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ABSTRACT: 13 

Since the identification of SARS-CoV-2, a large number of genomes have been sequenced with 14 

unprecedented speed around the world. This marks a unique opportunity to analyze virus 15 

spreading and evolution in a worldwide context. However, currently, there is not a useful 16 

haplotype description to help to track important and globally scattered mutations. Also, 17 

differences in the number of sequenced genomes between countries and/or months make it 18 

difficult to identify the emergence of haplotypes in regions where few genomes are sequenced 19 

but a large number of cases are reported. We proposed an approach based on the normalization 20 

by COVID-19 cases of relative frequencies of mutations using all the available data to identify 21 

major haplotypes. Thus, we can use a similar normalization approach to tracking the global 22 

temporal and geographic haplotypes distribution in the world. Using 48 776 genomes, we 23 

identify 5 major haplotypes based on 9 high-frequency mutations. Normalized global geographic 24 

and temporal analysis is presented here highlighting the current importance of nucleocapsid 25 

mutations (R203K, G204R) above the highly discussed D614G in spike protein. Also, we analyzed 26 

age, gender, and patient status distribution by haplotypes, but scarce and not well-organized 27 

information about this is publicly available. For that, we create a web-service to continuously 28 

update our normalized analysis of mutations and haplotypes, and to allow researchers to 29 

voluntarily share patient status information in a well-organized manner to improve analyses and 30 

making possible monitor the emergence of mutations and/or haplotypes with patients 31 

preferences or different pathogenic features. Finally, we discuss currently structural and 32 

functional hypotheses in the most frequently identified mutations. 33 

INTRODUCTION: 34 

COVID-19 was declared a pandemic by the World Health Organization on March 11th 20201, 35 

with around 23 million cases and 800 thousand of deaths around the world2, quickly becoming 36 

the most important health concern in the world. Several efforts to produce vaccines, drugs, and 37 

diagnostic tests to help in the fight against SARS-CoV-2 are being mounted in a large number of 38 

laboratories all around the world.  39 

Since the publication on January 24th of the first complete genome sequence of SARS-CoV-2 from 40 

China3, thousands of genomes have been sequenced in a great number of countries on all 5 41 

continents and were made available in several databases. This marks a milestone in scientific 42 

history and gives us an unprecedented opportunity to study how a specific virus evolves in a 43 

worldwide context. As of July 30, 2020, the GISAID database4 contained 48 776 genomes with at 44 

least 29 000 sequenced bases.   45 
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At the moment, some analysis has been performed to identify SARS-CoV-2 variants around the 46 

world, most of them on a particular group of genomes and/or at the beginning of the pandemic 47 

using limited datasets. In March 2020 two major lineages were proposed based in position 8782 48 

and 28144 using a data set of 103 genomes5 which was followed by a particularly interesting 49 

proposal that identified the same major lineages (named A and B) and others sublineages6.  50 

To complement these current classification systems, we believe that haplotypes description and 51 

nomenclature could help to better track important mutations that are currently circulating in 52 

the world. Identification of SARS-CoV-2 haplotypes aids in understanding the evolution of the 53 

virus and may improve our efforts to control the disease.  54 

To perform a reasonable analysis of the worldwide temporal and geographical distribution of 55 

SARS-CoV-2 haplotypes, we need to take into account the differences in the number of 56 

sequenced genomes in months and countries-continents. Thus, we first used a data set of 48776 57 

complete genomes to estimate the worldwide relative frequency of nucleotides in each SARS-58 

CoV-2 genomic position and found nine positions with normalized relative frequencies (NRFp) 59 

greater than 0.1 and lesser than 0.9. After that, using a total of 19486 complete genomes with 60 

any ambiguous nucleotide position from GISAID we performed a phylogenetic analysis and 61 

correlated the major branches with SARS-CoV-2 variants which can be classified into five 62 

haplotypes or Operational Taxonomic Units (OTUs) based on the distribution of the nine 63 

identified nucleotide positions in our NRFp analysis. After that, we analyzed the geographical 64 

and temporal worldwide distribution of OTUs normalized by the number of COVID-19 cases. 65 

Also, we attempt to correlate these OTUs with patient status, age, and gender information. 66 

Finally, we discuss the current hypothesis of the most frequent mutations on protein structure 67 

and function.  68 

RESULTS AND DISCUSSION: 69 

Mutations frequency analysis 70 

The GISAID database contains around 48 776 genomes with at least 29 000 sequenced bases 71 

and from these 19 486 genomes does not contain any ambiguity (as of July 30th). With an 72 

alignment of the 48 776 genomes, we performed a normalized relative frequency analysis of 73 

each nucleotide in each genomic position (NRFp) (see material and methods for details), this 74 

normalization was performed to reduce the bias due that the number of sequenced genomes in 75 

continents and months are not correlated with the number of cases in these continents and 76 

months. Using these NRFp analyses, we identified 9 positions with greater than 0.1 and less than 77 

