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Abstract

The Bayesian state-space neural encoder-decoder modeling framework is an es-
tablished solution to reveal how changes in brain dynamics encode physiological
covariates like movement or cognition. Although the framework is increasingly
being applied to progress the field of neuroscience, its application to modeling
high-dimensional neural data continues to be a challenge. Here, we propose a
novel solution that avoids the complexity of encoder models that characterize
high-dimensional data as a function of the underlying state processes. We build
a discriminative model to estimate state processes as a function of current and
previous observations of neural activity. We then develop the filter and parameter
estimation solutions for this new class of state-space modeling framework called
the “direct decoder” model. We apply the model to decode movement trajectories
of a rat in a W-shaped maze from the ensemble spiking activity of place cells and
achieve comparable performance to modern decoding solutions, without needing an
encoding step in the model development. We further demonstrate how a dynamical
auto-encoder can be built using the direct decoder model; here, the underlying state
process links the high-dimensional neural activity to the behavioral readout. The
dynamical auto-encoder can optimally estimate the low-dimensional dynamical
manifold which represents the relationship between brain and behavior.

1 Introduction

The rapid development of neural recording technologies over the last few decades has enabled the
simultaneous recording of neural activity from an ever-increasing number of brain regions. For
research groups interested in relating brain activity to higher-level processes, these data are often
recorded during some sort of experimental task, together with behavioral or cognitive observations
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that are influenced by the task (? ). The higher dimension and multi-modality of these data necessitate
the development of analytical solutions capable of making statistically robust inferences about the
underlying brain dynamics and their relationship to the observed correlates (1; 2). A wide variety
of statistical and machine learning techniques, broadly known as neural encoder-decoder models,
have been developed to address this particular type of problem. Such models are built in two stages:
first, a neural encoder model builds the conditional distribution of observed neural data given the
underlying neural correlates (such as movement or cognitive state), and then, newly observed neural
data are decoded to estimate those correlates by applying Bayes’ theorem to the encoder model
(3; 4; 5; 6; 7; 8). Although traditional neural encoder-decoder models have been successfully applied
to gain insights from low-dimensional data (3; 9; 10), they face multiple modeling challenges when
applied to high-dimensional data. One of such problems appears in the encoding step, in which the
conditional joint distribution of neural data is built. Due to the large dimension of data, it is hard
to properly characterize this distribution. Proposed solutions for this distribution are mainly built
upon naive assumptions such as the conditional independence of the individual neural data given the
correlates. Even with this assumption, it is not always possible to characterize the distributions of
neural data and neural noise (e.g. they may not be stationary), which introduces further complications
and makes it difficult to build the encoder model. The fact that the neural correlates generally
have a lower dimension compared to the neural data might help to address some of the challenges
linked to the classical encoder-decoder modeling methodologies (11; 12; 13; 14). In this work, we
propose a Bayesian filter solution for the decoder model in which we build it directly from the
neural data ensemble, as opposed to first formulating the encoder model. A specific variation of
this modeling approach has been developed by Harrison et al. (15) in which the decoder model is
defined as a function of the current-time neural observation and the filter solution is derived for the
steady-state condition. Here, we introduce a more general interpretation of this modeling approach,
in which the decoder model is defined as a function of current and previous neural data, and the filter
solution accounts for time variability present in the observed data. In addition to the filter solution,
we also derive the maximum likelihood (ML) estimation for the model parameters using a revised
expectation-maximization (EM) technique (16). We then apply our modeling framework to decode
the 2-D trajectories of a rat moving through a maze from the ensemble spiking activity of place
cells, demonstrating decoding results that are comparable to those of a point-process encoder-decoder
model (17), but without the need for an encoder model. Our proposed Bayesian filter solution can be
applied to a broader class of neural encoding-decoding problems in which the connection between
brain dynamics and neural correlates are defined through a low-dimensional dynamical manifold.
For instance, when behavioral readouts are used as the correlates, the manifold will represent the
cognitive states that underlie these behaviors. To address these sorts of problems, we propose a
modeling solution in which a behavioral encoder model is used together with the direct neural
decoder model to find the dynamical manifold linking behavior and the underlying neural activity.
The proposed encoder-decoder model can be viewed as a dynamical auto-encoder model with the
cognitive states as the latent manifold, and the behavior and neural data as different measures of the
same dynamical latent structure. We conclude our findings with an application of this solution to a
novel decoding problem in which we seek to decode the communicative intentions of an epileptic
study participant (with electrodes implanted for clinical purposes) from their neural activity, by
modeling communicative intent as a cognitive state.

