pos-225

terior distributions of all variables in the model. The algorithm is designed226

to reach the target joint posterior distribution, but at any moment, there is227

no guarantee that it has done. To overcome this di�culty, several indepen-228

dent instances of the algorithm (i.e. several chains) are run in parallel. For a229

variable, if all the MCMC draws from the di�erent chains are drawn from the230

same distribution, it can be concluded that the algorithm has reached the231

posterior distribution. In this case, it is said that the model has converged.232

The focus of our model is the monthly latent status of each herd. This233

latent status depends on the data on occurrence of risk factors and it a�ects234

test results. The data used by the model are the test results and risk factors.235

At each iteration of the MCMC algorithm, given the data and priors, a herd236

status (0 or 1) and the coe�cients for the associations between risk factors,237

latent status and test results are drawn from their posterior distribution.238

In the next 3 sections, the parameters for which prior distributions are239

required, i.e. test characteristics, status dynamics and risk factor parameters,240

are described. The outputs of Bayesian models are posterior distributions for241

all model parameters. Speci�cally, in our model, the quantities of interest242

are the herd level probabilities of being latent status positive on the last243

test month in the dataset as well as test sensitivity, test speci�city, infection244

dynamic parameters and parameters for the strengths of association between245

risk factors and the probability of new infection. This is described in the246

corresponding sections.247

2.1.3 Latent status dynamics248

Between test events, uninfected herds can become infected and infected herds249

can clear the infection. The model represents the probability of having a250

positive status at each time step as a function of the status at the previous251

time step (Figure 2). For the �rst time step when herd status is assigned,252

there is no previous status against which to evaluate change. From the second253

time step when herd status is assigned, and onwards, herds that were status254

negative on the previous time step have a certain probability of becoming255

status positive and herds that were status positive have a certain probability256
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Figure 2: Modelling of infection dynamics. The diagram shows hypothetical
latent statuses (0 for negative; 1 for positive) as a function of time in month,
with examples of all possible transitions. π1 = p(S1 = 1) is the probability
of being status positive at the �rst point in time, τ1 = p(St = 1|St−1 = 0) is
the probability of becoming status positive and τ2 = p(St = 1|St−1 = 1) is
the probability of remaining status positive.

of remaining status positive.257

These assumptions can be summarised with the following set of equa-258

tions4. The status on the �rst time step (S1) is a Bernoulli event with a259

normal prior on the logit scale for its probability of occurrence:260

S1 ∼ Bernoulli(π1) (1)

261

logit(π1) ∼ Normal(µπ1 , σ
2
π1
) (2)

From the second time step when herd status is assigned, and onwards,262

a positive status is also a Bernoulli event (St) with a probability of occur-263

rence that depends on the status at the previous time step as well as on264

the probability of becoming status positive and the probability of remain-265

ing status positive. In this case, the probability of becoming status positive266

is τ1 = p(St = 1|St−1 = 0) and the probability of remaining positive is267

τ2 = p(St = 1|St−1 = 1).268

St ∼ Bernoulli(πt) (3)

4Statuses are estimated/predicted at the herd-month level. Herd is omitted from the
notation to facilitate reading. St should be read as Sht where h represents the herd.
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269

πt =

{
τ1 if St−1 = 0

τ2 if St−1 = 1
(4)

270

logit(τ1) ∼ Normal(µτ1 , σ
2
τ1
) (5)

271

logit(τ2) ∼ Normal(µτ2 , σ
2
τ2
) (6)

Therefore, the status dynamics can be completely described by π1, τ1 and272

τ2.273

2.1.4 Incorporation of information on risk factors for new infec-274

tion275

The probability of new infection is not the same across herds. For example,276

herds that introduce a lot of animals or are in areas where infection preva-277

lence is high could be at increased risk of new infection (Qi et al., 2019).278

Furthermore, the association between a given risk factor and the probability279

of new infection could be CP dependent. For example, the probability of280

introducing infection through animal introductions will depend on the infec-281

tion prevalence in the population from which animals are introduced. As a282

consequence, estimates for these associations (as presented in the literature)283

could provide an indication about their order of magnitude, but their preci-284

sion may be limited. On the other hand, the CPs which are of interest in this285

work usually generate large amounts of testing data which could be used to286

estimate the strengths of association between risk factors and new infections287

within a given CP. The variables that are associated with the probability of288

new infection could increase the sensitivity and timeliness of detection.289

When risk factors for new infection are available, the model incorporates290

this information by modelling τ1 as a function of these risk factors through291

logistic regression, instead of the prior distribution for τ1.292

logit(τ1ht) = Xhtθ (7)

where Xht is a matrix of predictors for herd h at time t and θ is a vector293

of coe�cients. Normal priors are used for the coe�cients of the logistic294

regression.295

θi ∼ Normal(µi, σi) (8)

10

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Relation of the model latent status to test result. Sensitivity is the
probability of a positive test result in a status positive herd. Speci�city is
the probability of a negative test result in a status negative herd.

