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Abstract 
The Bayesian state-space neural encoder-decoder modeling framework is 

an established solution to reveal how changes in brain dynamics encode 

physiological covariates like movement or cognition. Although the framework 

is increasingly being applied to progress the field of neuroscience, its 

application to modeling high-dimensional neural data continues to be a 

challenge. Here, we propose a novel solution that avoids the complexity of 

encoder models that characterize high-dimensional data as a function of the 

underlying state processes. We build a discriminative model to estimate state 

processes as a function of current and previous observations of neural activity. 

We then develop the filter and parameter estimation solutions for this new 

class of state-space modeling framework called the “direct decoder” model. 

We applied the model to decode movement trajectories of a rat in a W-shaped 

maze from the ensemble spiking activity of place cells and achieve comparable 

performance to modern decoding solutions, without needing an encoding step 

in the model development. We further demonstrate how a dynamical auto-

encoder can be built using the direct decoder model; where the underlying state 

process links the high-dimensional neural activity to the behavioral readout. 

We applied the dynamical auto-encoder model in estimating the intention to 

verbally communicate of an epileptic participant and their companions. The 

result shows that the dynamical auto-encoder can optimally estimate the low-

dimensional dynamical manifold which represents the relationship between 

the brain and behavior.  
 

1 Introduction 
 

The rapid development of neural recording technologies over the last few decades has enabled the 

simultaneous recording of neural activity from an ever-increasing number of brain regions. For 

research groups interested in relating brain activity to higher-level processes, these data are often 

recorded during some sorts of experimental tasks, together with behavioral or cognitive 

observations that are influenced by the task [1, 2]. The higher dimension and multi-modality of 

these data necessitate the development of analytical solutions capable of making statistically robust 

inferences about the underlying brain dynamics and their relationship to the observed correlates 

[3, 4]. A wide variety of statistical and machine learning techniques, broadly known as neural 
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encoder-decoder models, have been developed to address this particular type of problem [5-7]. 

Such models are built in two stages: first, a neural encoder model builds the conditional distribution 

of observed neural data given the underlying neural correlates (such as movement or cognitive 

state), and then, newly observed neural data are decoded to estimate those correlates by applying 

Bayes’ theorem to the encoder model [8-13]. Although traditional neural encoder-decoder models 

have been successfully applied to gain insights from low-dimensional data [8, 14, 15], they face 

multiple modeling challenges when applied to high-dimensional data. One of such problems 

appears in the encoding step, in which the conditional joint distribution of neural data is built. Due 

to the large dimension of data, it is hard to properly characterize this distribution. Proposed 

solutions for this distribution are mainly built upon naive assumptions such as the conditional 

independence of the individual neural data given the correlates. Even with this assumption, it is 

not always possible to characterize the distributions of neural data and associated noise 

components (e.g., they may not be stationary), which introduces further complications and 

difficulties in building the encoder model. The fact that the neural correlates generally have a lower 

dimension compared to the neural data might help us to address some of the challenges tied to the 

classical encoder-decoder modeling methodologies [16-19]. 

In this work, we propose a Bayesian filter solution for the decoder model in which we build the 

model directly from the neural data ensemble, as opposed to first formulating the encoder model. 

A specific variation of this modeling approach has been recently proposed by Harrison et al. [20], 

in which the decoder model is defined as a function of the current-time neural observation. Given 

this assumption, the Bayes filter solution is derived for the steady-state condition. Here, we 

introduce a more general framework of this modeling approach, in which the decoder model is 

defined as a function of current and previous neural data. In our proposed framework, the filter 

solution accounts for time variability present in the observed data; in addition to that, we derive 

the maximum likelihood (ML) estimation of the model parameters using a revised expectation-

maximization (EM) technique [21].  

Recently, new techniques in machine learning like deep neural networks (DNNs) has been used in 

neuroscience data analysis to address a similar class of decoding and inference problems. DNNs 

are used to characterize the direct input and output relationship between neural activity and 

physiological or neurological states [11, 12, 22]. DNNs are flexible models that are able to extract 

information from high dimensional and complex data. Regardless of the extensive utilization of 

DNNs in neural encoding/decoding problems, they still have significant pitfalls like lack of 

generalizability and interpretation [23]. Many techniques are used to address these issues like using 

dropout [24], or regularization [25]; they even go further by making DNNs’ parameters stochastic 

by assigning a probability distribution to each parameter of the DNNs, known as Bayesian DNNs 

(B-DNNs) [26, 27]. B-DNNs maintain their generalizability even when trained by a small number 

of data and prevent overfitting issues [28]. In this research, we incorporate DNNs and B-DNNs 

into our framework to add more flexibility and generalizability to the direct decoder model to 

capture complex dynamics present in neural data. 

We apply our modeling framework to decode the 2-D trajectories of a rat moving through a W-

shaped maze from the ensemble spiking activity of place cells; our proposed methodology 

demonstrates decoding results that are comparable to the state-of-art models, a point-process 

encoder-decoder model [29]. It is worth emphasizing that no encoder model is being built in our 

proposed modeling framework. 

Our proposed Bayesian filter solution can be applied to a broader class of neural encoding-

decoding problems, in which the connection between brain dynamics and neural correlates are 
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defined through a low-dimensional dynamical manifold [19, 29-31]. For instance, when behavioral 

readouts are used as the correlates, the manifold will represent the cognitive states that underlie 

these behaviors. To address these class of problems, we propose a modeling solution in which a 

behavioral encoder model is used together with the direct neural decoder model to find the 

dynamical manifold linking behavior and the underlying neural activity. The proposed encoder-

decoder model can be viewed as a dynamical auto-encoder model with the cognitive states as the 

latent manifold, and the behavior and neural data as different measures of the same dynamical 

latent structure. We conclude our findings with an application of this solution to a novel decoding 

problem, in which we seek to decode the communicative intentions of an epileptic study participant 

(with electrodes implanted for clinical purposes) from their neural activity, by modeling 

communicative intent as the underlying cognitive state. Whilst we demonstrate our modeling 

result, we compare our proposed modeling solution with the state-of-art neural decoding solutions 

including exact point-process [8, 15, 19, 29, 30], generalized linear models [9, 32], and DNNs/B-

DNNs [11, 12, 22] . 

 

2 Problem Formulation  
Here, we begin by formulating the direct decoder (D-D) model using a discriminative observation 

process. We derive the Bayesian filter and parameter estimation solution for this model and expand 

it to a more generalized form of a dynamical auto-encoder model. For the D-D model, we propose 

a revised EM [21] algorithm that helps us to find a maximum likelihood estimate of the dynamical 

auto-encoder model-free parameters. 