0.9 NRFp (Fig. 1.A and S1.A) plus many other positions with frequencies between 0.900-0.995 78 

and 0.005-0.100 (Fig. S1.B and S1.C).  79 

The nine most frequent mutations (NRFp between 0.1 and 0.9) are comprised of seven non-80 

synonymous mutations, one synonymous mutation and one mutation in the 5'UTR region of the 81 

SARS-CoV-2 genome (Fig. 1.A). All these mutations have been already identified in other 82 

studies7,8,9,10, although with different frequencies. 83 

OTUs identification 84 

After NRFp analysis, we estimated a maximum-likelihood tree using the whole-genome 85 

alignment of the 19 846 complete genomes without ambiguities. Then, we associated the main 86 

branches of the whole-genome tree with an alignment of the 9 positions (241, 1059, 3037, 87 

14408, 23403, 25563, 28881, 28882, 28883) and noted that combinations of those 9 positions 88 
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represent 5 well-defined groups in the tree (Fig. 1.B). Using these combinations, we defined 5 89 

haplotypes that allow us to classified 96.5 % of the analyzed genomes (Fig. 1.C), a great part of 90 

the remaining not classified genomes are due to the absence of sequencing corresponding to 91 

position 241. We named these haplotypes Operational Taxonomic Units (OTUs) and numbered 92 

them according to proximity to the root.  93 

We were able to clearly track the mutations that originated each of these OTUs. OTU_1 is the 94 

ancestor haplotype with characteristic C241, C3037, C14408, and A23403. This OTU_1 95 

comprised genomes with T or C in position 8782 and C or T in 28144. In other analyses, these 96 

mutations divide SARS-CoV-2 strains into two lineages. For instance; at the beginning of the 97 

pandemic, Tang et al (2020) shows linkage disequilibrium between those positions and named 98 

them as S and L lineages. Rambaut et al (2020) used these positions to discriminate between 99 

their proposed major lineages A and B. After, seven months of pandemic NRFp of T and C in 100 

positions 8782 and 28144, respectively, are not in the range of 0.1-0.9, indicating a small 101 

quantity of these genomes presented during the pandemic in comparison with other variations.   102 

A SARS-CoV-2 isolated on February 20 was the first belonging to OTU_2 (Fig. S2) that shows 103 

simultaneously four mutations different to OTU_1 (C241T, C3037T, C14408T, and A23403G). We 104 

can note in the phylogenetic tree that in the transition between the first clade and OTU_2 some 105 

unclassified tips were showed. These could be genomes containing some of these four 106 

mutations (C241T, C3037T, C14408T, A23403G) but not all, representing intermediate steps in 107 

the formation of this haplotype. OTU_2 is the first group containing the D614G mutation in the 108 

spike protein. Korber et al. 2020 analyzed the temporal and geographic distribution of this 109 

mutation separating SARS-CoV-2 populations into two groups, those with D614 and those with 110 

G614.  111 

Almost at the same time (February 24), SARS-CoV-2 with three adjacent mutations (G28881A, 112 

G28882A, and G28883C) (Fig. S2) in N protein was isolated. These three mutations characterize 113 

OTU_3. The maximum likelihood tree shows that OTU_4 comes from OTU_2. OTU_4 does not 114 

present mutations in N protein, instead, it presents a variation in Orf3a (G25563T). Finally, 115 

OTU_5 presents all the mutations of OTU_5 plus one Nsp2 mutation (C1059T).  116 

These 9 mutations have been separately described in other reports but, to our knowledge, they 117 

have not yet used been used together to classify SARS-CoV-2 haplotypes during the pandemic. 118 

