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ABSTRACT: 4 

Since the identification of SARS-CoV-2, a large number of genomes have been sequenced with 5 

unprecedented speed around the world. This marks a unique opportunity to analyze virus 6 

spreading and evolution in a worldwide context. Currently, there is not a useful haplotype 7 

description to help to track important and globally scattered mutations. Also, differences in the 8 

number of sequenced genomes between countries and/or months make it difficult to identify 9 

the emergence of haplotypes in regions where few genomes are sequenced but a large number 10 

of cases are reported. We propose an approach based on the normalization by COVID-19 cases 11 

of relative frequencies of mutations using all the available data to identify major haplotypes. 12 

Furthermore, we can use a similar normalization approach to tracking the temporal and 13 

geographic distribution of haplotypes in the world. Using 171 461 genomes, we identify five 14 

major haplotypes (OTUs) based on nine high-frequency mutations. OTU_3 characterized by 15 

mutations R203K and G204R is currently the most frequent haplotype circulating in four of the 16 

six continents analyzed. On the other hand, during almost all months analyzed, OTU_5 17 

characterized by the mutation T85I in nsp2 is the most frequent in North America. Recently 18 

(since September), OTU_2 has been established as the most frequent in Europe. OTU_1, the 19 

ancestor haplotype is near to extinction showed by its low number of isolations since May. Also, 20 

we analyzed whether age, gender, or patient status is more related to a specific OTU. We did 21 

not find OTU's preference for any age group, gender, or patient status. Finally, we discuss 22 

structural and functional hypotheses in the most frequently identified mutations, none of those 23 

mutations show a clear effect on the transmissibility or pathogenicity. 24 

INTRODUCTION: 25 

COVID-19 was declared a pandemic by the World Health Organization on March 11th, 2020 26 

(Cuccinota and Vanelli, 2020), with around 71 million cases and 1.6 million deaths around the 27 

world (December 14th) (WHO, 2020), quickly becoming the most important health concern in 28 

the world. Several efforts to produce vaccines, drugs, and diagnostic tests to help in the fight 29 

against SARS-CoV-2 are being mounted in a large number of laboratories all around the world.  30 

Since the publication on January 24th of the first complete genome sequence of SARS-CoV-2 from 31 

China (Zhu et al. 2020), thousands of genomes have been sequenced in a great number of 32 

countries on all 5 continents and were made available in several databases. This marks a 33 

milestone in scientific history and gives us an unprecedented opportunity to study how a specific 34 

virus evolves in a worldwide context. As of November 30th, 2020, the GISAID database (Shu et 35 

al. 2017) contained 171 461 genomes with at least 29 000 sequenced bases.   36 

Several analyses have been performed to identify SARS-CoV-2 variants around the world, most 37 

of them on a particular group of genomes using limited datasets (For example, Saha et al. 2020, 38 

Maitra et al. 2020, Castillo et al. 2020, Franco-Muñoz et al. 2020). In March 2020 two major 39 

lineages were proposed based on position 8782 and 28144 using a data set of 103 genomes 40 

(Tang et al. 2020) which was followed by a particularly interesting proposal that identified the 41 

same major lineages (named A and B) and other sublineages (Rambaut et al. 2020).  42 
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To complement these current classification systems, we consider that haplotypes description 43 

and nomenclature could help to better track important mutations that are currently circulating 44 

in the world. Identification of SARS-CoV-2 haplotypes aids in understanding the evolution of the 45 

virus and may improve our efforts to control the disease.  46 

To perform a reasonable analysis of the worldwide temporal and geographical distribution of 47 

SARS-CoV-2 haplotypes, we need to take into account the differences in the number of 48 

sequenced genomes in months and countries or continents. Thus, we first used a data set of 171 49 

461 complete genomes to estimate the worldwide relative frequency of nucleotides in each 50 

SARS-CoV-2 genomic position and found nine mutations with respect to the reference genome 51 

EPI_ISL_402125 with normalized relative frequencies (NRFp) representing to be present in more 52 

than 9 500 000 COVID-19 cases. After that, using a total of 109 953 complete genomes without 53 

ambiguous nucleotides from GISAID we performed a phylogenetic analysis and correlated the 54 

major branches with SARS-CoV-2 variants which can be classified into five haplotypes or 55 

Operational Taxonomic Units (OTUs) based on the distribution of the nine identified nucleotide 56 

positions in our NRFp analysis. After that, we analyzed the geographical and temporal worldwide 57 

distribution of OTUs normalized by the number of COVID-19 cases. Also, we attempt to correlate 58 

these OTUs with patient status, age, and gender information. Finally, we discuss the current 59 

hypothesis of the most frequent mutations on protein structure and function. All this 60 

information will be continuously updated in our publicly available web-page 61 

(http://sarscov2haplofinder.urp.edu.pe/).  62 

RESULTS AND DISCUSSION: 63 

Mutations frequency analysis 64 

The GISAID database contains 171 461 genomes with at least 29 000 sequenced bases; from 65 

these, 109 953 genomes do not present ambiguities (as of November 30th). With an alignment 66 

of the 171 461 genomes, we performed a normalized relative frequency analysis of each 67 

nucleotide in each genomic position (NRFp) (see material and methods for details). This 68 

normalization was performed to detect relevant mutations that could appear in regions where 69 

few genomes were sequenced (Fig. S1 shows that no correlation exists between the number of 70 

cases and the number of sequenced genomes). Using this NRFp analysis, we identified nine 71 

positions estimated to be in more than 9 500 000 COVID-19 cases (more than 0.18 NRFp) (Fig. 72 

1.A and S2.A) plus many other mutations with NRFp between 0.00-0.18 (Fig. S2.B and S2.C).  73 

The nine most frequent mutations (NRFp greater than 0.18) comprise seven non-synonymous 74 

mutations, one synonymous mutation, and one mutation in the 5'-UTR region of the SARS-CoV-75 