In the state-space modeling solution, care must be taken to build an accurate model of the 

observation process. We focus on the class of problems for which the dimensionality of neural 

observations is much larger than the number of state processes, an appropriate constraint for the 

wide range of problems in neuroscience that deal with multi-electrode neural recordings [33-35]. 

 

2.A  Direct Decoder Model 
Let us assume we have 𝐾 observations from 𝑘 = 1 to 𝐾. Let’s assume 𝒙k represents the state 

(latent process, or underlying cognitive process) at time index 𝑘, and 𝒔k is the observed neural 

activity (observation process) at the same time index 𝑘. We define the history term 𝒉k as the subset 

of previous neural observations, 𝒉k ⊂  { 𝒔1, ⋯ , 𝒔k−1}. As with a Bayes filter solution, our 

objective is to estimate 

𝑝(𝒙k|𝐬1:k)  (1) 

which is the posterior distribution of 𝒙k given observed neural activity till time 𝑘. 

Using a recursive filter solution [36], the filter update rule at time index 𝑘 is defined by 

𝑝(𝒙k|𝒔1:k) ∝ 𝑝(𝐬k|𝐬1:k−1, 𝒙k) ×  𝑝(𝒙k|𝒔1:k−1) = 𝑝(𝒔k|𝒉k, 𝒙k) ×  𝑝(𝒙k|𝒔1:k−1)  (2) 

Given the definition of the history term, we can rewrite the filter update rule as 

𝑝(𝒙k|𝒔1:k) ∝
𝑝(𝒙k|𝒉k, 𝒔k)

𝑝(𝒙k|𝒉k)
×  𝑝(𝒙k|𝒔1:k−1) =

𝑝(𝒙k|𝒉k, 𝒔k)

𝑝(𝒙k|𝒉k−1, 𝒔k−1)
 ×  𝑝(𝒙k|𝒔1:k−1)  (3) 

Now, we can build a recursive solution for the update rule using the Chapman-Kolmogorov 

equation [37]: 
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𝑝(𝒙k|𝒔1:k) ∝
𝑝(𝒙k|𝒉k, 𝒔k)

∫ 𝑝(𝒙k|𝒙k−1)𝑝(𝒙k−1|𝒉k−1, 𝒔k−1)𝑑𝒙k−1

× ∫ 𝑝(𝒙k|𝒙k−1)𝑝(𝒙k−1|𝒔1:k−1)𝑑𝒙k−1 

 (4) 

The fraction term on the right-hand-side of equation (4) represents the likelihood function in the 

standard state-space model. It is the ratio of two likelihood functions for each value of 𝒙k. The 

denominator defines the likelihood of 𝒙k given the history of observation until time 𝑘 and the 

numerator is the likelihood of 𝒙k when considering the current observation together with the 

history term. This likelihood can be large or small depending on the information being carried by 

𝒔k about 𝒙k, which changes the posterior distribution of 𝒙k given the observation until time k. 

Note that the two Chapman-Kolmogorov equations in equation (4) define the likelihood of 𝒙k 

given two different history terms; these two likelihoods cancel each other if 𝒉k = { 𝒔1, ⋯ , 𝒔k−1}. 

In practice, modeling solutions to characterize 𝑝(𝒙k|𝒉k, 𝒔k) are misspecified and 𝒉k will be limited 

to a subset of { 𝒔1, ⋯ , 𝒔k−1}. For 𝑝(𝒙k|𝒉k, 𝒔k) models with a long history term, the two likelihoods 

become similar, and the filter estimate is being mainly driven by 𝑝(𝒙k|𝒉k, 𝒔k). When the history 

term is short, the dynamics of these likelihoods become important in the filter estimation. 

As a part of the state-space model, we define the state transition process at time index 𝑘 by  

𝒙k|𝒙k−1~𝑓(𝒙k−1; 𝛉) (5) 

where𝒙k is the cognitive state variable at time index 𝑘 and 𝛉 is the set of free parameters of the 

state equation. 

Now, we can use the D-D filter solution derived in equation (4) to build the conditional distribution 

of state for the discriminative model, given the current observation and observation history. We 

call this the “prediction process”, which is described as 

𝒙k|𝒔k, 𝒉k~𝑓(𝒔k, 𝒉k;  𝛀)  (6) 

where 𝒔k and 𝒉k are the neural activity and history term at time index k, and 𝛀 is the set of free 

parameters for the discriminative model.  

The D-D model (represented by the schematic in Figure 1.A) is comprised of the state and 

prediction processes defined by equations (5) and (6). With the prediction process, we no longer 

require an explicit description of the observation process, or the conditional distribution of the 

observation. The noise process in the prediction process in general is well-defined – note that the 

noise process for the state is already defined in the state process – and thus the direct decoder 

model can be easily constructed. The prediction process itself can be modeled using a variety of 

solutions including a generalized linear model (GLM) [16], a neural network [12], or a linear 

regression with regularization [38]. It can also incorporate non-linear terms like interaction terms 

defined by 𝒔k and 𝒉k along with their higher-order combinations. 

For the model identification step (defined in the next section), we also require a smoother solution 

of the state which is defined by 

𝑝(𝒙k|𝒔1:K) =  𝑝(𝒙k|𝒔1:k) ∫ [
𝑝(𝒙𝑘+1|𝒙𝑘)𝑝(𝒙k+1|𝒔1:K)

𝑝(𝒙k+1|𝒔1:k)
] 𝑑𝒙k+1  (7) 
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A B 

Figure 1. Direct Decoder Model. A. Schematic representation of the direct-decoder model. 

𝑠𝑘 represents neural activity at time index 𝑘, ℎ represents the number of previous time points 

in the history term (determined by model selection techniques), and 𝐱k is the state variable. B. 

Schematic representation of the dynamical auto-decoder model. z𝒌 represents the behavioral 

readout at time index 𝑘, which is defined as a function of the state variables. The other parts of 

the model are the same as the D-D model. 

