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Abstract

Stroke is a debilitating condition which affects millions of people worldwide. The development of
improved rehabilitation paradigms rests on finding biomarkers suitable for tracking functional
damage and recovery. We perform a detailed spatiotemporal analysis of wide-field calcium
images from mice during longitudinal motor training before and after focal stroke induction. We
define three indicators that characterise the duration, the angle of propagation and the
smoothness of global movement-evoked activation patterns. During acute stroke we observe an
increase in global event duration and a decrease in smoothness over the ipsilesional hemisphere.
For both rehabilitation via motor training alone and combined with pharmacological therapy, we
find clear signs of recovery, but surprisingly, cortical propagation in double treated mice with
generalised recovery is even faster and smoother than before stroke. Our propagation-based
biomarkers deliver unforeseen insight into brain mechanisms underlying motor recovery and
thus pave the way towards a more targeted post-stroke therapy.

Introduction

Stroke is a severe disease that alters cortical processing producing long lasting motor or cognitive
deficits. Treatments generally include motor rehabilitation, pharmacological therapies, brain stim-
ulation, or combinations of them (Stinear et al., 2020). However, the functional outcome, mea-
sured as behavioural recovery, depends on multiple factors such as age, lesion size and type,
edema formation or inflammation and is hardly predictable (Burke Quinlan et al., 2015; Prab-
hakaran et al., 2008). One way to track recovery after stroke is by monitoring cortical activity, which
is known to undergo drastic changes that have been tightly linked to structural alterations (Carter
etal., 2012; van Meer et al., 2012; Allegra Mascaro et al., 2019). Previous studies have reported that
stroke produces global widespread alterations in cortical activity as measured by changes in resting
state functional connectivity or cortical excitability. On the one hand, electrophysiological studies
have shown that stroke and recovery modulate both resting state and stimulus evoked cortical
oscillations in motor areas (Chen et al., 2017; Cassidy et al., 2020). On the other hand, neuroimag-
ing studies have shown that stroke alters the resting state functional connectivity, for example it
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reduces the interhemispheric correlations between motor networks, and these changes correlate
with behavioural deficits (Carter et al., 2010; van Meer et al., 2010). Furthermore these changes in
resting state functional connectivity can be used to discriminate subjects with behavioural deficits
(Rehme et al., 2015). This supports the idea that monitoring how cortical activity evolves over time
could be used to track recovery after stroke and it could represent a powerful tool to evaluate the
efficacy of stroke treatments or better yet could lead to biomarkers of functional recovery.

Advancements in neural imaging combined with genetically encoded calcium indicators allow
to monitor neural activity over almost the entire cortical mantle with high spatial resolution on
a sub-second temporal scale (Chen et al., 2013; Harrison et al., 2013; Vanni and Murphy, 2014;
Carandini et al., 2015). Using these tools it has been shown that the neural activity of animals dur-
ing a behavioural task is characterised by cortex-wide global activation patterns (Allen et al., 2017)
and these patterns are shaped by learning across sessions (Makino et al., 2017). In the context of
stroke calcium imaging has been used to demonstrate that stroke profoundly affects resting state
functional connectivity (Balbi et al., 2018) and leads to sensorimotor remapping of the peri-infarct
area (Harrison et al., 2013). Furthermore, in a recent study, we have shown that movement-related
activation maps are different for stroke therapy associated with functional recovery (Allegra Mas-
caro et al., 2019). Therefore neural activity as measured by calcium imaging could be used as an
indicator of cortical remapping, of redistribution of functional connectivity among spared regions
and could be directly associated with behavioural recovery.

Here, we propose that damage and functional recovery can be tracked by monitoring the spa-
tiotemporal properties of movement-evoked widespread activation patterns or global events. In
particular, we use our recently proposed SPIKE-order analysis (Kreuz et al., 2017) to identify global
events and to sort the participating regions from first to last (or leader to follower). In addition, to
characterise the spatiotemporal properties of each individual global event, we extend this method
and define three propagation indicators: duration, angle and smoothness, i.e. how ordered and
consistent is the direction of the propagation.

First, we provide a characterisation of global events in healthy controls. We show that these
events are mostly associated with the exertion of force and their duration and direction are mod-
ulated by different behavioural events. Then, to understand the impact of stroke on the global
events we quantify the three propagation indicators in a group of acute stroke subjects. We pro-
vide evidences that acute stroke alters the propagation patterns by increasing the duration while
decreasing the smoothness of the global events. Finally, to show that global events propagation
patterns can be used to track recovery, we quantify the propagation indicators on two groups of
subjects with different therapies; the first, robot, with motor training alone, and the second, re-
hab, with motor training combined with pharmacological therapy. We show that both treatments
reverse the impact of stroke with the combined treatment, the only rehabilitative therapy previ-
ously associated with generalised recovery, characterised by the shortest duration and the highest
smoothness among all different groups.

Methods

Experimental set-up and data collection
In this Section we provide a short overview of the data and the methods we used to analyse them.
For more technical details please refer to the Section "Materials and Methods".

The aim of this study was to investigate changing propagation patterns during motor recovery
from functional deficits caused by the induction of a focal stroke via a photothrombotic lesion. For
this purpose, we analysed calcium imaging signals recorded from 17 mice during two long-term
robot-assisted rehabilitation programs, one based on motor training alone and one combined with
transient pharmacological inactivation of controlesional activity.

Aschematic representation of the robotic system, the M-Platform (Spalletti et al., 2014; Pasquini
et al., 2018), is shown in Figure 1a. This system uses passively actuated contralesional forelimb ex-
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Figure 1. Experimental set-up and data collection. (a) Motor-training of mice was performed on the M-Platform, which uses a movable robotic
slide for a retraction movement of the left forelimb. Motor activity was monitored via the discrete status of the slide (orange) and the force
applied by the mouse to the slide (purple). Meanwhile, the cortical activity (yellow) was recorded using wide-field calcium imaging. (b) The
control (green) and rehab (red) group performed 4 weeks of daily training; for the robot (blue) group we additionally recorded 1 week before
stroke induction (typically 5 sessions per week). Star symbols refer to the healthy condition, while the two different types of rehabilitation, robot
and rehab, are represented by squares and triangles, respectively. (c) Calcium imaging sequence (here 12 x 19 pixels) of cortical activation,
superimposed on contours of brain regions according to the standard atlas. (d) Propagation pattern, from leader (red) to follower (blue), of the
event depicted in (c).

Figure 1-video 1. Movie depicting the propagation of activity during the training cycle shown in Figure 1c. For caption see end of Appendix.
Figure 1-Figure supplement 1. Standard atlas of brain regions.
Figure 1-Figure supplement 2. Brain regions acronyms.

o1 tension on a slide to trigger active retraction movements that were subsequently rewarded (up to
o2 15 cycles per recording session). The effect of the motor activity was monitored via the discrete
o3 Status of the slide and by recording the force the mice applied to the slide. As a measure of the
oa neural activity itself we performed wide-field calcium imaging over the affected hemisphere, from
os the somatosensory to the visual areas. Selecting a region of interest of 2.16 x 3.78 mm and spatially
oe downsampling by a factor 3 resulted in calcium images of 12 x 21 (or sometimes 12 x 19) pixels of
oz size 180 um. These are the signals that we analyze.
08 The 17 mice were divided into three groups: control (3 mice), robot (8 mice) and rehab (6 mice).
oo The healthy controls had no stroke induced but still received the same motor training as the other
100 Mmice (4 weeks on the M-Platform). Both robot and rehab mice underwent physical rehabilitation
101 on the M-platform for 4 weeks starting 5 days after injury.
102 For rehab mice in addition a pharmacological inactivation of the primary motor cortex in the
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contralesional hemisphere was carried out in order to counterbalance the hyperexcitability of the
healthy hemisphere. The recording schedule for all three groups is shown in Figure 1b. Apart from
the data acquisition during the shared training regime, 5 out of 8 robot mice were also recorded
for one week before the stroke (pre-stroke condition).