2 genome (Fig. 1.A). The three consecutive mutations G28881A, G28882A, and G28883C falls at 76 

the 5` ends of the forward primer of “China-CDC-N” (Table. S1). Because these three mutations 77 

are at the 5` ends, it is unlikely that those mutations greatly affect amplification efficiency. The 78 

other six mutations do not fall within regions used by qRT-PCR diagnostic kits (Table. S1). All 79 

these nine mutations have been already identified in other studies (Korber et al. 2020, Kern et 80 

al. 2020, Pachetti et al. 2020, Yin et al. 2020), although with different frequencies mainly due to 81 

the absence of normalization. 82 

OTUs identification 83 

After NRFp analysis, we estimated a maximum likelihood tree using the whole-genome 84 

alignment of the 109 953 complete genomes without ambiguities. Then, we associated the 85 

branches of the tree with an alignment of the nine positions (241, 1059, 3037, 14408, 23403, 86 
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25563, 28881, 28882, 28883). We noted that combinations of those nine positions represent 87 

five well-defined groups in the tree (Fig. 1.B). Using these combinations, we defined 5 88 

haplotypes that allow us to classify more than 97 % of the analyzed genomes (Fig. 1.C), a great 89 

part of the remaining not classified genomes are due to the absence of sequencing 90 

corresponding to position 241. We named these haplotypes Operational Taxonomic Units 91 

(OTUs).  92 

OTU_1 was considered the ancestor haplotype due to its identity with the first isolated genomes 93 

(EPI_ISL_402125 and EPI_ISL_406801) with characteristic C241, C3037, C14408, and A23403. 94 

This OTU_1 comprised genomes with T or C in position 8782 and C or T in 28144. In other 95 

analyses, these mutations divide SARS-CoV-2 strains into two lineages. For instance; at the 96 

beginning of the pandemic, Tang et al. (2020) showed linkage disequilibrium between those 97 

positions and named them as S and L lineages. Rambaut et al. (2020) used these positions to 98 

discriminate between their proposed major lineages A and B. Those mutations did not reach the 99 

estimated number of 9 500 000 COVID-19 cases, indicating that a small number of these 100 

genomes emerged during the pandemic in comparison with other variations.  101 

A SARS-CoV-2 isolated on January 25th in Australia is at present the first belonging to OTU_2 102 

(Fig. S3). Showing simultaneously four mutations different to OTU_1 (C241T, C3037T, C14408T, 103 

and A23403G), OTU_2 is the first group containing the D614G and the P323L mutations in the 104 

spike and nsp12 protein, respectively. Korber et al. (2020) analyzed the temporal and geographic 105 

distribution of this mutation separating SARS-CoV-2 into two groups, those with D614 and those 106 

with G614. Tomaszewski et al. (2020) analyzed the entropy of variation of these two mutations 107 

(D614G and P323L) until May. Apparently, OTU_2 is the ancestor of two other OTUs (OTU_3 and 108 

OTU_4), as shown in the maximum likelihood tree (Fig. 1.B). OTU_2 is divided into two major 109 

branches, one that originates OTU_3 and another more recent branch characteristic from 110 

Europe (see below, worldwide geographical distribution of OTUs). 111 

On February 16th in the United Kingdom, a SARS-CoV-2 with three adjacent mutations 112 

(G28881A, G28882A, and G28883C) (Fig. S3) in N protein was isolated. These three mutations 113 

(together with those that characterized OTU_2) define OTU_3. The maximum likelihood tree 114 

shows that OTU_4 comes from OTU_2. OTU_4 does not present mutations in N protein; instead, 115 

it presents a variation in Orf3a (G25563T). Finally, OTU_5 presents all the mutations of OTU_4 116 

plus one nsp2 mutation (C1059T).  117 

These nine mutations have been separately described in other reports but, to our knowledge, 118 

they have not yet used been used together to classify SARS-CoV-2 haplotypes during the 119 

pandemic. The change of relative frequencies of those mutations analyzed individually showed 120 

that just in few cases, mutations that define haplotypes described here appear independently 121 

(Fig. S4). For example, the four mutations that define OTU_2 (C241T, C30307T, C14408T and 122 

A23403G) rarely had been described separately and similarly with mutations that characterize 123 

OTU_3 (G28881A, G28882A, G28883C) (Fig. S4). Thus, in this case analysis of haplotypes will be 124 

identical results that if we analyzed those mutations independently.  125 

The fact that we were able to classify more than 97 % of the complete genomes data set (Fig. 126 

1.C) shows that, at least to the present date, this classification system covers almost all the 127 

currently known genomic information around the world. Also, most of the unclassified tips 128 

appear within a clade allowing us to easily establish their phylogenetic relationships to a 129 

haplotype. Thus, at the moment this system can be of practical use to analyze the geographical 130 

and temporal distribution of haplotypes during these eleven months of 2020. For convenience 131 
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we presented table S2 that contains the relation between our identified OTUs and their 132 

relationships with pangolin lineages (Rambaut et al. 2020) and GISAID clades (Shu et al. 2017). 133 

Worldwide geographic distribution of OTUs 134 

Using our OTUs classification, we analyzed the worldwide geographic distribution during eleven 135 

months of 2020. We began by plotting continental information in the ML tree of the 136 

unambiguous complete genomes (Fig. 2.A) and observed some interesting patterns. For 137 

instance, all continents contain all OTUs; also, is relatively clear that most isolates belonging to 138 