The fact that we were able to classify 96.5 % of the complete genomes data set (Fig. 1.C) shows 119 

that, at least to the present date, this classification system covers almost all the currently known 120 

genomic information around the world. Also, most of the unclassified tips appear within a clade 121 

allowing us to easily establish their phylogenetic relationships to a haplotype. Thus, at the 122 

moment this system can be of practical use to analyze the geographical and temporal 123 

distribution of haplotypes during these seven months of 2020.   124 

It is highly likely that during the next months, some of these OTUs will disappear and others will 125 

appear when new mutations in these “parental” OTUs become fixed in the population. Thus, 126 

methodologies to actively update circulating haplotypes on a real-time basis need to be 127 

proposed. We propose that the best strategy will be to continually monitor the appearance of 128 

new haplotypes by tracking mutations that exceed a fixed NRFp in the world (to allow tracking 129 

relevant medical mutations) and associating these mutations to a phylogenomic tree to confirm 130 

its phylogenetical relevance, we will perform this task at least one time per month and update 131 

this information in our website.  132 

Worldwide geographic distribution of OTUs 133 
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Using our OTUs classification, we analyzed the worldwide geographic distribution during the first 134 

seven months of 2020. We began by plotting continental information in the unrooted tree of 135 

the unambiguous complete genomes (Fig. 2.A) and observed some interesting patterns. For 136 

instance, all continents contain all OTUs; however, is relative clearly that most isolates belonging 137 

to OTU_5 come from North America (Fig. 2.A). This approach does not allow us to evaluate 138 

continents with less sequenced genomes (Fig. S4), such as South America, Oceania, and Africa; 139 

also, it is possible that fine differences can be found in the frequency of one OTU with respect 140 

to another in each continent. These differences are not observed at this level of analysis. 141 

To better analyze which were the most prevalent OTUs in each continent, we analyzed all the 142 

complete genomes in the GISAID database (48 776 genomes). In this analysis, we compared the 143 

mean of the frequency of OTUs normalized by cases in each continent of six randomly selected 144 

groups of genomes (see material and methods for more details).  145 

This approach more clearly illustrates that OTU_5 was the most prevalent in North America, 146 

followed by OTUs 2, 3, the least prevalent were OTU_1 and OTU_4 (Fig. 2.B). First genomes in 147 

North America belonged to OTU_1 (Fig. S4). March and April were dominated by OTU_5, but in 148 

June OTU_3 seems to have similar counts to OTU_5 (Fig. S4). OTU_5 has 6 of the 9 high-149 

frequency genomic variations described (all except those in N protein) (Fig. 1.A).  150 

South America presents a greater OTU_3 frequency (Fig. 2.C) that was established in April (Fig. 151 

S4). Unfortunately, few genomes were sequenced in South America in May, June, and July (44 152 

genomes in total in the three months), hindering a correct analysis of frequencies in these 153 

months. Similarly, OTU_3 was most prevalent in Europe, Africa, and Asia (Fig. 2.D, 2.E, and 2.G). 154 

Followed by OTU_2 in Europe and Africa, and by OTU_1 in Asia (Fig. 2.D, 2.E, and 2.G). At the 155 

haplotype level, OTU_3 present mutations in N protein that apparently increase the fitness of 156 

this group in comparison with OTU_3 (OTU_3 does not present mutations in N) (Fig. 1.A). We, 157 

therefore, believe that is important to more deeply study the biological implications of these 158 

mutations in N protein.  159 

Oceania presents a more homogeneous distribution of OTUs, with OTU_1 in slightly higher but 160 

statistically significant frequency among other OTUs (Fig. 2.F). The analysis of Oceania is in part 161 

biased due to the great percentage of genomes without information of position 241 (in the 5` 162 

UTR region), hindering unambiguously classification of several sequenced in Australia. 163 

Worldwide temporal distribution of OTUs 164 

A rooted tree was estimated with the 19 846 genomes data set and labeled by date (Fig. 3.A). 165 

Here we can clearly follow the evolution beginning with OTU_1 at the base of the tree (mostly 166 

labeled with colors that correspond to the first months of the pandemic). Clades, where OTU_2, 167 

4, and 5 are the most prevalent, have intermediate temporal distribution (mostly late February 168 

up to late April). OTU_3 has a similar distribution pattern to OTU_2, 4, and 5 but with more 169 

representatives isolated in May, June, and July.  170 

To gain more insight into these patterns, we estimated the most prevalent OTUs during each 171 

month of the pandemic following similar steps that those done for continents (see material and 172 

methods for details). In this analysis, we did not consider December and January that present 173 

genomes just belonging to OTU_1 mainly from Asia (Fig.S4 and S5). 174 

Analysis using the data of February from North America, Europe, and Asia showed that OTU_1 175 

continues as the most prevalent in the world but with the presence of OTU_2, 3, 4, and 5 (Fig. 176 
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3.B). Analysis by continents showed that during this month Asia and North America still had 177 

higher proportions of OTU_1, but in Europe, a more homogeneous distribution of OTUs 2-5 was 178 

observed (Fig. S4). 179 

In March, when the epicenter of pandemic moves to Europe and North America, but cases were 180 

still appearing in Asia, OTU_2, 3, and 5 increased is prevalence but OTU_1 remained as the most 181 

prevalent during this month (Fig. 3.C). Interestingly OTU_5 remained in relatively low 182 

frequencies (Fig. 3.C). Apparently, this month contains the more homogenous OTUs distribution 183 

in a worldwide context, but with some OTUs more prevalent in each continent (Fig. S4). 184 

