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Summary 
Quantification  of  neuronal  morphology  is  essential  for  understanding  neuronal  connectivity  and  many 
software  tools  have  been  developed  for  neuronal  reconstruction  and  morphometry.  However,  such  tools 
remain domain-specific, tethered to specific imaging modalities, and were not designed to accommodate the 
rich metadata generated by recent whole-brain cellular connectomics. To address these limitations, we created 
SNT: a unifying framework for neuronal morphometry and analysis of single-cell connectomics for the widely 
used Fiji and ImageJ platforms.

We demonstrate  that  SNT can  be  used  to  tackle  important  problems  in  contemporary  neuroscience,  
validate  its  utility,  and  illustrate  how  it  establishes  an  end-to-end  platform  for  tracing,  proof-editing,  
visualization, quantification, and modeling of neuroanatomy. 

With  an  open  and  scriptable  architecture,  a  large  user  base,  and  thorough  community-based  
documentation,  SNT  is  an  accessible  and  scalable  resource  for  the  broad  neuroscience  community  that 
synergizes well with existing software.

Quantification of neuronal anatomy is essential for mapping information flow in the brain and classification of cell types in 
the central nervous system. Although digital reconstruction (“tracing”) of the tree-like structures of neurons —axons and 
dendrites— remains  a  laborious task,  recent  improvements  in  labeling  and  imaging  techniques allow faster  and  more 
efficient  reconstructions,  with  neuroscientists  sharing  more  than  140,0001 reconstructed  cells  across  several  databases. 
Powerful  toolboxes have been developed for  neuronal  morphometry (Sup. Information).  However,  such tools can be 
tethered to specific imaging modalities or remain specialized on specific aspects of neuroanatomy workflows. To address 
these limitations we established a unifying framework for neuronal morphometry and analysis of single-cell connectomics 
for the widely used Fiji and ImageJ platforms2,3.

We  re-invented  the  popular  Simple  Neurite  Tracer  program4 to  create  an  open-source,  end-to-end  solution  for  semi-
automated tracing, visualization, quantitative analyses and modeling of neuronal morphology. All aspects of our software, 
named  SNT  —Simple Neurite Tracer’s popular moniker—  can be controlled from a user-friendly graphical interface or 
programmatically, using a wide variety of scripting languages (Fig. 1a).

For semi-automated tracing we implemented a host of new features (described in Sup. Information), including support for  
multi-channel,  and  time-lapse  images,  optimized  search  algorithms  and  image  processing  routines  that  better  detect  
neuronal processes, and made possible to reconstruct simple morphologies directly from thresholded images. With time-
lapse sequences, traced paths can be automatically matched across frames so that growth dynamics of individual neurites 
can be monitored across time. (Fig. 1b). To expedite the proof-editing of traced structures, SNT allows users to edit, tag, 
sort, filter, and rank traced segments, using either ad-hoc labels or morphometric traits. Altogether, these features improve 
reconstruction accuracy and tracing efficiency.

For visualization, SNT features an interactive 3D viewer dedicated to neuron morphology —Reconstruction Viewer— that 
is hardware accelerated, supports rendering of meshes and detailed annotation of morphometry data. In addition, SNT also 
integrates with sciview5, a visualization tool for  mesh-based data and arbitrarily large image volumes,  supporting virtual, 
and augmented reality (Sup. Information).
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Figure 1 | SNT as an end-to-end platform for data retrieval, visualization, quantification, and modeling of neuroanatomical data.

(a) Schematic diagram of the software. (clockwise): i) SNT is powered by the stack of ImageJ-based software, including: Fiji, ImageJ2, 
sciview, SciJava, ImgLib2, TrakEM2 and pyimagej. ii) Reconstructions can be obtained directly from thresholded images or using semi-
automated  procedures  that  support  time-lapse  and  multi-channel light-microscopy  imagery.  iii)  Once  center-line  reconstructions 
(“tracings”) are obtained,  they can be conveniently processed in subsequent image processing routines.  iv) Dedicated neuroanatomy 
viewers allow for effective quantitative visualization of complex data. v) In addition to single-cell morphometry, vi) circuit analyses are 
facilitated through support  of several online databases and reference brain atlases (Drosophila, mouse and zebrafish). vii) Biophysical 
modeling of  neuronal  growth is  achieved through Cx3D integration (Sup.  Information).  viii)  Users  may use SNT has a  standalone 
interactive program or as a multi-language scripting library.