2 Method

Here we begin by formulating the direct-decoder (D-D) model using a discriminative observation
process. We derive the Bayesian filter and parameter estimation solution for this model before
generalizing it to form a dynamical auto-encoder. We then propose a revised EM algorithm that helps
us to find maximum likelihood estimations of the dynamical auto-encoder model parameters.
In the state-space modeling, care must be taken to build an accurate model of the observation process.
We focus on the class of problems for which the dimensionality of neural observations is much
larger than the number of state processes, an appropriate constraint for the wide range of problems in
neuroscience that deal with multi-electrode neural recordings.
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2.1 Direct Decoder Model

Let us assume we have K observations from k = 1 to K. Let xk represent the cognitive state at time
index k, and sk the neural observation process at the same time index k.We define the history term
hk as the subset of previous observations, hk ⊂ { s1, · · · , sk−1}. As with a Bayes filter solution,
our objective is to estimate

p(xk|s1,...,k) (1)

Using a recursive filter solution (18), the filter update rule at time index k is defined by

p(xk|s1,...,k) ∝ p(sk|s1,...,k−1,xk)×p(xk|s1,...,k−1) = p(sk|hk,xk)×p(xk|s1,...,k−1) (2)

Given the definition of the history term, we can rewrite the filter update rule as

p(xk|s1,...,k) ∝ p(xk|hk, sk)

p(xk|hk)
×p(xk|s1,...,k−1) =

p(xk|hk, sk)

p(xk|hk−1, sk−1)
×p(xk|s1,...,k−1) (3)

Now, we can build a recursive solution for the update rule using the Chapman-Kolmogorov equation
(19):

p(xk|s1,...,k) ∝ p(xk|hk, sk)∫
p(xk|xk−1)p(xk−1|hk−1, sk−1)dxk−1

×∫
p(xk|xk−1)p(xk−1|s1,...,k−1)dxk−1 (4)

The fraction term on the right-hand-side of equation (4) represents the likelihood function in the
standard state-space model. It is the ratio of two likelihood functions for each value of xk. The
denominator defines the likelihood of xk given the history of observation until time k and the
numerator is the likelihood of xk when considering the current observation together with the history
term. This likelihood can be large or small depending on the information being carried by sk about
xk, which changes the posterior distribution of xk given the observation until time k. We define the
state transition process at time index k by

xk|xk−1 ∼ f(xk−1;θ) (5)

where xk is the cognitive state variable at time index k and θ is the set of free parameters of the
state equation. We can use the D-D filter solution derived in equation (4) to build the conditional
distribution of state for the discriminative model, given the current observation and observation
history. We call this the prediction process, which is described as

xk|sk,hk ∼ f(sk,hk;Ω) (6)

where sk and hk are the neural activity and history term at time index k, and Ω is the set of free
parameters for the discriminative model.
The D-D model (represented by the schematic in Figure 1) is comprised of the state and prediction
processes defined by equations (5) and (6). With the prediction process, we no longer require an
explicit description of the observation process, or the conditional distribution of the observation. The
noise process in the prediction process is well-defined – the noise process is already defined in the
state process – and thus it can be easily constructed. The prediction process itself can be modeled
using a variety of techniques (e.g., with a generalized linear model (GLM) (11), a neural network (7),
or a regularized prediction) and can also incorporate non-linear terms like interaction terms defined
by sk and hk and their higher-order combinations.
For the model prediction step (defined in the next section) we require a smoother solution for the
state, which is defined by

p(xk|s1,...,K) = p(xk|s1,...,k)

∫
p(xk+1|xk)p(xk+1|s1,...,K)

p(xk+1|s1,...,k)
dxk+1 (7)