 

2.B Dynamical auto-encoder model 

Here, we discuss how the D-D model can be expanded to a dynamical auto-encoder model [19] by 

incorporating behavioral readouts. Let’s assume that 𝒛𝑘 represents the behavioral observation at 

time index 𝑘; given 𝒛𝑘 and 𝐬k, our objective is to estimate  

𝑝(𝒙k|𝒔1:k, 𝒛1:𝑘)   (8) 

As with the D-D methodology, we can express the filter solution defined in equation (8) as  

𝑝(𝒙k|𝒔1:k, 𝒛1:k) ∝ 𝑝(𝒔k, 𝒛k|𝒉k, 𝒙k) × 𝑝(𝒙k|𝒔𝟏:k−1, 𝒛1:k−1) (9) 

We further assume that the 𝒔k and 𝑧k are independent given 𝒙k [19]; as a result, we can rewrite 

equation (9) as 

𝑝(𝒙k|𝒔1:k, 𝒛1:k) = 𝑝(𝒔k|𝒉k, 𝒙k) × 𝑝(𝒛k|𝒉k, 𝒙k) × 𝑝(𝒙k|𝒔1:k−1, 𝒛1:k−1) (10) 

Given the definition of the history term, we can rewrite the filter update rule as 

𝑝(𝒙k|𝒔1:k, 𝒛1:k) ∝
𝑝(𝒙k|𝒉k, 𝒔k)

𝑝(𝒙k|𝒉k)
× 𝑝(𝒛k|𝒙k) ×  𝑝(𝒙k|𝒔1:k−1, 𝒛1:k−1) (11) 

where 𝒛k, behavioral readout, is assumed to be independent of 𝒉k given the state process, 𝒙k. With 

this assumption, we can build a recursive solution for the filter update rule [36]:  

𝑝(𝒙k|𝒔1:k, 𝒛1:k) ∝
𝑝(𝒙k|𝒉k, 𝒔k)

∫ 𝑝(𝒙k|𝒙k−1)𝑝(𝒙k−1|𝒉k−1, 𝒔k−1)𝑑𝒙k−1
× 𝑝(𝒛k|𝒙k) ×  

∫ 𝑝(𝒙k|𝒙𝑘−1)𝑝(𝒙k−1|𝒔1:k−1 , 𝒛1:k−1)𝑑𝒙k−1 (12) 

As with the D-D model, we describe the state transition process at time index 𝑘 as a function of 

the previous state value and 𝛉, the set of free parameters of the state equation. 

𝒙k|𝒙k−1~𝑓(𝒙k−1;  𝛉)  (13) 
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For the auto-encoder model, we have two processes: (1) a prediction process similar to what that 

has been derived for the D-D model, and (2) a set of observation processes. These processes are 

described by 

𝒙k|𝒔k, 𝒉k~𝑓(𝒔k, 𝒉k; 𝛀) (14.a) 

𝒛k|𝒙k~𝑓(𝒙k; 𝚪) (14.b) 

where equation (14.a) is analogous to equation (6) and equation (14.b) is 𝒛k’s observation process. 

In (14.b), 𝚪 is the set of free parameters that describe the behavioral encoder model. In the D-D 

and dynamical auto-encoder models described so far, we assume the model parameters and the 

state dimension are known. In the next section, we describe how the model parameters can be 

estimated given either 𝒔𝑘  or both 𝒔𝑘  and 𝒛𝑘. In the following sections, we assume the dimension 

of state process, 𝒙k, is pre-known. In general, identifying the dimension of the state process is a 

challenging modeling problem; in the discussion section, we will discuss possible solutions that 

can be used or developed in the search for an optimal dimension of the state process. 

 

2.C Model Parameter Estimation 
We use the EM algorithm [39] to find maximum likelihood estimates of the model-free parameters, 

a subset of {𝛉 , 𝛀, 𝚪}. The EM algorithm is an established solution to perform maximum likelihood 

estimation of model parameters when there is an unobservable process or missing observations 

[21]. The other possible solution includes fully Bayesian or Variational Bayes approaches, which 

can applied to our modeling framework where a Bayesian prior exist per the model parameters 

[40]. Here, we present the EM solution for the auto-encoder model, given that a D-D model is a 

specific form of this model. The EM solution recursively estimates the model parameters 

{𝜽(r), 𝛀(r), 𝚪(r)} – here, superscript r is the iteration of the EM procedure, based on an updated 

posterior distribution of 𝒙0:K and parameter estimates from the previous EM iteration, 

{𝜃(r−1), 𝛀(r−1), 𝚪(r−1)}. The EM algorithm includes two steps: expectation (E-step), and 

maximization (M-step) [41]. The E-step is defined by 

Q =  E𝒙0:K|𝒔1:K,𝒛1:K
[log (p(𝒙0) ∏ p(𝒙k|𝒙k−1) × p(𝒛k|𝒙k) × p(𝑠k|𝒙k, 𝒉𝑘)K

k=1 )] (15) 

here, the right side is the full likelihood of the state, neural and behavioral readout.  

The 𝑄 function can be rewritten as 

Q = E𝒙0:K|𝒔1:K,𝒛1:K
[log (p(𝒙0) ∏ p(𝒙k|𝒙k−1)K

k=1 × p(𝒛k|𝒙k) ×

                                             
p(𝒙k|𝒔k, 𝒉k)

∫ p(𝒙k|𝒙k−1)p(𝒙k−1|𝒔k−1, 𝒉k−1)d𝒙k−1
)] (16) 

given the prediction process and the behavioral observation process. Expanding the 𝑄 function 

yields 

Q = E𝒙0:K|𝒔1:K ,𝒛1:K
[log p(𝒙0) + ∑ log p(𝒙k|𝒙k−1)K

k=1 + ∑ log p(𝒛k|𝒙k)K
k=1  +

                         ∑ log p(𝒙k|𝒔k, 𝒉k)K
k=1 − ∑ log ∫ p(𝒙k|𝒙k−1) p(𝒙k−1|𝒔k−1, 𝒉k−1)d𝒙k−1 

K
k=1 ] 

 (17) 
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The Chapman-Kolmogorov equation in (17) can be expressed as  

∫ p(𝒙k|𝒙k−1) p(𝒙k−1|𝒔k−1, 𝒉k−1)d𝒙k−1 = E𝒙k−1|𝒔k−1,𝒉k−1
[p(𝒙k|𝒙k−1)]  (18) 

Note that when the state process is linear with an additive Gaussian noise and the prediction 

process is a multi-variate normal, there is a closed form solution for this expectation. To derive a 

more general solution, when the state process does not follow a multi-variate normal process, we 

can use the Jensen inequality – e.g., log(E[g(𝑥)]) ≥ E[log(g(𝑥))], to exchange the log and 

expectation operations for the last term in equation (17), which is rewritten in equation (18). This 

yields a lower bound for 𝑄, which can be written as 

Q ≥ E𝒙0:K|𝒔1:K ,𝒛1:K
[log p(𝒙0) + ∑ log p(𝒙k|𝒙k−1) +  ∑ log p(𝒛k|𝒙k)K

k=1
K
k=1  +

                  ∑ log p(𝒙k|𝒔k, 𝒉k)K
k=1 ] − ∑ E𝒙k|𝒔1:K,𝒛1:K

E𝒙k−1|𝒔k−1,𝒉k−1
[log p(𝒙k|𝒙k−1)]K

k=1

 (19) 

where, the expectation with respect to 𝒙k−1 in the last term, defined by the prediction process, will 

be a function of the model free parameters. In the last term of equation (19), the order of log and 

expectation has changed, and this will make the estimation of Q easier; note that the expectation 

of log p(𝒙k|𝒙k−1) appears twice in the Q function and its expectation is easy to calculate when the 

state process is a linear multivariate normal.  

