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Abstract14

Stroke is a debilitating condition which affects millions of people worldwide. The development of15

improved rehabilitation paradigms rests on finding biomarkers suitable for tracking functional16

damage and recovery. We perform a detailed spatiotemporal analysis of wide-field calcium17

images from mice during longitudinal motor training before and after focal stroke induction. We18

define three indicators that characterise the duration, the angle of propagation and the19

smoothness of global movement-evoked activation patterns. During acute stroke we observe an20

increase in global event duration and a decrease in smoothness over the ipsilesional hemisphere.21

For both rehabilitation via motor training alone and combined with pharmacological therapy, we22

find clear signs of recovery, but surprisingly, cortical propagation in double treated mice with23

generalised recovery is even faster and smoother than before stroke. Our propagation-based24

biomarkers deliver unforeseen insight into brain mechanisms underlying motor recovery and25

thus pave the way towards a more targeted post-stroke therapy.26

27

Introduction28

Stroke is a severe disease that alters cortical processing producing long lasting motor or cognitive29

deficits. Treatments generally include motor rehabilitation, pharmacological therapies, brain stim-30

ulation, or combinations of them (Stinear et al., 2020). However, the functional outcome, mea-31

sured as behavioural recovery, depends on multiple factors such as age, lesion size and type,32

edema formation or inflammation and is hardly predictable (Burke Quinlan et al., 2015; Prab-33

hakaran et al., 2008). Oneway to track recovery after stroke is bymonitoring cortical activity, which34

is known to undergo drastic changes that have been tightly linked to structural alterations (Carter35

et al., 2012; vanMeer et al., 2012;AllegraMascaro et al., 2019). Previous studies have reported that36

stroke produces global widespread alterations in cortical activity asmeasured by changes in resting37

state functional connectivity or cortical excitability. On the one hand, electrophysiological studies38

have shown that stroke and recovery modulate both resting state and stimulus evoked cortical39

oscillations in motor areas (Chen et al., 2017; Cassidy et al., 2020). On the other hand, neuroimag-40

ing studies have shown that stroke alters the resting state functional connectivity, for example it41
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reduces the interhemispheric correlations between motor networks, and these changes correlate42

with behavioural deficits (Carter et al., 2010; van Meer et al., 2010). Furthermore these changes in43

resting state functional connectivity can be used to discriminate subjects with behavioural deficits44

(Rehme et al., 2015). This supports the idea that monitoring how cortical activity evolves over time45

could be used to track recovery after stroke and it could represent a powerful tool to evaluate the46

efficacy of stroke treatments or better yet could lead to biomarkers of functional recovery.47

Advancements in neural imaging combined with genetically encoded calcium indicators allow48

to monitor neural activity over almost the entire cortical mantle with high spatial resolution on49

a sub-second temporal scale (Chen et al., 2013; Harrison et al., 2013; Vanni and Murphy, 2014;50

Carandini et al., 2015). Using these tools it has been shown that the neural activity of animals dur-51

ing a behavioural task is characterised by cortex-wide global activation patterns (Allen et al., 2017)52

and these patterns are shaped by learning across sessions (Makino et al., 2017). In the context of53

stroke calcium imaging has been used to demonstrate that stroke profoundly affects resting state54

functional connectivity (Balbi et al., 2018) and leads to sensorimotor remapping of the peri-infarct55

area (Harrison et al., 2013). Furthermore, in a recent study, we have shown thatmovement-related56

activation maps are different for stroke therapy associated with functional recovery (Allegra Mas-57

caro et al., 2019). Therefore neural activity as measured by calcium imaging could be used as an58

indicator of cortical remapping, of redistribution of functional connectivity among spared regions59

and could be directly associated with behavioural recovery.60

Here, we propose that damage and functional recovery can be tracked by monitoring the spa-61

tiotemporal properties of movement-evoked widespread activation patterns or global events. In62

particular, we use our recently proposed SPIKE-order analysis (Kreuz et al., 2017) to identify global63

events and to sort the participating regions from first to last (or leader to follower). In addition, to64

characterise the spatiotemporal properties of each individual global event, we extend this method65

and define three propagation indicators: duration, angle and smoothness, i.e. how ordered and66

consistent is the direction of the propagation.67

First, we provide a characterisation of global events in healthy controls. We show that these68

events are mostly associated with the exertion of force and their duration and direction are mod-69

ulated by different behavioural events. Then, to understand the impact of stroke on the global70

events we quantify the three propagation indicators in a group of acute stroke subjects. We pro-71

vide evidences that acute stroke alters the propagation patterns by increasing the duration while72

decreasing the smoothness of the global events. Finally, to show that global events propagation73

patterns can be used to track recovery, we quantify the propagation indicators on two groups of74

subjects with different therapies; the first, robot, with motor training alone, and the second, re-75

hab, with motor training combined with pharmacological therapy. We show that both treatments76

reverse the impact of stroke with the combined treatment, the only rehabilitative therapy previ-77

ously associated with generalised recovery, characterised by the shortest duration and the highest78

smoothness among all different groups.79

Methods80

Experimental set-up and data collection81

In this Section we provide a short overview of the data and the methods we used to analyse them.82

For more technical details please refer to the Section "Materials and Methods".83

The aim of this study was to investigate changing propagation patterns during motor recovery84

from functional deficits caused by the induction of a focal stroke via a photothrombotic lesion. For85

this purpose, we analysed calcium imaging signals recorded from 17 mice during two long-term86

robot-assisted rehabilitation programs, one based onmotor training alone and one combinedwith87

transient pharmacological inactivation of controlesional activity.88

A schematic representation of the robotic system, theM-Platform (Spalletti et al., 2014;Pasquini89

et al., 2018), is shown in Figure 1a. This system uses passively actuated contralesional forelimb ex-90
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Figure 1. Experimental set-up and data collection. (a)Motor-training of mice was performed on the M-Platform, which uses a movable roboticslide for a retraction movement of the left forelimb. Motor activity was monitored via the discrete status of the slide (orange) and the forceapplied by the mouse to the slide (purple). Meanwhile, the cortical activity (yellow) was recorded using wide-field calcium imaging. (b) Thecontrol (green) and rehab (red) group performed 4 weeks of daily training; for the robot (blue) group we additionally recorded 1 week beforestroke induction (typically 5 sessions per week). Star symbols refer to the healthy condition, while the two different types of rehabilitation, robotand rehab, are represented by squares and triangles, respectively. (c) Calcium imaging sequence (here 12 x 19 pixels) of cortical activation,superimposed on contours of brain regions according to the standard atlas. (d) Propagation pattern, from leader (red) to follower (blue), of theevent depicted in (c).
Figure 1–video 1. Movie depicting the propagation of activity during the training cycle shown in Figure 1c. For caption see end of Appendix.
Figure 1–Figure supplement 1. Standard atlas of brain regions.
Figure 1–Figure supplement 2. Brain regions acronyms.

tension on a slide to trigger active retraction movements that were subsequently rewarded (up to91

15 cycles per recording session). The effect of the motor activity was monitored via the discrete92

status of the slide and by recording the force the mice applied to the slide. As a measure of the93

neural activity itself we performed wide-field calcium imaging over the affected hemisphere, from94

the somatosensory to the visual areas. Selecting a region of interest of 2.16 x 3.78mmand spatially95

downsampling by a factor 3 resulted in calcium images of 12 x 21 (or sometimes 12 x 19) pixels of96

size 180 �m. These are the signals that we analyze.97

The 17 mice were divided into three groups: control (3 mice), robot (8 mice) and rehab (6 mice).98

The healthy controls had no stroke induced but still received the same motor training as the other99

mice (4 weeks on the M-Platform). Both robot and rehab mice underwent physical rehabilitation100

on the M-platform for 4 weeks starting 5 days after injury.101

For rehab mice in addition a pharmacological inactivation of the primary motor cortex in the102
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contralesional hemisphere was carried out in order to counterbalance the hyperexcitability of the103

healthy hemisphere. The recording schedule for all three groups is shown in Figure 1b. Apart from104

the data acquisition during the shared training regime, 5 out of 8 robot mice were also recorded105

for one week before the stroke (pre-stroke condition).106

Two weeks before the stroke, five mice belonging to the robot group have been trained for 5107

days (pre-stroke condition), Figure 1b. We have tested whether the pre-stroke condition shows any108

statistical difference with the first week of recordings of the control group. As could be expected,109

the pre-stroke condition presents the same behaviour as the control group, both qualitatively and110

quantitatively.111

Figure 1c displays a sequence of snapshots of the calcium activity over time. The three images112

illustrate one pull of the slide by the affected forelimb of a control mouse, from the activation of113

the average calcium activity (left) via itsmaximum (middle) to its tail end (right). The Supplementary114