OTU_5 come from North America (Fig. 2.A). Furthermore, the biggest branch of OTU_2 is almost 139 

exclusively filled by genomes from Europe, is interesting to note that this branch also contains 140 

genomes isolated in the last months analyzed showing its relatively recent appearance (see 141 

below, the worldwide temporal distribution of OTUs). However, this approach does not allow us 142 

to evaluate continents with less sequenced genomes (Fig. S5.A), such as South America, Oceania, 143 

and Africa. Also, it is possible that fine differences can be found in the frequency of one OTU 144 

concerning another in each continent. These differences are not observed at this level of 145 

analysis. 146 

To better analyze which were the most prevalent OTUs in each continent, we analyzed all the 147 

complete genomes in the GISAID database (171 461 genomes). In this analysis, we compared 148 

the mean of the frequency of OTUs normalized by cases in each continent of six randomly 149 

selected groups of genomes (see material and methods for more details).  150 

This approach more clearly illustrates that OTU_5 was the most prevalent in North America, 151 

followed by OTU_2 and OTU_3, the least prevalent were OTU_1 and OTU_4 (Fig. 2.B). The first 152 

genomes in North America belonged to OTU_1 (Fig. S6). Since March, North America was 153 

dominated by OTU_5 (Fig. S6). OTU_5 has six of the nine high-frequency genomic variations 154 

described (all except those in N protein) (Fig. 1.A).  155 

South America presents a greater OTU_3 frequency (Fig. 2.C) that was established in April (Fig. 156 

S5). This observation correlates well with studies focused in South America that detect the 157 

establishment of D614G mutation at the end of March (mutation presents in OTU_2, OTU_3, 158 

OTU_4 and OTU_5) and a high frequency of pangolin lineage B1.1 in Chile and in general in South 159 

America that contains the same characteristics mutations that our OTU_3 (Castillo et al. 2020, 160 

Franco-Muñoz et al. 2020). Unfortunately, few genomes are reported in South America for 161 

September, October, and November (24 genomes in total in the three months), hindering a 162 

correct analysis of frequencies in these months. Similarly, OTU_3 was most prevalent in Asia, 163 

Oceania, and Africa (Fig. 2.E, 2.F, and 2.G). With other OTUs with least than 0.3 NRFp (Fig. 2.E, 164 

2.F, and 2.G). Wu et al. 2020 reports high incidence of mutations that define OTU_3 in 165 

Bangladesh, Oman, Russia, Australia and Latvia. At the haplotype level, OTU_3 presents 166 

mutations in the N protein that apparently increases the fitness of this group in comparison with 167 

OTU_2 (OTU_2 does not present mutations in N) (Fig. 1.A). Thus, four of the six continents 168 

analyzed presents an estimation of more than 50 % COVID-19 cases with a SARS-CoV-2 with the 169 

three mutations in the N protein. We, therefore, believe that is important to more deeply study 170 

if exists positive fitness implications for these mutations.  171 

Europe presents an interesting pattern, it follows a similar pattern to South America, Asia, 172 

Oceania, and Africa until July (Fig. S6), with OTU_3 as the predominant. Then, in August, OTU_2 173 

increased its frequency, and since September OTU_2 is the most prevalent in Europe. This could 174 

be caused by the appearance of mutations in the background of OTU_2 (such as those described 175 
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in Justo et al. 2020) with greater fitness than those of OTU_3 or due to other effects (i.e., founder 176 

effects) after the relaxation of lockdown policies. 177 

Worldwide temporal distribution of OTUs 178 

A rooted tree was estimated with the 109 953 genomes data set and labeled by date (Fig. 3.A). 179 

Here, we can observe that OTU_1 is mostly labeled with colors that correspond to the first 180 

months of the pandemic, expected due to its relation with the first genomes isolated. Clades, 181 

where OTU_2, OTU_3, OTU_4, and OTU_5 are the most prevalent, have similar distributions, 182 

with representatives mostly isolated since April. The biggest branch of OTU_2 presents a very 183 

specific temporal distribution with almost all the genomes isolated from September to 184 

November.  185 

To gain more insight into these patterns, we estimated the most prevalent OTUs in the world 186 

during each month of the pandemic following similar steps that those done for continents (see 187 

material and methods for details). In this analysis, we did not consider December and January 188 

that present all genomes except one belonging to OTU_1 and mainly from Asia (Fig.S6 and S7). 189 

Analysis using the data of February from North America, Europe, and Asia showed that OTU_1 190 

continued as the most prevalent in the world but with first isolations of OTU_2, OTU_3, OTU_4, 191 

and OTU_5 (Fig. 3.B). Analysis by continents showed that during this month Asia and North 192 

America still had higher proportions of OTU_1, but in Europe, a more homogeneous distribution 193 

of OTU_1, OTU_2 and OTU_3 was observed (Fig. S6). 194 

In March, when the epicenter of the pandemic moved to Europe and North America, but cases 195 

were still appearing in Asia, OTU_2, OTU_3, and OTU_5 increased their prevalence but OTU_1 196 

remained slightly as the most prevalent during this month (Fig. 3.C). Interestingly, OTU_4 197 

remained in relatively low frequencies (Fig. 3.C). This month contains the more homogenous 198 

OTUs distribution in a worldwide context, but with some OTUs more prevalent in each continent 199 

(Fig. S6). 200 

During April, OTU_1 continued its downward while OTU_3 and OTU_5 increased their presence 201 

(Fig. 3.D) probably due to its higher representation (compared to March) in several continents 202 

such as South America, North America, and Europe (Fig. S6). During this month, Africa showed 203 

a high prevalence of OTU_2 (Fig. S6). We also witnessed the establishment of OTU_3 in South 204 

America and OTU_5 in North America (Fig. S6). 205 

May, June, and July showed a similar pattern, with OTU_3 as the most prevalent due to its high 206 

frequencies in South America, Oceania, and Europe (Fig. 3.E, 3.F, 3.G, and S6). North America 207 

maintains OTU_5 as the most prevalent and Oceania showed a relatively homogenous pattern. 208 

During these months, OTU_2 had intermediate frequencies in all continents resulting in 209 

intermediate frequencies all over the world (Fig. 3.E, 3.F, 3.G, and S6). OTU_1 and OTU_4 210 

representatives were reported during these months but with very low frequencies.    211 