2.1.5 Test characteristics296

The model allows the inclusion of several test types but for the sake of clarity,297

we show the model principles for only one test type. These principles can be298

extended to several tests by specifying prior distributions for all tests.299

Tests are modelled as imperfect measures of the latent status (Figure 3).300

Test sensitivity is the probability of a positive test result given a positive301

latent status (Se = p(T = 1|S = 1), refers to true positives) and test speci-302

�city is the probability of a negative test result given a negative latent status303

(Sp = p(T = 0|S = 0), refers to true negatives).304

Test result at time t is modelled as a Bernoulli event with probability305

p(Tt) of being positive.306

Tt ∼ Bernoulli(p(Tt)) (9)

The relation between the probability of testing positive, the probability307

of a positive status, test sensitivity and test speci�city is the following:308

p(Tt) =

{
1− Sp if St = 0

Se if St = 1
(10)

Information or hypotheses regarding test characteristics are incorporated309

in the model as priors modelled by Beta distributions:310

Se ∼ Beta(Sea, Seb) (11)
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311

Sp ∼ Beta(Spa, Spb) (12)

2.1.6 Prediction of a probability of infection in JAGS312

In JAGS, a speci�c step was needed in order to predict the �nal probability313

of being status positive given historical data and a test result on the month of314

prediction, when such a test result was available. In Stan, this step was not315

necessary because the forward algorithm directly predicted the probability316

of being status positive in the last month. In explaining how predictions are317

performed in JAGS, we use the following notation: ỹ is the predicted value318

for y, β̂ is the estimated value for β. The equation ỹ = β̂.x means that the319

predicted value for y is equal to x (data) times the estimated value for β.320

The model predicts herd-level probabilities of being latent status positive321

on the last month in the data mimicking regular re-evaluation as new data322

come in. If there is no test result available on this month, the predicted323

probability of being status positive (called π̃∗
t ) is the predicted status on the324

previous month times τ̃1t if the herd was predicted status negative or times325

τ̂2 if the herd was predicted status positive (Table 1)5. This can be written326

as:327

π̃∗
t = p(S̃t|Ŝt−1, τ̃1t, τ̂2) =

{
τ̂2 if Ŝt−1 = 0

τ̃1t if Ŝt−1 = 1
(13)

where:328

τ̃1t = logit−1(Xtθ̂) (14)

If a test result was available, the prediction must combine information329

from the test as well as previous information. The way to estimate this330

predicted probability from p(S̃∗
t ) and test results can be derived from Table 1.331

The predicted probability of being status positive can be computed as:332

p(S̃t|Tt, S̃∗
t ) =


(1−Se).p(S̃∗

t )

(1−Se).p(S̃∗
t )+Sp.(1−p(S̃∗

t ))
if Tt = 0

Se.p(S̃∗
t )

Se.p(S̃∗
t )+(1−Sp)(1−p(S̃∗

t ))
if Tt = 1

(15)

where Tt = 1 when the test at time t is positive, Tt = 0 when it is negative333

5Here τ̃1t is predicted from herd-month speci�c risk factors while τ̂2 is the same for all
herds and estimated from historical data.
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Table 1: Probability of test result by herd status. Cells on the �rst row are
test positive herds with true positives on the left-hand side and false positives
on the right-hand side. Cells on the second row are test negative herds with
false negatives on the left-hand side and true negatives on the right-hand
side.

Herd statust
+ -

T
es
t t + Se.πt (1− Sp)(1− πt)

- (1− Se).πt Sp.(1− πt)

2.1.7 Model implementations334

The pre-processing of the data and the analysis of the results of the Bayesian335

models were done in R (R Core Team, 2020). The HMM was implemented336

in both JAGS and Stan.337

The model was initially implemented in JAGS, which performs Bayesian338

inference using Gibbs sampling (Plummer, 2003). The model equations were339

directly translated into JAGS code. The runjags R package (Denwood,340

2016) was used to interface R and JAGS.341

The model was then implemented in Stan (Stan Development Team,342

2021). Stan is a newer and more e�cient way of performing Bayesian infer-343

ence using Hamiltonian Monte Carlo. However, Stan does not allow latent344

discrete parameters to be modelled directly. Therefore, for the Stan imple-345

mentation of our model, the forward algorithm (Baum & Eagon, 1967) was346

adapted from Damiano et al. (2018). The cmdstanr R package (Gabry &347

Ce²novar, 2020) was used to interface R and Stan.348

2.2 Application of the model to a control programme349

for BVDV infection in cattle350

2.2.1 Data351

The model was evaluated on data collected for the surveillance of BVDV352

infection in dairy cattle in Loire-Atlantique, France. Under the programme,353

each herd was tested twice a year with a bulk tank milk (BTM) antibody354
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ELISA test. For each campaign of testing, tests were performed for all herds355

over a few weeks. Data on the number of cattle introduced into each herd356

with the associated date of introduction were also available. For the model357

evaluation, test data of 1687 herds from the beginning of 2014 to the end358

of 2016 were used. Risk factor data collected between 2010 and 2016 were359

available to model (possibly lagged) associations between risk factors and the360

latent status.361

2.2.2 Test results362

Test results were reported as optical density ratios (ODR). These ODR values363

were discretised in order to convert them into either seropositive (antibodies364

detected) or seronegative (no antibodies detected) outcomes. The choice of365

the threshold to apply for the discretisation as well as the sensitivity and366

speci�city of this threshold for the detection of seropositivity were based on367

the ODR distributions from test data collected outside of the study period.368

The overall ODR distribution was modelled as a mixture of underlying ODR369

distributions for seropositives and seronegtaives. The details of the method370

used are provided as supplementary material.371

2.2.3 Selection of risk factors372

A di�culty in the evaluation of putative risk factors was that Bayesian models373