(b—d) ImageJ interoperability allows for complex data retrieval. (b) Static frame from a non-fluorescent time-lapse video monitoring 
the development of neuron polarity in a hippocampal neuron growing in vitro19.  The 12 highlighted neurites were traced throughout the 
video sequence and color coded across time as per color ramp. Insert details growth of neurite  #1 at selected time-points. Plot depicts 
growth dynamics of individual neurites across time.     (c) Multichannel image of a hippocampal neuron stained in vitro for the presynatic 
markers  VGluT1-2 (green) and the postsynaptic NMDA receptor  (magenta)18.  Dendrites  were traced (orange) and intensity  profiles 
obtained directly from the tracings.  Profiled maxima from the marked region depict  synaptic locations.      (d) Maximum intensity 
projection of a three-channel 3D image of a gelled-brain section processed for expansion fluorescence in situ hybridization  (ExFISH). 
Dendrites of GFP-labeled neurons (green) were traced in SNT (center-lines for three cells displayed in  orange, red, and yellow).  Foci 
reporting on Somatostatin (SST) mRNA (magenta) were detected on neighboring somata, segmented from a counterstain for total RNA 
(cyan). Point ROIs reporting foci (circles) were labeled with the same hue of the closest traced cell.  All procedures performed within 
ImageJ. Right: Violin plot of SST expression for segmented cells in the sub-volume (N=147). Scale bars: (b,c): 10µm; (d): 20µm.
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Figure 2 |Comprehensive analytical tools enable discovery biology. How many brain areas does a neuron connect to in the mouse  
brain? The MouseLight (ML) database was programmatically parsed in SNT and the number of mid-ontology brain regions innervated by  
individual axons retrieved under two criteria: (normalized) cable length, and number of axonal endings at target area.     
(a) Frequency histogram of number of brain areas innervated by single cells (N=1094).    ( b) Ranked examples of axonal connectivity 
rendered in SNT’s Reconstruction Viewer. Left: SNr neuron projecting exclusively to the CP (ML id: AA1044). Its single axonal tuft can 
cover as much as 4% of the ipsilateral lobe of the target area. Center: SS neuron projecting to many areas in the  isocortex (ML id: 
AA0100). Right: Pyramidal-tract neuron projecting to many areas in the isocortex, midbrain and hindbrain (ML id: AA0788). Dendrites 
are depicted in black and axonal arbors color-coded by “path distance to soma”, as per color ramp legend. Selected brain regions are  
depicted according to color-coded abbreviations (MO: Somatomotor areas; SS: Somatosensory areas; CP: Caudoputamen; TH: Thalamus;  
LHA: Lateral hypothalamic area; SNr: Substantia nigra, reticular part; MB: Midbrain; TEa: Temporal association areas; ECT: Ectorhinal  
area; PIR: Piriform area; MY: Medulla).     (c) Connectivity diagrams for the three chosen exemplars programmatically generated in 
SNT’s Graph Viewer. In this “Ferris wheel” diagram, the neuron’s target areas are displayed around the brain area associated with the cell 
soma (SNr and MOs [Secondary motor area]), with connecting edges indicating projection strength, and self-connecting edges depicting  
local innervation. Here, edges were scaled and color-coded according to the two criteria used in a), as per color ramp legend.  This  
representation can also be extended to cell populations (Sup. Fig  7). When generating such diagrams, SNT automatically sorts target 
areas by projection strength and groups them by parental ontology (labeled in external arcs). As a reference, the total axonal length of  
each  cell  is:  28.598cm (AA1044),  44.649cm (AA0100),  18.454cm (AA0788).  Abbreviations  reflect  Allen  Mouse  Brain  Common 
Coordinate Framework51,52  nomenclature.
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For data retrieval, SNT provides seamless integration with the ImageJ platform, and thus tracing and reconstruction analyses 
can be intermingled with image processing workflows. To exemplify this, we used SNT to quantify challenging datasets: 
expression of synaptic markers along dendrites (Fig. 1c), and fluorescent in situ hybridization (FISH) imaging of mRNA in 
the same volume in which dendrites of pyramidal cells were reconstructed (Fig. 1d). 

Another strength of SNT is that it can connect directly to all the major neuroanatomy databases, including FlyCircuit41, 
InsectBrain6,   MouseLight7,  NeuroMorpho1,  and  Virtual  Fly  Brain8,  supporting  several  multi-species  brain  atlases 
(Drosophila, mouse, zebrafish, Fig. 1a, Sup. Information). While such online databases are highly queryable, they remain 
constrained by website design limitations. Scripting frameworks that can programmatically parse their data bypass those 
restrictions, facilitate data sharing, scientific reproducibility, bridge isolated data repositories, and promote the development 
of  new tools  and  features.  Importantly,  since  SNT adopts  the  SciJava  framework 9,10,  it  can  be  scripted  using  popular 
computer  languages  such  as  Python  (and  Jupyter notebooks)  through  pyimagej,  Clojure,  Groovy,  JavaScript,  Jython, 
MATLABTM, R, Ruby, or Scala.

