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Abstract 17 

Major complication in understanding disease biology from GWAS arises from 18 
inability to identify a complete set of causal genes. Integration of multiple omics data 19 
sources could provide an important functional link between associated variants and 20 
candidate genes. Machine-learning could take advantage of this variety of data and 21 
provide a solution for prioritization of disease genes. Yet, classical positive-negative 22 
classifiers impose strong limitations on the gene prioritization procedure, such as lack of 23 
reliable non-causal genes for training.  24 

Here, we developed a novel gene prioritization tool - Gene Prioritizer (GPrior). It is 25 
an ensemble of five positive-unlabeled bagging classifiers, that treat all genes of unknown 26 
relevance as an unlabeled set. GPrior selects an optimal combination of algorithms to 27 
tune the model for each specific phenotype.  28 

Altogether, GPrior fills an important niche of methods for GWAS data post-29 
processing, significantly improving the ability to pinpoint disease genes compared to 30 
existing solutions. 31 

Introduction 32 

 33 
Despite the tens of thousands of genetic associations identified using GWAS to 34 

date, the ultimate goal - informing and guiding therapeutic development - has been 35 
achieved for only a few phenotypes. A major complication in understanding disease 36 
biology from GWAS often arises from inability to directly identify disease genes 1. 37 
Therefore, additional post-GWAS analysis is needed to first, identify a variant that drives 38 
the signal within the locus, and then to connect this variant to a gene. 39 

Fine-mapping, based on a Bayesian framework, sets out to prioritize variants 40 
within the locus and, ultimately, identify the disease-causing variant 2,3,4. Fine-mapping 41 
algorithms - FINEMAP 5, PAINTOR 6, fGWAS 7, SUSIE 8 etc. had significant impact on 42 
the field and had successfully identified causal variants for multiple traits. Importantly, 43 
fine-mapping is done independently for each locus and in its current configuration does 44 
not take advantage of biological relatedness (e.g., same pathway membership) of genes 45 
involved in a phenotype 9. 46 

At the same time, identification of the disease gene linked to a disease-causing 47 
variant presents a major and yet unresolved challenge. Most GWAS associations 48 
implicate a set of correlated genetic variants, none of which alter the protein-coding 49 
sequence of a gene and which often physically span or are near to multiple genes. Since 50 
our knowledge of regulatory sequence patterns of the genome, the relevant cells, tissues 51 
and developmental time points relevant to disease are all incomplete, it is currently the 52 
case that the vast majority of GWAS ‘hits’ do not have a certain link to a gene. Though 53 
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data sets with which to infer functional annotation and gene expression are growing 54 
rapidly in their utility.  55 

Post-processing of the GWAS results with inclusion of functional information is a 56 
promising direction on the road to identify disease genes. For example, Post-GWAS 57 
Analysis Platform (POSTGAP10) uses GWAS summary statistics along with LD-structure 58 
and external functional databases (GTEx 11, FANTOM5 12, RegulomeDB 13 etc.) to 59 
prioritize SNPs within the locus and narrow down the list of potential gene candidates. 60 
Yet, the gene prioritization utility of POSTGAP is still in early development. 61 

Altogether, fine-mapping, functional annotations and known biologic relatedness 62 
across putative disease genes become valuable data sources for gene prioritization, 63 
defined as evaluation of the likelihood of gene involvement in generating a disease 64 
phenotype 14. Machine-learning (ML) based prioritization could take an advantage of 65 
these data sources and provide a solution for novel disease gene identification.  66 

Typically, existing ML solutions use Positive-Negative (PN) classification strategy. 67 
In PN classification per-gene probabilities are obtained by using known disease genes as 68 
a positive (P) training set and unknown genes as a negative (N) training set 15, 16, 17, 18. 69 
Such an approach suffers from contamination of a negative set by hidden positives (HP), 70 
represented by yet undiscovered disease genes. Additionally, it is challenging to find 71 
reliable negative examples (i.e., genes that with certainty do not contribute to the 72 
development of a phenotype). Most biological databases do not store negative evidence 73 
(e.g., absence of gene interaction), rather they provide only observed positive evidence. 74 
As a result, PN-classifiers could suffer from high false-negative prediction rates and 75 
biased quality metrics. 76 