The updated parameter set at iteration (𝑟) can be found by maximizing Q, which is the M-step. 

This can be done analytically if there is a closed-form solution for the expectation defined in 

equation (18), or maximizing its lower bound defined in equation (19). The maximization is 

defined by 

{𝜽(r), 𝜴(r), 𝚪(𝐫)} =  arg max𝛉,𝛀,𝚪 Q (20) 

The optimization step in equation (20) can be calculated analytically or numerically, e.g. gradient 

descent [42]. After each iteration, a new set of parameters are estimated, and the EM routine is 

stopped when a stopping criterion based on the likelihood of growth or parameter changes is 

satisfied [21].  

 

2.D DNN as direct-decoder model  
While a Gaussian linear process can be a proper choice for the direct-decoder model, a more 

flexible model for the prediction process might capture the complex dynamics presented in high-

dimensional data better. To address this, we can utilize DNNs to predict 𝒙k distribution given the 

current and previous neural features. This modeling viewpoint is also aligned with recent advances 

in the field, where machine learning techniques are used to better understand neural data [11, 12, 

22].  

A DNN model can be defined by, 

𝒙k|𝒔k, 𝒉k~𝑓(𝒔k, 𝒉k; 𝛀) (21) 

where 𝒙𝒌 is the state process and 𝛀 is the network free parameters. This is the same model being 

used to build the prediction process in equation (14); as a result, we can use DNN in our direct-

decoder and auto-encoder model given its free parameters are known. Thus, the objective is to 
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estimate the DNN free parameters in the context of a dynamical auto-encoder model. Note that if 

𝒙𝒌 is known, the DNN parameter estimation turns to a supervised problem, which has established 

solutions [12, 22]. 

For the auto-encoder model, we applied EM routine to recursively update the model parameters. 

We can expand this technique to train the DNN by drawing samples from the state posterior 

distribution. Let’s assume 𝒙0:K
(𝒎)

 is the 𝑚𝑡ℎ sample trajectory from the state given the neural and 

behavioral data, and we have 𝑀, 𝑚 = 1 … 𝑀, trajectories of the state process. Using the state 

trajectories, we can calculate 𝑄 function, defined in equation (19). Using the 𝑀 samples, 𝑄 is 

defined by 

Q ≈
1

𝑀
∑ [log p(𝒙0

(𝑚)
) + ∑ log p(𝒙k

(𝒎)|𝒙k−1
(𝒎)

) +  ∑ log p(𝒛k|𝒙k
(𝒎)

)K
k=1

K
k=1 +𝑀

𝑚=1

∑ log p(𝒙k
(𝒎)|𝒔k, 𝒉k)K

k=1 ] −
1

MN
∑ ∑ ∑ [log (p(𝒙k

(𝒎)|𝒙k−1
′(𝒏)

))]K
k=1

𝑁
𝑛=1

𝑀
𝑚=1    (22) 

where 𝒙′k−1
(𝒏)

 are samples drawn from the prediction process, not the state posterior distribution – 

note that, we draw 𝑁 samples for it. While Q is maximized, the DNN is trained using samples of 

the state trajectory, which turns to a supervised learning problem. Note that the DNN is trained on 

multiple state measure, 𝒙k
(𝒎)

, per each time index given 𝒔k and 𝒉k. In other words, the DNN 

training corresponds to maximize the average of log of likelihood function on multiple samples of 

state trajectory. 

To draw samples from the state trajectory, we can use the conditional distribution of 𝒙𝒌 given 

𝒙𝑘+1, 𝒔1:K, and 𝒛1:𝐾. This distribution can be computed by [43] 

𝑝(𝒙𝑘|𝒙𝑘+1, 𝒔1:K, 𝒛1:𝐾) = 𝑝(𝒙𝑘+1|𝒙𝑘) × 𝑝(𝒙𝑘|𝒔1:k, 𝒛1:𝑘) 𝑝(𝒙𝑘+1|𝒔1:k, 𝒛1:𝑘)⁄   (23) 

We first draw sample from p(𝒙𝐾|𝒔1:K, 𝒛1:𝐾), defined in equation (7), and recursively draw samples 

from equation (23) for time steps 𝐾 − 1 to 0. We then use these samples in equation (22) to find 

updated model parameters maximizing Q. 

In the previous section, we discussed a numerical solution for the filter and smoother steps. In 

cases where the state is high-dimensional and computing the integrals in filter and smoother 

equations using simple numerical methods become computationally expensive, we can use 

sequential Monte Carlo (SMC) methods, otherwise known as particle filters, as an alternate 

approach for filter and smoother estimation [44, 45]. If we use the particle filter, we can use 

smoother samples in the Q function defined in equation (22). 

Here, we described a DNN with a fixed set of parameters. In order to avoid possible overfitting 

issues in our DNN training, it is suggested to use a B-DNN in the auto-encoder model [26]. In B-

DNN, there will be a probability distribution over the network weights instead of fixed weights. It 

is possible to build a fully Bayesian auto-encoder model, where not only DNN’s weights are 

probabilistic but also the observation and state processes parameters are defined through prior 

distributions. In our modeling solution, we have already derived a fully Bayesian solution for the 

state process and a maximum likelihood estimate for model-free parameters, including the DNN 

weights. Extending the DNN parameter estimate to MAP estimate is easy, and it can be done 

through a penalized likelihood estimate in the context of our EM algorithm [46]. However, solving 

a fully Bayesian solution for DNN is generally a complex and computationally intractable 

modeling problem. In Appendix A, we provide a suboptimal solution based on the EM solution 
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we already developed here. The proposed solution is based on the MCMC solution and it might 

provide a reasonable solution when DNN has a limited number of wights or the network weights 

are significantly correlated.  
 

3  Datasets 
We applied our methodology to different decoding problems. In the first problem, the goal is to 

decode the movement trajectory of a rat from invasive neural recordings, while the rat is foraging 

in a W-shaped maze for food (Hippocampus dataset) [12, 22, 29, 30]. The second problem 

investigates how invasive neural recordings and behavioral observations from a human participant 

can be processed to infer a dynamical internal cognitive process, representing the human 

participant's intent to communicate with a companion. In the following section, we describe each 

dataset in more detail. 