To demonstrate the analytical power of SNT, we parsed the MouseLight database, currently containing the most complex 
reconstructions described in the literature7. In particular, we focused on quantifying the repertoire of strategies adopted by 
individual cells to broadcast information across the brain. Since no synaptic strengths are currently known for MouseLight 
neurons, projection strength to target areas must be inferred  from morphometric surrogates.  In a programmatic, unbiased 
approach,  we used two  morphological criteria  (normalized cable length and number of axonal  endings)  to retrieve  the 
number of anatomical brain areas innervated by individual axons (Fig.  2a). In doing so, we identified two extremes of 
connectivity: cells that connect exclusively to a single projection brain area, and cells that project broadly over a multitude 
of  brain areas  (Fig.  2b).   A key feature  of  SNT is  the ability to generate  streamlined connectivity diagrams,  holding 
quantitative information determined from the intersection or union of multiple morphometric criteria that can be customized 
using SNT’s interactive tool Graph Viewer. These type of diagrams can be generated at the single-cell level  (Fig. 2c), or 
from cell populations (Fig. S7), and are a valuable visualization tool for connectomics11.

SNT  provides  support  for  generative  models of  artificial  neurons  by  utilizing  the  neurodevelopmental  simulation 
framework,  Cx3D12.  This  not  only  provides  capabilities  for  the  algorithmic  generation  of  neuronal  morphologies,  but  
enables a new direction of image-based modeling  for cellular  neuroscience.  On the latter, we provide a proof-of-concept 
example, where artificial neurons are seeded in an image derived from an in vitro chemotaxis assay (Sup. Video 3). On the 
former, we challenged SNT’s ability to morphometrically distinguish closely-related reconstructions. First, we generated 
different  mathematical gene-regulatory networks (GRNs)13 capable of controlling neural growth by regulating extension, 
branching,  and directionality of neurites to define in silico morphologies.  Second, we generated thousands of artificial 
neurons  constrained  by  these  patterns.  Third,  we  used  built-in  metrics14,15 to  statistically  differentiate  between  these 
computer-generated “neuronal types”. We found we could distinguish with high confidence all of the morphological classes, 
including  those  closely  related  (Sup.  Information).  Altogether, these  experiments  demonstrate  how SNT can  bridge 
experimental and modeled data to support model evaluation for both inference and predictive modeling. 

In summary, SNT is a powerful tool for tracing, proof-editing, visualization, quantification, and modeling of neuroanatomy.  
It is based on recent technologies, supports modern microscopy data, integrates well with the ImageJ platform, interacts 
with  major  online  repositories,  and  synergizes  with  post-reconstruction  analysis  software,  and  recent  data-mining 
frameworks16,17. With a large user base and thorough community-based documentation (https://imagej.net/SNT), SNT is an 
accessible, scalable and standardized framework for efficient quantification of neuronal morphology.

Methods
The figures  and analyses  from this manuscript  can be generated  programmatically.  See  https://github.com/morphonets/ 
SNTManuscript for details.

Programming.  SNT  was  programmed  with  Eclipse  Java  IDE  4.4–4.16  (Eclipse  Foundation),  IntelliJ  IDEA  2020 
(JetBrains), and Fiji’s built-in Script Editor on an Intel i7 laptop running Ubuntu 18.10–20.04.

Cell Image Library Imagery. Analyses were performed manually from SNT’s GUI with the following modifications to the 
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original images: CIL81018 (an RGB image) was converted to a multi-channel composite; CIL70119 (an unannotated Z-series) 
was converted to a time-series stack. Please refer to the original publications for details on the datasets.