In August and September, we detected a slightly higher frequency of OTU_4 compared to the 212 

previous months (Fig. 3H and 3I) with no significant differences with OTU_5. In September in 213 

Europe, OTU_3 stopped being the most frequent. Instead, OTU_2 was the most frequent in this 214 

month in Europe (Fig. S6). In October and November, OTU_2 has increased its frequency rapidly 215 

(Fig. 3.J and 3.H) mainly due to a large number of cases and reported genomes belonging to this 216 

OTU_2 in Europe in October and November. Due to the few genomes currently available in 217 
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GISAID for all continents, except for Europe and North America during November, just these two 218 

continents were analyzed in the last month.  219 

Also, it is important to mention that, there are not many enough genomes reported for 220 

September, October, and November for South America, so during these months OTUs 221 

frequencies of this continent were not considered.  222 

Age, Gender and Patient Status relation with OTUs 223 

Relating the distribution of haplotypes according to patient information can help to determine 224 

the preference of some OTUs for some characteristics of the patients. Thus, we analyze OTUs 225 

distribution according to age, gender, and patient status information available as metadata in 226 

the GISAID database. 227 

Unfortunately, just 26.11 % of the 171 461 genomes analyzed have age and gender information 228 

(Fig. S8). In the case of patient status information, we noted that GISAID categories are not well 229 

organized and we had to reclassify the information into three categories; Asymptomatic, Mild, 230 

and Severe (Fig. S9.A). Using this classification scheme, we found that 99.14 % (169 979 231 

genomes) were not informative, 0.1 % (175 genomes) falls in the Asymptomatic category, 0.33 232 

% (562 genomes) in the Mild category and 0.43 % (745 genomes) could be classified as Severe 233 

(Fig. S9.B). 234 

Using this limited data, we attempt to determine whether any OTU causes an asymptomatic, 235 

mild, or severe infection more frequently. We look for significant differences between the 236 

relative frequencies of the OTUs in total samples and samples with known patient information. 237 

If we found differences, it would mean that some OTU could be more or less related to one type 238 

of infection. Here, we analyzed just the month-continent combination with at least 45 genomes 239 

with information of one type of infection and at least two times of genomes with any 240 

information (for example Asia – February has 58 Asymptomatic genomes and 613 total 241 

genomes). Ten combinations meet these criteria, one in the asymptomatic category, one in the 242 

mild, and eight in the severe. None of the OTUs frequencies in samples with patient status 243 

information were significative different from the frequencies in the total population of the 244 

month-continent analyzed (Fig. 4). Thus, we concluded that none of the OTUs are related to an 245 

asymptomatic, mild, or severe COVID-19, at least in the populations analyzed. 246 

Age information was also analyzed in the same manner. In general, although some differences 247 

were detected as significant, those were not consistently maintained between different 248 

populations analyzed (Fig. S10.A-J). Furthermore, none difference reaches a p-value less than 249 

0.01 (Except for OTU_4 in North America). Since heterogeneity between countries information 250 

is possible, we think that these small differences are more likely due to these heterogeneities 251 

and we cannot strongly conclude that some age groups are more related to a specific OTU. 252 

Additionally, a strong positive correlation between total relative frequencies of OTUs and 253 

relative frequencies by age groups in month-continent was found, meaning that those two 254 

frequencies are similar in most of the analyzed populations (Fig. S10.K)    255 

A similar approach was done using gender information, but in this case, due to the greater 256 

quantity of information, we used more restrictive filter parameters. Thus, we selected country-257 

month combinations with at least 250 genomes with male or female information and two times 258 

total genomes information (for instance USA – March has 2079 genomes from female patients 259 

and 9287 genomes with or without gender information). Again, we did not find OTU's preference 260 

for a specific gender (Fig. S11). 261 
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Description of the most frequent mutations 262 

C241T 263 

The C241T mutation is present in the 5`-UTR region. In coronaviruses, the 5`-UTR region is 264 

important for viral transcription (Madhugiri et al. 2014) and packaging (Masters. 2019). 265 

Computational analysis showed that this mutation could create a TAR DNA-binding protein 43 266 

(TDP43) binding site (Mukherjee and Goswami. 2020), TDP43 is a well-characterized RNA-267 

binding protein that recognizes UG-rich nucleic acids (Kuo et al. 2014) described to regulate 268 

splicing of pre-mRNA, mRNA stability and turnover, mRNA trafficking and can also function as a 269 

transcriptional repressor and protect mRNAs under conditions of stress (Lee et al. 2011). 270 

Experimental studies are necessary to confirm different binding constants of TDP43 for the two 271 

variants of 5`-UTR and its in vivo effects.  272 

C1059T 273 

Mutation C1059T lies on Nsp2. Nsp2 does not have a clearly defined function in SARS-CoV-2 274 

since the deletion of Nsp2 from SARS-CoV has little effect on viral titers and so maybe 275 

dispensable for viral replication (Graham et al. 2005). However, Nsp2 from SARS-CoV can 276 

interact with prohibitin 1 and 2 (PBH1 and PBH2) (Cornillez-Ty et al. 2009), two proteins involved 277 

in several cellular functions including cell cycle progression (Wang et al. 1999), cell migration 278 

(Rajalingam et al. 2005), cellular differentiation (Sun et al. 2004), apoptosis (Fusaro et al. 2003), 279 

and mitochondrial biogenesis (Merkwirth and Langer. 2008).  280 

C3037T  281 

Mutation C3037T is a synonymous mutation in Nsp3; therefore, it is more difficult to associate 282 

this change with an evolutionary advantage for the virus. This mutation occurred in the third 283 

position of a codon. One possibility is that this changes the frequency of codon usage in humans 284 

increasing expression or any other of the related effects caused by synonymous codon change 285 