usually take time to run, especially with large datasets as used here. It was374

therefore not possible to perform this selection with our Bayesian model.375

To circumvent this problem, logistic models as implemented in the R glm376

function (R Core Team, 2019) were used6. The outcome of these models was377

seroconversion de�ned as a binary event, and covariates of interest were risk378

factors for becoming status positive as de�ned through the τ1 variable. All379

herds with 2 consecutive test results whose �rst result was negative (ODR380

below the chosen threshold) were capable of seroconverting. Of these herds,381

the ones that had a positive result (ODR above the chosen threshold) on382

the second test were considered as having seroconverted. The time of event383

(seroconversion or not) was considered the mid-point between the 2 tests.384

Two types of risk factors of new infection were evaluated: infection through385

cattle introductions and infection through neighbourhood contacts (Qi et al.,386

6The functions used to perform this evaluation are included in the STOCfree package.
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2019). Cattle introduction variables were constructed from the number of an-387

imals introduced into a herd on a given date. In addition to the raw number of388

animals introduced, the natural logarithm of the number of animals (+1 be-389

cause ln(0) is not de�ned) was also evaluated. This was to allow a decreasing390

e�ect of each animal as the number of animals introduced increased. Regard-391

ing the neighbourhood risk, the test result data were used. For each testing392

campaign, the municipality-level prevalence of test positives (excluding the393

herd of interest) was calculated, and is subsequently termed 'local preva-394

lence'. It was anticipated that when local seroprevalence would increase, the395

probability of new infection in the herd of interest would increase as well.396

For all candidate variables, a potential problem was delayed detection,397

which relates to the fact that a risk factor recorded at one point in time may398

be detected through testing much later, even if the test is sensitive. For ex-399

ample, if a trojan cow (a non-PI female carrying a PI calf) is introduced into400

a herd, the lactating herd will only seroconvert when the PI calf is born and401

has had contact with the lactating herd. Therefore, for each candidate vari-402

able, the data were aggregated between the beginning of an interval (labelled403

lag1, in months from the outcome measurement) and the end of this inter-404

val (labelled lag2, in months from the outcome measurement). Models with405

all possible combinations of time aggregation between lag1 and lag2 were406

run, with lag1 set to 0 and lag2 set to 24 months. The best variables and407

time aggregation interval were selected based on low AIC value, biological408

plausibility and suitability for the Bayesian model.409

2.2.4 Bayesian models410

Four di�erent Bayesian models were considered. For all models, historical411

data were used for parameter estimation and the probability of infection on412

the last month in the dataset was predicted.413

Model 1 - Perfect test, no risk factors: in order to evaluate the monthly414

dynamics of seropositivity and seronegativity, the Bayesian model was run415

without any risk factors and assuming that both test sensitivity and test416

speci�city were close to 1. The prior distributions for sensitivity and speci-417

�city were Se ∼ Beta(10000, 1) (percentiles: 5 = 1, 50 = 1, 95 = 1) and418

Sp ∼ Beta(10000, 1). Regarding infection dynamics, prior distributions were419

speci�ed for the prevalence of status positives (also test positives in this sce-420

nario) on the �rst testing time logit(p(S+
1 )) ∼ N (0, 10) (on the probability421
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scale - percentiles: 5 = 0, 50 = 0.5, 95 = 1), the probability of becoming status422

positive logit(τ1) ∼ N (−3, 1) (percentiles: 5 = 0.01, 50 = 0.047, 95 = 0.205),423

and the probability of remaining status positive logit(τ2) ∼ N (2.2, 0.05) (per-424

centiles: 5 = 0.893, 50 = 0.9, 95 = 0.907). The same prior distribution for τ2425

was used in all models. The motivation for this choice was the fact that tests426

were performed every 6 months in all herds. The consequences of choosing427

this prior was that infected herds had a small probability of changing status428

between consecutive months (median probability = 0.1), but after 6 months,429

the probability of still being positive was 0.96 = 0.53, at which time the430

status was updated with a new test result.431

Model 2 - Imperfect test, no risk factors: the objective of this model432

was to incorporate the uncertainty associated with test results in both pa-433

rameter estimation and in the prediction of the probabilities of infection. The434

priors for test sensitivity and speci�city were selected based on the ODR dis-435

tributions for seronegatives and seropositives identi�ed by the mixture model.436

The following prior distributions were used: Se ∼ Beta(10, 1) (percentiles:437

5 = 0.741, 50 = 0.933, 95 = 0.995) and Sp ∼ Beta(10, 1). For the status438

dynamics parameters, the same prior distributions as in Model 1 were used.439

Model 3 - Perfect test, risk factors: in order to quantify the association440

between risk factors and the probability of becoming status positive if the441

test were close to perfect, the Bayesian model was run with the risk factors442

identi�ed as associated with seroconversion on the previous step, and using443

the same priors for sensitivity, speci�city and τ2 as in Model 1. The priors for444

risk factors were speci�ed as normal distributions on the logit scale. The prior445

for the intercept was θ1 ∼ N (−3, 1) (on the probability scale - percentiles: 5446

= 0.01, 50 = 0.047, 95 = 0.205). This represented the prior probability of a447

new infection in a herd purchasing no animal and with a local seroprevalence448

of 0. The priors for the other model coe�cients were centred on 0 with a449

standard deviation of 2. On the logit scale, values of -4 (2 standard deviations450

in this case) correspond to probabilities close to 0 (logit(-4) = (0.018) and451

values of 4 to probabilities that are close to 1 (logit(4) = (0.982).452

Model 4 - Imperfect test, risk factors: in order to quantify the asso-453

ciation between risk factors and the probability of becoming status positive454

while incorporating test imperfection, the Bayesian model was run with the455
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Figure 4: Distribution of the test dates between 2014 and 2017 in 1687 herds
from Loire-Atlantique, France.