Material contains a movie that covers all 36 frames for this one training cycle.115

The central method of this study was a mapping of this sequence of snapshots into the prop-116

agation pattern shown in Figure 1d. In this matrix the order of activation of the individual pixels117

was color-coded from red (earliest) to blue (latest). We superimposed this order matrix on the118

standard atlas of brain regions (Lein et al., 2007) which illustrates that the recording area covers119

the primary motor area M1 (the location of the lesion), the primary somatosensory area, and the120

primary visual cortex, as well as the retrosplenial cortex.121

Event identification, propagation analysis, and definition of three propagation in-122

dicators: duration, angle, and smoothness123

Here we explain our use of the SPIKE-order framework (Kreuz et al., 2017) to identify global events124

and assess the propagation of activation within these events (compare Figure 1d). In particular, we125

focus again on one individual global event to illustrate how we characterise the detailed activation126

patterns with three propagation indicators: duration, angle, and smoothness.127

In Figure 2 we show the activity during a complete recording session of one mouse. Figure 2a128

depicts the status, a discrete codification of the current phase of the passive extension and active129

retraction cycle, e.g. position of the slide and acoustic go and reward cues. Most relevant here are130

themarked times of the pull completionswhich typically correspond to peaks in the force applied to131

the slide (Figure 2b, force events are marked at threshold crossings) but already a quick look at the132

event numbers shows that themapping is not perfect. Indeed there are typicallymore force events133

than rewarded pull completions (20 force versus 13 status events in this case). The same peaks,134

and some more, are also present in the calcium signal computed by averaging the fluorescence135

signal over all pixels (Figure 2c, here 23 calcium events are marked at threshold crossings).136

In the next step we looked at all 19 x 12 = 228 individual pixels but here we do not show all137

the traces but just small time markers denoting the time of their threshold crossings (Figure 2d).138

This is very similar to a rasterplot showing in each row the spike train of one individual neuron and139

accordingly we here follow this terminology and call the threshold crossings of individual pixels140

’spikes’. The first thing to notice is that while there are a few spikes in the background (in black), by141

far most of the spikes are part of global events (in color) matching the peaks in the average calcium142

activity shown right above. To automatically identify these global events and sort the spikes within143

these events from leader to follower we used the SPIKE-order framework proposed in (Kreuz et al.,144

2017).145

After some initial denoisingwefirst used an adaptive coincidence detector (QuianQuiroga et al.,146

2002) to pair spikes such that each spike is matched with at most one spike in each of the other147

pixels. By means of the symmetric and multivariate measure SPIKE-Synchronization (Kreuz et al.,148

2015) we filtered out all spikes which were not coincident with spikes in at least three quarters149

of the other spike trains. To the global events that remained we applied the asymmetric SPIKE-150

order indicator (Kreuz et al., 2017) which quantifies the leader-follower relationship between pairs151

of spikes. For each event the SPIKE-order is then color-coded from leader (red) to follower (blue).152

4 of 28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.197509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Figure 2. Event identification, propagation analysis, and definition of three propagation indicators: duration, angle, and smoothness.
Figure 2 continued on next page
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Figure 2 continued
(a) Status of the robotic slide. The longer horizontal plateaus at status 3 correspond to the time interval during which the mouse is allowed toretract the slide. The orange bars refer to the time when the pull is completed and the mouse receives its reward. (b) Force applied by themouse during the retraction movement. (c) Average calcium signal over all pixels. The purple and yellow dashed lines below refer to thethreshold used to identify the force and global calcium events, respectively. (d) Raster plot obtained from the threshold crossings of individualpixels versus time. Triangle indicators show the global events identified during this session, and the red triangle with dashed box marks theevent analyzed in the remaining panels below. The first (last) spike of each global event is marked by a red (blue) circle. Within each subplot(a)-(d) we state the number of the respective events / threshold crossings. (e) Zoom of this selected event. The duration is defined as theinterval from the first to the last spike within the event. (f) The propagation matrix is obtained by projecting the relative order of these thresholdcrossings onto the 2D-recording plane. By means of singular value decomposition (SVD) we obtain the angle of the propagation, defined relativeto the horizontal axis. (g) First and second approximations of the propagation matrix and (h) second order approximation as their weighted sum(cumulative). (i) Singular values (red) vs. order of approximation. The smoothness (black asterisk) measures the quality of the approximation.

Finally, we used the scalar Synfire Indicator (Kreuz et al., 2017) to also sort the spike trains in the153

rasterplot from overall leader to overall follower. Since the sorting takes into account all global154

events, the first spike trains containmore leading spikes (red) and the last spike trainsmore trailing155

spikes (blue).156

In Figure 2e we zoom in on the fourth global event of the rasterplot. Here we define the first157

propagation indicator, the event duration, as the time from the first to the last spike of this event.158

The propagation matrix of this specific event, obtained by projecting the colour-coded relative or-159

der of the spikes onto the pixels of the 2D-recording plane, is shown in Figure 2f. We then used160

singular value decomposition (SVD) to calculate the two remaining propagation indicators.161

SVD (Yanai et al., 2011) searches for spatial patterns by decomposing the propagation matrix162

into three simple transformations: a rotation, a scaling along the rotated coordinate axes and a163

second rotation. The scaling is a diagonal matrix which contains along its diagonal the singular val-164

ues of the propagation matrix. Backprojecting the (sorted) singular values one at a time resulted165

in various orders of approximations for the original propagation matrix. The first two such projec-166

tions are displayed in Figure 2g and the second order approximation, their weighted sum, is shown167

in Figure 2h. From the weighted average of the mean gradients of these first two projections we168

calculated the second propagation indicator, the angle of the main propagation direction.169

In Figure 2i we depict the (sorted) singular values (rescaled to the highest value) versus the order170

of the projection. We also show the value of the third propagation indicator, the smoothness S,171

which quantifies how well the approximation with only the first two singular values captures the172

full spatiotemporal pattern obtained by considering all singular values �i. Smoothness is defined173

as the relative weight of the first two projections, their sumdivided by the sumof all singular values.174

This can be verified visually by comparing the second approximation (Figure 2h) with the original175

propagation matrix (Figure 2f).176

A comparison of Figure 2d and Figure 2c clearly shows that all global events in the rasterplot177

can easily be matched with a peak in the average calcium trace, in fact, these are basically two178

equivalent ways to visualise a peak of global calcium activity. However, while the vast majority of179

global events are in close proximity of a peak in the force, not all of them are. This we can use to180

categorise the global events into two groups: Force (F) and non-Force (nF). Among the Force events181

we can distinguish two kinds of events, a few of themoccur during the passive extension of the arm182

by the slide (Passive, Pass) but most of them do not, i.e., they occur during the active retraction183

phase (Active, Act). Finally, among those active events we can differentiate between movements184

which lead to a completion of the forelimb retraction and therefore are rewarded (Reward Pulling,185

RP) and movements which are not completed and thus not rewarded (non-Reward Pulling, nRP).186

The Reward Pulling events are the ones that correspond to the vertical markers in the status trace187

of Figure 2a.188

The overall categorisation can be visualised by means of this branching structure:189
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Calcium Non-force (nF)
Force (F) Passive (Pass)

Active (Act) Non-reward pulling (nRP)
Reward pulling (RP)

190

Results191

In this study, we sought a biomarker for functional recovery after stroke in the neural activity prop-192

agation. To this aim, we used global event propagation analysis to investigate the spatiotemporal193

features of neuronal activation over the dorsal cortex. We compared the propagation patterns in194

healthy versus acute stroke and after treatment mice (control, robot, and rehab groups, compare195

Figure 1). We decided to investigate three main indicators (angle, duration, and smoothness of196

the propagation) to account for both spatial and temporal propagation characteristics (compare197