(some of them reviewed in Mauro and Chapel. 2014). 286 

C3037T causes a codon change from TTC to TTT. TTT is more frequently present in the genome 287 

of SARS-CoV-2 and other related coronaviruses compared to TTC (Gu et al. 2014) but in humans, 288 

the codon usage of TTT and TTC are similar (Mauro and Chapel. 2014). The reason why TTT is 289 

more frequent in SARS-CoV-2 is unknown but seems to be a selection related to SARS-CoV-2 and 290 

not to the host. Another option is genetic drift. 291 

C14408T 292 

The C14408T mutation changes P323 to leucine in Nsp12, the RNA-dependent RNA polymerase 293 

of SARS-CoV2 (Fig. S12.A and B). P323 together with P322 ends helix 10 and generate a turn that 294 

is followed by a beta-sheet (Fig. S12.C). Leucine at position 323 could form hydrophobic 295 

interactions with the methyl group of L324 and the aromatic ring of F396 creating a more stable 296 

variant of Nsp12 (Fig. S12.E). In concordance with this, protein dynamics simulations showed a 297 

stability increase of the Nsp12 P323L variant (Chand and Azad. 2020). In the absence of P322, 298 

the mutation P323L would probably be disfavored due to the flexibilization of the turn at the 299 

end of helix 10. Experimental evidence is necessary to confirm these hypotheses and to evaluate 300 

their impact on protein function.  301 

A23403G 302 
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An interesting protein to track is spike protein (Fig. S13.A) due to its importance in SARS-CoV-2 303 

infectivity. It has been suggested that the D614G change in the S1 domain that results from the 304 

A23403G mutation generates a more infectious virus, less spike shedding, greater incorporation 305 

in pseudovirions (Zhang et al. 2020), and higher viral load (Korber et al. 2020).  306 

How these effects occur at the structural level remains unclear, although some hypotheses have 307 

been put forward: 1) We think that there is no evidence for hydrogen-bond between D614 and 308 

T859 mentioned by Korber et al. 2020, distances between D614 and T859 are too long for a 309 

hydrogen bond (Fig S13.B), 2) distances between Q613 and T859 (Fig. S13.C) could be reduced 310 

by increased flexibility due to D614G substitution, forming a stabilizing hydrogen bond, 3) 311 

currently available structures do not show salt-bridges between D614 and R646 as proposed by 312 

Zhang et al. 2020 (Fig. S13.D).  313 

G25563T 314 

Orf3a (Fig. S14.A) is required for efficient in vitro and in vivo replication in SARS-CoV (Castaño-315 

Rodriguez et al. 2018). It has been implicated in inflammasome activation (Siu et al. 2019), 316 

apoptosis (Chan et al. 2009), necrotic cell death (Yue et al. 2018) and has been observed in Golgi 317 

membranes (Padhan et al. 2007) where pH is slightly acidic (Griffiths and Simons. 1986). Kern et 318 

al. 2020 showed that Orf3a preferentially transports Ca+2 or K+ ions through a pore (Fig S14.B). 319 

Some constrictions were described in this pore, one of them formed by the side chain of Q57 320 

(Fig. S14.C).  321 

Mutation G25563T produces the Q57H variant of Orf3a (Fig. S14.C). It did not show significant 322 

differences in expression, stability, conductance, selectivity, or gating behavior (Kern et al. 323 

2020). We modeled Q57H mutation and we did not observe differences in the radius of 324 

constriction (Fig. S14.C) formed by residue 57 but we observed slight differences in the 325 

electrostatic surface due to the ionizability of the histidine side chain (Fig. S14.D). 326 

G28881A, G28882A, G28883C 327 

N protein is formed by two domains and three disordered regions. The central disordered region 328 

named LKR was shown to interact directly with RNA (Chang et al. 2009) and other proteins (Luo 329 

et al. 2005), probably through positive side chains; also, this region contains phosphorylation 330 

sites able to modulate the oligomerization of N protein (Chang et al. 2013).  331 

Mutation G28883C that changes a glycine for arginine at position 204 contributes one more 332 

positive charge to each N protein. Mutations G28881A and G28882A produce a change from 333 

arginine to lysine. These two positive amino acids probably have a low impact on the overall 334 

electrostatic distribution of N protein. However, change from R to K could alter the probability 335 

of phosphorylation in S202 or T205. Using the program NetPhosK (Blom et al. 2004), we 336 

observed different phosphorylation potential in S202 and T205 between G28881-G28882-337 

G28883 (RG) and A28881-A28882-C28883 (KR) (Fig. S15). Other authors proposed that these 338 

mutations could change the molecular flexibility of N protein (Rahman et al. 2020). 339 

CONCLUDING REMARKS: 340 

Here, we present a complete geographical and temporal worldwide distribution of SARS-CoV-2 341 

haplotypes from December 2019 to November 2020. We identified nine high-frequency 342 

mutations. These important variations (asserted mainly by their frequencies) need to be tracked 343 

during the pandemic.  344 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.07.12.199414doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.12.199414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Our haplotypes description showed to be phylogenetically consistent, allowing us to easily 345 

monitor the spatial and temporal changes of these mutations in a worldwide context. This was 346 

only possible due to the unprecedented worldwide efforts in the genome sequencing of SARS-347 

CoV-2 and the public databases that rapidly share the information. 348 

Our geographical and temporal analysis showed that OTU_3 is currently the more frequent 349 

haplotype circulating in four of six continents (Africa, Asia, Oceania, and South America), result 350 

that is in accordance with other studies (Mercatelli et al. 2020) that showed GISAID clade GR 351 

(that corresponds to our OTU_3) as the most prevalent in the world; however, they did not 352 

report the currently predominance of OTU_2 in Europe (clade G for GISAID). Intriguingly, OTU_3 353 

never reached frequencies higher than OTU_5 in North America. In Europe, currently and 354 

different from the tendency from May to July, OTU_2 is now much more commonly isolated 355 

than OTU_3. Why mutations R203K and G204R have such frequencies in most of the continents, 356 

why in North America those mutations were not so successful and why currently Europe is 357 

dominated by OTU_2 are open questions. Some studies showed that at the moment there are 358 

not mutations that significative increase the fitness of the SARS-CoV-2 (Rasmussen et al. 2020, 359 

van Dorp et al. 2020).  360 

Although OTU_1 was the only and the most abundant haplotype at the beginning of the 361 

pandemic, now its isolation is rare. This result shows an expected adaptation process of SARS-362 