During April, OTU_1 continued its downward while OTU_3 and 5 increased its presence (Fig. 3.D) 185 

probably due to its higher representation (compared to March) in several continents such as 186 

South America, North America, and Europe (Fig. S4). During this month, Africa showed a high 187 

prevalence of OTU_2 (Fig. S4). We also witnessed the apparent establishment of OTU_3 in South 188 

America and Europe and OTU_5 in North America (Fig. S4). 189 

May showed the current tendency of OTU_1 declining and OTU_3 increasing; OTU_2 and 5 were 190 

presented in similar frequencies between OTU_1 and 3. OTU_4 maintains its relatively low 191 

frequency (Fig. 3.E). From this month, South America reported very few isolated genomes and 192 

we cannot consider this continent to the analysis of this and follow months (Fig. S4).  193 

The last months analyzed (June and July) presented frequencies distributions very similar to 194 

May, showing OTU_3 as the more frequent currently, but with OTU_2 maintaining its frequency, 195 

unlike OTU_5 that showed lower frequencies in June when compared with May and July. The 196 

current high prevalence of OTU_3 in the world and the observation that also from June in North 197 

America, its frequency is rapidly increasing highlights the importance of tracking and study 198 

mutations in Nucleocapsid that characterize this OTU.  199 

Age, Gender and Patient Status distribution of OTUs 200 

Relating the distribution of haplotypes according to patient information can help determine the 201 

preference of some OTUs for some characteristics of the patients. Thus, we analyze OTUs 202 

distribution according to age, gender, and patient status information available as metadata in 203 

the GISAID database. 204 

Unfortunately, just 33.65 % of the 48 776 genomes analyzed have age and gender information 205 

(Fig. S6) and 4 108 genomes contain some information about the patient status (Fig. S7.B). 206 

Distribution of OTUs between age or gender categories did not show any well-defined 207 

preference. The distribution of OTUs in different categories was very similar (Fig. 4.A, B, and C). 208 

In the case of patient status analysis, we noted that GISAID categories are not well organized 209 

and we had to reclassify the information into four categories, Not Informative, Asymptomatic, 210 

Mild, and Severe (Fig. S7.A). Using this classification scheme, we found that 55.82 % (2 293 211 

genomes) falls in the Not Informative category, 37.22 % (1529 genomes) in the Mild category 212 

and just 2.31 % (95 genomes) and 4.65 % (191 genomes) could be classified as Asymptomatic 213 

and Severe, respectively (Fig. S7.B).  214 

We analyzed the group distribution in the three informative categories (Asymptomatic, Mild and 215 

Severe) and found that isolates from patients with mild symptoms presented a relatively 216 

homogeneous distribution, with percentages between 27.7 % and 12.1 % from all five OTUs. The 217 

severe category was also relatively homogeneous with OTU_1 being the least prevalent (7.9 %). 218 
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Conversely, 75.8 % (72 of the 95) of the genomes classified as Asymptomatic belong to OTU_1 219 

(Fig. 4.D).  220 

However, we have to interpret these observations with extreme caution since most of the 221 

genomes from asymptomatic patients that belong to OTU_1 was isolated in Asia in February 222 

(Fig. S8.A) during a short period of three days (Fig. S8.B). Other genomes in the asymptomatic 223 

category belong to other OTUs and were isolated in different months and different continents 224 

(Fig. S8.B). Thus, we currently require more robust information to obtain a better-defined 225 

distribution of asymptomatic cases, as well as more and better-organized information related 226 

to patient status and characteristics to improve our analyses in OTUs distribution related to this 227 

data. 228 

For this reason, we have created a web page that, in addition to assigning haplotypes to 229 

genomes that users can freely upload and make openly available information on the global 230 

geographic and temporal distribution of SARS-CoV-2 haplotype in an interactive way, allows 231 

researchers from all over the world to contribute voluntarily by offering correctly organized 232 

information on the characteristic of the patient (age, gender, condition (symptoms), 233 

comorbidities) to improve the analysis and monitor the possible appearance of haplotypes with 234 

certain preferences that can help in improving treatments for patients.  235 

Description of the most frequent mutations 236 

C241T 237 

The C241T mutation is present in the 5` UTR region. In coronaviruses, the 5`UTR region is 238 