Figure 2). To identify common brain dynamics associated with similar behaviours, we have dealt198

with each type of event separately.199

Global events are mostly associated with generation of voluntary movements in200

healthy mice201

We first wondered if neuronal activation in awake mice involved a large region of the cortex and202

if these global events were related to specific classes of behavioural events in our experimental203

paradigm. The results in Figure 3 focus on the number of events and two of the three indicators204

introduced in Figure 2 (angle and smoothness) and they refer to one healthy mouse during all205

sessions (4 weeks, 5 days per week, see Figure 1b).206

For thismouse, a total of 537 global events are identified, of these 492 (92%) are associatedwith207

force events (Figure 3a, see Table 1 for more details). Moreover, 356 (66%) of the selected global208

events are pulling events. Pulling the handle is a relatively easy task which allows even animals209

right after stroke to perform it; this is reflected by the fact that the majority of behavioural events210

are reward pulling events (277, 56%).211

Three different example patterns with increasing smoothness and varying angle are depicted212

in panels (b-d). For low smoothness values, the identified propagation pattern looks random, thus213

not displaying a clear directionality (panel (b)), and therefore measures for angle and duration are214

lessmeaningful in those cases. On the other hand, high smoothness corresponds to clear patterns215

(panels (c-d) show two cases of high smoothness but orthogonal directionality). Panels (e-g) show216

scatter plots of smoothness against angle for different event types, together with the marginal217

histograms. While narrowing down the type of event does not reduce the whole range of values,218

the marginal distributions of the angle and smoothness converge to a peak distribution for the219

angle centred in 0.46, and to a distribution with mean 0.68 for the smoothness.220

In summary, in healthy mice a large number of global events can be detected, and a vast ma-221

jority of them are associated with application of force to the handle. The variety of the identified222

propagation patterns suggests amore in depth analysis of the propagation indicators across event223

types.224

Cortical propagation features discriminate event types in healthy mice225

In the previous section we established the presence of global events within the cortical activa-226

tion during motor training. Here we characterised these events based on their behavioural condi-227

tion. Then, we addressed if longitudinal motor training altered the propagation patterns. To this228

end, a detailed quantitative analysis of all three indicators (angle, smoothness and duration) was229

performed for three healthy mice along four weeks of motor training on the M-Platform (control230

group). Moreover, the dependency of these quantities was evaluated both over time and with231

respect to different event types (Figure 4).232
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Figure 3. Propagation pattern varies across event types in healthy mice. (a) Classification of events. (b-d) Three different patterns withincreasing smoothness and varying angle. Note that the length of the arrow is proportional to the smoothness. (b) Low smoothness identifies apoor propagation pattern without any proper directionality. (c) High smoothness identifies a clear pattern and corresponding directionality. (d)High smoothness and horizontal propagation in contrast with (b) low smoothness and opposite horizontal direction, and different from (c)which has still high smoothness, but an almost orthogonal angle of −�∕2. (e-g) Scatter plots and histograms of smoothness and angle ofpropagation for all events. — Brown colours refer to force (F) and non-force (nF) events, active (Act) and passive (Pass) events are in purple,reward pulling (RP) and non-reward pulling (nRP) events in green. All plots include the events from all the sessions for one healthy mouse.
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Figure 4. Cortical propagation features discriminate event types in healthy mice. (a)Mean number of events for all three mice per week,partitioned by type of event. (b-c) Narrowing down the type of event leads to more directed propagation patterns. (d-e) Smoothnessdiscriminates force (F) and non-force (nF) events, and is preserved over weeks. (f-g) Event duration is a marker for discriminating active (Act) andpassive (Pass) events, as well as reward pulling (RP) and non-reward pulling (nRP) events. — Angle and duration are weighted by smoothness.Markers in (d-g) refer to the average value per day. Within each box in (d-g), the central mark indicates the median, and the bottom and topedges of the box indicate the 25tℎ and 75tℎ percentiles, respectively. Control group n=3 mice. P-values of statistical tests in Table 2, “⋆” refers todifference in variance.
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We first analysed if the occurrence of the global events was associated with the application of233

forces or if it was unrelated. The variation of the number of events divided by type is depicted234

in Figure 4a and it refers to the four weeks of recordings (compare to the first three rows (green235

stars) in Figure 1b). Most of these events occurred when the mouse applied a force to the handle236

(1568, corresponding to 87% of the total number of events). Furthermore, most of the force events237

(1147) occurred when the mouse was actively pulling the handle (73% of force events, 64% of the238

total), and 779 of those corresponded to reward pulling events (68% of active events, 43% of the239

total). Global events propagate along angles−0.3±0.4with a smoothness of 0.63±0.03, and they last240

0.59±0.04 s, see subplot “All” of Figure 4b,d,f. The little variation in the angle (Figure 4b), smoothness241

(Figure 4d) and duration (Figure 4f) implies high coherence of the parameters of spatiotemporal242

propagation over weeks. This suggests that motor training alone does not change events number,243

duration, score or angle along weeks.244

Results for angle, smoothness and duration were then analysed looking at specific event types.245

Figure 4c shows the distributions of the angle for the three consecutive subdivisions of the event246

types. The propagation becomesmore directedwhennarrowing down the type of event. The differ-247

ence between event types in the angle distribution reduces as well. Interestingly, also the bimodal248

nature of the distribution is attenuated. Specifically, the peak at −�∕2 (see first plot in Figure 4c)249

is initially caused by non-force events, then within force events it stands out in the passive cases,250

finally it is predominant in the non-reward pulling events. This suggests that task-specific events,251

such as reward pulling, are characterised by consistent propagation patterns. The same argument252

can be made for the smoothness of the propagation; further specifying the type of event leads to253

smoother and smoother propagation patterns (Figure 4e) with the highest average smoothness be-254

ing obtained for reward pulling events. They display also the shortest duration, on average, among255

all the other events (Figure 4g).256

The patterns observed in healthy mice are characterised by different spatiotemporal features257

when comparing force and non-force events in terms of angle (p=10−10) and smoothness (p=0.001)258

of propagation, and when comparing active and passive events in terms of angle (p=10−9) and259

duration (p=0.002). Also between rewarded and non-rewarded pulls events the observed patterns260

display different characteristics when comparing angle (p=10−8) and smoothness (p=0.001), see261

Figure 4c,e,g and Table 2.262

In summary, in healthy mice there is a high coherence of the parameters of spatiotemporal263

propagation over weeks, suggesting that on a simple motor task alone does not change the an-264

gle, smoothness, and duration of events. Moreover, the investigated spatiotemporal propagation265

indicators discriminate between different event types when a specific characteristic is taken into266

account, i.e., force versus non-force, active versus passive, reward versus non-reward pulling.267

Acute phase after stroke is characterised by an increase of event duration.268

We pondered how the spatiotemporal propagation indicators were altered by cortical injury, and269

thus looked at the cortical activation events as associated to classes of behavioural events in the270

first week right after the stroke (called acute stroke). Moreover, we compared these results with271

the first week of recordings on healthymice (Figure 5) which consists of the first week of recordings272

of the control group and the pre-stroke week in the robot group (see Figure 5–Figure Supplement 1273

for a comparison).274

When looking at all events together, the angles distribution for the acute stroke group exhibits275

a flatter distribution and two secondary peaks in −�∕2 and �∕2, indicating the presence of a more276

heterogeneous pool of events (Figure 5a). Differences can be appreciated for the smoothness277

(p=0.007) and duration (p=0.003) even without further splitting the events into specific types. In278

particular, the smoothness decreases (Figure 5c) and the duration increases (Figure 5e) during the279

acute phase. Day by day variations are shown in Figure 5g-h. For both smoothness and duration,280

the difference of control and acute stroke groups is considerably larger for the first 3 days. More-281

over, the difference in the event duration tends to diminish over days.282
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Figure 5. The acute phase (1 week after stroke) is characterised by an increase of the event duration. During the acute phase, (a-b) the directionof propagation is more spread, (c-d) smoothness is decreased, and (e-f) the event duration is increased. (g)While smoothness is higher forcontrol mice, this difference tends to diminish over days. (h) Event duration is longer for stroke mice, attenuating day by day. — Angle andduration are weighted by smoothness. Markers in (c-h) refer to the average value per day. Within each box in (c-f), the central mark indicates themedian, and the bottom and top edges of the box indicate the 25tℎ and 75tℎ percentiles, respectively. Shaded areas in (g-h) correspond to theconfidence interval. Control n=8 mice, Acute Stroke n=8 mice. P-values of statistical tests in Table 3, “⋆” refers to difference in variance and “*”refers to difference in mean.
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Figure 5–Figure supplement 1. The pre-stroke condition presents the same behaviour as the control group.