CoV-2. This enunciate does not mean that SARS-CoV-2 is now more infectious or more 363 

transmissible. 364 

In the next months, these haplotypes description will need to be updated, identification of new 365 

haplotypes could be performed by combining the identification of new frequent mutations and 366 

phylogenetic inference. We will continue monitoring the emergence of mutations that exceed 367 

our proposed cut-off of 0.18 NRFp and this information will be rapidly shared with the scientific 368 

community through our web page (http://sarscov2haplofinder.urp.edu.pe/). This will also be 369 

accompanied by a continuous update of haplotypes information. During the peer-review 370 

process o this manuscript, we identify several other mutations near to the cut-off proposed that 371 

were reported in Justo et al. 2020. 372 

Using information of specific populations we showed no preference for patient's features (age, 373 

gender, or type of infection) by OTUs. Thus, mutations that define those haplotypes do not have 374 

a relevant impact on the severity of the disease neither are implied preferentially in infections 375 

to males, females, or age. 376 

Finally, although more studies need to be performed to increase our knowledge of the biology 377 

of SARS-CoV-2, we were able to make hypotheses about the possible effects of the most 378 

frequent mutations identified. This will help in the development of new studies that will impact 379 

vaccine development, diagnostic test creation, among others. 380 

MATERIAL AND METHODS: 381 

Normalized frequency analysis of each base or gap by genomic position:  382 

To perform the mutation frequency analysis, we first downloaded a total of 171 461 complete 383 

and high coverage genomes from the GISAID database (as of November 30th, 2020). This set of 384 

genomes was aligned using ViralMSA using default parameter settings, and EPI_ISL_402125 385 

SARS-CoV-2 genome from nt 203 to nt 29674 as the reference sequence (Moshiri. 2020, Li. 386 

2018). Subalignments corresponding to genomes divided by continent-month combinations was 387 
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extracted and relative frequencies of each base or gap in each genomic position were calculated 388 

(𝑅𝐹𝑝,𝑚−𝑐) using a python script.  These relative frequencies were multiplied by the number of 389 

cases reported in the respective continent-month combination (𝐶𝑁𝑚−𝑐) obtaining an 390 

estimation of the number of cases that present a virus with a specific base or gap in a specific 391 

genomic position (𝑅𝐹𝑝𝐶𝑁𝑚−𝑐). Finally, we added the 𝑅𝐹𝑝𝐶𝑁𝑚−𝑐  of each subalignment and 392 

divided it by the total number of cases in the world ( ∑ 𝑅𝐹𝑜𝐶𝑁𝑚−𝑐1𝑚−𝑐 )/𝑇𝐶𝑁𝑤. This procedure 393 

allows us to obtain a relative frequency normalized by cases of each base or gap in each genomic 394 

position (𝑁𝑅𝐹𝑝). The number of cases of each country was obtained from the European Centre 395 

for Disease Prevention and Control: https://www.ecdc.europa.eu/en/publications-396 

data/download-todays-data-geographic-distribution-covid-19-cases-worldwide. We used the 397 

number of cases of countries with at least one genome sequenced and deposited in GISAID 398 

database. Also, we just consider in the analysis month-continent combinations with at least 90 399 

genomes sequenced. 400 

Phylogenetic tree construction:  401 

Using an alignment of the 109 953 complete, high coverage genomes without ambiguities, we 402 

estimated a maximum likelihood tree with Fasttree v2.1.10 with the next parameters: -nt -gtr -403 

gamma -sprlength 1000 -spr 10 -refresh 0.8 -topm 1.5 close 0.75 (Price et al. 2009, Price et al. 404 

2010), after the generation of the tree we improved topology using -boot 1000 and the first 405 

output tree as an input using -intree option. To generate the rooted tree (against 406 

EPI_ISL_402125) we used the R package treeio, and to generate tree figures with continent or 407 

date information by tip we used the ggtree package in R (Yu. 2020, Yu et al. 2017). 408 

OTUs determination:  409 

Mutations respect to EPI_ISL_402125 with NRFp greater than 0.18 were extracted from the 410 

alignment of the non-ambiguous data set of 109 953 genomes and were associated with the 411 

whole-genome rooted tree using the MSA function from the ggtree package (Yu. 2020, Yu et al. 412 

2017) in R. Then, we visually examined to identify the major haplotypes based in these positions, 413 

designated as OTUs (Operational Taxonomic Units). Haplotypes identification based in our NRFp 414 

calculation reduced the bias of the different number of genomes sequenced in each continent 415 

and each month by integrating the less biased information of the number of cases. Although, 416 

other biases are more difficult, if possible, to reduce or eliminate. 417 

Analysis of OTUs geographical distribution:  418 

In this analysis, we randomly separate the genomes into 6 samples of 28 576 genomes each. 419 

Genomes in each sample was divided by continents and by months. In these divisions, OTUs 420 

relative frequencies were calculated for each OTU in each month-continent combination 421 

(𝑂𝑛𝐹𝑚−𝑐). Then, we multiplied these (𝑂𝑛𝐹𝑚−𝑐) frequencies by the number of cases 422 

corresponding to the respective month-continent (𝐶𝑁𝑚−𝑐) to obtain an estimation of the 423 

number of cases caused by a specific OTU in a respective month-continent (𝑂𝑛𝐶𝑁𝑚−𝑐). After, 424 

these products were grouped by continents, and those from the same continent were added 425 

and then divided by the total number of cases in the continent analyzed ( ∑ 𝑂𝑛𝐶𝑁𝑚−𝑐1𝑚−𝑐1 )/426 