risk factors identi�ed as associated with seroconversion using the same priors456

as in Model 1 for tests characteristics and the same priors as in Model 3 for457

infection dynamics and risk factors.458

Each model was run in both Stan and JAGS. For each model, 4 chains459

were run in parallel. For the Stan implementation, the �rst 1 000 iterations460

were discarded (warmup). The model was run for 500 more iterations with461

every iteration stored for analysis. This yielded 2 000 draws from the poste-462

rior distribution of each parameter. For the JAGS implementation, the �rst463

15 000 MCMC iterations were discarded (burn-in). The model was run for464

10 000 more iterations of which 1 in 20 was stored for analysis. This yielded465

2 000 draws from the posterior distribution of each parameter. For all mod-466

els, convergence was assessed visually using traceplots. Each distribution was467

summarised with its median and 95% credibility interval.468

3 Results469

3.1 Test results470

Between the beginning of 2014 and the end of 2016, there were 9725 available471

test results, reported as ODRs, from 1687 herds. Most herds were tested472
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in February and September (See Figure 4). The cut-o� of 35 used in the473

CP seemed to discriminate well between the distributions associated with474

seronegative and seropositive herds respectively, and was therefore retained475

in the remainder of the analysis. Using this threshold, there were 44.1%476

of seropositive tests between 2014 and 2016. The associated estimated test477

sensitivity and speci�city were 0.978 and 0.949 respectively. However, in478

the Bayesian models 2 and 4, because there was considerable uncertainty479

regarding the assumptions made, sensitivity and speci�city were modelled480

using Beta(10, 1) prior distributions (percentiles: 5 = 0.741, 50 = 0.933, 95481

= 0.995).482

3.2 Selection of risk factors483

Risk factors related to animal introductions and seroprevalence were evalu-484

ated with logistic models. The model outcome was a seroconversion event.485

A �rst step of the analysis was, for each variable, to identify the time in-486

terval that was the most predictive of an observed seroconversion. Figure 5487

presents the AIC values associated with each possible interval for the vari-488

ables ln(Number of animals introduced + 1) and local seroprevalence.489

For the animal introduction variables, for the same time interval, the490

AICs of the models of the untransformed number of animals were higher491

than the ones for the log transformed values (not shown). It can also be492

noted that considering longer intervals (further away from the diagonal) was493

usually better than considering short intervals (close to the diagonal). It494

may be that some herds never buy any animal while, on average, herds that495

buy once have already done it in the past. In this case, it is possible that496

the infection was introduced several times, while it is not possible to know497

which animal introduction was associated with herd seroconversion. This498

could explain the apparent cumulative e�ect of the number of introductions.499

The cells that are close to the diagonal are associated with short intervals.500

Considering one month intervals, the probability of infection was highest for501

introductions made 8 months from the month of seroconversion.502

Local seroprevalence was evaluated from data collected in 2 di�erent test-503

ing campaigns per year, as shown in Figure 4. For this reason, in the investi-504

gation of lagged relationships between local seroprevalence and the probabil-505

ity of seroconversion, the maximum local seroprevalence was computed, and506

not the sum as for the number of animals introduced. The strength of as-507

sociation between local seroprevalence and herd seroconversion was greatest508

18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

5

10

15

20

25

0 5 10 15 20 25
Time Lag 2 (months)

T
im

e 
La

g 
1 

(m
on

th
s)

3800

3820

3840

3860

AIC

ln(Number of animals introduced + 1)

0

5

10

15

20

25

0 5 10 15 20 25
Time Lag 2 (months)

T
im

e 
La

g 
1 

(m
on

th
s)

3820

3830

3840

3850

3860

AIC

Local seroprevalence

Figure 5: AIC values associated with logistic models of the association be-
tween 2 variables and the probability of seroconversion between 2 tests. Each
coloured row represents the end of the interval that is closest to the current
month and each column the end of the interval that is the furthest in the
past. For example, the line at the bottom represents intervals that end on the
current month: the �rst column is for the interval that started and ended on
the current month (length of one month) and the last column is for the inter-
val between 24 months ago and the current month. The variable evaluated
on the left-hand side panel is the sum of the ln(number of animals introduced
+ 1) between lag1 and lag2. The variable evaluated on the right-hand side
panel is the max of the local seroprevalence between lag1 and lag2.

for local seroprevalence 9 months prior to herd seroconversion.509

A �nal multivariable logistic model with an animal introduction variable510

and a local seroprevalence variable was constructed. In the choice of the511

time intervals to include in this model, the following elements were consid-512

ered. First, the Bayesian model runs with a monthly time step. Aggregating513

data over several months would result in including the same variable sev-514

eral times. Secondly, historical data may sometimes be limited. Having515

the smallest possible value for the end of the interval could be preferable.516

For this reason, the variables considered for the �nal model were the nat-517

ural logarithm of the number of animals introduced 8 months prior to the518

month of seroconversion as well as the local seroprevalence 9 months prior519
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Table 2: Results of the �nal logistic model of the probability of seroconversion
between consecutive tests. The risk factors retained in the model were the
logarithm of the number of animals introduced in the herd 8 months before
seroconversion and the local seroprevalence 9 months before seroconversion.