Two weeks before the stroke, five mice belonging to the robot group have been trained for 5
days (pre-stroke condition), Figure 1b. We have tested whether the pre-stroke condition shows any
statistical difference with the first week of recordings of the control group. As could be expected,
the pre-stroke condition presents the same behaviour as the control group, both qualitatively and
quantitatively.

Figure 1c displays a sequence of snapshots of the calcium activity over time. The three images
illustrate one pull of the slide by the affected forelimb of a control mouse, from the activation of
the average calcium activity (left) via its maximum (middle) to its tail end (right). The Supplementary
Material contains a movie that covers all 36 frames for this one training cycle.

The central method of this study was a mapping of this sequence of snapshots into the prop-
agation pattern shown in Figure 1d. In this matrix the order of activation of the individual pixels
was color-coded from red (earliest) to blue (latest). We superimposed this order matrix on the
standard atlas of brain regions (Lein et al., 2007) which illustrates that the recording area covers
the primary motor area M1 (the location of the lesion), the primary somatosensory area, and the
primary visual cortex, as well as the retrosplenial cortex.

Event identification, propagation analysis, and definition of three propagation in-
dicators: duration, angle, and smoothness

Here we explain our use of the SPIKE-order framework (Kreuz et al., 2017) to identify global events
and assess the propagation of activation within these events (compare Figure 1d). In particular, we
focus again on one individual global event to illustrate how we characterise the detailed activation
patterns with three propagation indicators: duration, angle, and smoothness.

In Figure 2 we show the activity during a complete recording session of one mouse. Figure 2a
depicts the status, a discrete codification of the current phase of the passive extension and active
retraction cycle, e.g. position of the slide and acoustic go and reward cues. Most relevant here are
the marked times of the pull completions which typically correspond to peaks in the force applied to
the slide (Figure 2b, force events are marked at threshold crossings) but already a quick look at the
event numbers shows that the mapping is not perfect. Indeed there are typically more force events
than rewarded pull completions (20 force versus 13 status events in this case). The same peaks,
and some more, are also present in the calcium signal computed by averaging the fluorescence
signal over all pixels (Figure 2¢, here 23 calcium events are marked at threshold crossings).

In the next step we looked at all 19 x 12 = 228 individual pixels but here we do not show all
the traces but just small time markers denoting the time of their threshold crossings (Figure 2d).
This is very similar to a rasterplot showing in each row the spike train of one individual neuron and
accordingly we here follow this terminology and call the threshold crossings of individual pixels
'spikes’. The first thing to notice is that while there are a few spikes in the background (in black), by
far most of the spikes are part of global events (in color) matching the peaks in the average calcium
activity shown right above. To automatically identify these global events and sort the spikes within
these events from leader to follower we used the SPIKE-order framework proposed in (Kreuz et al.,
2017).

After some initial denoising we first used an adaptive coincidence detector (Quian Quiroga et al.,
2002) to pair spikes such that each spike is matched with at most one spike in each of the other
pixels. By means of the symmetric and multivariate measure SPIKE-Synchronization (Kreuz et al.,
2015) we filtered out all spikes which were not coincident with spikes in at least three quarters
of the other spike trains. To the global events that remained we applied the asymmetric SPIKE-
order indicator (Kreuz et al., 2017) which quantifies the leader-follower relationship between pairs
of spikes. For each event the SPIKE-order is then color-coded from leader (red) to follower (blue).
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Figure 2. Event identification, propagation analysis, and definition of three propagation indicators: duration, angle, and smoothness.
Figure 2 continued on next page
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Figure 2 continued

(a) Status of the robotic slide. The longer horizontal plateaus at status 3 correspond to the time interval during which the mouse is allowed to
retract the slide. The orange bars refer to the time when the pull is completed and the mouse receives its reward. (b) Force applied by the
mouse during the retraction movement. (c) Average calcium signal over all pixels. The purple and yellow dashed lines below refer to the
threshold used to identify the force and global calcium events, respectively. (d) Raster plot obtained from the threshold crossings of individual
pixels versus time. Triangle indicators show the global events identified during this session, and the red triangle with dashed box marks the
event analyzed in the remaining panels below. The first (last) spike of each global event is marked by a red (blue) circle. Within each subplot
(a)-(d) we state the number of the respective events / threshold crossings. (e) Zoom of this selected event. The duration is defined as the
interval from the first to the last spike within the event. (f) The propagation matrix is obtained by projecting the relative order of these threshold
crossings onto the 2D-recording plane. By means of singular value decomposition (SVD) we obtain the angle of the propagation, defined relative
to the horizontal axis. (g) First and second approximations of the propagation matrix and (h) second order approximation as their weighted sum
(cumulative). (i) Singular values (red) vs. order of approximation. The smoothness (black asterisk) measures the quality of the approximation.

187

188

189

Finally, we used the scalar Synfire Indicator (Kreuz et al., 2017) to also sort the spike trains in the
rasterplot from overall leader to overall follower. Since the sorting takes into account all global
events, the first spike trains contain more leading spikes (red) and the last spike trains more trailing
spikes (blue).

In Figure 2e we zoom in on the fourth global event of the rasterplot. Here we define the first
propagation indicator, the event duration, as the time from the first to the last spike of this event.
The propagation matrix of this specific event, obtained by projecting the colour-coded relative or-
der of the spikes onto the pixels of the 2D-recording plane, is shown in Figure 2f. We then used
singular value decomposition (SVD) to calculate the two remaining propagation indicators.

SVD (Yanai et al., 2011) searches for spatial patterns by decomposing the propagation matrix
into three simple transformations: a rotation, a scaling along the rotated coordinate axes and a
second rotation. The scaling is a diagonal matrix which contains along its diagonal the singular val-
ues of the propagation matrix. Backprojecting the (sorted) singular values one at a time resulted
in various orders of approximations for the original propagation matrix. The first two such projec-
tions are displayed in Figure 2g and the second order approximation, their weighted sum, is shown
in Figure 2h. From the weighted average of the mean gradients of these first two projections we
calculated the second propagation indicator, the angle of the main propagation direction.

In Figure 2i we depict the (sorted) singular values (rescaled to the highest value) versus the order
of the projection. We also show the value of the third propagation indicator, the smoothness S,
which quantifies how well the approximation with only the first two singular values captures the
full spatiotemporal pattern obtained by considering all singular values o,. Smoothness is defined
as the relative weight of the first two projections, their sum divided by the sum of all singular values.
This can be verified visually by comparing the second approximation (Figure 2h) with the original
propagation matrix (Figure 2f).

A comparison of Figure 2d and Figure 2c clearly shows that all global events in the rasterplot
can easily be matched with a peak in the average calcium trace, in fact, these are basically two
equivalent ways to visualise a peak of global calcium activity. However, while the vast majority of
global events are in close proximity of a peak in the force, not all of them are. This we can use to
categorise the global events into two groups: Force (F) and non-Force (nF). Among the Force events
we can distinguish two kinds of events, a few of them occur during the passive extension of the arm
by the slide (Passive, Pass) but most of them do not, i.e., they occur during the active retraction
phase (Active, Act). Finally, among those active events we can differentiate between movements
which lead to a completion of the forelimb retraction and therefore are rewarded (Reward Pulling,
RP) and movements which are not completed and thus not rewarded (non-Reward Pulling, nRP).
The Reward Pulling events are the ones that correspond to the vertical markers in the status trace
of Figure 2a.

The overall categorisation can be visualised by means of this branching structure:
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Results

In this study, we sought a biomarker for functional recovery after stroke in the neural activity prop-
agation. To this aim, we used global event propagation analysis to investigate the spatiotemporal
features of neuronal activation over the dorsal cortex. We compared the propagation patterns in
healthy versus acute stroke and after treatment mice (control, robot, and rehab groups, compare
Figure 1). We decided to investigate three main indicators (angle, duration, and smoothness of
the propagation) to account for both spatial and temporal propagation characteristics (compare
Figure 2). To identify common brain dynamics associated with similar behaviours, we have dealt
with each type of event separately.

Global events are mostly associated with generation of voluntary movements in
healthy mice

We first wondered if neuronal activation in awake mice involved a large region of the cortex and
if these global events were related to specific classes of behavioural events in our experimental
paradigm. The results in Figure 3 focus on the number of events and two of the three indicators
introduced in Figure 2 (angle and smoothness) and they refer to one healthy mouse during all
sessions (4 weeks, 5 days per week, see Figure 1b).