 

3.A Movement Dataset 
In this dataset, we seek to decode the 2-D movement trajectory of a rat traversing through a W-

shaped maze from the ensemble spiking activity of 62 hippocampal place cells [29]. The neural 

data were recorded from 62 place cells in the CA1 and CA2 regions of the hippocampus brain area 

of a Long-Evans rat, aged approximately 6 months. The rat has been trained to traverse between 

the home box and the outer arms to receive a liquid reward (condensed milk) at the reward 

locations. Figure 2.A shows the maze structure and the rat's movement trajectory in 2-D spaces, 

where the rat position at each time step is represented by (x, y) coordinates. The spiking activity 

of these 62 units was detected offline by choosing events that their peak-to-peak amplitudes were 

above a threshold of 80uV in at least one of the tetrode channels (see Figure 2.B). In the 

experiment process, the actual rat’s position was measured by video tracking software which was 

used as the ground truth for the position (see Figure 2.C). We used a 15-minute-long recording of 

the experiment, with a time resolution of 33 milliseconds, to analyze different decoding solutions. 

The first 85% of the recording (~13 minutes) was used to train the prediction and state processes’ 

models, and the remaining 15% (~2 minutes) of the data was used to test the model’s decoding 

performance. 
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Figure 2 Movement Dataset: the maze topology, the rat movement trajectory, and 

sample neural data. A. W-maze topology, the rat moves from the center arm to the left and 

right arms to get a food reward. B. Both movement trajectories along with x and y directions 

and neural activity of the 62 channels. C. 2-D trajectory of the rat movement during the 

experiment. The experiment is about 3 minutes, and during this 3 minutes, the rat has traversed 

3 times inside the maze. 

 

3.B Conversation Dataset 
In this experiment, we investigated how the neural recordings and spoken words from a human 

study participant can be processed to infer the dynamics of a cognitive state related to verbal 

communication. In this dataset (unpublished data; Hadjinicolaou, Cash, et al., Massachusetts 

General Hospital), study participants were implanted with intracranial (sEEG) electrodes for 

clinical monitoring of their epilepsy, for the duration of their stay in the telemetry ward. The raw 

neural data were acquired at a sampling rate of 2 kHz using a 128-channel neural signal processor 

recording system (Cerebus, Blackrock Microsystems, UT) and neighboring channels were re-

referenced with a bipolar montage to mitigate volume conduction [47]. The spectral power was 

estimated for each channel for the theta (4-8 Hz) and gamma (70-115 Hz) frequency bands 

(Chronux). Neural activity was recorded during conversations between the participants and their 

companions, including hospital staff, family, friends, and study investigators. All spoken dialog 

within each recording interval was captured and transcribed to yield individual word timings that 

are synchronized to the neural data (see Figure 3). We used this data – neural activity and spoken 

dialogs – to examine our dynamical auto-encoder model in search of the underlying intent state of 
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the patient to communicate.  

 

Figure 3 Explanation of the conversation dataset. The diagram shows the relationship 

between the neural recordings, spoken words from a human study participant, and the 

cognitive state related to verbal communication during the experiment period.  

 

 

3.C Decoding Problems 
Having the direct-decoder modeling framework, we now discuss how the model can be used to 

decode two different correlates of neural data already described. We describe model identification 

for these two decoding problems and use two metrics to compare the performance of our proposed 

solution along with other established decoding techniques. The performance metrics include: 

mean-squared-error (RMSE), and 95% highest posterior density (HPD) region [48]. 

 

3.C.1 Decoding 2-D movement trajectories using the direct-decoder model 

We assume the rat’s position in the maze at time interval 𝑘 is specified by the state variable 𝑿k =
(𝑥k, 𝑦k), where 𝑥k and 𝑦k represent the rat’s 𝑥- and 𝑦-coordinates. We define the state process by 

𝑿k = 𝐀 𝑿k−1 + 𝐐            𝐀 = [
1 0
0 1

]        𝐐~𝑁 ([
0
0

] , [
𝜎𝑥

2 0

0 𝜎𝑦
2]) (24) 

where the covariance matrix 𝐐 is assumed to be diagonal with 𝜎𝑥
2 and 𝜎𝑦

2 terms representing the 

movment variances. We estimate these two variances empirically using the rat’s movement during 

the training session. For the prediction process, we assume the state 𝑿k can be predicted using a 
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linear regression model where the predictor variables are the ensemble spiking activity of 62 cells, 

where each spike train is filtered with a Gaussian window with length 20 ms. We further assume 

the noise process follows a normal distribution. We build two regression models; one per each 

coordinate, as a function of ensemble spiking activity. The prediction process and its 

decomposition into two predictor models are defined by 

𝑝(𝑿k|𝒔k, 𝒉k) =  𝑝(𝑥k|𝑦k, 𝒔k, 𝒉k)  × 𝑝(𝑦k|𝒔k, 𝒉k) (25) 

where 𝒉𝐤 represents the history of the ensemble spiking activity from the previous time intervals.  

Note that given the rat’s movement is bounded by the maze, the state process defined in equation 

(24) is a misspecified model. To address this issue, we add a penalty term to the prediction process 

which accounts for the topology of the maze – a detailed explanation of the penalty term can be 

found in our previous work [29]. The revised prediction process is expressed as  

𝑝(𝑿k|𝒔k, 𝒉k) ~ 𝑝(𝑥k|𝑦k , 𝒔k, 𝒉k)  × 𝑝(𝑦k|𝒔k, 𝒉k)  × 𝐿(𝑥k, 𝑦k) (26) 

where 𝐿(𝑥k, 𝑦k) is close to zero for x-y coordinates outside the maze area and one otherwise 

(Figure 4.F). Note that adding the penalty term does not change any aspects of the modeling 

pipeline. 

To find the optimal length of the history term for the x- and y-coordinate regression models, we 

use a forward model selection process. For the y-coordinate model, the null model is defined by 

the current observation of the spiking activity and the ensemble spiking activity of the previous 

time points are added recursively. We use a BIC criterion [42] to determine when the increase in 

the length of the history term does not improve the model fit. For the x-coordinate model, the null 

model is 𝑦k, and the ensemble spiking activity of the current and previous time points are added 

to the model in search of the optimal length of the history term. As it was done for the y-coordinate, 

we use a BIC criterion to find the proper length of the history term for the x-coordinate model. For 

this dataset, the history term for the x-coordinate ends up to 12 previous time points (~ 400 

milliseconds) and the y-coordinate includes 18 time points (~ 600 milliseconds) (Figure 4.A). 