lag1 lag2 Estimate p-value

Intercept - - -1.96 < 0.001
ln(Number animals introduced +1) 8 8 0.38 < 0.001
local seroprevalence 9 9 4.59 < 0.001

to the month of seroconversion. The results of this model are presented in520

Table 2. All variables were highly signi�cant. The model intercept was the521

probability of seroconversion in a herd introducing no animals and with local522

seroprevalence of 0 in each of the time intervals considered. The probabil-523

ity of seroconversion between 2 tests corresponding to this scenario was of524

0.124. Buying 1, 10 or 100 animals increased this estimated probability to525

0.171, 0.866 and 1 respectively. Buying no animals and observing a sero-526

prevalence of 0.2 (proportion of seropositives in the dataset) was associated527

with a probability of seroconversion of 0.261.528

3.3 Bayesian models529

Running the di�erent models for the 1687 herds with 3 years of data on530

the �rst author's laptop (CPU: Intel Core i5-8350U, RAM: 16 Go, Win-531

dows 10) took signi�cantly more time in JAGS (3 to 4.5 hours) than in Stan532

(around 1 hour). In models 3 and 4, the candidate covariates were the nat-533

ural logarithm of the number of animals introduced 8 months before status534

evaluation/prediction as well as the local seroprevalence 9 months before.535

The 95% credibility interval for the estimated coe�cient associated with lo-536

cal seroprevalence included 0. This variable was therefore removed from the537

models and only cattle introductions were considered.538

3.3.1 Model parameters539

For Models 1 and 3, in which the test was assumed to be perfect, the 4 chains540

of each model converged and mixed well regardless of the programme used541

for Bayesian inference. For Models 2 and 4, in which wider distributions542
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Figure 6: Traceplots for test sensitivity in Models 1 and 2 estimated in Stan
and JAGS. Each color represents one of 4 chains run for each model.

were assumed for test characteristics, the chains converged and mixed well543

for the Stan version, but mixing was poor for the JAGS version. As an544

illustration, Figure 6 represents the traceplots for test sensitivity in Models545

1 and 2 with both the Stan and JAGS version of the models. In the JAGS546

version of Model 2, autocorrelation is visible in the traceplot for sensitivity,547

despite the fact that only one iteration in 20 (thinning of 20) was kept for548

analysis. Figure 7 and Table 3 show the distributions of model parameters549

for the 4 models. Although the JAGS model tends not to converge as well,550

the parameter estimates are similar between the Stan and JAGS versions of551

the models.552

In Model 1, the prior distribution put on sensitivity and speci�city was553

very close to 1. With this model, the latent status corresponded to the test554

result. In e�ect, it modelled the monthly probability of transition between555

BTM test negative and BTM test positive. In this case, the median (per-556

centile 2.5 - percentile 97.5) probability of becoming status positive between557

consecutive months was 0.032 (0.030 - 0.034). This represents a probability558

of becoming status positive over a 12 month period of 0.323 (0.310 - 0.340).559

For status positive herds, the monthly probability of remaining positive was560
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Figure 7: Parameters prior and posterior distributions for the 4 Bayesian models. Model 1: Perfect test,
no risk factor; Model 2: Imperfect test, no risk factor; Model 3: Perfect test, risk factor; Model 4: Imperfect
test, risk factor. The only risk factor included is the logarithm of the number of animals introduced + 1.
In Models 1 and 2, the probability of becoming status positive is modelled with τ1. In Models 3 and 4,
the probability of becoming positive is modelled using logistic regression. From these models, logit−1τ1
is the probability of becoming positive when no animal is introduced (i.e. model intercept). τ2 models
the increase in the probability of becoming positive with the number of animals introduced. The last
row of the Figure represents the posterior distribution for τ2 as well as the corresponding increase in the
probability of becoming positive with the number of animals introduced.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 11, 2021. ; https://doi.org/10.1101/2020.07.10.197426doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197426
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3: Median (2.5%, 97.5%) of the parameter posterior distributions used
in the 4 Bayesian models evaluated. Model 1: Perfect routine test; Model
2: Perfect routine test and risk factors; Model 3: Imperfect routine test and
risk factors; Model 4: Imperfect routine test, con�rmatory testing and risk
factors.

Model Inference Se Sp τ1 / logit−1θ1 θ2 τ2

Model 1 Stan 1 (1-1) 1 (1-1) 0.032 (0.03-0.034) - 0.948 (0.945-0.951)
JAGS 1 (1-1) 1 (1-1) 0.032 (0.03-0.034) - 0.948 (0.945-0.951)

Model 2 Stan 0.982 (0.968-0.994) 0.946 (0.934-0.957) 0.018 (0.016-0.021) - 0.958 (0.954-0.96)
JAGS 0.967 (0.953-0.982) 0.954 (0.943-0.965) 0.018 (0.015-0.02) - 0.958 (0.955-0.961)

Model 3 Stan 1 (1-1) 1 (1-1) 0.028 (0.026-0.031) 0.615 (0.508-0.716) 0.948 (0.945-0.95)
JAGS 1 (1-1) 1 (1-1) 0.028 (0.026-0.031) 0.613 (0.508-0.721) 0.947 (0.944-0.95)

Model 4 Stan 0.979 (0.966-0.989) 0.948 (0.937-0.959) 0.015 (0.013-0.018) 0.725 (0.596-0.842) 0.957 (0.954-0.96)
JAGS 0.969 (0.956-0.982) 0.955 (0.943-0.965) 0.015 (0.013-0.018) 0.731 (0.606-0.856) 0.957 (0.954-0.96)

of 0.948 (0.945 - 0.951) which represents a probability of still being status561

positive 12 months later of 0.526 (0.507 - 0.547).562

In models 2 and 4, a Beta(10, 1) distribution was used as a prior for test563

sensitivity and speci�city. Despite this distribution spanning a relatively564

large interval (percentiles: 5 = 0.741, 50 = 0.933, 95 = 0.995), all models565

converged to high values for both sensitivity and speci�city. As noted above,566

convergence was not as good for the JAGS versions of the models, although567

the JAGS and Stan estimates are close. Interestingly, for model parameters568

related to status dynamics and risk factors, the Stan and JAGS estimates569

were almost identical for all models. Adding test imperfection to the models570

resulted in a decrease in the probability of becoming positive (from 0.032 to571

0.018 between models 1 and 2; from 0.028 to 0.015 between models 3 and 4)572

as well as in an increase in the probability of remaining positive (from 0.948573

to 0.958 between models 1 and 2; from 0.948 to 0.957 between models 3 and574

4). The most likely reason is that, in some herds, some negative tests arising575

in a sequence of positive tests were considered as false negatives resulting in576

longer sequences of positive status and, as a consequence, fewer transitions577

from negative to positive status.578

In models 3 and 4, a risk factor of becoming status positive was incor-579

porated into the estimation. The model intercept (θ1) was much lower than580

the estimate from the logistic model estimated in the variable selection step.581