important for viral transcription11 and packaging12. Computational analysis showed that this 239 

mutation could create a TAR DNA-binding protein 43 (TDP43) binding site13, TDP43 is a well-240 

characterized RNA-binding protein that recognizes UG-rich nucleic acids14 described to regulate 241 

splicing of pre-mRNA, mRNA stability and turnover, mRNA trafficking and can also function as a 242 

transcriptional repressor and protect mRNAs under conditions of stress15. Experimental studies 243 

are necessary to confirm different binding constants of TDP43 for the two variants of 5`UTR and 244 

its in vivo effects.  245 

C1059T 246 

Mutation C1059T lies on Nsp2. Nsp2 does not have a clearly defined function in SARS-CoV-2 247 

since the deletion of Nsp2 from SARS-CoV has little effect on viral titers and so maybe 248 

dispensable for viral replication16. However, Nsp2 from SARS-CoV can interact with prohibitin 1 249 

and 2 (PBH1 and PBH2)17, two proteins involved in several cellular functions including cell cycle 250 

progression18, cell migration19, cellular differentiation20, apoptosis21, and mitochondrial 251 

biogenesis22.  252 

C3037T  253 

Mutation C3037T is a synonymous mutation in Nsp3, therefore, is more difficult to associate this 254 

change to an evolutionary advantage for the virus. This mutation occurred in the third position 255 

of a codon, one possibility is that this, change the frequency of codon usage in humans 256 

increasing expression or any other of the related effects caused by synonymous codon change 257 

(some of them reviewed23). 258 

C3037T causes a codon change from TTC to TTT. TTT is more frequently present in the genome 259 

of SARS-CoV-2 and other related coronaviruses compared to TTC24 but in humans, the codon 260 
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usage of TTT and TTC are similar23. The reason why TTT is more frequent in SARS-CoV-2 is 261 

unknown but seems that is a selection related to SARS-CoV-2 and not by the host. Another 262 

option is simply genetic drift. 263 

C14408T 264 

The C14408T mutation changes P323 to leucine in Nsp12, the RNA-dependent RNA polymerase 265 

of SARS-CoV2 (Fig. 5.A and B). P323, along with P322 end helix 10, and generate a turn preceding 266 

a beta-sheet (Fig. 5.C). Leucine at position 323 could form hydrophobic interactions with the 267 

methyl group of L324 and the aromatic ring of F396 creating a more stable variant of Nsp12 (Fig. 268 

5.E). Protein dynamics simulations showed an increase in stability of the Nsp12 P323L variant25. 269 

In the absence of P322, the mutation P323L would probably be disfavored due to the 270 

flexibilization of the turn at the end of helix 10. Experimental evidence is necessary to confirm 271 

these hypotheses and to evaluate its impact on protein function.  272 

A23403G 273 

An interesting protein to track is spike protein (Fig. 6.A) due to its importance in SARS-CoV-2 274 

infectivity. It has been suggested that the D614G change in the S1 domain that results from the 275 

A23403G mutation generates a more infectious virus, less spike shedding, greater incorporation 276 

in pseudovirions26, and higher viral load7.  277 

How these effects occur at the structural level remains unclear, although some hypotheses have 278 

been put forward: 1) We think that there is no evidence for hydrogen-bond between D614 and 279 

T859 mentioned by Korber et al. 2020, distances between D614 and T859 are too long for a 280 

hydrogen bond (Fig 6.B), 2) distances between Q613 and T859 (Fig. 6.C) could be reduced by 281 

increased flexibility due to D614G substitution, forming a stabilizing hydrogen bond, 3) currently 282 

available structures do not show salt-bridges between D614 and R646 as proposed by Zhang et 283 

al. 2020 (Fig. 6.D).  284 

G25563T 285 

Orf3a (Fig. 7.A) is required for efficient in vitro and in vivo replication in SARS-CoV27, has been 286 

implicated in inflammasome activation28, apoptosis29, necrotic cell death30 and has been 287 

observed in Golgi membranes31 where pH is slightly acidic32. Kern et al. 2020 showed that Orf3a 288 

preferentially transports Ca+2 or K+ ions through a pore (Fig 7.B) of in which one constriction is 289 

formed by the side chain of Q57 (Fig.7.C).  290 

Mutation G25563T produces a Q57H variant of Orf3a (Fig. 7.C) that did not show significant 291 

differences in expression, stability, conductance, selectivity, or gating behavior8. We modeled 292 