To assess the performance of our modeling framework, we decoded the rat movement trajectory 

in the test dataset using four different models: (1) an exact point process decoder model, described 

in [29], (2) a D-D model with one-step history terms (Figure 4.C), (3) a D-D model with optimal 

history term lengths (Figure 4.D and Figure 4.B), and (4) a B-DNN model with optimal history 

term length (Figure 4.E). The performance results in Table. 1 shows comparable performance 

between the (exact) point process model and the D-D model with the optimal history term. The 

performance result also suggests the necessity of incorporating proper history terms in building a 

more robust decoder model. We expect B-DNN to have a better prediction accuracy compared to 

other D-D models; however, this is not the case. A possible reason is a limited dataset we have to 

train the B-DNN model, and thus, the model performance drops in the test dataset despite attaining 

a superb performance in the training dataset. 
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Figure 4. Decoding results in 2-D movement trajectory. A. BIC curve for different x- and y-

coordinate model history term lengths. The optimum lengths (corresponding to the minimum 

BIC) for ℎ𝑥 and ℎ𝑦 are 12 and 18, respectively. B. The D-D model result for x and y 

coordinates with optimal history lengths.  C. The D-D model result with one-step history 

terms. D. The D-D model result with optimal history term lengths. E. The B-DNN model 

results with optimal history term length. F. Visualization of rat movement trajectories (blue 

traces) together with an overlay of the penalty term 𝐿(𝑥𝑘, 𝑦𝑘) (red area), defined in equation 

(30). The penalty term is close to zero for x-y coordinates outside the maze area (identified by 

red dots) and one otherwise. 
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Table 1 Different Models Decoding Performance 

Method RMSE (cm) 95%HPD 

 Train  Test  Train Test  

Exact numerical solution -- 12.7 -- 85.8% 

D-D result with hx=1 and hy=1 -- 17.7 -- 85.9% 

D-D result with optimum hx and hy -- 13.8 -- 88.7% 

B-DNN 14.5 15.1 88.7% 88.4% 

 

3.C.2 Decoding cognitive state using the dynamical autoencoder  
The onset times of words spoken by the participant comprise the behavioral signal 𝑧𝑘, which is 

specified as a point-process observation model [15]. The auto-encoder model aims to build the 

relationship between intention state 𝑥𝑘, and neural features, in conjunction with the behavioral 

observation. The neural features 𝒔𝑘  consist of spectral power at different frequency bands from a 

subset bipolar recording channels, which add up to 40 features [49]. 

We assume the prediction process follows a normal distribution, where the expected value is a 

linear function of the neural features [19]. The intention state 𝑥𝑘 is characterized by a random walk 

model [14]. The auto-encoder model is defined by 

𝑥0~𝒩(𝑚0, σ0
2)  (27.a) 

𝑥k|𝑥k−1~𝒩(𝑥k−1, σε
2)  (27.b) 

𝑝(𝑧k = 1) ≈ λk Δ           λk = exp(𝑎0 + 𝑎1 𝑥k + 𝑎2 𝑝k + 𝑎3 𝑞k) (27.c) 

𝑥ck|𝒔ck, 𝒉ck~𝒩(𝑤0 + 𝐰1
𝑇𝒔ck + 𝐰2

𝑇𝒉ck, σv
2) (27.d) 

where {σε
2, (𝑚0, 𝜎0

2), (𝑎0, 𝑎1, 𝑎2, 𝑎3), (𝑤0, 𝒘1, 𝒘2, σv
2)} are the model free parameters – to avoid 

model identifiability issue, we set 𝑎1 to 1. Here, we assume the history term for the conditional 

intensity of spoken words can be defined by 𝑝𝑘  and 𝑞𝑘, that corresponds to the number of spoken 

words from the participant and their companion respectively, over the last 400 milliseconds [8, 

50]. The processing interval Δ is set to 50 milliseconds; small enough that the probability of more 

than one word inside each interval is negligible [15]. Neural features are updated at a slower rate 

than the behavioral one; they are updated once every 2 seconds. As a result, we have a multi-rate 

auto-encoder model, and this has been addressed with the 𝑐 term in equation (27.d). The 𝑐 term is 

equal to 40 – e.g., 2 seconds/50 msec; this implies that we have neural activity updated for every 

40 times updates of behavioral data. 

We use our modeling solution to estimate the state process, which simultaneously maximizes the 

likelihoods of the behavioral readout and neural recording. Figure 5.B shows the intent state 

estimation given behavioral readout 𝑧k (see Figure 5.A), neural activity 𝒔k, and optimal history 

term ℎk, which is selected by the LASSO regularization method [38, 49]. The decoding result 

using only neural activity is shown in Figure 5.B. The intention state increases when the 

participant starts to talk and it decreases when they stop or the other companion starts to talk – or, 

the participant starts to listen, which is aligned with our expectations. As it can be seen from Figure 
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5.B, by adding the behavioral signals to the decoder model, auto-encoder model, we get more 

salient state estimation compared to the state estimation run only by the D-D model.  

We use the model parameters using the auto-encoder model which is optimized by using both 

behavioral and neural data. We update the model parameters using the EM technique described in 

section 2.C. Initial values and optimized values of the D-D model parameter using the EM 

algorithm are shown in Figure 5.C. We assume the history term is 1, and find a sparse set of the 

weights. This corresponds to a MAP estimate in EM with a Laplace prior to D-D weights. The D-

D model weights can also reflect physiological mechanisms of intention, like which neural activity 

is positively/negatively correlated with the intention and which neural activity is not predictive of 

the intention – this is not the scope of this research. 

 
Figure 5. Decoding communication intent using D-D model. A. Temporal evolution of 

𝑝𝑘 , 𝑧𝑘 , 𝑞𝑘 , and 𝜆𝑘 variables, defined in equation (27). B. Conversation intent estimation using 

the dynamical auto-encoder model . (top) Estimated intent state using both behavioral readout 

𝑧𝑘, and neural activity 𝑠𝑘; (bottom) Estimated intent state using only neural activity. C. MLE 

estimate of the direct-decoder model parameters.  
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5  Discussion 
In this paper, we introduced a state-space decoder model with a discriminant observation process. 

The discriminant observation process called D-D model characterizes the state process as a 

function of current and previous neural data. The model filter solution accounts for time variability 

present in the observed data; in addition to that, we derive the maximum likelihood (ML) 

estimation of the model parameters using a revised EM technique [21]. A distinct difference 

between our work and previous work like those being suggested by Harrison et al. [20] is 

generalizing of the discriminat process by including the history terms. For this, we not only show 

the necessity of the history terms through mathematical derivation but also demonstrate the need 

through a neural decoding problem – e.g., 2-D decoding problem. We then expanded the D-D 

model to a dynamical auto-encoder model, which lets us link the behavioral readout and high-

dimensional neural recording in pursuit of a low-dimensional manifold representing underlying 

emotional or cognitive states. We discussed how DNNs, including B-DNNs, can be added as the 

direct-decoder model, which increases the flexibility of the framework to characterize complex 

dynamics present in the high-dimensional data. Not only we demonstrated how DNNs can be 

added in the auto-encoder pipeline, but also provided training procedure for DNNs and B-DNNs 

– Appendix A. Finally, we demonstrated the application of the auto-encoder model in a novel and 

potentially complex clinical experiment and showed that participant communication intent can be 

estimated through neural data. 