For this mouse, a total of 537 global events are identified, of these 492 (92%) are associated with
force events (Figure 3a, see Table 1 for more details). Moreover, 356 (66%) of the selected global
events are pulling events. Pulling the handle is a relatively easy task which allows even animals
right after stroke to perform it; this is reflected by the fact that the majority of behavioural events
are reward pulling events (277, 56%).

Three different example patterns with increasing smoothness and varying angle are depicted
in panels (b-d). For low smoothness values, the identified propagation pattern looks random, thus
not displaying a clear directionality (panel (b)), and therefore measures for angle and duration are
less meaningful in those cases. On the other hand, high smoothness corresponds to clear patterns
(panels (c-d) show two cases of high smoothness but orthogonal directionality). Panels (e-g) show
scatter plots of smoothness against angle for different event types, together with the marginal
histograms. While narrowing down the type of event does not reduce the whole range of values,
the marginal distributions of the angle and smoothness converge to a peak distribution for the
angle centred in 0.46, and to a distribution with mean 0.68 for the smoothness.

In summary, in healthy mice a large number of global events can be detected, and a vast ma-
jority of them are associated with application of force to the handle. The variety of the identified
propagation patterns suggests a more in depth analysis of the propagation indicators across event

types.

Cortical propagation features discriminate event types in healthy mice

In the previous section we established the presence of global events within the cortical activa-
tion during motor training. Here we characterised these events based on their behavioural condi-
tion. Then, we addressed if longitudinal motor training altered the propagation patterns. To this
end, a detailed quantitative analysis of all three indicators (angle, smoothness and duration) was
performed for three healthy mice along four weeks of motor training on the M-Platform (control
group). Moreover, the dependency of these quantities was evaluated both over time and with
respect to different event types (Figure 4).
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Figure 3. Propagation pattern varies across event types in healthy mice. (a) Classification of events. (b-d) Three different patterns with
increasing smoothness and varying angle. Note that the length of the arrow is proportional to the smoothness. (b) Low smoothness identifies a
poor propagation pattern without any proper directionality. (c) High smoothness identifies a clear pattern and corresponding directionality. (d)
High smoothness and horizontal propagation in contrast with (b) low smoothness and opposite horizontal direction, and different from (c)
which has still high smoothness, but an almost orthogonal angle of —z /2. (e-g) Scatter plots and histograms of smoothness and angle of
propagation for all events. — Brown colours refer to force (F) and non-force (nF) events, active (Act) and passive (Pass) events are in purple,
reward pulling (RP) and non-reward pulling (nRP) events in green. All plots include the events from all the sessions for one healthy mouse.
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Figure 4. Cortical propagation features discriminate event types in healthy mice. (a) Mean number of events for all three mice per week,
partitioned by type of event. (b-c) Narrowing down the type of event leads to more directed propagation patterns. (d-e) Smoothness
discriminates force (F) and non-force (nF) events, and is preserved over weeks. (f-g) Event duration is a marker for discriminating active (Act) and
passive (Pass) events, as well as reward pulling (RP) and non-reward pulling (nRP) events. — Angle and duration are weighted by smoothness.
Markers in (d-g) refer to the average value per day. Within each box in (d-g), the central mark indicates the median, and the bottom and top
edges of the box indicate the 25" and 75" percentiles, respectively. Control group n=3 mice. P-values of statistical tests in Table 2, “x" refers to
difference in variance.
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We first analysed if the occurrence of the global events was associated with the application of
forces or if it was unrelated. The variation of the number of events divided by type is depicted
in Figure 4a and it refers to the four weeks of recordings (compare to the first three rows (green
stars) in Figure 1b). Most of these events occurred when the mouse applied a force to the handle
(1568, corresponding to 87% of the total number of events). Furthermore, most of the force events
(1147) occurred when the mouse was actively pulling the handle (73% of force events, 64% of the
total), and 779 of those corresponded to reward pulling events (68% of active events, 43% of the
total). Global events propagate along angles —0.3+0.4 with a smoothness of 0.63+0.03, and they last
0.59+0.04 s, see subplot “All" of Figure 4b,d,f. The little variation in the angle (Figure 4b), smoothness
(Figure 4d) and duration (Figure 4f) implies high coherence of the parameters of spatiotemporal
propagation over weeks. This suggests that motor training alone does not change events number,
duration, score or angle along weeks.

Results for angle, smoothness and duration were then analysed looking at specific event types.
Figure 4c shows the distributions of the angle for the three consecutive subdivisions of the event
types. The propagation becomes more directed when narrowing down the type of event. The differ-
ence between event types in the angle distribution reduces as well. Interestingly, also the bimodal
nature of the distribution is attenuated. Specifically, the peak at —z/2 (see first plot in Figure 4c)
is initially caused by non-force events, then within force events it stands out in the passive cases,
finally it is predominant in the non-reward pulling events. This suggests that task-specific events,
such as reward pulling, are characterised by consistent propagation patterns. The same argument
can be made for the smoothness of the propagation; further specifying the type of event leads to
smoother and smoother propagation patterns (Figure 4e) with the highest average smoothness be-
ing obtained for reward pulling events. They display also the shortest duration, on average, among
all the other events (Figure 4g).

The patterns observed in healthy mice are characterised by different spatiotemporal features
when comparing force and non-force events in terms of angle (p=10"'°) and smoothness (p=0.001)
of propagation, and when comparing active and passive events in terms of angle (p=10~°) and
duration (p=0.002). Also between rewarded and non-rewarded pulls events the observed patterns
display different characteristics when comparing angle (p=10-%) and smoothness (p=0.001), see
Figure 4c,e,g and Table 2.

In summary, in healthy mice there is a high coherence of the parameters of spatiotemporal
propagation over weeks, suggesting that on a simple motor task alone does not change the an-
gle, smoothness, and duration of events. Moreover, the investigated spatiotemporal propagation
indicators discriminate between different event types when a specific characteristic is taken into
account, i.e., force versus non-force, active versus passive, reward versus non-reward pulling.

Acute phase after stroke is characterised by an increase of event duration.
We pondered how the spatiotemporal propagation indicators were altered by cortical injury, and
thus looked at the cortical activation events as associated to classes of behavioural events in the
first week right after the stroke (called acute stroke). Moreover, we compared these results with
the first week of recordings on healthy mice (Figure 5) which consists of the first week of recordings
of the control group and the pre-stroke week in the robot group (see Figure 5-Figure Supplement 1
for a comparison).

When looking at all events together, the angles distribution for the acute stroke group exhibits
a flatter distribution and two secondary peaks in —z/2 and = /2, indicating the presence of a more
heterogeneous pool of events (Figure 5a). Differences can be appreciated for the smoothness
(p=0.007) and duration (p=0.003) even without further splitting the events into specific types. In
particular, the smoothness decreases (Figure 5¢) and the duration increases (Figure 5e) during the
acute phase. Day by day variations are shown in Figure 5g-h. For both smoothness and duration,
the difference of control and acute stroke groups is considerably larger for the first 3 days. More-
over, the difference in the event duration tends to diminish over days.
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Figure 5-Figure supplement 1. The pre-stroke condition presents the same behaviour as the control group.

283 When splitting the results into event types (Figure 5b,d,f), acommon tendency for angle, smooth-
2sa Ness and duration is that the stroke condition attenuates differences of the indicators between
2s5  event types. For the angle (Figure 5b), the dissimilarities in the control group between event types
286 are preserved in the acute stroke condition (F-nF and Act-Pass, control p<0.001 and robot p<0.05).
287 For both smoothness and duration (Figure 5d,f), while the control group presents significant vari-
2ss  ations changing the type of event (F-nF p=10-'° and RP-nRP p=0.008 for smoothness, and Act-Pass
20 p=0.04 for duration), the acute stroke group is characterised by smaller fluctuations in the mean
200 Vvalue (F-nF p=0.082 and RP-nRP p=0.51 for smoothness, and Act-Pass p=0.059 for duration). Re-
201 garding the smoothness (Figure 5d), a significant difference in mean between healthy and stroke
202 Mice can be appreciated for force (F, p=0.004), active (Act, p=0.01), passive (Pass, p=0.002), and re-
203 ward pulling (RP, p=0.005) events. For the duration (Figure 5f), significant differences can be found
204 in the same events types as for smoothness (p=0.026, 0.034, 0.035, 0.014) with the addition to the
205 Not reward pull (nNRP, p=0.028) events. A more detailed description of the p-values of the test is
206 presented in Table 3.