It is feasible to design a model, where a limited number of reliable positive 77 
examples (likely causal genes) will be used along with the rest of genes without treating 78 
the latter as reliably negatives. Positive-Unlabeled (PU) learning has been developed to 79 
overcome limitations of PN-learning. PU-learning treats unknown examples as a mixture 80 
of P and N, called unlabeled (U) set. 81 

PU-learning was first proposed by Denis et al. 21, and several algorithms have been 82 
published since then 19,20,21. A particular class of PU methods - PU-bagging, showed the 83 
best stability of the learning algorithm 22. Specifically, Mordlet et al. 22 proposed the 84 
“bagging SVM” approach that took advantage of a limited number of positive examples 85 
and significantly improved performance and stability of classification using a new 86 
aggregation technique.  87 

Nevertheless, a single ML algorithm cannot fit all complex phenotypes and highly 88 
heterogeneous biological data. To overcome this, Yang et al. 23  introduced a concept of 89 
integration for several PU learning classifiers into one workflow using ensemble 90 
technique. This technique was only tested with a specific family of PU algorithms - two-91 
step methods, heuristic in nature and sensitive to the initial choice of negative examples 92 
24, significantly limiting applicability to GWAS data. Two-step PU algorithms first 93 
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attempted to identify negative examples in the unlabeled set, and then train a model from 94 
the positive, unlabeled and likely negative examples. However, directly learning to 95 
discriminate P from U with estimation of optimal misclassification costs leads to better 96 
results 25.  97 

Therefore, combination of different ML algorithms (kernel-based and tree-based) 98 
along with PU bagging is a promising strategy for building a gene-prioritization model 99 
suitable for a large number of complex phenotypes and high variety of data sources, that 100 
is still lacking in the field. 101 

Here, we propose a novel PU-learning based gene prioritization tool - Gene 102 
Prioritizer (GPrior), intended for post fine-mapping usage of GWAS results. In GPrior we 103 
implemented the ensemble of 5 different ML classifiers for PU-bagging with further 104 
selection of the optimal combination of predictions. Our approach returns probability 105 
scores for the whole provided set of genes based on similarity level with positive examples 106 
and is complementary to any other gene prioritization tools and fine-mapping techniques. 107 

We illustrate the utility of PU-learning and GPrior with common public ML quality 108 
evaluation dataset with known ground truth and a series of case studies. Comparison with 109 
popular methods (TOPPGENE 26; Bagging SVM 22; MAGMA 27) confirmed significantly 110 
higher quality of predictions returned by GPrior.  111 

Methods 112 

 GPrior was designed for prioritizing disease-relevant genes given a matrix of gene-113 
level features and a set of reliably causal genes. We integrated multiple ML techniques 114 
in a single tool and a data-driven framework to select the most appropriate algorithm (or 115 
combination of algorithms) on a case-by-case basis. 116 

The prioritization scheme includes two independent steps. First, each ML algorithm 117 
is used for positive-unlabeled bagging and generation of predictions for each gene. 118 
Second, the best-performing combination of predictions is generated. To ensure the 119 
independence of steps, a set of true genes that is used for training is separated into two 120 
parts – set of genes for training individual ML algorithms and an algorithm evaluation set 121 
(Figure 1, Sup. Figure S1). The latter is used to evaluate the quality of predictions from 122 
ML algorithms and select predictions that will contribute to the optimal combination. 123 
Altogether, such an approach allows to combine multiple learning algorithms and achieve 124 
previously unattainable for an individual algorithm performance. 125 
 126 
Input and Features 127 
 128 

In addition to the described above true gene sets needed for training, GPrior 129 
requires a data matrix with rows representing genes and columns representing features.  130 

GWAS summary statistics contains only variant information which needs to be 131 
converted into gene level data. Initially, we filtered out likely non-associated variants with 132 
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the threshold determined on case-by-case basis, ensuring inclusion of the majority of 133 
potentially causal genes (even if no significant association was observed in GWAS) into 134 
the prioritization analysis. Otherwise, GWAS p-values were not a part of the prioritization 135 
model. 136 

Next, we used POSTGAP 10, which takes advantage of LD structure and variant 137 
functional annotations to assign potential gene candidates for each variant. Such 138 
preprocessing of GWAS summary statistics yields a variant-based data matrix with 139 
mappings to a list of candidate genes. 140 