𝑇𝐶𝑁𝑐1. Thus, obtaining a frequency normalized by cases for each OTU in each continent. Finally, 427 

following this procedure in each sample, we statistically compared the mean of those six 428 

samples using the package “ggpubr” in R with the non-parametric Kruskal-Wallis test, and 429 

pairwise statistical differences were calculated using non-parametric Wilcoxon test from the 430 

same R package. The number of cases of each country was obtained from the European Centre 431 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.07.12.199414doi: bioRxiv preprint 

https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://www.ecdc.europa.eu/en/publications-data/download-todays-data-geographic-distribution-covid-19-cases-worldwide
https://doi.org/10.1101/2020.07.12.199414
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

for Disease Prevention and Control: https://www.ecdc.europa.eu/en/publications-432 

data/download-todays-data-geographic-distribution-covid-19-cases-worldwide. We used the 433 

number of cases of countries with at least one genome sequenced and deposited in GISAID 434 

database. Also, we just consider in the analysis month-continent combinations with at least 90 435 

genomes sequenced. 436 

Analysis of OTUs temporal distribution:  437 

Following a similar procedure used in the geographical analysis, we now grouped the products 438 

𝑂𝑛𝐶𝑁𝑚−𝑐  by months, added them, and then divided by the total number of cases in the analyzed 439 

month ( ∑ 𝑂𝑛𝐶𝑁𝑚1−𝑐𝑚1−𝑐 )/𝑇𝐶𝑁𝑚1. As in the geographical analysis, the mean of the six 440 

samples was statistically compared using the same procedures and with exactly the same 441 

considerations of month-continent combinations. 442 

Analysis of age, gender, and patient status with OTUs distribution:  443 

We determine if OTUs have a preference for age or gender, or cause a COVID-19 with a specific 444 

severity. For patient status and age information we selected populations with at least 45 445 

genomes in the category to analyze and at least two times the total number of genomes (for 446 

example Asia – February has 58 asymptomatic genomes and 613 total genomes). For the gender 447 

analysis, we selected sample populations with at least 250 genomes in the category to analyze 448 

and at least two times the total number of genomes (for example, USA – March has 2 079 449 

genomes from female patients and 9287 genomes with or without gender information). In each 450 

selected sample we used the total data (all genomes corresponding to that continent-month 451 

combination) and the data with category information (for example male, female, asymptomatic, 452 

severe, 16-30 years, etc.). We randomly divided these two groups of genomes into three 453 

samples and calculated OTUs frequencies. The mean of the frequency of each OTUs was 454 

compared between the two groups using the non-parametric Wilcoxon or Kruskal-Wallis 455 

statistical test. In the case of age information, the relative frequencies of each OTUs of the total 456 

genomes and the genomes with category information were correlated using Spearman 457 

correlation. All plots were produced in R using “ggpubr” and ggplot2. 458 

DATA AVAILABILITY: 459 

The data that support the findings of this study comes from the GISAID initiative (Shu and 460 

McCaluey. 2017) (gisaid.org). Python and R scripts used in this study are available on request 461 

from the corresponding author upon reasonable request. 462 
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Figure 1. Five haplotypes (or OTUs) based in nine positions can classify 97 % of the 

genomes. A) Table showing haplotype of each OTU, regions, and aminoacids changes caused 

by these mutations. B) Rooted tree of 109 953 SARS-CoV-2 complete and non-ambiguous 

genomes associated with an alignment of nine genomic positions (241, 1059, 3037, 14408, 

23403, 25563, 28881, 28882, 28883) showing a good correlation between haplotypes (OTUs) 

based in these nine positions. Tips of the tree where colored based in the OTU. C) Bar diagram 

showing OTUs distribution of the genomes (0 correspond to unclassified genomes).   

Figure 2. By cases normalized continent distribution of OTUs shows OTU_3 as the most 

prevalent in four of six continents. A) Unrooted tree of complete non-ambiguous genomes, 

tips were colored according to OTUs, and points in each tip were colored according to the 

continent. B-G) Boxplots of normalized relative frequencies of OTUs in each continent from 

December 2019 to November 2020 (B, North America; C, South America; D, Europe; E, Asia; 

F, Oceania; G, Africa).  

Figure 3. By cases normalized temporal distribution of OTUs showed OTU_3 as the most 

prevalent until September. A) Rooted tree of complete non-ambiguous genomes showing 

temporal distribution. Tips were colored by OTUs and points in each tip were colored 

according to the collection date. B-E) Boxplot of OTUs global distribution in each month (B, 

February; C, March; D, April; E, May; F, June; G, July; H, August; I, September; J, October; K, 

November). 

Figure 4. OTUs are not related to the COVID-19 severity. A-J) Ten different sample 

populations were analyzed, none of the OTUs frequencies shows significative differences 

between the total samples and samples taken from genomes with patient status information. 

Boxplots showed the distribution of three samples, total frequencies are showed in grey and 

frequencies from samples with patient status information are colored according the category 

(green, asymptomatic; blue, mild; red, severe).  
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Figure S4. Global NRFp of the nine most frequent mutations by month. Mutations that 

define OTU_2 (C241T, C3037T, C14408T, A23403G) showed very similar frequencies 

indicating that genomes with three, two or one of these mutations are rare. The same for 

mutations that define OTU_3 (G28881A, G28882A, G28883C). Mutations that define OTU_4 

(C1059T) and OTU_5 (G25563T) have similar but not identical distributions. 

Figure S7. Distribution of OTUs in January. Bar plot of a count of complete genomes isolated 

in January and deposited in the GISAID database. Most of these genomes belonging to 

OTU_1, a small fraction corresponds to unclassified genomes and one to OTU_2 

Figure S2. Normalized Relative Frequency of each nucleotide by position (NRFp). The 

frequency of each nucleotide in each position was normalized by the number of cases in each 

continent-month pairs to reduce the bias produced by the different number of sequenced 

genomes in different months and different continents. In A, Labels are showed for NRFp 

greater than 0.18. B and C showed different scales of positions with less than 0.18 NRFp. 