207 Altogether, our three spatiotemporal propagation indicators are able to distinguish between
20 healthy and stroke mice. The acute phase after stroke leads to more heterogeneous events charac-
200 terised by flattened distributions of the angle, lower smoothness, and longer duration. Moreover,
300 iN contrast to the healthy condition, cortical propagation features do not discriminate event types
so1  in the acute stroke condition.

;2 Combined rehabilitative treatment induces higher smoothness and shorter dura-
;03 tion of cortical propagation patterns

soa  We wondered if the combined treatment leading to generalised recovery (as shown in (Spalletti
s0s et al., 2017)) was associated with a specific fingerprint of cortical activation patterns. We hypoth-
306 esised that rehabilitative treatments may alter the spatiotemporal propagation patterns, and in
307 particular reverse the trend observed in the acute stroke phase. We therefore compared the spa-
308 tiotemporal propagation indicators in animals treated with motor training alone (robot group) or
300 iN combination with pharmacological inactivation of the homotopic cortex (rehab group). Finally,
310 by comparing treated (robot and rehab) with healthy mice (control group), we evaluated if propa-
a1 gation features were restored to pre-stroke levels or if the treated condition ended in a new state
a2 (Figure 6). To this end, in this section we analysed data belonging to control, robot, and rehab
a1z groups starting from the second week of recording up to one month after stroke.

314 The most striking result emerging from this analysis is that the rehab group is greatly separated
s1s  from both the control and the robot group for all three propagation indicators. To find differences
316 between groups in the angle distribution it is not sufficient to look at all events together (Figure 6a),
317 butinstead it is necessary to split the results into event types (Figure 6b). The rehab group is sig-
s1is  hificantly different from both control and robot groups when considering force, active, passive,
310 and reward pulling events. Interestingly, in the rehab group neither qualitative nor quantitative
320 Variations in the angle distribution across event types can be observed. More specifically, the dis-
321 tribution of the angles appears to be consistent for different event types.

322 The events of the rehab group display a greater smoothness compared to the control (p=0.025)
323 and robot (p=10*) groups. The biggest difference can be observed for rehab versus robot group;
;24 it is significant not only for all events together (p=10"*, Figure 6c) but also for each event type sep-
325 arately (all p<0.01, Figure 6d). Note that, as for the angle, the smoothness of the rehab group
326 appears to be consistent when distinguishing different event types, meaning force, non-force, ac-
327 tive, passive, reward and non-reward pulling events display the same average smoothness value.
328 Among all the characteristics investigated, the marker that distinguishes most clearly between
320 the rehab group and control (p=10*) and robot (p=10-°) groups is duration. The events of the
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Figure 6. Rehab group is characterised by higher smoothness and shorter duration. (a-b) For the rehab group the distribution of the angles
does not vary depending on the type of event. (c-d) For all types of event, the smoothness of the rehab group is higher than for the robot group.
(e-f) For all types of event, rehab group events are the shortest. (g) Smoothness is always higher for the rehab group. (h) Event duration is
always shorter for the rehab group. As expected, for both smoothness and duration the pre-stroke week of the robot group is quantitatively the
same as the first week of the control group.

Figure 6 continued on next page
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Figure 6 continued

— Angle and duration are weighted by smoothness. Markers in (c-h) refer to the average value per day. Within each box in (c-f), the central mark
indicates the median, and the bottom and top edges of the box indicate the 25 and 75" percentiles, respectively. Shaded areas in (g-h)
correspond to the confidence interval. Control group n=3 mice, robot group n=8 mice, rehab group n=6 mice. P-values of statistical tests in
Table 3, “x” refers to difference in variance and “*" refers to difference in mean.

Figure 6-Figure supplement 1. The robot group presents a non-stationary evolution over weeks and large variance of all three indicators.
Figure 6-Figure supplement 2. The rehab group shows high coherence of all three spatiotemporal indicators starting from the second week of

training after stroke.

rehab group are shorter than for the control (all p<0.01) and robot (all p<0.001) groups (Figure 6e-
f). Again, this statement applies to all events together (Figure 6e) as well as to each event type
individually (Figure 6f). Also in this case, the duration of the rehab group appears to be consistent
when looking at different event types. The complete list of the p-values of the test can be found in
Table 4.

Figures 6g-h depict the trend over time of smoothness and duration. The control group shows
a consistent trend, suggesting that motor training alone has no effect on either smoothness or
duration, as already described in the previous sections for healthy mice (Figure 4). After the stroke,
the robot group shows a significant variation: the smoothness is lower and the duration is longer.
This variation decreases over time in both cases. While for the smoothness this difference seems to
oscillate without stabilising, the duration reaches again values comparable to healthy mice already
after the second week of training. Interestingly, the rehab group presents a behaviour qualitatively
comparable to the control group, i.e., a consistent trend, but with very different values.

In summary, the rehab group is significantly different from both control and robot groups. In
particular, it is characterised by higher smoothness and shorter duration. Differences between
the rehab and the other two groups can be observed not only for all events together, but also
for specific event types. Specifically, when looking at specific event types (force, non-force, active,
passive, reward pull, non-reward pull) our three spatiotemporal propagation indicators are able to
distinguish the rehab group from the control and robot groups.

Discussion

In this study we employed an improved version of our recently proposed SPIKE-order analysis
(Kreuz et al., 2017) to sequences of wide-field fluorescent calcium images from the dorsal cortex
of awake behaving mice. We defined three propagation indicators that characterise the duration,
the angle of propagation and the smoothness of movement-evoked global events. This new way
of quantifying variations in the spatiotemporal propagation patterns during longitudinal motor
training allowed us to track damage and functional recovery following stroke.

We found that in healthy mice all three indicators of spatiotemporal propagation display a very
high degree of consistency over time. For animals with acute stroke the propagation patterns of
the global events are altered. The most prominent consequence is a large increase in global event
duration and a decrease in smoothness over the ipsilesional hemisphere. We compared two dif-
ferent rehabilitation therapies, motor training alone and motor training combined with pharma-
cological therapy. While both reverse the effects observed during the acute phase, the combined
treatment, promoting a generalised recovery, leads to a new functional efficacy, different from
pre-stroke conditions, with very fast and smooth propagation patterns.

Comparison with existing methods

Comparing our approach with techniques previously applied in similar contexts, we first note that
most analysis tools for wide-field optical images perform simple correlation and time lag analysis
(Pearson correlation and phase synchrony), which are window- and not event-based (e.g. Haupt
et al. (2017); Brier et al. (2019); Vanni et al. (2017)). Directionality is explored by using Granger
causality in (Mitra et al., 2018), which is dependent on a priori selection of regions of interest
(ROIs). Since commonly used analyses tools are based on averaged activity under resting state,
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important information on single events is missing. This is especially important when considering
motor evoked activity, which is directly associated with the execution of single movements (active
forelimb pulling in our case). The detailed propagation analysis we showed here would not be
possible with the widely used optical flow techniques (Afrashteh et al., 2017; Townsend and Gong,
2018) which instead focus on velocity vector fields and their complex patterns (e.g. sources and
sinks) but do not deal explicitly with temporal order. Our methods used here contain some sim-
ilarities but also crucial differences with a very recent analysis performed on cortical slow waves
in anaesthetised mice (Celotto et al., 2020). On the one hand, both algorithms apply exactly the
same criteria of unicity and globality in the identification of the spatiotemporal patterns. On the
other hand, the core of our global event detection is automated spike matching (via adaptive co-
incidence detection) while the wavehunt pipeline relies on an iterative procedure to cut the time
series into distinctive waves. Apart from the different types of data, the two studies are also com-
plementary in scope: while the focus of Celotto et al. (2020) lies on the excitability of the neuronal
population, the dominant origin points and the velocity of the slow waves, we perform a thorough
investigation of the spatial propagation pattern of each global event. Nevertheless, it would be
very interesting to compare our SPIKE-order approach and their wavehunt pipeline in more detail
and we will make this the topic of a future study.