This was due to the di�erent time steps considered (1 month vs. half a year).582

On the other hand, the estimate for the association between the natural log-583

arithm of the number of animals introduced and the probability of becoming584
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positive was higher. This association is plotted in the bottom right-hand585

side panel of Figure 7. The probability of becoming latent status positive586

between 2 months goes from 0.015 when introducing no animal (logit−1θ1587

in Table 3) to greater than 0.3 for 100 animals introduced. This suggests588

that including the number of animals introduced into the prediction of herd589

statuses could increase the sensitivity of detection.590

3.3.2 Predicted probabilities of infection591

Figure 8 shows the distributions of herd-level probabilities of infection pre-592

dicted by the 4 Bayesian models, using Stan and JAGS. These probability593

distributions are bimodal for all models. The left-hand side corresponds to594

herds that were predicted status negative on the month before the month of595

prediction. These are associated to becoming status positive, i.e. τ1. The596

right-hand side of the distributions corresponds to herds that were predicted597

status positive on the month before the month of prediction. These are asso-598

ciated to remaining status positive, i.e. τ2. Figure 9 shows the distributions599

of the predicted probability of being status positive for 4 herds. It can be600

seen that herds that were consistently negative (positive) to the test had601

extremely low (high) probabilities of being status positive. Accounting for602

the number of animals introduced increased the probability of infection in603

the herds that were test negative. An important di�erence between JAGS604

and Stan was that in JAGS latent statuses are explicitly represented as a605

binary variable. As a consequence, herds can jump between status positive606

and status negative on the month before the month to predict, leading to607

bimodal distributions for the predicted probability of being status positive.608

This does not happen with Stan where the latent status is represented by a609

continuous variable. Therefore, the predicted distributions can be di�erent610

between the 2 models. This can be seen for the herd at the bottom left of611

Figure 9.612

4 Discussion613

This article describes a statistical framework for the prediction of an infection614

related status from longitudinal data generated by CPs against infectious615

diseases of farm animals. The statistical model developed estimates a herd616

level probability of being latent status positive on a speci�c month, based617
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Figure 8: Distributions of predicted probabilities of being status positive for
all herds with the 4 Bayesian models evaluated with Stan and JAGS. Model
1: Perfect test, no risk factor; Model 2: Imperfect test, no risk factor; Model
3: Perfect test, risk factor; Model 4: Imperfect test, risk factor.
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Figure 9: Distribution of predicted probabilities of being status positive on
the month of prediction for 4 herds with the 4 models compared. Model 1:
Perfect test, no risk factor; Model 2: Imperfect test, no risk factor; Model
3: Perfect test, risk factor; Model 4: Imperfect test, risk factor. The title
of each panel corresponds to the sequence of test results (- indicates that a
test result was available on the month before prediction), and the number of
animals introduced 8 months before the month of prediction (risk factor).
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on input data that can vary in terms of the types of test used, frequency618

of testing and risk factor data. This is achieved by modelling the latent619

status with the same discrete time step, regardless of the frequency with620

which input data are available, and by modelling changes in the latent status621

between consecutive time steps. This model therefore ful�ls one of our main622

objectives which was to be able to integrate heterogeneous information into623

the estimation. However, in order to be able to compare the output of this624

model run on data from di�erent CPs, the de�nition of the latent status625

should be the same.626

The model was implemented in both Stan and JAGS. The �rst version627

of the model was in JAGS, in which it was straightforward to translate the628

model equations into computer code. However, with this JAGS model, con-629

vergence was slow and the chains did not mix well when the prior distri-630

butions put on sensitivity and speci�city were slightly wide. This led us631

to develop a Stan version of the model. Stan is a newer programme which632

uses Hamiltonian Monte Carlo for performing Bayesian inference (Carpenter633

et al., 2017). It was more challenging to write the model in Stan, which does634

not support latent discrete parameters. This was achieved by adapting a635

Stan implementation of the forward algorithm developed by others (Dami-636

ano et al., 2018). The Stan implementation is by comparison much faster637

and converges better, and should therefore be preferred.638

When estimated in either JAGS or BUGS, discrete latent state models639

such as HMMs are known to converge slowly; and the autocorrelation in the640

draws from the posterior distributions is usually high. Yackulic et al. (2020)641

showed that the marginalisation of the latent states considerably reduces the642

time needed to estimate the parameters of such models while returning the643

same estimates. We did not implement this approach in JAGS, although this644

would have been possible using the ones trick, as explained in the article by645

Yackulic et al. (2020). The forward algorithm is a type of marginalisation646

that partly explains the better performance of the Stan version of the model.647

However, Yackulic et al. (2020) also compared the speed of the marginalised648

versions of their model in di�erent programmes and observed that Stan was649

orders of magnitude faster than JAGS.650

In this model, the latent status is mostly de�ned by the prior distributions651

put on the di�erent model parameters. In setting the prior distributions652

there are two issues: setting the distribution's central value (mean, median653

. . . ) and setting the distribution width. Using a prior distribution that does654