Q57H mutation and we did not observe differences in the radius of constriction (Fig. 7.C) formed 293 

by aminoacid 57 but we observed slight differences in the electrostatic surface due to the 294 

ionizability of the histidine side chain (Fig. 7.D). 295 

G28881A, G28882A, G28883C 296 

N protein is formed by two domains and three disordered regions. The central disordered region 297 

named LKR was shown to interact directly with RNA35 and other proteins36, probably through 298 

positive side chains; also, this region contains phosphorylation sites able to modulate the 299 

oligomerization of N protein37.  300 

Mutation G28883C that introduces an arginine at position 204 contributes one more positive 301 

charge to each N protein. Mutations G28881A and G28882A produce a change from arginine to 302 
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lysine, these two positive amino acids probably have a low impact on the overall electrostatic 303 

distribution of N protein. However, change from R to K in this position could change the 304 

probability of phosphorylation in S202 or T205. Using the program NetPhoK38, we observed 305 

different phosphorylation potential in S202 and T205 between G28881-G28882-G28883 (RG) 306 

and A28881-A28882-C28883 (KR) (Fig. S9) 307 

CONCLUDING REMARKS: 308 

Here, we present a complete geographical and temporal worldwide distribution of SARS-CoV-2 309 

haplotypes during the first five months of the pandemic. We identified 9 high-frequency 310 

mutations. These important variations (asserted mainly by their frequencies) need to be tracked 311 

during the pandemic.  312 

Our haplotypes description showed to be phylogenetically consistent, allows us to easily 313 

monitor the spatial and temporal changes of these mutations in a worldwide context. This was 314 

only possible due to the unprecedented worldwide efforts in the genome sequencing of SARS-315 

CoV-2 and the public databases that rapidly share the information. 316 

Our geographical and temporal analysis showed that OTU_3 is currently the more frequent 317 

haplotype circulating in the world. Even in North America that seems to be not the most 318 

frequent in the overall analysis, seems to be that in June it is the most frequent. These results 319 

highlight the importance to study mutations that characterize this haplotype, those in the 320 

nucleocapsid protein R203K and G204R.  321 

Although OTU_1 was the only and the most abundant haplotype at the beginning of the 322 

pandemic, now is isolation is rare. This result shows an adaptation process of SARS-CoV-2 that 323 

is expected. This enunciate does not mean, that SARS-CoV-2 is now more infectious. 324 

In the next months, these haplotypes description will need to be updated, identification of new 325 

haplotypes could be performed by combining the identification of new frequent mutations and 326 

phylogenetic analysis. We will continue monitoring the emergence of mutations that exceed our 327 

proposed cut-off of 0.1-0.9 NRFp and this information will be rapidly shared with the scientific 328 

community through our web. This will also be accompanied by a continuous update of 329 

haplotypes information.  330 

Our weak conclusion related to age, gender, and patient status information is due to the poorly 331 

organized metadata publicly available. Thus, we highlight the importance of correct 332 

management and organization of genomic metadata. Regarding this, we are setting up a web 333 

system where the scientific community can voluntarily share patient information associated 334 

with genomic data in an organized manner. This will allow filling current gaps in the public data 335 

on the correlation of haplotypes (or variants in general) with the severity of the disease, specific 336 

symptoms, comorbidities, among others. 337 

Finally, although more studies need to be performed to increase our knowledge of the biology 338 

of SARS-CoV-2, we were able to make hypotheses about the possible effects of the most 339 

frequent mutations identified. This will help in the development of new studies that will impact 340 

vaccine development, diagnostic test creation, among others. 341 

MATERIAL AND METHODS: 342 

Normalized frequency analysis of each base or gap by genomic position:  343 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2020. ; https://doi.org/10.1101/2020.07.12.199414doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.12.199414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

To perform the mutation frequency analysis, we first downloaded a total of 48 776 complete 344 

and high coverage genomes from the GISAID database (as of July 30th, 2020). This set of genomes 345 

was aligned using MAFFT with FFT-NS-2 strategy and default parameter settings39. Then, we 346 

removed columns that do not correspond to the region from nt 203 to nt 29674, and insertions 347 

respect to the genome EPI_ISL_402125. After that, these regions were aligned using MAFFT with 348 

FFT-NS-2 strategy and default parameter settings39. Subalignments corresponding to genomes 349 

divided by continent-month combinations was extracted and relative frequencies of each base 350 

or gap in each genomic position were calculated (𝑅𝐹𝑝,𝑚−𝑐) using a python script.  These relative 351 

frequencies were multiplied by the number of cases reported in the respective continent-month 352 

combination (𝐶𝑁𝑚−𝑐) obtaining an estimation of the number of cases that present a virus with 353 

a specific base or gap in a specific genomic position (𝑅𝐹𝑝𝐶𝑁𝑚−𝑐). Finally, we added the 354 