When splitting the results into event types (Figure 5b,d,f), a common tendency for angle, smooth-283

ness and duration is that the stroke condition attenuates differences of the indicators between284

event types. For the angle (Figure 5b), the dissimilarities in the control group between event types285

are preserved in the acute stroke condition (F-nF and Act-Pass, control p<0.001 and robot p<0.05).286

For both smoothness and duration (Figure 5d,f), while the control group presents significant vari-287

ations changing the type of event (F-nF p=10−10 and RP-nRP p=0.008 for smoothness, and Act-Pass288

p=0.04 for duration), the acute stroke group is characterised by smaller fluctuations in the mean289

value (F-nF p=0.082 and RP-nRP p=0.51 for smoothness, and Act-Pass p=0.059 for duration). Re-290

garding the smoothness (Figure 5d), a significant difference in mean between healthy and stroke291

mice can be appreciated for force (F, p=0.004), active (Act, p=0.01), passive (Pass, p=0.002), and re-292

ward pulling (RP, p=0.005) events. For the duration (Figure 5f), significant differences can be found293

in the same events types as for smoothness (p=0.026, 0.034, 0.035, 0.014) with the addition to the294

not reward pull (nRP, p=0.028) events. A more detailed description of the p-values of the test is295

presented in Table 3.296

Altogether, our three spatiotemporal propagation indicators are able to distinguish between297

healthy and strokemice. The acute phase after stroke leads tomore heterogeneous events charac-298

terised by flattened distributions of the angle, lower smoothness, and longer duration. Moreover,299

in contrast to the healthy condition, cortical propagation features do not discriminate event types300

in the acute stroke condition.301

Combined rehabilitative treatment induces higher smoothness and shorter dura-302

tion of cortical propagation patterns303

We wondered if the combined treatment leading to generalised recovery (as shown in (Spalletti304

et al., 2017)) was associated with a specific fingerprint of cortical activation patterns. We hypoth-305

esised that rehabilitative treatments may alter the spatiotemporal propagation patterns, and in306

particular reverse the trend observed in the acute stroke phase. We therefore compared the spa-307

tiotemporal propagation indicators in animals treated with motor training alone (robot group) or308

in combination with pharmacological inactivation of the homotopic cortex (rehab group). Finally,309

by comparing treated (robot and rehab) with healthy mice (control group), we evaluated if propa-310

gation features were restored to pre-stroke levels or if the treated condition ended in a new state311

(Figure 6). To this end, in this section we analysed data belonging to control, robot, and rehab312

groups starting from the second week of recording up to one month after stroke.313

Themost striking result emerging from this analysis is that the rehab group is greatly separated314

from both the control and the robot group for all three propagation indicators. To find differences315

between groups in the angle distribution it is not sufficient to look at all events together (Figure 6a),316

but instead it is necessary to split the results into event types (Figure 6b). The rehab group is sig-317

nificantly different from both control and robot groups when considering force, active, passive,318

and reward pulling events. Interestingly, in the rehab group neither qualitative nor quantitative319

variations in the angle distribution across event types can be observed. More specifically, the dis-320

tribution of the angles appears to be consistent for different event types.321

The events of the rehab group display a greater smoothness compared to the control (p=0.025)322

and robot (p=10−4) groups. The biggest difference can be observed for rehab versus robot group;323

it is significant not only for all events together (p=10−4, Figure 6c) but also for each event type sep-324

arately (all p<0.01, Figure 6d). Note that, as for the angle, the smoothness of the rehab group325

appears to be consistent when distinguishing different event types, meaning force, non-force, ac-326

tive, passive, reward and non-reward pulling events display the same average smoothness value.327

Among all the characteristics investigated, the marker that distinguishes most clearly between328

the rehab group and control (p=10−4) and robot (p=10−6) groups is duration. The events of the329
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Figure 6. Rehab group is characterised by higher smoothness and shorter duration. (a-b) For the rehab group the distribution of the anglesdoes not vary depending on the type of event. (c-d) For all types of event, the smoothness of the rehab group is higher than for the robot group.
(e-f) For all types of event, rehab group events are the shortest. (g) Smoothness is always higher for the rehab group. (h) Event duration isalways shorter for the rehab group. As expected, for both smoothness and duration the pre-stroke week of the robot group is quantitatively thesame as the first week of the control group.
Figure 6 continued on next page
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Figure 6 continued— Angle and duration are weighted by smoothness. Markers in (c-h) refer to the average value per day. Within each box in (c-f), the central markindicates the median, and the bottom and top edges of the box indicate the 25tℎ and 75tℎ percentiles, respectively. Shaded areas in (g-h)correspond to the confidence interval. Control group n=3 mice, robot group n=8 mice, rehab group n=6 mice. P-values of statistical tests inTable 3, “⋆” refers to difference in variance and “*” refers to difference in mean.
Figure 6–Figure supplement 1. The robot group presents a non-stationary evolution over weeks and large variance of all three indicators.
Figure 6–Figure supplement 2. The rehab group shows high coherence of all three spatiotemporal indicators starting from the second week of
training after stroke.

rehab group are shorter than for the control (all p<0.01) and robot (all p<0.001) groups (Figure 6e-330

f). Again, this statement applies to all events together (Figure 6e) as well as to each event type331

individually (Figure 6f). Also in this case, the duration of the rehab group appears to be consistent332

when looking at different event types. The complete list of the p-values of the test can be found in333

Table 4.334

Figures 6g-h depict the trend over time of smoothness and duration. The control group shows335

a consistent trend, suggesting that motor training alone has no effect on either smoothness or336

duration, as already described in the previous sections for healthy mice (Figure 4). After the stroke,337

the robot group shows a significant variation: the smoothness is lower and the duration is longer.338

This variation decreases over time in both cases. While for the smoothness this difference seems to339

oscillate without stabilising, the duration reaches again values comparable to healthy mice already340

after the second week of training. Interestingly, the rehab group presents a behaviour qualitatively341

comparable to the control group, i.e., a consistent trend, but with very different values.342

In summary, the rehab group is significantly different from both control and robot groups. In343

particular, it is characterised by higher smoothness and shorter duration. Differences between344

the rehab and the other two groups can be observed not only for all events together, but also345

for specific event types. Specifically, when looking at specific event types (force, non-force, active,346

passive, reward pull, non-reward pull) our three spatiotemporal propagation indicators are able to347

distinguish the rehab group from the control and robot groups.348

Discussion349

In this study we employed an improved version of our recently proposed SPIKE-order analysis350

(Kreuz et al., 2017) to sequences of wide-field fluorescent calcium images from the dorsal cortex351

of awake behaving mice. We defined three propagation indicators that characterise the duration,352

the angle of propagation and the smoothness of movement-evoked global events. This new way353

of quantifying variations in the spatiotemporal propagation patterns during longitudinal motor354

training allowed us to track damage and functional recovery following stroke.355

We found that in healthy mice all three indicators of spatiotemporal propagation display a very356

high degree of consistency over time. For animals with acute stroke the propagation patterns of357

the global events are altered. The most prominent consequence is a large increase in global event358

duration and a decrease in smoothness over the ipsilesional hemisphere. We compared two dif-359

ferent rehabilitation therapies, motor training alone and motor training combined with pharma-360

cological therapy. While both reverse the effects observed during the acute phase, the combined361

treatment, promoting a generalised recovery, leads to a new functional efficacy, different from362

pre-stroke conditions, with very fast and smooth propagation patterns.363

Comparison with existing methods364

Comparing our approach with techniques previously applied in similar contexts, we first note that365

most analysis tools for wide-field optical images perform simple correlation and time lag analysis366

(Pearson correlation and phase synchrony), which are window- and not event-based (e.g. Haupt367

et al. (2017); Brier et al. (2019); Vanni et al. (2017)). Directionality is explored by using Granger368

causality in (Mitra et al., 2018), which is dependent on a priori selection of regions of interest369

(ROIs). Since commonly used analyses tools are based on averaged activity under resting state,370

14 of 28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.197509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

important information on single events is missing. This is especially important when considering371

motor evoked activity, which is directly associated with the execution of single movements (active372

forelimb pulling in our case). The detailed propagation analysis we showed here would not be373

possible with the widely used optical flow techniques (Afrashteh et al., 2017; Townsend and Gong,374