A major challenge in transforming variant-based data into gene-based data matrix 141 
for GPrior is preservation of valuable information about variant annotations. We used a 142 
transformation of variant-level features (e.g. functional annotations, GERP scores, etc) 143 
into gene-level features using a method proposed by Lehne et al. 28 to obtain a gene-144 
based data matrix. 145 

In addition, we used gene expression and gene interaction data that proved their 146 
utility for the gene identification problem in previous works 15, 29, 30. Specifically, we used 147 
the GTEx database to obtain median gene expression levels for 53 tissues and Reactome 148 
31 and UCSC (GeneSorter) 32 databases were used for gene interaction data (Sup. Table 149 
S1). 150 

Additional functional features and predictions of other prioritization algorithms 151 
could be included in the data matrix to be used for GPrior model to boost the performance 152 
quality 33. GPrior could take as an input either the raw output of POSTGAP (variant-based 153 
data matrix) or any gene-based data matrix provided by a user. 154 

We kept the same set of features for the case studies to preserve the fairness of 155 
performance comparisons for different phenotypes. Although, for each phenotype 156 
features could be selected in concordance with phenotype-specific needs, for example, 157 
relevant cell type expression data. Overall, GPrior is not bound to a pre-specified set of 158 
features and could be used with any user-defined set of features to boost the trait-specific 159 
performance. 160 

 161 
Feature preprocessing 162 

 163 
As for any ML approach, prior to algorithm execution, features should undergo 164 

preprocessing procedure to equalize scales and eliminate potential performance biases. 165 
In gene prioritization, raw data sets can potentially reach hundreds or thousands 166 

of features. Along with a limited number of positive examples, this enormity can lead to 167 
the “curse of dimensionality” 34. Hypothetically, the more features are available in the data 168 
the more accurate result should be expected. However, greater number of features leads 169 
to the exponential growth of the training examples amount, required to cover the sparse 170 
feature space and achieve acceptable prediction quality. In real-life applications, the 171 
number of positive examples is limited, therefore, conventionally this problem is solved 172 
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by clustering raw features. GPrior uses agglomerative feature clustering as a 173 
dimensionality reduction technique to extract appropriate number of features and achieve 174 
the highest performance (Suppl.Methods, Input and Features). 175 
   176 
GPrior algorithm 177 
 178 
 GPrior consists of five PU Bagging ensembles, each of them uses a different 179 
classification algorithm: Logistic Regression (LR), Support-Vector Machine (SVM), 180 
Decision Tree (DT), Random Forest (RF), Adaptive boosting (AB) (Figure 1, Sup. 181 
Methods, GPrior Algorithm). 182 
 Each positive-unlabeled bagging procedure starts with a creation of a training set 183 
with all positive (P) instances, treated as Positives, and a random subsample of 184 
unlabeled, size of P, treated as negatives. Resulting in the size of a bootstrap sample 185 
being equal to P. This way, on each iteration only a small portion of unlabeled instances 186 
is treated as negatives, minimizing false negative error rate (Sup.Figure S2). Each 187 
learning method is then fine-tuned by finding an optimal set of parameters (Sup. Table 188 
S2). 189 
 After training and tuning, individual classifiers generate a probability score for each 190 
gene to belong to the positive class. All the steps are repeated T times. Per-gene 191 
probabilities are obtained by dividing the sum of all predictions by the number of times 192 
each gene was sampled from the unlabeled set. All the predictions are averaged and 193 
stored as a final PU Bagging result. All the steps are repeated for each classification 194 
algorithm.  195 
 Next, GPrior selects the combination of predictions that shows the best 196 
performance in prioritizing true genes from an independent algorithm evaluation set. 197 
Since “true negative” data points that falsely were classified as positives could not be 198 
identified in PU-data, any metric depending on false positives could not be applied for 199 
quality evaluation. We used PU-score as a formal quality metric suitable for positive-200 
unlabeled data classes 25, 35 (Sup. Methods).  201 
 All combinations from individual predictions are evaluated using PU-score 202 
calculated for algorithm evaluation set and the best performing composition of methods 203 
is then selected as the best fitting for a given phenotype. Selected combination is used to 204 
return a vector of probabilities corresponding to the genes in the input matrix. 205 
 206 
Results 207 