not include the true parameter value can lead to systematic error (bias) or655
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failure of convergence. Setting prior distributions that are too wide can lead656

to a lack of convergence, when multiple combinations of parameter values657

are compatible with the data. This was a problem in the initial modelling658

when only the JAGS model was available. In this case, putting narrow prior659

distributions on test sensitivity and test speci�city allowed the model to660

converge (results not shown). These narrow distributions imply very strong661

hypotheses on test characteristics.662

The de�nition of prior distributions for test characteristics that re�ect the663

latent status of interest is challenging (Duncan et al., 2016). This was appar-664

ent in our e�orts to apply this approach to BVDV infection. For the trade665

of animals from herds that are free from BVDV infection, the latent status666

of interest was the presence of at least one PI animal in the herd. The test667

data available to estimate the probability of this event were measures of bulk668

tank milk antibody levels which were used to de�ne seropositivity as a binary669

event. Although milk antibody level is associated with the herd prevalence of670

antibody positive cows (Beaudeau et al., 2001), seropositive cows can remain671

long after all the PIs have been removed from a herd. Furthermore, vaccina-672

tion induces an antibody response which may result in vaccinated herds being673

positive to serological testing regardless of PI animal presence (Raue et al.,674

2011; Booth et al., 2013). Therefore, the speci�city of BTM seropositivity,675

i.e. the probability for herds with no PI animals to be test negative, is less676

than 1. More importantly, this speci�city depends on the context; i.e. on the677

CP. PI animals can be identi�ed and removed more or less quickly depending678

on the CP, the proportion of herds vaccinating and the reasons for starting679

vaccination can di�er between CPs. Test sensitivity can also be imperfect.680

Continuing with the example of bulk tank milk testing, contacts between681

PI animals present on the farm and the lactating herd may be infrequent,682

which would decrease sensitivity. In this case, the sensitivity of the testing683

procedure is the sensitivity of the test for the detection of seroconversion in684

a group of animals multiplied by the probability that the tested group has685

seroconverted if there is a PI animal in the herd. The probability of con-686

tact between PI animals and the lactating herd depends on how herds are687

organised, which could vary between CPs. This problem is alleviated when688

newborn calves are tested because the group of animals tested is the group689

in which the infectious animals are most likely to be present. Furthermore,690

with BTM testing, the contribution of each seropositive cow to the BTM691

decreases as herd size increases which can result in di�erences in BTM test692

sensitivity associated with di�erent herd sizes between CPs.693
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The e�ects of using di�erent prior distributions for test characteristics on694

latent status de�nition, parameter estimation and probability prediction were695

evaluated. In models 1 and 3, the dichotomised BTM antibody test results696

were modelled assuming perfect sensitivity and perfect speci�city. With these697

assumptions, the latent status was the dichotomised test results. In Models698

2 and 4, the BTM antibody test was assumed to have lower sensitivity and699

speci�city, based on normal distributions associated with seronegativity and700

seropositivity identi�ed by a mixture model. The latent status in Models701

2 and 4 can therefore be described as seropositivity. Because overall the702

probability of changing status was small, assuming an imperfect sensitivity703

led to isolated negative test results in sequences of mostly positive test results704

being considered false negatives, as shown by the increase in the estimated705

value for τ2 between Models 1 and 2 and Models 3 and 4. This illustrates706

that in addition to test characteristics, status dynamics will determine the707

latent status within herds.708

A way to obtain information on test characteristics as part of CPs could be709

to incorporate data from con�rmatory testing into the model. In CPs, herds710

that test positive are usually re-tested in order to rule out a false positive711

test, and to identify infected animals if needed. The testing procedure used712

in con�rmatory testing usually has a high sensitivity and a higher speci�city713

than routine testing in relation to the gold standard. When incorporated714

into the model, this high quality information, in conjunction with wider715

prior distributions on routine testing speci�city, should allow the posterior716

distribution of the speci�city of routine testing to be revised towards the717

gold standard. Indeed, if a con�rmatory test comes back negative, then718

the corresponding latent status will become negative with high probability.719

Given the low probability of becoming status negative between consecutive720

months, the latent status on the month of routine testing has an increased721

probability of being negative, leading to a decrease in the speci�city of routine722

testing. Con�rmatory testing data was not available for this study. We723

attempted to evaluate the usefulness of con�rmatory testing by simulating724

con�rmatory tests at random after an initial positive test result. The results725

were not convincing, because simulating test results at random was often not726

consistent with patterns of test results in individual herds.727

Status dynamics contributed to the estimation of the latent status in728

several ways. Negative test results interspersed with sequences of positive729

test results will be classi�ed as latent status positive (i.e. as false negatives)730

more often as test sensitivity decreases and τ2 increases. Positive test re-731
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sults interspersed with sequences of negative test results will be classi�ed as732

latent status negative (i.e. as false positives) with increased frequency as733

test speci�city and τ1 each decrease. With a perfect test (sensitivity and734

speci�city equal to 1), the model can learn the values of τ1 and τ2 from the735

data, and the prior distributions put on these parameters can be minimally736

informative. With decreasing values for test sensitivity and speci�city, the in-737

formation provided through the prior distributions put on τ1 and τ2 becomes738

increasingly important. The informative value of τ1 and τ2 will increase as739

the probability of transition between latent status negative and latent status740

positive decrease, i.e. when τ1 is small and τ2 is high.741

When data on risk factors of new infection are available, the τ1 param-742

eter is modelled as a function of these risk factors using logistic regression.743