2018) which instead focus on velocity vector fields and their complex patterns (e.g. sources and375

sinks) but do not deal explicitly with temporal order. Our methods used here contain some sim-376

ilarities but also crucial differences with a very recent analysis performed on cortical slow waves377

in anaesthetised mice (Celotto et al., 2020). On the one hand, both algorithms apply exactly the378

same criteria of unicity and globality in the identification of the spatiotemporal patterns. On the379

other hand, the core of our global event detection is automated spike matching (via adaptive co-380

incidence detection) while the wavehunt pipeline relies on an iterative procedure to cut the time381

series into distinctive waves. Apart from the different types of data, the two studies are also com-382

plementary in scope: while the focus of Celotto et al. (2020) lies on the excitability of the neuronal383

population, the dominant origin points and the velocity of the slow waves, we perform a thorough384

investigation of the spatial propagation pattern of each global event. Nevertheless, it would be385

very interesting to compare our SPIKE-order approach and their wavehunt pipeline in more detail386

and we will make this the topic of a future study.387

Cortical propagation features in healthy mice388

We first tested the discrimination capabilities of this approach for different classes of behavioural389

events and used it to characterise global events over most of the dorsal cortex. Results show that390

under our experimental paradigm, in all conditions, global events are occurring predominantly391

when themouse is actively applying force during either active retraction or passive extension of the392

affected forelimb. Angle, duration and smoothness of the global events change with behavioural393

event type (e.g. if the event is associated with the application of force or not) in healthy subjects.394

This finding is in line with a recent study showing different propagation patterns across the cortex395

for mice engaged in a visual task depending on the type of the behavioural event (active vs passive,396

hit vs misses, ipsilesional vs controlesional) (Steinmetz et al., 2019).397

None of the parameters of global cortical activation were significantly altered by daily training398

over fourweeks, suggesting that the spatiotemporal propagation is not strongly correlatedwith the399

repeated performance of the forelimb pulling task. In our study, the duration of the propagation in400

global events is quite stable over the weeks. Recent literature shows that the cortical propagation401

changes over different learning phases (Makino et al., 2017). Makino and colleagues find that as402

learning progresses the activity across cortical regions became temporally more compressed, and403

its trial-by-trial variability decreased. As we showed in a previous paper (Allegra Mascaro et al.,404

2019), the active pulling task is very easily and rapidly learned by the mouse, so a possible learning405

effect might not be revealed.406

The drastic change observed in the angle distribution of global events between force and non407

force events implies that activity propagates from medial to lateral regions. This is in accordance408

with previous findings based on space-frequency single value decomposition analysis showing that409

at the naive stage, the activity propagated from retrosplenial cortex in a radial direction (Makino410

et al., 2017). Also, the small hump in the angle distribution at −�∕2 (panels b and c of Figure 4),411

indicative of rostro-caudal propagation, is reminiscent of the flow of activity from premotor cortex412

towards caudal regions emerging during learning in (Makino et al., 2017). The mediolateral propa-413

gation of the global events suggests the progressive involvement of the retrosplenial cortex during414

the exertion of the reward pull. Indeed, it has been previously reported that retrosplenial cortex415

is more correlated with sensory cortices during locomotion vs quiescence (Clancy et al., 2019) sug-416

gesting the presence of a network switch to allow the processing of sensory information during417

locomotion. In this view, the higher accumulation of angles at 0 degrees observed when compar-418

ing force vs non force events could represent the hallmark of such network switch. Interestingly, a419

similar propagation pattern has been observed applying optical flow analysis to calcium imaging420
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over the same cortical areas when windowing cortical activity around hippocampal sharp wave421

ripples during sleep (Karimi Abadchi et al., 2020) and corresponds to one of the two major prop-422

agation patterns observed during slow wave sleep (Greenberg et al., 2018). Our findings extend423

these results to the awake condition during motor execution.424

Acute phase after stroke425

Stroke strongly affects the spatial propagation within the cortex during the execution of a pulling426

task. The analysis of spatiotemporal propagation patterns evoked by stimulation or voluntary427

movements represents a fundamental means to investigate functional remapping in order to bet-428

ter understand post stroke reorganisation. In our study, acute stroke is characterised by less co-429

herent direction of the propagation, lower smoothness, and longer duration than healthy animals.430

Also, cortical propagation properties are very heterogeneous across global events and the differ-431

ences between behavioural event types are lost.432

In a previous work Murphy and collaborators (Brown et al., 2009), by applying intrinsic optical433

signal and fluorescence imaging, described modifications in spatiotemporal propagation elicited434

by sensory forelimb stimulation both in acute and chronic phase after stroke in the forelimb cor-435

tex. In agreement with Brown et al., who observed during the acute phase an increase of time to436

peak cortical signal evoked by sensory stimulation, our results revealed an increment of duration437

of motor-evoked cortical response, showing a delayed activation of cortical regions neighbouring438

the stroke core due to the damage. The comparison between these results reveals that though ap-439

plying opposite approaches (i.e. bottom-up for sensory stimulation and top-down for motor task440

execution) a similar cortical response was observed. Moreover, an fMRI study in the acute phase441

by Dijkhuizen and colleagues (Dijkhuizen et al., 2003) showed that the stimulation of the unpaired442

forelimb induces a small response detected in the ipsilesional hemisphere in M1 and sFL cortex443

and in more distal regions both in rostral and caudal direction. A similar observation was made444

by Harrison and collaborators (Harrison et al., 2013) revealing that motor maps were more diffuse445

after motor-targeted stroke during sensory stimulation, with a decrease in correlation between446

neighbouring pixels. The diffuse activation in response to forelimb stimulation observed in those447

previousworks is in agreement with our results that reveal the absence of a clear pattern of cortical448

propagation, as highlighted by low smoothness, in the acute phase after stroke.449

These differences decline during weeks of motor training in the robot group, in fact by the450

second week of training duration reaches values comparable to healthy mice. We also show that451

the smoothness was on average comparable to healthymice after robotic training. Our findings on452

the chronic phase of the robot group are in agreement with what we observed in (Conti et al., 2020)453

where repetitive motor training induced a task-dependent spatial segregation similar to healthy454

mice though unaccompanied by functional recovery (Spalletti et al., 2017).455

Comparison of different rehabilitation paradigms456

Combined rehabilitation profoundly altered the propagation of global events as compared to both457

healthy (control) and motor trained stroke (robot) mice. While during the chronic phase of robot458

mice no significant differences were observed in cortical directionality propagation with respect to459

healthy animals, the combined rehabilitative treatment presented a different profile compared to460

the other groups. More in detail, rehabmice show a decrease of duration and greater smoothness461

with respect to control and robot mice indicating the arrangement of a fast and directed pattern of462

propagation. Temporally compressed and reliable cortical activity sequences may be associated463

with a more effective trigger of subcortical movement machinery (Makino et al., 2017).464

In addition, the substantial increase in smoothness after combined rehabilitation finds a nice465

correlate in the segregation of motor representation illustrated in preclinical (Allegra Mascaro466

et al., 2019) and clinical studies (Chang et al., 2012). In these works, improved motor functionality467

induced by post-stroke combined rehabilitation is associated with a more focused brain activation468

during the execution of a motor task. (Conti et al., 2020). Importantly, generalised recovery in469
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rehab mice, see (Spalletti et al., 2017; Allegra Mascaro et al., 2019) is not necessarily associated470

with recovery of pre-stroke spatiotemporal propagation features. Indeed, the results on all motor-471

evoked spatiotemporal propagation indicators suggest that the combination of contralesional in-472

activation and motor training acts towards the establishment of a new propagation pattern rather473

than the restoration of pre-stroke features.474

In summary, our detailed spatiotemporal analysis of global activation patterns during longitudi-475

nalmotor training provides a powerful non-invasive tool to quantify the relative success of different476

state-of-the-art rehabilitation paradigms. The propagation-based biomarkers deliver new and un-477

foreseen information about the brain mechanisms underlying motor recovery and this could pave478

the way towards a more targeted post-stroke therapy. As a final remark, we would like to stress479

that themethodused here is universal and could easily be adapted to functional techniques (includ-480

ing electroencephalography and functional Magnetic Resonance Imaging) in many other clinical481

settings. For example, it could be extended to disorders of the central nervous system similarly as-482

sociated with alterations in the spatiotemporal propagation of brain activity, from traumatic brain483

injury to autism.484

Materials and methods485

Experimental design486

Mice487

All experimental procedures were performed in accordance with directive 2010/63/EU on the pro-488

tection of animals used for scientific purposes and approved by the Italian Minister of Health, au-489

thorization n.183/2016-PR. Mice were housed in clear plastic cages under a 12 h light/dark cycle490

and were given ad libitum access to water and food. We used a transgenic mouse line (C57BL/6J-491