𝑅𝐹𝑝𝐶𝑁𝑚−𝑐 of each subalignment and divided it by the total number of cases in the world 355 

( ∑ 𝑅𝐹𝑜𝐶𝑁𝑚−𝑐1𝑚−𝑐 )/𝑇𝐶𝑁𝑤. This procedure allows us to obtain a relative frequency normalized 356 

by cases of each base or gap in each genomic position (𝑁𝑅𝐹𝑝). The number of cases of each 357 

country was obtained from the European Centre for Disease Prevention and Control: 358 

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-359 

distribution-covid-19-cases-worldwide. We used the number of cases of countries with at least 360 

one genome sequenced and deposited in GISAID database. Also, we just consider in the analysis 361 

month-continent combinations with at least 90 genomes sequenced. 362 

Phylogenetic tree construction:  363 

Using an alignment of the 19 486 complete, high coverage genomes without ambiguities, we 364 

estimated a maximum likelihood tree with IQ-TREE 240 using the GTR+F+R2 model of nucleotide 365 

substitution41,42,43, default heuristic search options, ultrafast bootstrapping with 1000 366 

replicates44 and the genome EPI_ISL_408601 as the outgroup. To generate tree figures with 367 

continent or date information by tip we used the maximum likelihood tree and ggtree package 368 

in R45,46. 369 

OTUs determination:  370 

Positions with between 0.1 and 0.9 NRFp were extracted from the alignment of the non-371 

ambiguities data set of 19486 and were associated with the whole-genome rooted tree using 372 

the MSA function from the ggtree package45,46 in R. Then, we visually examined to identify the 373 

major haplotypes based in these positions, designated as OTUs (Operational Taxonomic Units). 374 

Haplotypes identification based in our NRFp calculation reduced the bias of the different number 375 

of genomes sequenced in each continent and each month by integrating the less biased 376 

information of the number of cases. Although, other biases are more difficult, if possible, to 377 

reduce or eliminate. 378 

Analysis of OTUs geographical distribution:  379 

In this analysis, we randomly separate the genomes into 6 groups of 8 129 genomes each and 380 

we analyzed them independently. After that, genomes in each sample was divided by continents 381 

and by months. In these divisions, OTUs relative frequencies were calculated for each OTU in 382 

each month-continent combination (𝑂𝑛𝐹𝑚−𝑐). Then, we multiplied these (𝑂𝑛𝐹𝑚−𝑐) frequencies 383 

by the number of cases corresponding to the respective month-continent (𝐶𝑁𝑚−𝑐) to obtain an 384 

estimation of the number of cases caused by a specific OTU in a respective month-continent 385 

(𝑂𝑛𝐶𝑁𝑚−𝑐). After, these products were grouped by continents, and those from the same 386 

continent were added and then divided by the total number of cases in the continent analyzed 387 
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( ∑ 𝑂𝑛𝐶𝑁𝑚−𝑐1𝑚−𝑐1 )/𝑇𝐶𝑁𝑐1. Thus, obtaining a frequency normalized by cases for each OTU in 388 

each continent. Finally, following this procedure in each sample, we statistically compared the 389 

mean of those six samples using the package “ggpubr” in R with the non-parametric Kruskal-390 

Wallis test, and pairwise statistical differences were calculated using non-parametric Wilcoxon 391 

test from the same R package. The number of cases of each country was obtained from the 392 

European Centre for Disease Prevention and Control: 393 

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-394 

distribution-covid-19-cases-worldwide. We used the number of cases of countries with at least 395 

one genome sequenced and deposited in GISAID database. Also, we just consider in the analysis 396 

month-continent combinations with at least 90 genomes sequenced. 397 

Analysis of OTUs temporal distribution:  398 

Following a similar procedure used in the geographical analysis, we now grouped the products 399 

𝑂𝑛𝐶𝑁𝑚−𝑐  by months, added them, and then divided by the total number of cases in the analyzed 400 

month ( ∑ 𝑂𝑛𝐶𝑁𝑚1−𝑐𝑚1−𝑐 )/𝑇𝐶𝑁𝑚1. As in the geographical analysis, the mean of the six 401 

samples was statistically compared using the same procedures and with exactly the same 402 

consideration of month-continent combinations. 403 

Analysis of age, gender, and patient status with OTUs distribution:  404 

4108 complete and high coverage genomes with patient status information were downloaded 405 

from the GISAID database (as of 30th July) and classified in OTUs using python scripts. Patient 406 

status information from GISAID was recategorized in four disease levels: No Informative, 407 