2.2 Dynamical auto-encoder model

Here we discuss how the D-D model can be expanded to a dynamical auto-encoder model (14).
Let zk represent the behavioral observation at time index k, given both sk and zk. We define the
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(a) (b)

Figure 1: (a. Schematic representation of the direct-decoder model. sk represents neural activity
at time index k, h represents the number of previous time points in the history term (determined
by model selection techniques), and xk is the state variable. b. Schematic representation of the
dynamical auto-decoder model. zk represents the behavioral readout at time index k, which is defined
as a function of the state processes. The other parts of the model are the same as the D-D model.

history term hk as the subset of previous observations, hk ⊂ { s1, · · · , sk−1}, our objective is to
estimate

p(xk|s1,...,k, z1,...,k) (8)
As with the D-D methodology, we can express (8) as

p(xk|s1,...,k, z1,...,k) ∝ p(sk, zk|hk,xk)× p(xk|s1,...,k−1, z1,...,k−1) (9)

We assume that there exists an underlying latent state conditioned on that the sk and zk are indepen-
dent[16]. As a result, we can rewrite equation (9) as

p(xk|s1,...,k, z1,...,k) = p(sk|hk,xk)× p(zk|hk,xk)× p(xk|s1,...,k−1, z1,...,k−1) (10)

Given the definition of the history term, we can rewrite the filter update rule as

p(xk|s1,...,k, z1,...,k) ∝ p(xk|hk, sk)

p(xk|hk)
× p(zk|xk)× p(xk|s1,...,k−1, z1,...,k−1) (11)

where z1,...,k−1 is assumed to be indepdent of h1,...,k−1 given the state process, x1,...,k−1. Now,
we can build a recursive solution for the update rule (13):

p(xk|s1,...,k, z1,...,k) ∝ p(xk|hk, sk)∫
p(xk|xk−1)p(xk−1|hk−1, sk−1)dxk−1

× p(zk|xk)×∫
p(xk|xk−1)p(xk−1|s1,...,k−1, z1,...,k−1)dxk−1 (12)

As with the D-D model, we describe the state transition process at time index k as a function of the
previous state value and θ, the set of free parameters of the state equation.

xk|xk−1 ∼ f(xk−1;θ) (13)

For the auto-encoder model, we have two processes: (1) a prediction process similar to what has been
derived for the D-D model, and (2) an observation process. These are described by

xk|sk,hk ∼ f(sk,hk;Ω) (14)

zk|xk ∼ f(xk;ω) (15)
where equation (14) is analogous to equation (6) and equation (15) is the zk observation process.
In (15), ω is the set of free parameters describing the behavioral encoder model.
In the D-D and dynamical auto-encoder models described so far, we assume the model parameters
and the state dimension are known. In the next section, we describe how the model parameters can be
estimated given either sk or both sk and zk.
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2.3 Model Parameter Estimation

We use the expectation-maximization algorithm (20) to find maximum likelihood estimates of the
model parameters, which can be any subset of {θ,Ω,ω}. The EM algorithm is an established solution
to perform maximum likelihood estimation of model parameters when there is an unobservable
process or missing observations (14). In the D-D and auto-encoder models, the state variable xk
is the unobserved process, the latent dynamical variable. Here we discuss the EM solution for the
auto-encoder model, given that the D-D model is a specific form of the auto-encoder model. The
solution recursively estimates the model parameters {θ(r),Ω(r),ω(r)}, based on an updated posterior
distribution ofx0,...,K and the observation from the previous EM iteration, {θ(r−1),Ω(r−1),ω(r−1)}.
The EM includes two steps: expectation and maximization (21). The expectation step (or Q function)
is defined by

Q = Ex0,...,K |s1,...,K ,z1,...,K
[p(x0)

K∏
k=1

p(xk|xk−1)× p(sk|xk,hk)× p(zk|xk)] (16)

The Q function can be rewritten as

Q = Ex0,...,K |s1,...,K ,z1,...,K
[p(x0)

K∏
k=1

p(xk|xk−1)× p(zk|xk)

× p(xk|sk,hk)∫
p(xk|xk−1)p(xk−1|sk−1,hk−1)

dxk−1] (17)