 

Whilst characterizing the relationship between brain dynamics and behavioral or physical 

correlates like movement in the context of high dimensional recording is of great importance; a 

more significant research direction is to estimate underlying cognitive or mental processes that 

shape the relationship between distributed neural activity and behavior. The dynamical auto-

encoder model proposed in this work is well suited for this research objective and can be applied 

to complex and novel tasks like the communication intent task that we discussed here. The 

decoding examples presented here highlight the flexibility of our proposed modeling framework, 

and the fact that, it can be applied to different modalities of neural and behavioral data across 

different tasks and domains. 

 

In our previous research – Yousefi et al. [19], we discussed two-step encoding and decoding 

solution to characterize the relationship between brain dynamics and behavior thorough a 

dynamical cognitive process. In that work, we first estimate the underlying cognitive states using 

behavioral readout and we then utilize the estimated cognitive state to build a neural encoder and 

potentially decoder. There, the temporal dynamics of the cognitive state are mandated by the 

behavior and the neural encoding process looks for neural features that represent dynamics of 

cognitive state-driven solely by behavior. In dynamical auto-encoder solution; the underlying 

cognitive state dynamics is not solely driven by the behavior readout; instead, it is defined through 

joint neural and behavioral readout. This viewpoint can improve our estimation of cognitive state, 

where different processes come to an agreement in their estimation of the latent dynamical process 

representing cognitive or emotional states. It is worth mentioning, we already benefit from the D-

D process as a part of the dynamical auto-encoder model letting us avoid building many auto-

encoder models, each per neural activity. 

 

In both experiments, we used a Gaussian process to build the parametric D-D model. Note that we 

have a priori knowledge on the observation process noise model, as we define what state process 
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model constructs the underlying dynamical process. The state processes in both decoding problems 

are defined by Gaussian processes; as a result, we used a Gaussian process for the observation 

process. The noise process for both decoder problems are assumed to be stationary, whilst the 

noise process characteristics can change over time. To address this, we can build a more flexible 

model like DNN to capture changes present in the noise process. Parametric models like those 

used in two experiments might fail to capture the complex and time-varying dynamics present in 

the state processes, and using DNNs with their non-linear mapping will boost the model prediction 

power. Our proposed framework shows how DNNs and B-DNNs can be incorporated into the 

modeling framework, and how they can be trained as well. A challenge with DNNs is their higher 

level of flexibility, which will lead to an overfitting problem. To address this, we discussed how 

to utilized B-DNN in our dynamical auto-encoder model. We also provided the training procedure 

– Appendix A – to find the posterior distribution of DNN weights, which to the best of authors’ 

knowledge is novel and can help to build more robust decoder models.  

 

In developing the methodology, we hypothesized that there is a dynamical low-dimensional 

manifold – state-process – present in the data, where its estimation will help to better understand 

the relationship between complex and distributed brain dynamics and behavioral readout. In our 

solution, we assumed that the dimension of the state is pre-known; however, identifying the 

dimension of the state process is of great interest. There are fewer established solutions that provide 

principle solutions to find the dimension of the state. In the auto-encoder model, we set the 

dimension of the state as a part of the behavioral observation process model. However, it is still of 

great importance to assess the optimal dimension of the state process. Note that we derive the 

posterior distribution of the state given the data, and we can study attributes of the posterior 

distribution to increase/decrease dimension of the state. Another possible solution is defining 

multiple state processes with independent noise processes; we also set a sparse prior on these 

states’ noise processes and use the Bayesian posterior to find posteiro of their noise variance. The 

noise variance posterior will help in search for optimal dimension. This will be one of our future 

research directions. 

 

For D-D direct and auto-encoder model, we focused on deriving model identification and state 

estimation processes. We used BIC and other model selection algorithms to pick a proper history 

term for the observation processes. However, we did not discuss the goodness-of-fit process to 

better examine the extent of the model fit to data. Utilizing simulation data and using goodness-

of-fit techniques to better assess the model fit is another research direction we pursue to better 

address the pros and cons of proposed framework. 

 

Here, we mainly focused on the model development and how the proposed techniques will help to 

analyze complex and high dimensional data like the conversation dataset. Understandingthe  neural 

mechanisms of those cognitive processes has significant prioritiess for experimental and clinincal 

neuroscientist, which is not discussed in this research. We puruse another research to better 

understand underlying neural mechanisms of intention using the inference being drawn from our 

modeling results. 
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Appendix A. Moving to a Fully B-DNN 

Let’s assume that there is a prior probability over the network parameters 𝛀, 𝑝(𝛀). Now, we 

require to build the joint posterior over the states value and the DNN model parameters defined by 

𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾). The posterior distribution is proportionate to full likelihood of the 

observation which can be defined by 

𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾) ∝ 𝑝(𝒙𝟎) ∏ 𝑝(𝒙𝒌+𝟏|𝒙𝒌)𝐾
𝑘=1 × 𝑝(𝒛𝒌|𝒙𝒌) ×  𝑝(𝒔𝒌|𝒙𝒌, 𝒉𝒌)  ×  𝑝(𝛀)  
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= 𝑝(𝒙𝟎) × ∏ 𝑝(𝒙𝒌+𝟏|𝒙𝒌)𝐾
𝑘=1 × 𝑝(𝒛𝒌|𝒙𝒌) ×

 𝑝(𝒙𝒌|𝒔𝒌, 𝒉𝒌; 𝛀)

𝑝(𝒙𝒌|𝒉𝒌;𝛀)
× 𝑝(𝛀)   (A.1) 

where 𝒛𝒌 and 𝒔𝒌 are the neural activity and the behavioral observations at the time index 𝑘; 

respectively. Note that constant term will be 𝑝(𝒔1:𝐾 , 𝒛1:𝐾); as we see later, this term is not needed 

in our DNN training process. 