Performance evaluation 208 

 209 
The number of known true positive and negative data points is a critical information 210 

parameter for gene prioritization. It is challenging to estimate both the number of genes 211 
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involved in a complex trait and the number of genes confidently irrelevant for the disease. 212 
Height, as a classic example of a highly polygenic trait, shows effect size for a median 213 
GWAS SNP in the genome about 10% of that for genome-wide significant hits. This 214 
suggests that in current GWAS for height, significant associations are observed only for 215 
a small proportion of true positive data points, while many others are yet to be confirmed. 216 
However, additional alleles at known genes are a likely source of much of what is missing 217 
so this does not easily translate into an estimate of how many relevant genes are 218 
implicated from a GWAS. As shown in recent works, the genetic architecture of height is 219 
broadly similar to that of a wide variety of other quantitative traits and diseases ranging 220 
from diabetes or autoimmune diseases to BMI or cholesterol levels 36 – for all of which 221 
the evidence suggests many more positive genes exist in the ‘currently not associated’ 222 
gene set. Additionally, only some of the genome-wide significant loci were mapped to a 223 
single gene, even further reducing the number of known true genes suitable for training 224 
a model. Therefore, it is reasonable to assume that gene prioritization algorithms should 225 
expect to be trained using only a small fraction of all disease-relevant genes.  226 

Due to inability to obtain a GWAS dataset with confidently identified complete sets 227 
of the disease genes and disease irrelevant genes, for initial GPrior performance 228 
evaluation we used a public benchmark dataset.  Breast Cancer Wisconsin (Diagnostic) 229 
Data Set - a popular public dataset for machine learning tools benchmarking was used to 230 
compare performance of GPrior to conventional PN-learning (biased SVM 37) and single 231 
PU-learning algorithm - bagging-SVM 22 (Suppl.Methods, GPrior Performance 232 
Evaluation). The data with known true positives and true negatives enables calculation 233 
of fair prediction error rates which is impossible for real life data with yet undiscovered 234 
true data points. While this dataset is not related to the gene prioritization problem, it 235 
clearly illustrates the benefits of ensemble PU-learning in case of only a small fraction of 236 
known true instances to be used for training. 237 

The dataset contained 569 samples and 30 features (Figure 2A). Initially, we 238 
assumed that only 4% of true positive class samples (malignant tumors in the Breast 239 
Cancer Wisconsin data), are known and available for training. Since GPrior requires two 240 
independent true sets for training, the original known positive class was broken down into 241 
two parts – 5 samples were used for training and 3 for algorithm evaluation set. For all 242 
other methods the whole known positive class was used as a single batch. 243 

We performed PCA to highlight how data classes are recognized in PN and PU-244 
learning (Figure 2B). PN-learning treats all instances as true negative, except those used 245 
for training (known positives). This way, PN-learning attempts to identify samples falsely 246 
classified to be true negative. In opposite, PU-learning treats all instances not used for 247 
training as unlabeled and is, therefore, free from assumption that true negative class 248 
exists. GPrior generated predictions using each algorithm and algorithm evaluation set 249 
was used to estimate PU-scores (Suppl. Figure S3A). All combinations of 5 algorithms 250 
available in GPrior were tested and the combination with the best PU-score estimated 251 
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from the algorithm evaluation set was selected to return the results (Suppl. Figure 252 
S3B,C). 253 

Precision-recall analysis was used to determine optimal decision threshold for 254 
each method and ensure that best possible performance was extracted from each 255 
algorithm (Figure 2C,D). As a result, GPrior carefully identified corresponding sample 256 
classes (F1 = 0.916, Suppl.Figure S4A, B), while PN-learning fails to achieve similar 257 
performance (F1=0.551, Suppl.Figure S4A, C).  258 

Testing all 3 methods - biased SVM, bagging SVM and GPrior for different fractions 259 
of known positives (100 simulations) results in superior performance of the latter (Figure 260 
2E). Notably, PN-learning starts to behave equally well compared to PU-learning only if 261 
more than 30% of the true positive data points are already known and used for training. 262 