Expanding the Q function yields

Q = Ex0,...,K |s1,...,K ,z1,...,K
[log p(x0) +

K∑
k=1

log p(xk|xk−1) +

K∑
k=1

log p(zk|xk)+

K∑
k=1

log p(xk|sk,hk)−
K∑
k=1

log

∫
p(xk|xk−1)p(xk−1|sk−1,hk−1)dxk−1] (18)

The Chapman-Kolmogorov equation in (18) can be expressed as∫
p(xk|xk−1)p(xk−1|sk−1,hk−1)dxk−1 = Exk−1|sk−1,hk−1

[p(xk|xk−1)] (19)

When the state process is linear with an additive Gaussian noise and the prediction process is a
multi-variate normal, there is a closed form solution for this expectation. As a result, the Q function
can be maximized to find maximum likelihood estimate of the model parameters. To derive a more
general solution, we can rewrite Q function as

Q = Ex0,...,K |s1,...,K ,z1,...,K
[log p(x0) +

K∑
k=1

log p(xk|xk−1) +
K∑
k=1

log p(zk|xk)+

K∑
k=1

log p(xk|sk,hk)−
K∑
k=1

log Exk−1|sk−1,hk−1
[p(xk|xk−1)]] (20)

Since log(E(f(x))) ≤ E[log(f(x))], we can exchange the log and expectation operations to yield a
lower bound for Q, which can be written as

Q ≥ Ex0,...,K |s1,...,K ,z1,...,K
[log p(x0) +

K∑
k=1

log p(xk|xk−1) +
K∑
k=1

log p(zk|xk)+

K∑
k=1

log p(xk|sk,hk)]−
K∑
k=1

Ex0,...,K |s1,...,K ,z1,...,K
Exk−1|sk−1,hk−1

[log p(xk|xk−1)] (21)

where, the expectation xk−1 in the last term, defined by the prediction process, is a function of the
model free parameters. The upper bound defined here is helpful given the complexity of finding
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the expectation will be the same as other terms of the expectation which appears in EM algorithms
defined with standard observation process. The updated parameter set at iteration (r) can be found by
maximizing Q if there is a closed form solution for the expectation defined in equation (19) or its
lower bound defined in equation (21). The maximization is defined by

{θ(r),Ω(r),ω(r)} = argmaxθ,Ω,ω Ql (22)

The optimization step in equation (22) can be calculated analytically or numerically (e.g. gradient
descent (22)). After each iteration, a new set of parameters are estimated and the EM routine is
stopped when a stopping criteria based on the likelihood growth or parameter changes is satisfied.

3 Result

Having derived the direct-decoder framework, we now discuss how it can be used to decode two
different correlates from neural data: (1) a rat’s 2-D trajectories, moving through a W-shaped maze,
and (2) the inferred communicative intentions of a human study participant engaged in conversation.

3.1 Decoding movement trajectories using the direct-decoder model

In this section, we seek to decode the movement trajectories of a rat moving through a W-shaped
maze from the ensemble spiking activity of 62 hippocampal place cells (17). In this experiment, the
rat’s 2-D position is measured using video tracking software, so we can assess the direct-decoder
model performance using the actual position in the maze as ground truth. We used a 15-minute-long
recording of the experiment, with a time resolution of 33 milliseconds. The first 85% of the recording
(∼13 minutes) was used to train the prediction and state process models, and the remaining 15% (∼2
minutes) was used to test the model’s decoding performance.
The rat’s position in the maze at time interval k is specified by the state variable Xk = (xk, yk),
where xk and yk represent the rat’s x- and y-coordinates. The state process is defined by

Xk = AXk−1 +Q, A =

[
1 0
0 1

]
, Q ∼ N(

[
0
0

]
,

[
σ2
x 0

0 σ2
y

]
) (23)

where the covariance matrix Q is assumed to be diagonal with σ2
x and σ2

y terms encoding the
coordinate variances. We estimate these two variances empirically using the rat’s movement during
the training session. For the prediction process, we assume the state Xk can be predicted using a
linear regression model where the predictor variables are the ensemble spiking activity sk ∈ R62,
each spike train is filtered with a Gaussian window with length 20, at the current and previous
time points and the noise process follows a normal distribution. We build two regression models;
one for each coordinate, as a function of ensemble spiking activity. The prediction process and its
decompsition into two predictor models can be expressed as