Cortical propagation features in healthy mice

We first tested the discrimination capabilities of this approach for different classes of behavioural
events and used it to characterise global events over most of the dorsal cortex. Results show that
under our experimental paradigm, in all conditions, global events are occurring predominantly
when the mouse is actively applying force during either active retraction or passive extension of the
affected forelimb. Angle, duration and smoothness of the global events change with behavioural
event type (e.g. if the event is associated with the application of force or not) in healthy subjects.
This finding is in line with a recent study showing different propagation patterns across the cortex
for mice engaged in a visual task depending on the type of the behavioural event (active vs passive,
hit vs misses, ipsilesional vs controlesional) (Steinmetz et al., 2019).

None of the parameters of global cortical activation were significantly altered by daily training
over four weeks, suggesting that the spatiotemporal propagation is not strongly correlated with the
repeated performance of the forelimb pulling task. In our study, the duration of the propagation in
global events is quite stable over the weeks. Recent literature shows that the cortical propagation
changes over different learning phases (Makino et al., 2017). Makino and colleagues find that as
learning progresses the activity across cortical regions became temporally more compressed, and
its trial-by-trial variability decreased. As we showed in a previous paper (Allegra Mascaro et al.,
2019), the active pulling task is very easily and rapidly learned by the mouse, so a possible learning
effect might not be revealed.

The drastic change observed in the angle distribution of global events between force and non
force events implies that activity propagates from medial to lateral regions. This is in accordance
with previous findings based on space-frequency single value decomposition analysis showing that
at the naive stage, the activity propagated from retrosplenial cortex in a radial direction (Makino
et al., 2017). Also, the small hump in the angle distribution at —z/2 (panels b and c of Figure 4),
indicative of rostro-caudal propagation, is reminiscent of the flow of activity from premotor cortex
towards caudal regions emerging during learning in (Makino et al., 2017). The mediolateral propa-
gation of the global events suggests the progressive involvement of the retrosplenial cortex during
the exertion of the reward pull. Indeed, it has been previously reported that retrosplenial cortex
is more correlated with sensory cortices during locomotion vs quiescence (Clancy et al., 2019) sug-
gesting the presence of a network switch to allow the processing of sensory information during
locomotion. In this view, the higher accumulation of angles at 0 degrees observed when compar-
ing force vs non force events could represent the hallmark of such network switch. Interestingly, a
similar propagation pattern has been observed applying optical flow analysis to calcium imaging
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over the same cortical areas when windowing cortical activity around hippocampal sharp wave
ripples during sleep (Karimi Abadchi et al., 2020) and corresponds to one of the two major prop-
agation patterns observed during slow wave sleep (Greenberg et al., 2018). Our findings extend
these results to the awake condition during motor execution.

Acute phase after stroke

Stroke strongly affects the spatial propagation within the cortex during the execution of a pulling
task. The analysis of spatiotemporal propagation patterns evoked by stimulation or voluntary
movements represents a fundamental means to investigate functional remapping in order to bet-
ter understand post stroke reorganisation. In our study, acute stroke is characterised by less co-
herent direction of the propagation, lower smoothness, and longer duration than healthy animals.
Also, cortical propagation properties are very heterogeneous across global events and the differ-
ences between behavioural event types are lost.

In a previous work Murphy and collaborators (Brown et al., 2009), by applying intrinsic optical
signal and fluorescence imaging, described modifications in spatiotemporal propagation elicited
by sensory forelimb stimulation both in acute and chronic phase after stroke in the forelimb cor-
tex. In agreement with Brown et al., who observed during the acute phase an increase of time to
peak cortical signal evoked by sensory stimulation, our results revealed an increment of duration
of motor-evoked cortical response, showing a delayed activation of cortical regions neighbouring
the stroke core due to the damage. The comparison between these results reveals that though ap-
plying opposite approaches (i.e. bottom-up for sensory stimulation and top-down for motor task
execution) a similar cortical response was observed. Moreover, an fMRI study in the acute phase
by Dijkhuizen and colleagues (Dijkhuizen et al., 2003) showed that the stimulation of the unpaired
forelimb induces a small response detected in the ipsilesional hemisphere in M1 and sFL cortex
and in more distal regions both in rostral and caudal direction. A similar observation was made
by Harrison and collaborators (Harrison et al., 2013) revealing that motor maps were more diffuse
after motor-targeted stroke during sensory stimulation, with a decrease in correlation between
neighbouring pixels. The diffuse activation in response to forelimb stimulation observed in those
previous works is in agreement with our results that reveal the absence of a clear pattern of cortical
propagation, as highlighted by low smoothness, in the acute phase after stroke.

These differences decline during weeks of motor training in the robot group, in fact by the
second week of training duration reaches values comparable to healthy mice. We also show that
the smoothness was on average comparable to healthy mice after robotic training. Our findings on
the chronic phase of the robot group are in agreement with what we observed in (Conti et al., 2020)
where repetitive motor training induced a task-dependent spatial segregation similar to healthy
mice though unaccompanied by functional recovery (Spalletti et al., 2017).

Comparison of different rehabilitation paradigms

Combined rehabilitation profoundly altered the propagation of global events as compared to both
healthy (control) and motor trained stroke (robot) mice. While during the chronic phase of robot
mice no significant differences were observed in cortical directionality propagation with respect to
healthy animals, the combined rehabilitative treatment presented a different profile compared to
the other groups. More in detail, rehab mice show a decrease of duration and greater smoothness
with respect to control and robot mice indicating the arrangement of a fast and directed pattern of
propagation. Temporally compressed and reliable cortical activity sequences may be associated
with a more effective trigger of subcortical movement machinery (Makino et al., 2017).

In addition, the substantial increase in smoothness after combined rehabilitation finds a nice
correlate in the segregation of motor representation illustrated in preclinical (Allegra Mascaro
et al., 2019) and clinical studies (Chang et al., 2012). In these works, improved motor functionality
induced by post-stroke combined rehabilitation is associated with a more focused brain activation
during the execution of a motor task. (Conti et al., 2020). Importantly, generalised recovery in
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rehab mice, see (Spalletti et al., 2017; Allegra Mascaro et al., 2079) is not necessarily associated
with recovery of pre-stroke spatiotemporal propagation features. Indeed, the results on all motor-
evoked spatiotemporal propagation indicators suggest that the combination of contralesional in-
activation and motor training acts towards the establishment of a new propagation pattern rather
than the restoration of pre-stroke features.

In summary, our detailed spatiotemporal analysis of global activation patterns during longitudi-
nal motor training provides a powerful non-invasive tool to quantify the relative success of different
state-of-the-art rehabilitation paradigms. The propagation-based biomarkers deliver new and un-
foreseen information about the brain mechanisms underlying motor recovery and this could pave
the way towards a more targeted post-stroke therapy. As a final remark, we would like to stress
thatthe method used here is universal and could easily be adapted to functional techniques (includ-
ing electroencephalography and functional Magnetic Resonance Imaging) in many other clinical
settings. For example, it could be extended to disorders of the central nervous system similarly as-
sociated with alterations in the spatiotemporal propagation of brain activity, from traumatic brain
injury to autism.

Materials and methods

Experimental design

Mice

All experimental procedures were performed in accordance with directive 2010/63/EU on the pro-
tection of animals used for scientific purposes and approved by the Italian Minister of Health, au-
thorization n.183/2016-PR. Mice were housed in clear plastic cages under a 12 h light/dark cycle
and were given ad libitum access to water and food. We used a transgenic mouse line (C57BL/6)-
Tg(Thy1GCaMP6f)GP5.17Dkim/J, referred to as GCaMP6f mice) expressing a genetically-encoded
fluorescent calcium indicator under the control of the Thy-1 promoter. Mice were identified by
earmarks and numbered accordingly. Animals were randomly assigned to 3 experimental groups
(control, robot and rehab). Each group contained comparable numbers of male and female mice
(weighing approximately 25g). The age of mice (ranging from 6 to 8 months old) was consistent
between the groups.

