
 16 

using GATK v.3.8.167. Variant discovery and genotyping for the 68 flickers was 326 

performed using the unified genotyper module in GATK. We used the following hard 

filtering parameters to remove variants from the output file: QD < 2.0, FS > 40.0, MQ < 328 

20.0, and HaplotypeScore > 12.0. Subsequently, we filtered out variants that were not 

biallelic, had a minor allele frequency less than 5%, had a mean depth of coverage less 330 

than 3X or greater than 50X, and had more than 20% missing data across all individuals 

in the dataset. This pipeline produced 8,495,326 SNPs genotyped across all 68 flickers. 332 

We repeated the analyses with a variety of other SNP calling tools, including ANGSD68 

and the haplotype caller module in GATK67. We obtained qualitatively similar results 334 

across all analyses, and so here choose to present results from SNP calling with unified 

genotyper in GATK. 336 

 

Population genomic analyses 338 

We visualized genetic clustering in the SNP dataset by performing a principal 

component analysis (PCA) using the ‘snpgdsPCA’ function in the SNPRelate package69 340 

in R v.3.5.270. We characterized genome-wide patterns of divergence between allopatric 

red-shafted and allopatric yellow-shafted flickers by calculating FST using VCFtools 342 

v.0.1.1671 across 5 and 25 kb windows and individual SNPs. We visualized the results 

using the ‘manhattan’ function in the qqman package72 in R. Additionally, we used 344 

VCFtools to calculate nucleotide diversity, heterozygosity, and Tajima’s D 

(Supplementary Table 5).  346 

 

Genotype-phenotype associations 348 
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We used GEMMA v.0.98 (Genome-wide Efficient Mixed Model Association)73 to 

associate genotypic variation at SNPs with variation in the six plumage traits for the 48 350 

hybrid flickers while controlling for levels of relatedness. The GEMMA analysis requires 

a complete SNP dataset, so we first used BEAGLE v.4.174 to impute missing data in the 352 

dataset. We transformed the imputed dataset into binary PLINK BED format using 

VCFtools v.0.1.1671 and PLINK v.1.0975. We calculated a relatedness matrix in GEMMA 354 

using the centered relatedness matrix option (-gk 1). We conducted separate univariate 

linear mixed models for each phenotypic trait and used the Wald test (-lmm 1) with a 356 

significance threshold of ⍺ = 0.0000001 (-log10(⍺) = 7) to identify significant associations 

between SNPs and phenotypes. To visualize the results, we used the ‘manhattan’ 358 

function in the qqman package72 in R. 

To validate the resulting associations, we also repeated the GEMMA analysis 360 

using a dataset with randomized phenotypes. Instead of generating artificial phenotypic 

scores, we retained the true phenotypic scoring across all plumage traits, but 362 

randomized the individual assignment. If the GEMMA analysis was identifying real 

associations between genotype and phenotype, we expected few SNPs to exceed our 364 

significance threshold in this randomized analysis. In strong contrast to the non-

randomized results, we found only six significant SNPs across the six randomized 366 

analyses and no clustering of significant SNPs in any genomic region (Supplementary 

Fig. 5).  368 

 

Functional characterization of candidate genes 370 
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We compiled a list of genes within a 20 kb buffer of SNPs significantly associated with 

phenotype using Geneious v.11.1.576. To characterize putative candidate genes, we 372 

used ontology information from the zebra finch Ensembl database57 and functional 

information from the Uniprot database77. We additionally compared the identified list of 374 

genes to known genes involved in pigmentation. We were able to compare our gene list 

to 428 genes known to be involved in melanin pigmentation8, and searched for the three 376 

gene families known to be involved in carotenoid pigmentation (-carotene oxygenases, 

scavenger receptors, and cytochrome P450s)24 and genes identified in recent analyses 378 

of pigmentation in other bird species11,12,14,16,26.  
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FIGURES 602 

 

Fig. 1 | Flicker plumage differences and genomic differentiation. a, Coloration 604 

differences between red-shafted and yellow-shafted flickers: (1) wings and tail (the 

eponymous “shaft”), (2) nuchal patch, (3) crown, (4) ear coverts, (5) throat, and (6) male 606 

malar stripe. Pigmentation is based on carotenoids (wings and tail, nuchal patch), 

melanins (crown, ear coverts, throat), and both carotenoids and melanins (male malar 608 

stripe). Illustrations by Megan Bishop. b, Principal component analysis (PCA) separately 

clusters yellow-shafted (yellow points), red-shafted (red points), and hybrid (orange 610 

points) flickers using the dataset of approximately 8.5 million genome-wide SNPs. c, 

PC1 is significantly associated with overall phenotype score ( = 0.93, P < 2.2×10-16), 612 
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where variation ranges from 0 for pure yellow-shafted flickers to 1 for pure red-shafted 

flickers. d, The distribution of genetic differentiation (FST) between allopatric yellow-614 

shafted flickers and allopatric red-shafted flickers across the whole genome. Individual 

points show the weighted mean FST for 25kb windows. Chromosome positions are 616 

based on alignment to the zebra finch genome.  
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TABLES 

Table 1 | Candidate coloration genes 646 

Gene  Fig Chrom Associated Trait(s) Rationale 

EED 3a 1  ear coverts, nuchal known melanin gene8 

PLCB1 3b 3  
ear coverts, malar, nuchal, 
wings and tail 

known melanin gene8 

PLCB4 3b 3  malar, nuchal, wings and tail known melanin gene8 

CYP2J19 3c 8  wings and tail known carotenoid gene6,42 

CAMKV 3d 12  wings and tail 
related to known melanin gene family 
(CAMKs)8 

SEMA3B 3d 12  wings and tail 
related to known melanin gene family 
(SEMAs)8 

MFSD12 3e 28  ear coverts, wings and tail candidate melanin gene23,26 

FKBP8 3f 28  malar, wings and tail known melanin gene8 

RAB8A 3f 28  malar, wings and tail 
related to known melanin gene family 
(RABs)8 

MYO9B 3f 28  malar, wings and tail 
related to known melanin genes 
(MYO5A, MYO7A)8 

PAM 3g Z  malar known melanin gene8 

APC 3h Z  malar 
known melanin gene, candidate 
carotenoid gene8,12 

RGP1 3i Z  malar candidate melanin gene11 

Pigment types of the trait(s) significantly associated with the genomic region are 

indicated by the colored squares (red = carotenoid, black = melanin, red and black = 648 

carotenoid and melanin). 
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