For the benchmark dataset, with pre-specified true positives it is possible to 263 
compare F1-score and PU-score metrics. Both metrics show similar results, justifying 264 
further usage of PU-score for GPrior performance evaluation in case studies, where F1-265 
score could not be computed (Figure S4D, E). 266 

Additionally, we tried to fix contamination of unlabeled-class with hidden positives 267 
and change only the number of KP without changing the percentage of contamination to 268 
make the setup even more fair for PN and PU learning. Despite this, we obtained better 269 
results from GPrior (Figure S5). 270 

To illustrate utility and performance quality of GPrior we performed several case 271 
studies using GWAS results for several phenotypes: inflammatory bowel disease (IBD), 272 
educational attainment (EA), coronary artery disease (CAD) and schizophrenia (SCZ).   273 

Case study 1: Inflammatory bowel disease (IBD) 274 

  275 
We used GPrior and summary statistics from Huang et al. 38,   to construct gene 276 

prioritization for IBD.  Summary statistics was preprocessed to obtain a data matrix with 277 
2,166 gene candidates found in loci with original p-value < 10-8. A list of 31 genes with 278 
known evidence to be likely causal for IBD was used as a positive training set. Algorithm 279 
evaluation set consisted of 14 genes reported in monogenic loci with p-value < 10-10 found 280 
in GWAS catalog. Independent validation set used only for performance evaluation 281 
included 51 genes found within monogenic loci with p-values falling in range 10-10 - 10-8 282 
(Figure 3A, Suppl. Table S3). 283 

We generated gene priorities using GPrior (Sup. Table S4) and a set of methods 284 
for comparison - a single PU-learning (bagging-SVM 22), PN-learning (weighted LR 25) 285 
and TOPPGENE 26. While GPrior implies two training steps and usage of two training 286 
gene sets – true gene set and algorithm evaluation set, for other methods we used a 287 
union of the two gene sets for training.  288 

Next, we compared the performance quality of the methods. PU-score is a formal 289 
quality metric for a ML-based classifier, rather than for a prioritization itself, and it depends 290 
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on the decision threshold used to assign classes to the instances. Gene prioritization 291 
implies only a construction of the ranked list of genes, but not the classification of the 292 
genes into “disease” and “non-disease”. Yet, we evaluated the maximal possible 293 
performance of the methods in the classification problem. We used an independent 294 
validation gene set to estimate PU-scores for all possible decision thresholds (fraction of 295 
positive predictions made by the classifier) and GPrior has significantly greater maximal 296 
PU-score compared to others (Figure 3B). 297 

To evaluate prioritization quality, we estimated cumulative gains. Gain chart shows 298 
enrichment of the genes from the validation set at the top of the ranked list of predictions, 299 
that is the sharper is the growth of gain in the beginning of the chart – the more enriched 300 
are correct predictions at the top of the predictions list (Figure 3C). 301 

Since original GWAS summary statistics was preprocessed to include only variants 302 
with p-value < 10-8, all 2,166 genes in the data matrix are found in or in a proximity of 303 
significantly associated loci. GPrior does not use association strength or DNA location 304 
information for gene prioritization. Yet, genes from the validation set are significantly 305 
prioritized over the non-relevant neighbors (Mann-Whitney, one-sided, p-value = 2.5x10-306 
13, Figure 3D).  307 

We evaluated non-randomness of the predictions, by estimating enrichment of the 308 
validation set genes at the top of the ranked list produced by GPrior (permutation p-value 309 
< 1*10-6; Figure 3E).  310 

Treatment of all genes from the validation set as a finite set of disease genes, 311 
implies that all genes that are not in the validation set are true negatives. In case of 312 
polygenic traits, this is most likely a false assumption which would lead to an 313 
underestimation of the true value of the area under the ROC-curve (ROC AUC). Thus  314 
AUC values will illustrate only approximate quality measurement. In such settings, GPrior 315 
demonstrated the most efficient predictive power out of all tools (AUC = 0.8, Suppl. Table 316 
S5).  317 
 318 
Case study 2: Educational attainment 319 
 320 

We performed a control experiment to demonstrate that GPrior predictions are 321 
disease specific and are driven by underlying biological similarities for disease related 322 
genes. We considered two phenotypes with likely very modest overlap in underlying 323 
biological causes – IBD and educational attainment (EA). We hypothesized that usage of 324 
the training gene set fitted for IBD should fail to predict genes for EA.  325 