Photothrombotic Stroke Induction & Optical Window

All surgical procedures were performed under Isoflurane anesthesia (3% induction, 1.5% mainte-
nence, in 1.5L/min oxygen). The animals (apart from the control mice) were placed into a stereo-
taxic apparatus (Stoelting, Wheat Lane, Wood Dale, IL 60191) and, after removing the skin over the
skull and the periosteum, the primary motor cortex (M1) was identified (stereotaxic coordinates
1,75 lateral, 0.5 anterior to bregma). Five minutes after intraperitoneal injection of Rose Bengal
(0.2 ml, 10 mg/ml solution in Phosphate Buffer Saline (PBS); Sigma Aldrich, St. Louis, Missouri,
USA), white light from an LED lamp (CL 6000 LED, Carl Zeiss Microscopy, Oberkochen, Germany)
was focused with a 20X objective (EC Plan Neofluar NA 0.5, Carl Zeiss Microscopy, Oberkochen, Ger-
many) and used to illuminate the M1 for 15 min to induce unilateral stroke in the right hemisphere.
Botulinum Neurotoxin E (BoNT/E) injections in rehab mice were performed during the same sur-
gical session of the photothrombotic lesions. We used a dental drill to create a small craniotomy
over M1 of the healthy hemisphere. Then 500 nL of BoNT/E were delivered in two separate injec-
tions. A cover glass and an aluminum headpost were attached to the skull using transparent dental
cement (Super Bond, C&S). Afterwards, the animals were placed in their cages until full recovery.

Motor Training Protocol on the M-Platform

Before the first imaging session each mouse was allowed to become accustomed to the apparatus.
The animals were trained by means of the M-Platform, which is a robotic system that encourages
mice to perform a retraction movement of their left forelimb (Spalletti et al., 2014; Allegra Mascaro
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et al., 2019). The training consisted of up to 15 cycles of passive extension of the affected forelimb
followed by its active retraction triggered by an acoustic cue. All groups performed at least four
weeks (20 sessions) of daily training; in addition, 5 out of 8 robot mice were also recorded for one
week before stroke (5 sessions).

Wide-Field Fluorescence Microscopy

The custom-made wide-field imaging setup (Crocini et al., 2016; Conti et al., 2019) was equipped
with a 505 nm LED (M505L3 Thorlabs, New Jersey, United States) light was deflected by a dichroic
filter (DC FF 495-DI02 Semrock, Rochester, New York USA) on the objective (2.5x EC Plan Neofluar,
NA 0.085, Carl Zeiss Microscopy, Oberkochen, Germany). Then a 20x objective (LD Plan Neofluar,
20x/0.4 M27, Carl Zeiss Microscopy, Oberkochen, Germany) was used to demagnify the image onto
a high-speed complementary metal-oxide semiconductor (CMOS) sensor (OrcaFLASH 4.0, Hama-
matsu Photonics, NJ, USA). The fluorescence signal was selected by a band pass filter (525/50 Sem-
rock, Rochester, New York USA) and images (100 x 100 pixels, pixel size 60 ym) were acquired at
25 Hz.

Signal processing and data analysis

Preprocessing

Data acquired during each recording session (one mouse, one day, see Figure 1b) was processed
offline using custom routines implemented in Python (Python Software Foundation) and Matlab
(MathWorks). Each such dataset consisted of up to 15 cycles of active retraction movements on a
slide triggered by passively actuated contralesional forelimb extensions. To ensure the consistency
of the field of view across sessions and across mice, each frame of the fluorescence data was
offline registered by aligning each frame to two reference points (corresponding to bregma and
lambda) that were previously marked on the glass window during the surgery procedure. For the
2D fluorescence data, masking the region of interest and spatial downsampling by a factor 3 for
both rows and columns resulted in calcium activity matrices of 12 x 21 (or sometimes 12 x 19) pixels.
Spatial average over all pixels yielded the mean calcium activity. In parallel, the force applied to
the slide by the mouse and the discrete status of the slide were recorded. Using samplings with
a time step of 40 ms and acquisition times of up to 400 seconds this yielded recordings with at
most 10000 data points. The calcium traces were detrended via subtraction of a moving average
of order 75 (three seconds) and, in order to yield a better time resolution, upsampled by a factor
20.

Event detection

Next, within all of these traces we identified the times of the most relevant discrete events. For
the status (Figure 2a) we marked the transition from level 3 to level 4 which corresponds to the
completion of the forelimb retraction by the active movement of the mouse upon which the animal
received its reward (reward pulling event). For the force (Figure 2b), the mean calcium (Figure 2¢)
and the individual calcium traces of all the pixels the events are the high-amplitude peaks that can
easily be recognised. As event times we used the upwards crossings of a threshold T which in each
of these cases was defined in a data-adaptive manner according to T = mean(x) + t * std(x). The
free parameter r was set to 1.5 for the force and 1.7 for all the calcium traces. In the slower calcium
traces, in order to avoid double detections due to noise, we discarded all events that succeeded
the previous event by less than a minimum inter-event interval of 25 data points (one second).

SPIKE-order

The events (from now on called spikes) of all the pixels can be represented best in a rasterplot like
the one shown in Figure 2d. The next important step was to identify the global events that corre-
spond to the events of the mean calcium trace. To this aim, we used the cSPIKE-implementation
(Satuvuori et al., 2017) of the SPIKE-order approach recently proposed in Kreuz et al. (2017) (for
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detailed definitions of all the underlying quantities please refer to the Appendix ). The original pro-
posal was designed for rather clean data with well-defined global events. These conditions hold for
most of our datasets as well, however, we added a few tailor-made denoising steps that addressed
the rare instances of increased noisiness that we observed in some of the datasets.

The procedure consisted of six steps: in an initial denoising step, we filtered out all spikes of
individual pixels that were not within 1 second of a mean calcium event and thus were certainly
not part of global events. Secondly, we applied the coincidence detection first introduced for the
bivariate measure event synchronization (Quian Quiroga et al., 2002). This criterion paired spikes in
such a way that every spike was matched with at most one spike in each of the other pixels. Here
we combined the original adaptive approach with a maximum allowed distance between spikes
of 2.5 seconds. Next, we used the symmetric and multivariate measure SPIKE-Synchronization C
(Kreuz et al., 2015) to quantify for each spike the fraction of other pixels for whom a matching
spike could be found. By setting a threshold value C,,, = 0.75 we only took into account spikes
which were coincident with spikes in at least three quarters of the other pixels, all other spikes
were filtered out as background noise.

In a fourth step, we applied the SPIKE-order D (Kreuz et al., 2017) which evaluates the temporal
order of the spikes by quantifying for each spike the net-fraction of spikes of other pixels this spike
is leading (positive value) or following (negative value). Based on the time profile we identified start
and end spikes of global events by tracking the jumps from a negative local minimum (last spike of
previous event) to a positive local maximum (first spike of current event). In one further denoising
step we discarded split events and eliminated outlier spikes by using a maximum distance between
consecutive spikes of 0.15 seconds and thereby kept only continuous global events. The final step
used in the visualisation of the spike trains in Figure 2d involved the Synfire Indicator (Kreuz et al.,
2017), a scalar measure which quantifies to what degree the spatiotemporal propagation patterns
of the global events are consistent with each other. Optimisation of this indicator was used to
sort the spike trains / pixels from overall leader to overall follower. Here, overall means that we
take into account all global events at the same time. The result is that the first spike trains contain
mostly leading spikes, whereas the last spike trains consist largely of trailing spikes.