Tg(Thy1GCaMP6f)GP5.17Dkim/J, referred to as GCaMP6f mice) expressing a genetically-encoded492

fluorescent calcium indicator under the control of the Thy-1 promoter. Mice were identified by493

earmarks and numbered accordingly. Animals were randomly assigned to 3 experimental groups494

(control, robot and rehab). Each group contained comparable numbers of male and female mice495

(weighing approximately 25g). The age of mice (ranging from 6 to 8 months old) was consistent496

between the groups.497

Photothrombotic Stroke Induction & Optical Window498

All surgical procedures were performed under Isoflurane anesthesia (3% induction, 1.5% mainte-499

nence, in 1.5L/min oxygen). The animals (apart from the control mice) were placed into a stereo-500

taxic apparatus (Stoelting, Wheat Lane, Wood Dale, IL 60191) and, after removing the skin over the501

skull and the periosteum, the primary motor cortex (M1) was identified (stereotaxic coordinates502

1,75 lateral, 0.5 anterior to bregma). Five minutes after intraperitoneal injection of Rose Bengal503

(0.2 ml, 10 mg/ml solution in Phosphate Buffer Saline (PBS); Sigma Aldrich, St. Louis, Missouri,504

USA), white light from an LED lamp (CL 6000 LED, Carl Zeiss Microscopy, Oberkochen, Germany)505

was focusedwith a 20X objective (EC Plan Neofluar NA 0.5, Carl ZeissMicroscopy, Oberkochen, Ger-506

many) and used to illuminate theM1 for 15min to induce unilateral stroke in the right hemisphere.507

Botulinum Neurotoxin E (BoNT/E) injections in rehab mice were performed during the same sur-508

gical session of the photothrombotic lesions. We used a dental drill to create a small craniotomy509

over M1 of the healthy hemisphere. Then 500 nL of BoNT/E were delivered in two separate injec-510

tions. A cover glass and an aluminumheadpost were attached to the skull using transparent dental511

cement (Super Bond, C&S). Afterwards, the animals were placed in their cages until full recovery.512

Motor Training Protocol on the M-Platform513

Before the first imaging session eachmouse was allowed to become accustomed to the apparatus.514

The animals were trained by means of the M-Platform, which is a robotic system that encourages515

mice to performa retractionmovement of their left forelimb (Spalletti et al., 2014;AllegraMascaro516
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et al., 2019). The training consisted of up to 15 cycles of passive extension of the affected forelimb517

followed by its active retraction triggered by an acoustic cue. All groups performed at least four518

weeks (20 sessions) of daily training; in addition, 5 out of 8 robot mice were also recorded for one519

week before stroke (5 sessions).520

Wide-Field Fluorescence Microscopy521

The custom-made wide-field imaging setup (Crocini et al., 2016; Conti et al., 2019) was equipped522

with a 505 nm LED (M505L3 Thorlabs, New Jersey, United States) light was deflected by a dichroic523

filter (DC FF 495-DI02 Semrock, Rochester, New York USA) on the objective (2.5x EC Plan Neofluar,524

NA 0.085, Carl Zeiss Microscopy, Oberkochen, Germany). Then a 20x objective (LD Plan Neofluar,525

20x/0.4M27, Carl ZeissMicroscopy, Oberkochen, Germany) was used to demagnify the image onto526

a high-speed complementary metal-oxide semiconductor (CMOS) sensor (OrcaFLASH 4.0, Hama-527

matsu Photonics, NJ, USA). The fluorescence signal was selected by a band pass filter (525/50 Sem-528

rock, Rochester, New York USA) and images (100 x 100 pixels, pixel size 60 �m) were acquired at529

25 Hz.530

Signal processing and data analysis531

Preprocessing532

Data acquired during each recording session (one mouse, one day, see Figure 1b) was processed533

offline using custom routines implemented in Python (Python Software Foundation) and Matlab534

(MathWorks). Each such dataset consisted of up to 15 cycles of active retraction movements on a535

slide triggered by passively actuated contralesional forelimb extensions. To ensure the consistency536

of the field of view across sessions and across mice, each frame of the fluorescence data was537

offline registered by aligning each frame to two reference points (corresponding to bregma and538

lambda) that were previously marked on the glass window during the surgery procedure. For the539

2D fluorescence data, masking the region of interest and spatial downsampling by a factor 3 for540

both rows and columns resulted in calciumactivitymatrices of 12 x 21 (or sometimes 12 x 19) pixels.541

Spatial average over all pixels yielded the mean calcium activity. In parallel, the force applied to542

the slide by the mouse and the discrete status of the slide were recorded. Using samplings with543

a time step of 40 ms and acquisition times of up to 400 seconds this yielded recordings with at544

most 10000 data points. The calcium traces were detrended via subtraction of a moving average545

of order 75 (three seconds) and, in order to yield a better time resolution, upsampled by a factor546

20.547

Event detection548

Next, within all of these traces we identified the times of the most relevant discrete events. For549

the status (Figure 2a) we marked the transition from level 3 to level 4 which corresponds to the550

completion of the forelimb retraction by the activemovement of themouse uponwhich the animal551

received its reward (reward pulling event). For the force (Figure 2b), the mean calcium (Figure 2c)552

and the individual calcium traces of all the pixels the events are the high-amplitude peaks that can553

easily be recognised. As event times we used the upwards crossings of a threshold T which in each554

of these cases was defined in a data-adaptive manner according to T = mean(x) + t ∗ std(x). The555

free parameter twas set to 1.5 for the force and 1.7 for all the calcium traces. In the slower calcium556

traces, in order to avoid double detections due to noise, we discarded all events that succeeded557

the previous event by less than a minimum inter-event interval of 25 data points (one second).558

SPIKE-order559

The events (from now on called spikes) of all the pixels can be represented best in a rasterplot like560

the one shown in Figure 2d. The next important step was to identify the global events that corre-561

spond to the events of the mean calcium trace. To this aim, we used the cSPIKE-implementation562

(Satuvuori et al., 2017) of the SPIKE-order approach recently proposed in Kreuz et al. (2017) (for563

18 of 28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.07.10.197509doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.10.197509
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

detailed definitions of all the underlying quantities please refer to the Appendix ). The original pro-564

posal was designed for rather clean data with well-defined global events. These conditions hold for565

most of our datasets as well, however, we added a few tailor-made denoising steps that addressed566

the rare instances of increased noisiness that we observed in some of the datasets.567

The procedure consisted of six steps: in an initial denoising step, we filtered out all spikes of568

individual pixels that were not within 1 second of a mean calcium event and thus were certainly569

not part of global events. Secondly, we applied the coincidence detection first introduced for the570

bivariate measure event synchronization (Quian Quiroga et al., 2002). This criterion paired spikes in571

such a way that every spike was matched with at most one spike in each of the other pixels. Here572

we combined the original adaptive approach with a maximum allowed distance between spikes573

of 2.5 seconds. Next, we used the symmetric and multivariate measure SPIKE-Synchronization C574

(Kreuz et al., 2015) to quantify for each spike the fraction of other pixels for whom a matching575

spike could be found. By setting a threshold value Ctℎr = 0.75 we only took into account spikes576

which were coincident with spikes in at least three quarters of the other pixels, all other spikes577

were filtered out as background noise.578

In a fourth step, we applied the SPIKE-orderD (Kreuz et al., 2017) which evaluates the temporal579

order of the spikes by quantifying for each spike the net-fraction of spikes of other pixels this spike580

is leading (positive value) or following (negative value). Based on the time profile we identified start581

and end spikes of global events by tracking the jumps from a negative local minimum (last spike of582

previous event) to a positive local maximum (first spike of current event). In one further denoising583

stepwe discarded split events and eliminated outlier spikes by using amaximumdistance between584

consecutive spikes of 0.15 seconds and thereby kept only continuous global events. The final step585

used in the visualisation of the spike trains in Figure 2d involved the Synfire Indicator (Kreuz et al.,586