GWAS summary statistics from Lee et al 39 for EA was preprocessed to obtain the 326 
data matrix of candidate genes (N=10,638) and features (Methods). To eliminate 327 
potential bias in the size of training sets for the two phenotypes, we used for GPrior 328 
training only 18 genes (12 for ML training and 6 for algorithm selection) from the IBD 329 
training gene set that were also found in EA GWAS loci with p-value < 10-6. As a validation 330 
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set for IBD we used the original IBD validation genes (N=51), for EA we used 381 genes 331 
found in monogenic loci from GWAS catalog EA results (Sup. Table S6, Sup. Methods).  332 

Usage of appropriate training set for IBD resulted in significant enrichment 333 
(permutation P<10-6) of validation set genes in the top predicted genes (Sup. Figure 334 
S6A). Predictions based on the same list of training genes were constructed for EA and 335 
demonstrated no enrichment of the EA-specific validation gene set (permutation p-value 336 
p-value =0.12, Sup. Figure S6B). Yet, usage of the EA-specific training gene set of the 337 
same size (N=18, Sup.Methods) led to successful prioritization of EA-specific genes 338 
(permutation P<10-6, Sup. Figure S6C). 339 

We expanded the training set for EA by inclusion of all genes found in monogenic 340 
loci in GWAS Catalog with (N=119) and repeated prioritization analysis. As a result, we 341 
obtained even more significant enrichment for the validation set and confirmed superior 342 
performance quality of GPrior in comparison with other methods (Sup. Figure S7, Sup. 343 
Tables S7,S8). 344 

Finally, we estimated how strongly initial GWAS summary statistics preprocessing 345 
contributed to the overall success of the prioritization. While POSTGAP, that was used 346 
for mapping variants to a list of candidate genes, is not designed specifically for gene 347 
prioritization, it reports a variant-to-gene mapping score based on the sum of values for 348 
7 features (Sup. Figure S8). We used the maximal variant-to-gene score for each gene 349 
to construct a ranked list of genes. First, we estimated the largest possible PU-score for 350 
the model using only POSTGAP-based gene ranking for educational attainment data (PU-351 
score = 3.82). We limited feature space to exactly the same 7 features and constructed 352 
gene prioritization using GPrior, resulting in ~10% increase in PU-score (PU-score = 4.1). 353 
GPrior uses all available features, while POSTGAP score is limited by only initial 7 354 
features, yet expanding feature space for GPrior yields significant increase leading to the 355 
maximal PU-score of 4.84 (Sup. Figure S7), showing ~27% increase in quality.  356 

Case study 3: Coronary artery disease (CAD) 357 

 358 
We used the summary statistics of coronary artery disease GWAS of 34,541 CAD 359 

cases and 261,984 controls from UK Biobank followed by replication in 88,192 cases and 360 
162,544 controls 40. After preprocessing we obtained a gene-based data matrix with 2,794 361 
gene candidates found in loci with original p-value < 10-8. 362 
 Recent review by Khera and Kathiresan 41 was used  to compile gene sets for 363 
GPrior (Figure 4A). All genes with identified biological roles in any of the known disease 364 
pathways were used for the training set (TS=18, AES=8). All other genes, implicated in 365 
CAD, but with yet undiscovered molecular pathway membership became a validation set 366 
(VS=37) (Suppl. Table S9). 367 
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 Prioritization list obtained with GPrior (Sup. Table S10) has shown the best 368 
accuracy with all quality metrics in comparison with other methods (Figure 4B-E, Sup. 369 
Table 11).  370 

Conclusively, using risk genes with known molecular pathway membership GPrior 371 
successfully prioritizes genes with yet unknown biological contribution but confidently 372 
implicated in the disease. Importantly, by further analyzing feature importance in the 373 
prediction model it is possible to build testable biological hypotheses for novel genes 374 
discovered in predictions.  375 