p(Xk|sk,hk) ∼ p(xk|yk, sk,hk)× p(yk|sk,hk) (24)

where hk represents the history of the ensemble spiking activity from the previous time intervals.
Note that because the rat’s movement is bounded by the maze, the state process (defined for the rat
movement inside the maze) may be misspecified. To address this issue, we add a penalty term to the
prediction process that accounts for the toplogy of the maze (17). The revised prediction process is
expressed as

p(Xk|sk,hk) ∼ p(xk|yk, sk,hk)× p(yk|sk,hk)× L(xk, yk) (25)

where L(xk, yk) is close to zero for x-y coordinates outside the maze area and one otherwise. To find
the optimal number of time points to use in the history term for the x- and y-coordinate regression
models, we use a forward modeling selection process. For the y-coordinate model, the null model is
defined by the current observation of the spiking activity and the ensemble spiking activity of the
previous time points are added recursively. We use a BIC (23) criterion to determine when additional
time points do not improve the model fit. For the x-coordinate model, the null model is yk and the
ensemble spiking activity of the current and previous time points was added to find the optimal length
of the history term. As was done for the y-coordinate, we use a BIC criterion to find the proper length
of the history term for the x-coordinate model. For this dataset, the history term for the x-coordinate
considers 12 previous time points (∼ 396 milliseconds) and the y-coordinate includes 18 time points
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Table 1: Decoded coordinates for the test dataset.
D-D result with optimum values for hx = 12 and
hy = 18.

Table 2: Decoder performance comparison.

Method RMSE 95% HPD
Exact numerical 12.7 85.8%
solution.
D-D result with 17.7 85.9%
hx=1 and hy=1.
D-D result with 13.8 88.7%
optimum hx and hy.
D-D result with 16.3 88.6%
no smoothing criteria.

(∼ 594 milliseconds).
To assess the performance of our framework, we decoded test dataset trajectories using four different
models: (1) an exact point process decoder model, described in (17), (2) a D-D model with one-step
history terms, (3) a D-D model with optimal history term lengths (Figure 1), and (4) a D-D model
with optimal history term lengths, but without knowledge of the state transition process (Table 2).
Here, model performance is quantified by the root mean squared error (RMSE) and the percentage of
time for which the coordinate estimate stayed within the 95% highest posterior density (HPD) region.
Our results show comparable performance between the (exact) point process model and the D-D
models. The performance of the one-step D-D model suggests the necessity of incorporating more
time points in the history term in building a more robust decoder model. The performance result for
the prediction process reflects the importance of the prediction step in the filter solution, which uses a
much greater portion of ensemble spiking activity compared with the D-D model without one-step
prediction element.

3.2 Decoding communicative intent using the dynamical autoencoder

Here we investigate how neural recordings and behavioral readout of a human study participant
may be processed to infer an internal, cognitive state. More specifically, our goal is to capture and
quantify the participant’s intent to verbally communicate. The dataset in this section (unpublished data;
Hadjinicolaou, Cash, et al., Massachusetts General Hospital) features aspects of verbal communication
between an epileptic participant and their companions, who can include hospital staff, family, friends,
and study investigators. Study participants were implanted with intracranial (sEEG) electrodes for
clinical monitoring of their epilepsy, for the duration of their stay in the telemetry ward. Neural data
were acquired at a sampling rate of 2 kHz using a 128-channel neural signal processor recording
system (Blackrock Microsystems, UT) and neighboring channels were re-referenced with a bipolar
montage to mitigate volume conduction (24). All spoken dialog within the recording interval
was captured and transcribed to yield individual word timings that are synchronized to the neural
data. These word timings comprise the behavioral readout for the patient, zk; we characterize its
conditional distribution using a point-process observation model (10). The prediction process builds
the relationship between intention state xk, and neural features sk ∈40, whose values consist of
spectral power in the 4-8 Hz and 70-115 Hz bands (Chronux) for the subset of bipolar recording
channels identified by lasso regularization (MATLAB).
We assume the prediction process follows a normal distribution, where the expected value is a linear
function of the neural features [16]. The intention state xk is characterized by a random walk model
(9). The auto-encoder model is defined by