Asymptomatic, Mild, and Severe. A table showing the GISAID patient status categorize 408 

comprising our categories can be found in Figure S6.A. We calculate the relative and absolute 409 

frequency of OTUs in each patient status category. Also, using all the available information on 410 

gender and age in the 48 776 genomes, we calculated the relative and absolute frequency of 411 

OTUs by age and gender. 412 

DATA AVAILABILITY: 413 

The data that support the findings of this study are available on request from the corresponding 414 

author upon reasonable request. 415 
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Figure 1. Five haplotypes (or OTUs) based in nine positions can classify 96.5 % of the 

genomes. A) Table showing haplotype of each OTU, regions, and aminoacids changes caused 

by these mutations. B) Rooted tree of 19486 SARS-CoV-2 complete and non-ambiguous 

genomes associated with an alignment of nine genomic positions (241, 1059, 3037, 14408, 

23403, 25563, 28881, 28882, 28883) showing a good correlation between haplotypes (OTUs) 

based in these nine positions. Tips of the tree where colored based in the OTU. C) Bar diagram 

showing OTUs distribution of the genomes (0 correspond to unclassified genomes).   

Figure 2. By cases normalized continent distribution of OTUs during seven months of the 

pandemic. A) Unrooted tree of complete non-ambiguous genomes, tips were colored 

according to OTUs, and points in each tip were colored according to the continent. B-G) 

Boxplots of normalized relative frequencies of OTUs in each continent (B, North America; C, 

South America; D, Europe; E, Asia; F, Oceania; G, Africa).  

Figure 3. By cases normalized temporal distribution of OTUs showed OTU_3 as the 

currently most prevalent. A) Rooted tree of complete non-ambiguous genomes showing 

temporal distribution. Tips were colored by OTUs and points in each tip were colored 

according to the isolation date. B-E) Boxplot of OTUs distribution in each month (B, February; 

C, March; D, April; E, May; F, June; G, July). 

Figure 4. Age, gender, and patient status distribution by OTUs do not show preferences for 

patient characteristics. A) Relative and absolute frequencies of OTUs distribution by age. B) 

Age distribution was grouped by ranges and relative and absolutes frequency by OTUs is 

showed. C) OTUs distribution by gender. D) Relative and absolute frequencies of OTUs by 

patient status categories.   

Figure 5. P323L could impact the stability of Nsp12 without disturbing its overall structure. 

A) Structure of RNA-dependent RNA polymerase complex (PDB ID: 6YYT). Chains (Nsp12, 

Nsp7, Nsp8, RNA) are distinguished by colors. Helix 10, Beta-sheet 3, Turn 10-3, and P323 

also are differentially colored. B) Structure in A rotated 90 degrees. C) Zoom of the red box 

in B showed P322 and P323 in the center of Turn 10-3. D) Turn 10-3 with side chains of P323, 

L324, and F396 in sphere representation to highlight the distance between side chains of 

P323 and L324. E) P323 in D was computationally replaced by L323. Now, distances between 

the methyl group of leucine are shorter with L323.  

Figure 6. Structural hypotheses about D614G mutation in Spike protein. A) Structure of the 

open state of Spike trimer (PDB ID: 6YVB) colored by domains. B) Distances between side 

chains of two possible rotamers of D614 (1`-D614 and 2`-D614) and T859. Except for 1`-D614 

and carbonyl group of T859, the other distances seems to be large to form a hydrogen bond. 

C) Distances between side chains Q613 and T859. These distances are also large to form 

hydrogen bonds. D) R646 points to the opposite side of D614 showing that there is no salt 

bridge. B, C, and D show electron density maps of the side chains of the labeled residues. 

Figure 7. Orf3a Q57H does not modify pore constriction distances but electrostatics 

distribution. A) Structure of the Orf3a dimer (PDB ID: 6XDC) colored by domains. The right 

of A shows the same structure but in an upper view. B) Orf3a showing the central pore, in 

the red box the section corresponding to the fifth pore constriction. C) zoom of the red box 

in B, above we showed Q and H variants superposed. Below we show a transversal cut of the 

pore near to the fifth. The pore radius in two variants is  similar. D) Electrostatic surface maps 

of Q57 and H57 variants in two different pHs (7 and 6). Residues Q57 and H57 are shown in 

stick representations to point the fifth constriction. We show a slightly more positive region 

at the height of the fifth constriction. 
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