Categorisation of events

Next, we divided the global events into several types using the following three-level categorisa-
tion scheme (the corresponding branching structure is shown in Section Methods): First, we sep-
arated all the global events that are not associated with a force event (non-Force, nF). For this we
demanded that there is no force event in the interval [1 second before, 0.75 seconds after] the
matching calcium event. The window was slightly asymmetric to account for the fact that typically
Force were observed a bit earlier than mean calcium events. The remaining Force events (F) were
further subdivided into events that occur during the passive extension of the arm by the slide (Pas-
sive, Pass) and events that occur outside that window (Active, Act). In the passive events the mouse
applied force to resist the forelimb extension movement of the robot, whereas the active events
were the ones where the force was applied during an active retraction movement (when the status
variable was set to 3, i.e. between the Go cue and the completion of the task). Finally, among the
active events we distinguished between events which were not completed and thus not rewarded
(non-Reward Pulling, nRP) and events which lead to a completion of the forelimb retraction and
therefore were rewarded (Reward Pulling, RP). The categorisation criterion was the occurrence of
a transition from status 3 to status 4 within [0.75 seconds before, 0.75 seconds after] a calcium
event. This window was symmetric, since the observed temporal distribution of status events was
symmetric with respect to the mean calcium events.

Three propagation indicators: Duration, Angle, Smoothness
For all global events, the event time was defined as the average time of all the spikes within the
event and our first propagation indicator, the event duration, was defined as time from the first to
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the last spike of the event. To calculate the other two propagation indicators, angle and smooth-
ness, we first generated the propagation matrix by mapping the color-coded relative order of the
spikes onto the pixels of the 2D-recording plane (compare Figure 2f). Next, we applied singular
value decomposition (SVD, Yanai et al. (2011)) which searches for spatial patterns by decomposing
the propagation matrix P into three simple transformations: a rotation U, a scaling £ along the
rotated coordinate axes and a second rotation V7.

The rotations U and VT are orthonormal matrices and X is a diagonal matrix containing in its
diagonal the singular values o, of P. By backprojecting the sorted singular values one at a time

o) 0
ZIZI: 00':| 22=|:°-20 ]

we could obtain various projections of the original propagation matrix
P =Uz VT P, =Uz, VT

. The mean gradients with respect to column (¢) and row (r) increments of the first two projections

were calculated as
g =E-20) g =E-%2)
g = E(- ";j‘) g = E(- ";?)
with E denoting the average across pixels while the sign (-) is defined by the directionality in

the matrix P going from leader (+1) to follower (-1). The main propagation directions, along the
column and row directions,

{Uc =08 +0,8;
V=08 + 0,8,

were calculated from the weighted average of the mean gradients of the first two projections,
with the singular values as weights. Our second propagation indicator, the angle

e
a = arctan (-)
v

was defined relative to the horizontal axis.
Finally, our third propagation indicator, the smoothness .S, quantified how well the second
order approximation, the weighted sum of the projections of only the first two singular values,
captures the full spatiotemporal pattern obtained by considering all singular values o,. Smoothness

is defined as the relative weight of the first two approximations
B o7 +0;

R (1)

Statistical Tests

Statistical tests were carried out separately for all three propagation indicators (angle, smoothness,
duration) and for each condition: control group (Fig. 4), acute phase (Fig. 5) and rehabilitation
comparisons (Fig. 6). Control group models analyse the behaviours of healthy mice only during
all four weeks of motor training. Acute phase models use the first week post-stroke of robot mice,
the first week of control mice and the pre-stroke week of robot mice, considered here as control
ones. Finally, the rehabilitation comparisons look at the weeks from the second to the fourth of all
control, robot and rehab mice.

For smoothness and duration, differences in means were tested using estimates of mixed ef-
fect models implemented in R (package Ime4, Bates et al., 2015). All models started with a full
parametrisation of both fixed and random effects, backward selection through ANOVA and RA-
NOVA, respectively, selected a parsimonious feasible model without removing relevant effects that
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could decrease the Type | error rate and increase the statistical power (Matuschek et al., 2017).
Differences in least squares means and their p-value were estimated with the R package ImerTest
(Kuznetsova et al., 2017). The Holm-Bonferroni correction for multiple comparisons was used to
obtain the statistical significance scores. Normality of residuals assumption was tested with the
Kolmogorov-Smirnov test, while homogeneity of variance for fixed effects without related random
slope was evaluated with the Breusch-Pagan test. If normality assumption did not hold, a Box-Cox
transform of the dependent variable (Gurka et al., 2006) was carried out. If the Breusch-Pagan
test revealed departure from homogeneity of variance, we look at which comparisons had dif-
ferent variances and results were again corrected with the Holm-Bonferroni method for multiple
comparisons.

For the propagation angle we focused on the differences in circular variance, tested with multi-
ple Bartlett tests (R package circular, Agostinelli and Lund, 2017). Then, once more the Holm-
Bonferroni correction was adopted to correct the multiple comparison bias. Assumption of Von-
Mises distribution for both groups under comparison was tested with the Watson test (Jammala-
madaka and Sengupta, 2007).
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Appendix

Here we present the more detailed definitions of the SPIKE-order approach, the central method of
our study that we use to identify global events and to track the propagation patterns within these
events by sorting the spikes from leader to follower.

Adaptive Coincidence Detection

Analysing leader-follower relationships in a spike train set requires a criterion that determines
which spikes should be compared against each other. Here we use the adaptive coincidence
criterion first proposed in Quian Quiroga et al. (2002). This coincidence detection is scale- and
parameter-free since the maximum time lag " up to which two spikes (" and 1{" of spike trains
m,n = 1,.., N (with N denoting the number of spike trains) are considered to be synchronous is
adapted to the local firing rates according to

Lmn)

(m) (m) _ (m)
T 1" " — 1

i-1° (2)

) _ ) _
o — 101 —tj_l}/z.

= min{ t('")

SPIKE-Synchronization

Following Kreuz et al. (2015), we apply the adaptive coincidence criterion in a multivariate context
by defining for each spike i of any spike train n and for each other spike train m a coincidence
indicator

3)

com _ 1 if ming (|6 = £™]) < 77
0 otherwise.

which is either one or zero depending on whether this spike is part of a coincidence with a spike
of spike train m or not. This results in an unambiguous spike matching since any spike can at most
be coincident with one spike (the nearest one) in the other spike train.

Subsequently, for each spike of every spike train a normalised coincidence counter

w_ 1 (nm)
" =57 2C (4)
m#n
is obtained by averaging over all N — 1 bivariate coincidence indicators involving the spike train n.
In order to obtain a single multivariate SPIKE-Synchronization profile we pool the coincidence
counters of all the spikes of every spike train:

A U{cf(",ff” 5)

where we map the spike train indices n and the spike indices i into a global spike index k denoted
by the mapping i(k) and n(k).
With M denoting the total number of spikes in the pooled spike train, the average of this profile

Scz{ﬁz,“f:lcak) if M >0 ©
1 otherwise
yields SPIKE-Synchronization, the overall fraction of coincidences. It reaches one if and only
if each spike in every spike train has one matching spike in all the other spike trains (or if there
are no spikes at all), and it attains the value zero if and only if the spike trains do not contain any
coincidences.

SPIKE-Order

While SPIKE-Synchronization is invariant to which of the two spikes within a coincidence is leading
and which is following, the temporal order of the spikes is taken into account by the two indicators
SPIKE-Order and Spike Train Order.
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The bivariate anti-symmetric SPIKE-Order indicators

(nm) (nm) - (m) (n)
D; = C «51gn(tj, —17)

(m,n) (mn) - (n) (m) (n,m)
Dj',"" = ij"" - sign(r}" —tj',")=—Di"'", (7)

where the index ' is defined from the minimum in Eq. 3 as j* = argmin,(|#{"” — 1?|), assign to
each spike either a 1 or a —1 depending on whether the respective spike is leading or following a
coincident spike in the other spike train.