Case study 4: Schizophrenia 376 

 377 
We used GWAS Summary statistics from Pardiñas et al 42. This study used 378 

genotypes of 105 318 individuals, 40,675 schizophrenia cases and 64,643 controls.  379 
After preprocessing we obtained a gene-based data matrix with 3,831 gene 380 

candidates found in loci with original p-value < 10-6. 381 
 Training set was prepared using reported genes found in monogenic loci from 382 
GWAS meta-analysis results 42 . Training gene set for individual ML algorithms included 383 
20 genes with p-values falling in range 10-44 - 10-14, and algorithm evaluation set included 384 
24 genes with p-values within 10-13 - 10-8 range. Validation set (VS) included 28 genes 385 
and was obtained from the same study and included all genes from significant polygenic 386 
loci (Figure 5A, Sup. Table S12, S13).  387 

GPrior demonstrated superior results in comparison with other methods using all 388 
quality metrics. GPrior achieved the highest PU score (9.64) and AUC (0.92) values. On 389 
all the top intervals of the predictions list (1%,5%,15%,25%) GPrior showed the highest 390 
enrichment of the validation set genes (Figure 5B-E, Sup. Table S14).  391 

Conclusively, even for complex phenotypes with limited biological mechanism 392 
knowledge, like schizophrenia, GPrior is well powered to detect the relevant signal of 393 
biologic relatedness and prioritize likely disease genes. 394 

MAGMA comparison 395 

 396 
We compared GPrior with a commonly used method that takes GWAS summary 397 

statistics as an input and attempts to pinpoint likely disease genes - MAGMA 27. It 398 
computes gene-based p-value (mean association of SNPs in the gene, corrected for LD). 399 
We ran MAGMA with default parameters and compared performance quality with GPrior. 400 
As an output MAGMA returns a list of genes and corresponding p-values, which we used 401 
to sort the list for prioritization purposes. 402 

One of the challenges for a non-biased comparison was the relatively small 403 
number of gene candidates in output from MAGMA. Therefore, we took the same as 404 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 12, 2020. ; https://doi.org/10.1101/2020.07.12.199273doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.12.199273
http://creativecommons.org/licenses/by-nd/4.0/


12 
 

reported in MAGMA number of top genes from GPrior results to compare equal number 405 
of gene predictions.  406 

GPrior demonstrated enrichment of top ranked predictions for validation sets for 407 
all phenotypes – EA (p-value=9x10-3), schizophrenia (p-value=7x10-4), CAD (p-408 
value=3x10-3) and IBD (p-value=0.019). MAGMA produced significantly enriched 409 
predictions only for CAD (p-value=9x10-3) (Suppl. Figure S9).  410 

Conclusively, GPrior demonstrated best performance out of all evaluated 411 
approaches for gene prioritization in multiple settings and for various phenotypes. 412 

4. Discussion 413 

 414 
 A large number of GWAS studies performed to date provide an invaluable source 415 
of information for generating biological hypotheses for disease causes. The majority of 416 
these studies greatly benefited from fine-mapping that implicated a limited number of 417 
gene candidates. However, for highly polygenic phenotypes like schizophrenia, known 418 
genes represent only a tiny segment of the disease biology. 419 
 The challenge of mapping “variants to function” could greatly benefit from machine 420 
learning approaches. Especially, for those phenotypes for which a strictly genetic fine-421 
mapping approach has had limited success in conclusively identifying risk genes. As we 422 
illustrate, conventional positive-negative machine learning approaches require a 423 
substantial fraction of already known disease genes to achieve sufficient prioritization 424 
quality for novel candidates. Additionally, it is nearly impossible at this point to confidently 425 
state that a gene is not involved in a disease, therefore, directly assuming “negative” 426 
examples for training is fated to include false negatives in a training set, further reducing 427 
prediction quality.  428 

Instead, we provide a tool that uses positive-unlabeled learning and requires 429 
confidence in selection of only positive instances for training. Such genes are relatively 430 
easy to identify based on association significance, previously reported functional studies, 431 
etc. Importantly, PU-learning performs well even when the training set is quite small.  432 