Given the fact that the exact solution for 𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾) due to a large dimension of 𝛀 is 

intractable, we can approximate the true posterior 𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾) by a variational 

distribution defined by 

𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾)~𝑞(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀) × 𝑞(𝛀)  (A.2) 

Where 𝑞(𝛀) has a known functional form with a set of fixed parameters. Note that, we have 

already derived the solution for the first term on the right side of equation (A.2), which is the 

smoother solution with a known model parameter set. Equation (7) provides the smoother solution 

with neural observation; this solution can be extended for observation process including both 

neural and behavioral data. To find the proper set of parameters for the DNN weights’ distribution, 

we can minimize the Kullback-Leibler (KL) divergence between 𝑞(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀) × 𝑞(𝛀) and 

the true posterior 𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾) [51]. The optimization corresponds to minimizing the 

following metrics 

KL(𝑞(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀) × 𝑞(𝛀)  ∥ 𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾))  (A.3) 

where, we require to find new set of paramaters for a specific functional form of 𝑞(𝛀). As we 
discussed 𝑞(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀) can be replaced by 𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀), which we already have 
a solution for it. 
The KL described in equation (A.2) can be written as 
 

KL(𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀) × 𝑞(𝛀)  ∥ 𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾)) 

= E𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀)𝑞(𝛀) [log
𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀)𝑞(𝛀)

𝑝(𝒙0:𝐾, 𝛀|𝒔1:𝐾 , 𝒛1:𝐾)
 ]  (A.4) 

We can rewrite the KL distance as – moving forward, for simplicity, we use KL without its 
arguments. 

KL = E𝑞(𝛀)[log 𝑞(𝛀)] …   

+E𝑞(𝛀)E𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀) [log
𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀)

𝑝(𝒙0:𝐾 , 𝛀|𝒔1:𝐾 , 𝒛1:𝐾)
]      (A.5) 

We can replace 𝑝(𝒙0:𝐾, 𝛀|𝒔1:𝐾 , 𝒛1:𝐾) term using equation (A.1).  

KL = E𝑞(𝛀)[log 𝑞(𝛀)] …  

+E𝑞(𝛀){E𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀)
[log 𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀) − log 𝑝(𝛀) −

∑ log 𝑝(𝒙𝒌|𝒔𝒌, 𝒉𝒌, 𝛀)𝐾
𝑘=1 + ∑ log ∫ p(𝒙k|𝒙k−1) p(𝒙k−1|𝒔k−1, 𝒉k−1, 𝛀)d𝒙k−1 

𝐾
𝑘=1 ]} + 𝐂   (A.6) 

where, the terms which are not a function of the DNN weights’ parameters are represented by 

C. Let’s assume that 𝛀 distribution paramaters are defined by 𝝎 and 𝝎(𝟎) is our initial guess of 
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these parameters defining 𝑝(𝛀; 𝝎(𝟎)). Our objective is to minimize KL by tuning 𝝎 parameters 

along with other paramaters of the auto-encoder model. We optimize other paramaters of the 
model using the iterative EM algoirthm. As a result, KL needs to be minimized iteratively as the 
model paramaters and state estimation are updated per eahc iteration of EM step. With this 
assumption, we can rewrite the KL by 

KL(r) = E𝑞(𝛀;𝝎) [log 𝑞(𝛀; 𝝎) + E𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀)[log 𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀)]] …  

−E𝑞(𝛀;𝝎)E𝑝(𝒙0:𝐾 |𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀)[− log 𝑝(𝛀; 𝝎(𝟎)) + ∑ log 𝑝(𝒙𝒌|𝒔𝒌, 𝒉𝒌, 𝛀)𝐾
𝑘=1 +

∑ log ∫ p(𝒙k|𝒙k−1) p(𝒙k−1|𝒔k−1, 𝒉k−1, 𝛀)d𝒙k−1 
𝐾
𝑘=1 ] + 𝐂      (A.7) 

To minimize KL(r), we require to find a new set of paramaters which are called, 𝝎(𝒓). Solving this 
optimization problem is computationally interactable; as a result, we provide a suboptimal 
solution using the EM solution we already proposed to find ML estimate of the DNN weights. As 
we discussed, this solution might be a proper apporach when the numer of weights in DNN is 
limited or the DNN weights are correlated. The solution is similar to a coordinate descent 
optimization, where we assume the auto-encoder models are updated recursively. Some of 
recent efforts to address Bayesian learning in dynamical auto-encoder model can be found in 
[40]. 

Let’s assume we have 𝑞(𝛀; 𝝎(𝒓)) for the 𝑟𝑡ℎ  iteration; we can define 

𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾) = ∫ 𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀)  𝑞(𝛀; 𝝎(𝒓)) 𝑑𝛀  (A.8) 

Let’s assume, we draw D samples from 𝑞(𝛀; 𝝎(𝒓)), 𝑑 = 1 … 𝐷; using these samples, we can find 

the posterior estimation of state given behavioral and neural data. Note that, 𝛀𝐝
(𝒓)

 is 𝑑𝑡ℎ sample 

of DNN network weights at iteration 𝑟. In other word, we have D DNN networks, where for each 

network, we can have 𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾 , 𝛀𝐝
(𝒓)

) and the state posterior is defined as weighted sum 

of these distribution 

𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾) = ∑ 𝑝(𝒙0:𝐾|𝒔1:𝐾 , 𝒛1:𝐾, 𝛀𝐝
(𝒓)

)𝑞(𝛀𝐝
(𝒓)

; 𝝎(𝒓))𝐷
𝑑=1 ∑ 𝑞(𝛀𝐝

(𝒓)
; 𝝎(𝒓))𝐷

𝑑=1⁄   (A.9) 

To calculate (A.9), we require to have 𝑞(𝛀; 𝝎(𝒓)).  

To find 𝑞(𝛀; 𝝎(𝒓)), we assume there are D dynamical auto-ecnoder models and each model is 

trained using the EM alogithm defined in section 2.D. Note that each DNN is trained using a 

regularizaion term defined by 𝑝(𝛀; 𝝎(𝟎)) – adding 𝑝(𝛀; 𝝎(𝟎)) to EM algorithm is straight 

forward. It is worth to mention that DNN training at iteration r can start with weights estimated 

at iteration 𝑟 − 1. Training D DNN will provide new set of paramaters 𝛀𝐝
(𝒓)

 for each iteration; we 

can find updated paramaters for 𝝎(𝒓) through D DNN models, defined by 

𝒘(𝒓) = argmin𝑤  KL(r)  

= argmin𝑤  ∑ 𝑞(𝛀𝐝
(𝒓)

; 𝝎)𝐷
𝑑=1 [log 𝑞(𝛀𝐝

(𝒓)
; 𝝎) − log 𝑝(𝛀𝐝

(𝒓)
; 𝝎(𝟎)) − Qd

(𝑟)
]   (A.10) 

where, Qd
(𝑟)

 is defined by equation (22). 

As a result, our B-DNN training includes D auto-encoder model trained in parallel. Using (A.10), 
we can find approximate posterior for DNN weights, and use that posterior to build a more robust 
posterior distribution of the state. When we use full B-DNN as part of our EM algorithm, we can 
replace the posteiror distribution in EM with the postrior distribution defined in equation (A.9), 
and use this distribution to find the state process and behavioral model paramaters. 
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