Figure S3. Temporal distribution by day, continent, and OTUs. Each point in the plot 

represents one of the 171 461 SARS-CoV-2 genomes analyzed. Points are colored depending 

on the OTU. Y-axis divides the points in continent and each column represents a day from 

December 16 to July 23. 

Figure S8. Approximately 74 % of the genomes in GISAID database does not have gender 

information. The plot shows gender distribution of the 171 461 SARS-CoV-2 genomes 

analyzed. Bars represent genomes count in Male, Female or unknown categories. 

Figure S1. Number of genomes sequenced by region is not correlated to the number of 

cases in the same region. Each point in the plot represents a month-continent combination. 

There are continents with a high-number of cases but low number of sequenced genomes 

and inversely, there are continents with relatively few cases but with a large number of 

sequenced genomes. 

Figure S5. Month and continent distribution of the 171 461 SARS-CoV-2 genomes analyzed. 

A) Bars represent genome count in each continent analyzed. Europe and North America are 

overrepresented in the database. B) Bars in B represent genomes count by month. March, 

April and October are the best represented months. Bars are labeled by percentage and 

below by the exact counts. 

Figure S6. Temporal distribution by month, continent, and OTU. Each point in the plot 

represents a genome and is colored depending on OTU. Points are grouped by continent (Y-

axis) and month (x-axis). We saw how haplotypes populations changes during time; for 

example, OTU_1 seems the most common during the first months (December, January, and 

February). 

Figure S9. More than 90 % of the genomes in the GISAID database does not have an 

informative description of patient status. A) Table showing which GISAID categories were 

recategorized in the Asymptomatic, mild or severe categories. All the other genomes were 

classified as non-informative. B) Distribution of 171 461 genomes in patient status categories 

(Asymptomatic, Mild, Severe or No informative). 

Table 1. Region of primers binding and amplification of nine diagnostic tests for SARS-CoV-

2.  

Table 2. Comparison between different nomenclatures of SARS-CoV-2 lineages. 
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Figure S10. Age groups are not robustly related to OTUs. A-J) Ten populations were selected 

to analyze if OTUs frequencies in an age group is significative different to OTUs frequencies 

in the total population. None OTU showed a repetitive preference for an age group in the 

populations analyzed, boxplots are colored by age groups, all means frequencies in the total 

population (ns, p>0.05; *, 0.05>p>0.01; **, 0.01>p>0.005; ?, not analyzed). K) Correlation 

between relative frequencies of OTUs in a specific age group with OTUs frequencies in the 

whole population. Spearman correlation showed an R value of 0.94 meaning a positive 

correlation that supports the conclusion that no significative differences exist between OTUs 

frequencies in age groups compared to the whole population.    

Figure S15. Mutants in R203 and G204 of Nucleocapsid generate differences in 

Phosphorylation potential on S202 and T205. Bar plot showing the phosphorylation 

potential calculated in NetPhosK for the 4 possible nucleocapsid variants. We can see that 

phosphorylation potential by PKC is lower for RG than for KR in S202. On the other hand, 

T205 has greater phosphorylation potential by an unspecific kinase (unsp) in RG than in KR. 

Phosphorylation in S202 and T205 by unsp or PKC respectively is apparently not affected by 

these mutations. 

Figure S11. OTUs do not have preference for males or females. A-K) Boxplots of OTUs 

frequencies from female populations compared to OTUs frequencies in the whole 

population. None significant difference was observed. L-V) The same as A to K but whole 

population compared to male populations. Again, no significant differences were observed. 

Concluding that OTUs do not show gender preferences. 

Figure S12. P323L could impact the stability of Nsp12 without disturbing its overall 

structure. A) Structure of RNA-dependent RNA polymerase complex (PDB ID: 6YYT). Chains 

(Nsp12, Nsp7, Nsp8, RNA) are distinguished by colors. Helix 10, Beta-sheet 3, Turn 10-3, and 

P323 also are differentially colored. B) Structure in A rotated 90 degrees. C) Zoom of the red 

box in B showed P322 and P323 in the center of Turn 10-3. D) Turn 10-3 with side chains of 

P323, L324, and F396 in sphere representation to highlight the distance between side chains 

of P323 and L324. E) P323 in D was computationally replaced by L323. Now, distances 

between the methyl group of leucine are shorter with L323.  

Figure S13. Structural hypotheses about D614G mutation in Spike protein. A) Structure of 

the open state of Spike trimer (PDB ID: 6YVB) colored by domains. B) Distances between side 

chains of two possible rotamers of D614 (1`-D614 and 2`-D614) and T859. Except for 1`-D614 

and carbonyl group of T859, the other distances seems to be large to form a hydrogen bond. 

C) Distances between side chains Q613 and T859. These distances are also large to form 

hydrogen bonds. D) R646 points to the opposite side of D614 showing that there is no salt 

bridge. B, C, and D show electron density maps of the side chains of the labeled residues. 

Figure S14. Orf3a Q57H does not modify pore constriction distances but electrostatics 

distribution. A) Structure of the Orf3a dimer (PDB ID: 6XDC) colored by domains. The right 

of A shows the same structure but in an upper view. B) Orf3a showing the central pore, in 

the red box the section corresponding to the fifth pore constriction. C) zoom of the red box 

in B, above we showed Q and H variants superposed. Below we show a transversal cut of the 

pore near to the fifth. The pore radius in two variants is similar. D) Electrostatic surface maps 

of Q57 and H57 variants in two different pHs (7 and 6). Residues Q57 and H57 are shown in 

stick representations to point the fifth constriction. We show a slightly more positive region 

at the height of the fifth constriction. 
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