Additional challenge for a single-method-based solution is presented by phenotype 433 
complexity. Phenotypes may present significantly different genetic architectures or 434 
impose certain limitations on the set of available data sources; therefore, it is unlikely that 435 
a single technique will be suitable for gene prioritization in all of them. We provide a 436 
software package for gene prioritization – GPrior that takes advantage of the ensemble 437 
of PU-learning techniques. Such approach overcomes unresolved challenges of PN-438 
learning and issues arising from phenotype complexity. In GPrior, two key steps of the 439 
model training: PU-classifiers training and selection of optimal classifiers combination are 440 
performed using two independent gene sets. The two-step strategy ensures independent 441 
quality assessment for all classifiers and unbiased selection of the optimal prioritization 442 
method, as well as delivering optimal prioritization results for the specific phenotype. 443 
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GPrior can be utilized with many sources of functional data. Data types used in our 444 
case studies – tissue expression levels, Reactome pathway data and others represent 445 
only a small part of possibilities. Each phenotype study would significantly benefit from 446 
inclusion of additional features, such as – single cell expression data, specific protein-447 
protein interactions, gene conservation metrics (pLI, LOEUF) and others. In our study we 448 
have not selected features to be specific to each phenotype, therefore, users can expect 449 
to see even higher performance in case of thorough feature selection. Additionally, GPrior 450 
can be straightforwardly integrated with conventional fine-mapping tools. One of the 451 
limiting steps in our GWAS processing scheme was naïve selection of gene candidates 452 
from each locus. More sophisticated preprocessing of the raw GWAS summary statistics 453 
with methods such as SuSie or FINEMAP to improve variant-to-gene mapping could 454 
significantly aid variant-level to gene-level features transformation. Finally, we used a 455 
relatively conservative set of features for gene annotations, which could be significantly 456 
expanded with phenotype specific annotations. 457 

Altogether, GPrior fills an important and currently underdeveloped niche of 458 
methods for GWAS data post-processing, significantly improving the ability to pinpoint 459 
disease genes compared to existing solutions. 460 
 461 
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 463 
https://github.com/faramer86/GPrior 464 
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Figure 1. GPrior ensemble positive-unlabeled learning framework
Matrix of gene features along with vector of supervised answers is used to train 5
models using PU-bagging approach. Two independent gene sets are used for training
– true set of genes for individual classification algorithms training and algorithm
evaluation set of true genes for selecting the optimal combination of the predictions.
Predictions are generated using positive-unlabeled bagging and further an optimal
combination returning the largest PU-score is returned.
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  572 

Figure 2. Benchmark dataset shows advantage of PU learning over PN learning in a scenario when
few positive instances used for training.
(A) Dataset breakdown. Known data represents scenario when only a part of the true positive instances
were discovered to date; (B) PCA of the simulated data with highlighted true instance classes; (C)
Prediction results for PN-learning (biased SVM) approach; (D) Prediction results for GPrior; (E)
Performance of PU and PN learning approaches with respect to a fraction of known positive data points.
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Figure 3. Gene prioritization for inflammatory bowel disease GWAS.
(A) Scheme for selection of training, algorithm evaluation and validation gene sets; (B)
Classification quality comparison for GPrior, Bagging SVM and conventional PN-
learning with weighted linear regression; (C) Cumulative gains curve shows better
prioritization of true genes at the top of the candidate list using GPrior in comparison
with other methods; (D) True genes from the independent validation gene set receive
significantly higher scores than genes found within the same loci but not implicated in
the disease; (E) Enrichment of true genes from independent validation gene set among
top predictions from GPrior.
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Figure 4. Gene prioritization for coronary artery disease GWAS.
(A) Scheme for selection of training, algorithm evaluation and validation gene sets; (B)
Classification quality comparison for GPrior, Bagging SVM and conventional PN-
learning with weighted linear regression; (C) Cumulative gains curve shows better
prioritization of true genes at the top of the candidate list using GPrior in comparison
with other methods; (D) True genes from the independent validation gene set receive
significantly higher scores than genes found within the same loci but not implicated in
the disease; (E) Enrichment of true genes from independent validation gene set among
top predictions from GPrior.
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Figure 5. Gene prioritization for schizophrenia GWAS.
(A) Scheme for selection of training, algorithm evaluation and validation gene sets; (B)
Classification quality comparison for GPrior, Bagging SVM and conventional PN-
learning with weighted linear regression; (C) Cumulative gains curve shows better
prioritization of true genes at the top of the candidate list using GPrior in comparison
with other methods; (D) True genes from the independent validation gene set receive
significantly higher scores than genes found within the same loci but not implicated in
the disease; (E) Enrichment of true genes from independent validation gene set among
top predictions from GPrior.
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