x0 ∼ N(m0;σ2
0) (26)

xk|xk−1 ∼ N(xk−1;σ2
ε ), xck|x(c−1)k ∼ N(x(c−1)k; cσ2

ε ) (27)

p(zk = 1) ≈ λk∆, λk = exp(a0 + a1xk + a2pk + a3qk) (28){
xk|sk,hk ∼ N(w0 +wT

1 sk +wT
2 hk, σ

2
v) mod(k, c) = 0

xk ∼ unifαk→∞(−α, α) Otherwise
(29)
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(a)

(b)

Table 3: Communicative intent estimation using the dynamical
auto-encoder model . a. Estimated intent state using both behav-
ioral readout zk, and neural activity sk. b. Estimated intent state
using only neural activity. we use a BIC criterion to find the proper
length of the history term for the D-D model. For this dataset, the
history term for the intention state considers h=1 previous time
points (2 seconds).

Table 4: MLE of the auto-
encoder model parameters.

Par. Initial Optimized
m0 0 0.71%
σ0 0.5 0.23
σε 0.5 0.04%
a0 0 −3.94
a2 0 1.22
a3 0 −1.25
σv 0.5 0.07
h 0 1
w0 0 0.25

w1

w2

where σ2
ε , (m0, σ

2
0), (a0, a1, a2, a3), (w0,w1,w2, σ

2
v) are the model free parameters – to avoid model

identifiability issue, we set a1 to 1 . pk and qk are point-process model history terms, which corre-
spond to the number of spoken words from the patient and physician over the last 400 milliseconds.
The processing interval ∆ is set to 50 milliseconds; small enough that the probability of more than
one word in the interval is negligible. Based on the dataset characteristics behavioral observation and
neural activity observation update rates are different; neural activity observation gets updated about
every 2 seconds. In equation (28), c = 2s/(50ms) = 40 defines the update rate of neural activity.
For this problem, the objective is to estimate the state process, which simultaneously maximizes the
likelihoods of the behavioral readout and neural recording. To compute maximum-likelihood state
estimates, we need to estimate the model parameters, which can be performed using the parameter
solution technique discussed in section 2.c (i.e. by maximizing the lower bound of the Q function,
Ql). Since Ql is the expected value of the full log-likelihood, it can be used in the BIC criteria
previously used for the D-D model selection. Figure 3.a shows the intent state estimation given
behavioral readout zk, neural activity sk, and history term hk. The decoding result using only neural
activity is shown in Figure 3.b. Our results suggest that the behavioral readout can be used as a
surrogate observation to tune parameters of the D-D model, which is the objective of the dynamical
auto-encoder model developed here. Table 4 show initial values of the model parameters together
with their optimized values at the EM local maximum.
The state process in the auto-encoder model defined in equation (26) to (27) is one dimensional.
The auto-encoder model can be expanded to a multivariate state process. For the multivariate state
process, we assume there are n-independent state processes which can be linked to the behavior. We
then use a sparse prior on the state processes and use a Bayesian Lasso solution to find the subset of
state processes representing the behavior and neural activity.

4 Discussion

Here, we introduced a Bayesian decoder model with a discriminant observation process. In the
development of the D-D model, we justified the importance of history term, using the decoding task
discussed in section 3.A, which is absent in the previous work (15). We then expanded the D-D model
to a dynamical auto-encoder model which let us link the behavioral readout and high-dimensional
neural recording in the estimation of low-dimensional manifold representing emotional or cognitive
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state. We demonstrated the application of the auto-encoder model in a clinical experiment and
showed that participant communication intent can be estimated through neural data. We derived
model identification and filter solution for the dynamical auto-encoder model in a more general setup.
The methodology described here is aligned with the need for a scalable encoder-decoder model with
high-dimensional neural recording, and it can be applied in different modalities of neural data. For
the auto-encoder model, we briefly discussed how the dimension of the state process can be expanded.
For future research, we focus on auto-encoder models with multidimensional state processes and also
different categories of the behavior. We also focus on goodness-of-fit analysis to provide a systematic
solution in the identification of the optimal state process dimension.
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