2017), a scalar measure which quantifies to what degree the spatiotemporal propagation patterns587

of the global events are consistent with each other. Optimisation of this indicator was used to588

sort the spike trains / pixels from overall leader to overall follower. Here, overall means that we589

take into account all global events at the same time. The result is that the first spike trains contain590

mostly leading spikes, whereas the last spike trains consist largely of trailing spikes.591

Categorisation of events592

Next, we divided the global events into several types using the following three-level categorisa-593

tion scheme (the corresponding branching structure is shown in Section Methods): First, we sep-594

arated all the global events that are not associated with a force event (non-Force, nF). For this we595

demanded that there is no force event in the interval [1 second before, 0.75 seconds after] the596

matching calcium event. The window was slightly asymmetric to account for the fact that typically597

Force were observed a bit earlier than mean calcium events. The remaining Force events (F) were598

further subdivided into events that occur during the passive extension of the arm by the slide (Pas-599

sive, Pass) and events that occur outside that window (Active,Act). In the passive events themouse600

applied force to resist the forelimb extension movement of the robot, whereas the active events601

were the ones where the force was applied during an active retractionmovement (when the status602

variable was set to 3, i.e. between the Go cue and the completion of the task). Finally, among the603

active events we distinguished between events which were not completed and thus not rewarded604

(non-Reward Pulling, nRP) and events which lead to a completion of the forelimb retraction and605

therefore were rewarded (Reward Pulling, RP). The categorisation criterion was the occurrence of606

a transition from status 3 to status 4 within [0.75 seconds before, 0.75 seconds after] a calcium607

event. This window was symmetric, since the observed temporal distribution of status events was608

symmetric with respect to the mean calcium events.609

Three propagation indicators: Duration, Angle, Smoothness610

For all global events, the event time was defined as the average time of all the spikes within the611

event and our first propagation indicator, the event duration, was defined as time from the first to612
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the last spike of the event. To calculate the other two propagation indicators, angle and smooth-613

ness, we first generated the propagation matrix by mapping the color-coded relative order of the614

spikes onto the pixels of the 2D-recording plane (compare Figure 2f). Next, we applied singular615

value decomposition (SVD, Yanai et al. (2011)) which searches for spatial patterns by decomposing616

the propagation matrix P into three simple transformations: a rotation U , a scaling Σ along the617

rotated coordinate axes and a second rotation V T .618

The rotations U and V T are orthonormal matrices and Σ is a diagonal matrix containing in its
diagonal the singular values �i of P . By backprojecting the sorted singular values one at a time

Σ1 =
[ �1

0
0
⋱

]

Σ2 =
[ 0

�2
0
⋱

]

we could obtain various projections of the original propagation matrix
P1 = UΣ1V T P2 = UΣ2V T

. The mean gradients with respect to column (c) and row (r) increments of the first two projections619

were calculated as620

{

gc1 = E(− )P1
)c
)

gr1 = E(− )P1
)r
)

{

gc2 = E(− )P2
)c
)

gr2 = E(− )P2
)r
)

with E denoting the average across pixels while the sign (-) is defined by the directionality in621

the matrix P going from leader (+1) to follower (-1). The main propagation directions, along the622

column and row directions,623

{

vc = �1gc1 + �2g
c
2

vr = �1gr1 + �2g
r
2

were calculated from the weighted average of the mean gradients of the first two projections,
with the singular values as weights. Our second propagation indicator, the angle

� = arctan
(vc

vr
)

was defined relative to the horizontal axis.624

Finally, our third propagation indicator, the smoothness S, quantified how well the second625

order approximation, the weighted sum of the projections of only the first two singular values,626

captures the full spatiotemporal pattern obtained by considering all singular values �i. Smoothness627

is defined as the relative weight of the first two approximations628

S =
�21 + �

2
2

∑

i �
2
i

. (1)

Statistical Tests629

Statistical tests were carried out separately for all three propagation indicators (angle, smoothness,630

duration) and for each condition: control group (Fig. 4), acute phase (Fig. 5) and rehabilitation631

comparisons (Fig. 6). Control group models analyse the behaviours of healthy mice only during632

all four weeks of motor training. Acute phase models use the first week post-stroke of robot mice,633

the first week of control mice and the pre-stroke week of robot mice, considered here as control634

ones. Finally, the rehabilitation comparisons look at the weeks from the second to the fourth of all635

control, robot and rehab mice.636

For smoothness and duration, differences in means were tested using estimates of mixed ef-637

fect models implemented in R (package lme4, Bates et al., 2015). All models started with a full638

parametrisation of both fixed and random effects, backward selection through ANOVA and RA-639

NOVA, respectively, selected a parsimonious feasiblemodel without removing relevant effects that640
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could decrease the Type I error rate and increase the statistical power (Matuschek et al., 2017).641

Differences in least squares means and their p-value were estimated with the R package lmerTest642

(Kuznetsova et al., 2017). The Holm-Bonferroni correction for multiple comparisons was used to643

obtain the statistical significance scores. Normality of residuals assumption was tested with the644

Kolmogorov-Smirnov test, while homogeneity of variance for fixed effects without related random645

slope was evaluated with the Breusch-Pagan test. If normality assumption did not hold, a Box-Cox646

transform of the dependent variable (Gurka et al., 2006) was carried out. If the Breusch-Pagan647

test revealed departure from homogeneity of variance, we look at which comparisons had dif-648

ferent variances and results were again corrected with the Holm-Bonferroni method for multiple649

comparisons.650

For the propagation angle we focused on the differences in circular variance, tested with multi-651

ple Bartlett tests (R package circular, Agostinelli and Lund, 2017). Then, once more the Holm-652

Bonferroni correction was adopted to correct the multiple comparison bias. Assumption of Von-653

Mises distribution for both groups under comparison was tested with the Watson test (Jammala-654

madaka and Sengupta, 2001).655
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Appendix663

Here we present the more detailed definitions of the SPIKE-order approach, the central method of664

our study that we use to identify global events and to track the propagation patterns within these665

events by sorting the spikes from leader to follower.666

Adaptive Coincidence Detection667

Analysing leader-follower relationships in a spike train set requires a criterion that determines668

which spikes should be compared against each other. Here we use the adaptive coincidence669

criterion first proposed in Quian Quiroga et al. (2002). This coincidence detection is scale- and670

parameter-free since the maximum time lag � (m,n)ij up to which two spikes t(m)i and t(n)j of spike trains671

m, n = 1, ..., N (with N denoting the number of spike trains) are considered to be synchronous is672

adapted to the local firing rates according to673

� (m,n)ij = min{t(m)i+1 − t
(m)
i , t(m)i − t(m)i−1,

t(n)j+1 − t
(n)
j , t

(n)
j − t(n)j−1}∕2.

(2)

SPIKE-Synchronization674

Following Kreuz et al. (2015), we apply the adaptive coincidence criterion in a multivariate context675

by defining for each spike i of any spike train n and for each other spike train m a coincidence676

indicator677

C (n,m)
i =

{

1 if minj(|t
(n)
i − t(m)j |) < � (n,m)ij

0 otherwise.
(3)

which is either one or zero depending on whether this spike is part of a coincidence with a spike678

of spike train m or not. This results in an unambiguous spike matching since any spike can at most679

be coincident with one spike (the nearest one) in the other spike train.680

Subsequently, for each spike of every spike train a normalised coincidence counter681

C (n)
i = 1

N − 1
∑

m≠n
C (n,m)
i (4)

is obtained by averaging over all N − 1 bivariate coincidence indicators involving the spike train n.682

In order to obtain a single multivariate SPIKE-Synchronization profile we pool the coincidence683

counters of all the spikes of every spike train:684

{C(tk)} =
⋃

n
{C (n(k))

i(k) }, (5)
where we map the spike train indices n and the spike indices i into a global spike index k denoted685

by the mapping i(k) and n(k).686

WithM denoting the total number of spikes in the pooled spike train, the average of this profile687

SC =

{

1
M

∑M
k=1 C(tk) if M > 0
1 otherwise

(6)
yields SPIKE-Synchronization, the overall fraction of coincidences. It reaches one if and only688

if each spike in every spike train has one matching spike in all the other spike trains (or if there689

are no spikes at all), and it attains the value zero if and only if the spike trains do not contain any690

coincidences.691

SPIKE-Order692

While SPIKE-Synchronization is invariant to which of the two spikes within a coincidence is leading693

and which is following, the temporal order of the spikes is taken into account by the two indicators694