SPIKE-Order distinguishes leading and following spikes, and is thus used for color-coding the
individual spikes on the leader to follower scale. But it can also be employed to sort the spike trains
based on a pairwise analysis. For this we use the cumulative SPIKE-Order matrix

D =3 D", (®)

This anti-symmetric matrix sums up the orders of coincidences from the respective pair of spike
trains only and quantifies how much spike train n is leading spike train m. Hence if D®™ > 0 spike
train nis leading m, while D™ < 0 means mis leading n. If the current spike train order is consistent
with the synfire property (i.e., it displays consistent repetitions of the same global propagation
pattern), we thus expect that D®™ > 0 for n < m and D™ < 0 for n > m. Therefore, we construct
the overall SPIKE-Order as

— Z Dm (9)

n<m

i.e. the sum over the upper right tridiagonal part of the matrix D™,

Synfire Indicator
After normalizing by the overall number of possible coincidences, we arrive at the definition of the

Synfire Indicator:
2D

=—< 10
(N-DM (10
This measure quantifies to what degree coinciding spike pairs with correct order prevail over
coinciding spike pairs with incorrect order, or in other words, to what extent the spike trains in their
current order resemble a synfire pattern. Conversely, the maximization of the Synfire Indicator as
a function of the spike train order within a set of spike trains can be used to sort spike trains from
leader to follower such that the set comes as close as possible to a synfire pattern. Denoting the
Synfire Indicator for any given spike train index permutation ¢(n) as F,, the optimal (sorted) order
@, is the one resulting in the maximal overall Synfire Indicator F, = F, :
@, F%:m;lX{F(p}:F. “@an
Whereas the Synfire Indicator F, for any spike train order ¢ is normalized between -1 and 1,
the optimized Synfire Indicator F, can only attain values between 0 and 1. A perfect synfire pattern
results in F, = 1, while sufficiently long Poisson spike trains without any synfire structure yield
F, ~ 0. For details on the optimisation procedure, please refer to Kreuz et al. (2017).

Source Codes

SPIKE-Synchronization, SPIKE-Order and Spike Train Order are implemented in three publicly avail-
able software packages. Results in this study were obtained using cSPIKE ' (Matlab command line
with MEX-files). The Matlab-based graphical user interface SPIKY ? (Kreuz et al., 2015), or the Python

Thttp://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/cSPIKE.html
2http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/SPIKY.html
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728 library PySpike 2 (Mulansky and Kreuz, 2016) are available as well.

2o Caption Supplementary Movie 1

730 Movie depicting the propagation of activity during the training cycle shown in Figure 1c. As the ver-
7n1  tical green line superimposed over subplots (a) to (d) moves forward in time (from -0.12 seconds
72 before to 1.28 seconds after the threshold crossing of the force), in the Calcium image in subplot (e)
733 a propagation of activity from left to right can be seen. This is in accordance with the propagation
73 matrix shown in subplot (f) which color-codes the temporal order of activation from leader (red) to
735 follower (blue). (a) Status of the robotic sled. (b) Force applied by the mouse during the retraction
73 movement. (c) Average calcium signal over all pixels. (d) Raster plot obtained from the thresh-
73z old crossings of individual pixels versus time. (e) Calcium imaging sequence of cortical activation,
73¢  superimposed on the standard atlas of brain regions. (f) The propagation matrix is obtained by
730 projecting the relative order of these threshold crossings onto the 2D-recording plane.

Panel | Indicator Event type | Value
a Number of events | F 492
nF 45
Act 356
Pass 136
RP 277
nRP 79
b Smoothness 0.41
Angle -3.11
C Smoothness 0.78
Angle -1.46
d Smoothness 0.87
Angle 0.09
e Smoothness F 0.67 + 0.05
nF 0.56 + 0.06
Angle F 0.40 +0.49
nF 0.63 +0.81
f Smoothness Act 0.67 + 0.06
Pass 0.67 + 0.05
Angle Act 0.45 +0.44
Pass 0.27 £0.58
g Smoothness RP 0.68 +0.05
nRP 0.65 + 0.06
Angle RP 0.46 +0.43
nRP 0.44 +0.52

Appendix 0 Table 1. Values for Figure 3

Panel | Indicator Event type | Group Diff. type | p-value

C Angle F-nF Control | Variance | 10710 * % %
Act-Pass 107° * * %
RP-nRP 1078 * * X

e Smoothness | F-nF 0.001 *k
RP-nRP 0.001 * %

g Duration Act-Pass 0.002 *k

Appendix 0 Table 2. Values for Figure 4

3http://www.pyspike.de
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Panel | Indicator Event type | Group Diff. type | p-value
b Angle F-nF Control Variance | 107’ * * *
Stroke 1073 * % *
Act - Pass Control 10~ * % *
Stroke 0.046 *
C Smoothness Control - Stroke | Mean 0.007 Rkl
d F-nF Control 10710 FEE
F Control - Stroke 0.004 kd
Act Control - Stroke 0.01 *
Pass Control - Stroke 0.002 Rkl
RP-nRP Control 0.008 &
RP Control - Stroke 0.005 &
e Duration Control - Stroke 0.003 &
f F Control - Stroke 0.026 *
Act-Pass Control 0.042 *
Act Control - Stroke 0.034 *
Pass Control - Stroke 0.035 *
RP Control - Stroke 0.014 *
nRP Control - Stroke 0.028 *

Appendix 0 Table 3. Values for Figure 5
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Panel | Indicator Event type | Group Diff. type | p-value
b Angle F Control - Rehab | Variance | 1073 * * %
Robot - Rehab 10-8 * % *
Act Control - Rehab 107° * % *
Robot - Rehab 107° * % %
Pass Control - Rehab 0.027 *
Robot - Rehab 0.008 *x
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Figure 1-Figure supplement 1. Standard atlas of brain regions.

Acronym |Name Acronym |Name

MOp Primary motor area VISam Anteromedial visual area
MOs Secondary motor area VISI Lateral visual area

SSp-n Primary somatosensory area VISp Primary visual area
SSp-bfd Primary somatosensory area VISpl Posterolateral visual area
SSp-11 Primary somatosensory area VISpm posteromedial visual area
SSp-m Primary somatosensory area VISH Laterointermediate area
SSp-ul Primary somatosensory area VISpor Postrhinal area

SSp-tr Primary somatosensory area ACAd Anterior cingulate area
SSp-un Primary somatosensory area PL Prelimbic area

SSs Supplemental somatosensory area |RSPagl Retrosplenial area

AUDd Dorsal auditory area RSPd Retrosplenial area

AUDp Primary auditory area RSPv Retrosplenial area
AUDpo Posterior auditory area VISa Anterior area

AUDv Ventral auditory area VISrl Rostrolateral visual area
VISal Anterolateral visual area TEa Temporal association areas

Figure 1-Figure supplement 2. Brain regions acronyms.
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Figure 5-Figure supplement 1. The pre-stroke condition presents the same behaviour as the
control group, both qualitatively and quantitatively, for all the investigated spatiotemporal indica-
tors: (a-b) angle, (c-d,g) smoothness, and (e-f,h) duration. — Angle and duration are weighted
by smoothness. Markers in (c-h) refer to the average value per day. Within each box in (c-f), the
central mark indicates the median, and the bottom and top edges of the box indicate the 25" and
75" percentiles, respectively. Shaded areas in (g-h) correspond to the confidence interval. Control
group n=3 mice, pre-stroke group n=5 mice.
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Figure 6-Figure supplement 1. The robot group presents a non-stationary evolution over weeks
and large variance of all three indicators. (a) Mean number of events for all eight mice per week,
partitioned by type of event. (b) Motor training rehabilitation causes more and more directed
propagation patterns. (c) Narrowing down the type of event leads to more directed propagation
patterns. (d-e) Smoothness does not discriminate event types and oscillates over weeks. (f-g) Event
duration stabilises starting from the second week of training after stroke. — Angle and duration
are weighted by smoothness. Markers in (d-g) refer to the average value per day. Within each box
in (d-g), the central mark indicates the median, and the bottom and top edges of the box indicate
the 25" and 75" percentiles, respectively. Robot group n=8 mice.
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Figure 6-Figure supplement 2. The rehab group shows high coherence of all three spatiotempo-
ral indicators starting from the second week of training after stroke. (a) Mean number of events for
all six mice per week, partitioned by type of event. (b-c) The angle of the propagation is not altered
by either motor training or splitting by event types. (d-e) Smoothness does not discriminate event
types and itis stable over weeks. (f-g) Event duration decreases over weeks. — Angle and duration
are weighted by smoothness. Markers in (d-g) refer to the average value per day. Within each box
in (d-g), the central mark indicates the median, and the bottom and top edges of the box indicate
the 25" and 75" percentiles, respectively. Rehab group n=6 mice.
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