In such a case, prior distributions are put on the parameters of the logistic744

regression. In the application that we presented, we used a prior distribution745

corresponding to a low probability of new infection in the reference category746

(intercept: herds which introduced no animals) and we centred the prior dis-747

tribution for the association with cattle introductions on a hypothesis of no748

association (mean = 0 on the logit scale). This allowed the model to estimate749

the association between the risk factor and the latent status from historical750

data and to use the estimated association to predict probabilities of being751

latent status positive on the month of prediction. The prior distributions put752

on test characteristics had a moderate impact on the parameter estimates.753

Between Model 3 and Model 4, considering an imperfect test resulted in a754

slightly reduced impact of the number of cattle introduced on the probabil-755

ity of becoming status positive (See curves at the bottom of Figure 7). The756

most likely explanation for this is that Model 4 allowed the highest level of757

discrepancy between dichotomised test result and latent status, while assum-758

ing a low probability of changing status between months. This resulted in759

negative test results in herds that were regularly positive to be classi�ed as760

latent status positive (false negatives, associated with lower test sensitivity,761

see Table 3) thereby removing opportunities for new infections in herds that762

were regularly positive while also buying animals. This would imply that763

the estimated association from model 4 is more closely associated with new764

infections than estimates from Model 3 because herds that are regularly test765

positive have less weight in the estimation. It would also have been possible766

to base the prior distributions for the model coe�cients on published liter-767

ature. Unfortunately, estimates of the strengths of association between risk768

factors and the probability of new infection are not readily available from769
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the published literature or are hard to compare between studies (van Roon770

et al., 2020b). However, estimates from the literature could allow the prior771

distributions to be bounded within reasonable ranges.772

The identi�cation of the most predictive time interval between risk fac-773

tor occurrence and seroconversion required the evaluation of the associations774

between the probability of seroconversion on a given month and risk factor775

occurrence over all possible intervals between this month and the 24 previous776

months. Although there are several Bayesian methods for such variable selec-777

tion (O'Hara & Sillanpää, 2009), estimation using MCMC is time consuming778

and was not feasible in our case. The variables included were therefore iden-779

ti�ed with logistic models estimated by maximum likelihood for all possible780

lags. The approach used is related to cross-correlation maps developed for781

applications in ecology (Curriero et al., 2005), and similar to work conducted782

in veterinary epidemiology (Bronner et al., 2015). This con�rmed the impor-783

tance of animal introduction and neighbourhood contacts in new infections784

(Qi et al., 2019). However, in the Bayesian models, the 95% credibility for785

the association between local seroprevalence and new infection included 0786

and this variable was therefore not included. The reason for this was not787

elucidated in this work. Other risk factors such as herd size, participation in788

shows or markets, the practice of common grazing have shown a consistent789

association with the probability of new infection by the BVDV (van Roon790

et al., 2020b). These variables were not included in our model because the791

corresponding data were not available. One advantage of our approach is792

the possibility to choose candidate risk factors to include in the prediction of793

infection based on the data available in a given CP. The associations between794

the selected putative risk factors and the probability of new infection can be795

estimated from these data.796

Given the reasonably good performance of tests for the detection of BVDV797

infection, the main advantage of incorporating these risk factors was not to798

complement the test results on a month a test was performed, but rather to799

enhance the timeliness of detection. Risk factors that are associated with800

new infection will increase the predicted probability of infection regardless801

of the availability of a test result. Therefore, when testing is not frequent,802

infected herds could be detected more quickly if risk factors of infection are803

recorded frequently. If the available data on risk factors of new infection804

captured all the possible routes of new infection, it would be possible to805

perform tests more frequently in herds that have a higher probability of806

infection as predicted by our model. In other words, our model could be807
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used for risk-based surveillance (Cameron, 2012).808

In the CP from which the current data were used, herds are tested twice809

a year. This could lead to a long delay between the birth of PI calves and810

their detection through bulk tank milk testing. We addressed this problem811

of delayed detection by proposing a method for the investigation of lagged812

relationships between risk factor occurrence and new infections, and by in-813

cluding lagged risk factor occurrences in the prediction of the probability of814

infection. In our dataset, herds purchasing cattle were more likely to have815

seroconverted 8 months after the introduction. In the Bayesian model, cattle816

introduction was modelled as a�ecting the probability of becoming status817

positive 8 months after the introduction. It can be argued that infection is818

present but not detected during this period, as the expression delayed detec-819

tion suggests, and that the probability of infection should increase as soon820

as risk factor occurrence is recorded. Modelling this phenomenon would be821

possible by decreasing the test sensitivity for a period corresponding to the822

lag used in the current version of the model. This would imply that for this823

duration, any negative BTM test result would not provide any information824

about the true status regarding infection and that the herd would have an825

increased predicted probability of infection. This could be incorporated in826

future versions of the model.827

There are several questions related to this modelling framework that828

would require further work. The model outputs are distributions of herd829

level probabilities of infection. De�ning herds that are free from infection830

from these distributions will require decision rules to be developed based on831

distribution summaries (likely a percentile) and cut-o� values. It would also832

be possible to model the probability of remaining infected between consecu-833

tive tests (τ2) as a function of the control measures put in place in infected834

herds. Another area that requires further investigations is the evaluation835

of the modelling framework against a simulated gold standard to determine836

whether it provides an added value compared to simpler methods. The avail-837

ability of the model code as a Github repository allows interested users to838

improve or suggest improvements to our modelling framework. The model839

can be used to evaluate the output of disease CP thus aiding the use of840

output-based surveillance.841
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