SPIKE-Order and Spike Train Order.695
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The bivariate anti-symmetric SPIKE-Order indicators696

D(n,m)
i = C (n,m)

i ⋅ sign(t(m)j′ − t
(n)
i )

D(m,n)
j′ = C (m,n)

j′ ⋅ sign(t(n)i − t(m)j′ ) = −D
(n,m)
i , (7)

where the index j′ is defined from the minimum in Eq. 3 as j′ = argminj(|t
(1)
i − t(2)j |), assign to697

each spike either a 1 or a −1 depending on whether the respective spike is leading or following a698

coincident spike in the other spike train.699

SPIKE-Order distinguishes leading and following spikes, and is thus used for color-coding the700

individual spikes on the leader to follower scale. But it can also be employed to sort the spike trains701

based on a pairwise analysis. For this we use the cumulative SPIKE-Order matrix702

D(n,m) =
∑

i
D(n,m)
i . (8)

This anti-symmetric matrix sums up the orders of coincidences from the respective pair of spike703

trains only and quantifies how much spike train n is leading spike train m. Hence if D(n,m) > 0 spike704

train n is leadingm, whileD(n,m) < 0meansm is leading n. If the current spike train order is consistent705

with the synfire property (i.e., it displays consistent repetitions of the same global propagation706

pattern), we thus expect that D(n,m) > 0 for n < m and D(n,m) < 0 for n > m. Therefore, we construct707

the overall SPIKE-Order as708

D< =
∑

n<m
D(n,m), (9)

i.e. the sum over the upper right tridiagonal part of the matrix D(n,m).709

Synfire Indicator710

After normalizing by the overall number of possible coincidences, we arrive at the definition of the711

Synfire Indicator:712

F =
2D<

(N − 1)M
. (10)

This measure quantifies to what degree coinciding spike pairs with correct order prevail over713

coinciding spike pairs with incorrect order, or in other words, to what extent the spike trains in their714

current order resemble a synfire pattern. Conversely, the maximization of the Synfire Indicator as715

a function of the spike train order within a set of spike trains can be used to sort spike trains from716

leader to follower such that the set comes as close as possible to a synfire pattern. Denoting the717

Synfire Indicator for any given spike train index permutation '(n) as F', the optimal (sorted) order718

's is the one resulting in the maximal overall Synfire Indicator Fs = F's :719

's ∶ F's = max' {F'} = Fs. (11)
Whereas the Synfire Indicator F' for any spike train order ' is normalized between −1 and 1,720

the optimized Synfire Indicator Fs can only attain values between 0 and 1. A perfect synfire pattern721

results in Fs = 1, while sufficiently long Poisson spike trains without any synfire structure yield722

Fs ≈ 0. For details on the optimisation procedure, please refer to Kreuz et al. (2017).723

Source Codes724

SPIKE-Synchronization, SPIKE-Order and Spike Train Order are implemented in three publicly avail-725

able software packages. Results in this study were obtained using cSPIKE 1 (Matlab command line726

withMEX-files). TheMatlab-based graphical user interface SPIKY 2 (Kreuz et al., 2015), or the Python727

1http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html2http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html
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library PySpike 3 (Mulansky and Kreuz, 2016) are available as well.728

Caption Supplementary Movie 1729

Movie depicting the propagation of activity during the training cycle shown in Figure 1c. As the ver-730

tical green line superimposed over subplots (a) to (d) moves forward in time (from -0.12 seconds731

before to 1.28 seconds after the threshold crossing of the force), in the Calcium image in subplot (e)732

a propagation of activity from left to right can be seen. This is in accordance with the propagation733

matrix shown in subplot (f) which color-codes the temporal order of activation from leader (red) to734

follower (blue). (a) Status of the robotic sled. (b) Force applied by the mouse during the retraction735

movement. (c) Average calcium signal over all pixels. (d) Raster plot obtained from the thresh-736

old crossings of individual pixels versus time. (e) Calcium imaging sequence of cortical activation,737

superimposed on the standard atlas of brain regions. (f) The propagation matrix is obtained by738

projecting the relative order of these threshold crossings onto the 2D-recording plane.739

Panel Indicator Event type Valuea Number of events F 492nF 45Act 356Pass 136RP 277nRP 79b Smoothness 0.41Angle -3.11c Smoothness 0.78Angle -1.46d Smoothness 0.87Angle 0.09e Smoothness F 0.67 ± 0.05nF 0.56 ± 0.06Angle F 0.40 ± 0.49nF 0.63 ± 0.81f Smoothness Act 0.67 ± 0.06Pass 0.67 ± 0.05Angle Act 0.45 ± 0.44Pass 0.27 ± 0.58g Smoothness RP 0.68 ± 0.05nRP 0.65 ± 0.06Angle RP 0.46 ± 0.43nRP 0.44 ± 0.52
Appendix 0 Table 1. Values for Figure 3

Panel Indicator Event type Group Diff. type p-valuec Angle F-nF Control Variance 10−10 ⋆ ⋆ ⋆Act-Pass 10−9 ⋆ ⋆ ⋆RP-nRP 10−8 ⋆ ⋆ ⋆e Smoothness F-nF 0.001 ⋆⋆RP-nRP 0.001 ⋆⋆g Duration Act-Pass 0.002 ⋆⋆
Appendix 0 Table 2. Values for Figure 4

3http://www.pyspike.de
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Panel Indicator Event type Group Diff. type p-valueb Angle F - nF Control Variance 10−7 ⋆ ⋆ ⋆Stroke 10−5 ⋆ ⋆ ⋆Act - Pass Control 10−4 ⋆ ⋆ ⋆Stroke 0.046 ⋆c Smoothness Control - Stroke Mean 0.007 **d F - nF Control 10−10 ***F Control - Stroke 0.004 **Act Control - Stroke 0.01 *Pass Control - Stroke 0.002 **RP-nRP Control 0.008 **RP Control - Stroke 0.005 **e Duration Control - Stroke 0.003 **f F Control - Stroke 0.026 *Act-Pass Control 0.042 *Act Control - Stroke 0.034 *Pass Control - Stroke 0.035 *RP Control - Stroke 0.014 *nRP Control - Stroke 0.028 *
Appendix 0 Table 3. Values for Figure 5
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Figure 1–Figure supplement 1. Standard atlas of brain regions.
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Figure 1–Figure supplement 2. Brain regions acronyms.
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Figure 5–Figure supplement 1. The pre-stroke condition presents the same behaviour as the
control group, both qualitatively and quantitatively, for all the investigated spatiotemporal indica-
tors: (a-b) angle, (c-d,g) smoothness, and (e-f,h) duration. — Angle and duration are weighted
by smoothness. Markers in (c-h) refer to the average value per day. Within each box in (c-f), the
central mark indicates the median, and the bottom and top edges of the box indicate the 25tℎ and
75tℎ percentiles, respectively. Shaded areas in (g-h) correspond to the confidence interval. Control
group n=3 mice, pre-stroke group n=5 mice.
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Figure 6–Figure supplement 1. The robot group presents a non-stationary evolution over weeks
and large variance of all three indicators. (a) Mean number of events for all eight mice per week,
partitioned by type of event. (b) Motor training rehabilitation causes more and more directed
propagation patterns. (c) Narrowing down the type of event leads to more directed propagation
patterns. (d-e) Smoothness does not discriminate event types andoscillates overweeks. (f-g) Event
duration stabilises starting from the second week of training after stroke. — Angle and duration
are weighted by smoothness. Markers in (d-g) refer to the average value per day. Within each box
in (d-g), the central mark indicates the median, and the bottom and top edges of the box indicate
the 25tℎ and 75tℎ percentiles, respectively. Robot group n=8 mice.
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Figure 6–Figure supplement 2. The rehab group shows high coherence of all three spatiotempo-
ral indicators starting from the secondweek of training after stroke. (a)Mean number of events for
all six mice per week, partitioned by type of event. (b-c) The angle of the propagation is not altered
by either motor training or splitting by event types. (d-e) Smoothness does not discriminate event
types and it is stable over weeks. (f-g) Event duration decreases over weeks. — Angle and duration
are weighted by smoothness. Markers in (d-g) refer to the average value per day. Within each box
in (d-g), the central mark indicates the median, and the bottom and top edges of the box indicate
the 25tℎ and 75tℎ percentiles, respectively. Rehab group n=6 mice.
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