ExFISH. Histology: Expansion fluorescence in situ hybridization (ExFISH) was performed using an optimized protocol not 
yet  published (manuscript in preparation).  In short: 150µm-thick cortical slices of an heterozygous  Thy-1-GFP-M20 adult 
mouse were embedded in a hydrogel using standard embedding procedures for thick tissue21. mRNA was detected using 
HCR 3.022. SST probes and fluorescent hairpins were  obtained  from Molecular Instruments (molecularinstruments.com). 
Gelled sections (~2× expanded) were imaged in PBS on a commercial Zeiss Z1 lightsheet microscope. Spot quantification: 
Signal from total RNA labeling was segmented using Labkit23. Individual cells were then masked using watershed filtering 
and labeling of connected components using MorphoLibJ24,25. Ill-segmented somata were manually eliminated with the aid 
of  BAR  tools26.  Spot  density  (no.  of  spots  per  cell)  of  SST  signal  was  determined by  iteratively  running 
3DMaximaFinder27,28 at locations of each connected component. It should be noted that this approach is rather elementary: it 
was designed as a proof-of-principle image processing routine that can be performed mid-way through a tracing session 
using accessible ImageJ tools.

MouseLight Single-cell Connectivity. MouseLight (ML) database was programmatically parsed to obtain the number of 
brain areas (Allen Mouse Common Coordinate Framework (CCF) compartments) associated with individual axonal arbors  
using two criteria: 1) normalized cable length and 2) number of axonal endings at target area). Only CCF compartments of 
ontology depth 7 with public meshes available were considered. For 1) axonal length within an anatomical compartment  
was measured by taking all nodes within the compartment and summing the distances to their parent nodes. To exclude 
enpassant axons, a cell was considered to be associated with the compartment if such length would be at least 5% of the  
compartment’s  bounding-box  diagonal.  For  2)  only  neurons  with  at  least  two  end-points  were  considered.  Selected 
examples in Fig. 1 were chosen by sorting cells by number of associated areas, and selecting those with the largest axonal  
cable length (AA1044: 28.598cm, AA0100: 44.649cm, AA0788: 18.454cm).

Tracing and Path Fitting Benchmarks. Tracing benchmarks and fitting procedures were performed programmatically and 
can be reproduced using the scripts available at https://github.com/morphonets/SNTmanuscript.  DIADEM scores 29 were 
computed with default thresholds and retrieved in “post-DIADEM competition” mode. For degradation of traces (Fig. S2), 
each node in the reconstruction was displaced to a random position within a 1µm neighborhood around each axis.

Synthetic  Morphologies.  Chemoatraction  assay (Video  S3):  Code  accessible  from  github.com/morphonets/ 
SNTManuscript. GRNs (Fig. S6): The code for generating GRNs is available at github.com/morphonets/cx3d/, and the five 
GRNs used in this study are made available  at  github.com/morphonets/SNTManuscript (together with remaining analysis 
scripts). Tools for inspecting GRNs are available  at github.com/brevis-us/grneat. Morphometric analysis: Default metrics 
provided by SNT (41 as of this writing1) were retrieved for all artificial neurons. Data was normalized and analyzed using 
PCA  (Principal  Component  Analysis),  t-SNE30 (t-Stochastic  Neighbor  Embedding),  and  UMAP31 (Uniform  Manifold  
Approximation and Projection). Group comparisons on principal components, t-SNE features, and UMAP components were 
performed  using  two-sample  Kolmogorov-Smirnov tests  adapted  for  multivariate  data.  p–values  were  combined  using 
Fisher’s combined probability test. Density maps and examplars: soma-aligned cells were skeletonized, and their skeletons 
projected into the XY plane using SNT’s core functionality. Binary masks of skeletons were then summed up and resulting 
image normalized to the number of cells. Exemplars were chosen from a random pool of 10 cells.

Code Availability
SNT source code is available at github.com/morphonets/SNT. The source code for the figures and analyses described in this 
manuscript  is  available  at  github.com/morphonets/SNTManuscript.  Both  are  released  under  the  GNU  General  Public 
License v3.0.

1 A subset of all available metrics: Average branch length, Average contraction, Average fractal dimension, Average fragmentation, Average partition asymmetry, Average  
remote bif. angle, Cable length, Depth, Height, Highest path order, Horton-Strahler bifurcation ratio, Horton-Strahler number, Length of inner branches (sum), Length of  
primary branches (sum), Length of terminal branches (sum), Mean radius, No. of branch points, No. of branches, No. of inner branches, No. of nodes, No. of primary  
branches, No. of terminal branches, No. of tips, Width; [Sholl-based metrics]: Centroid, Centroid radius, Decay, Degree of polynomial fit, Enclosing radius, Intercept,  
Kurtosis, Max, Max (fitted), Max (fitted) radius, Mean, Median, No. maxima, No. secondary maxima, Skeweness, Sum, Variance. Refer to user documentation for details.
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Overview
SNT is an open-source (GPLv3) program written in Java and distributed with the Fiji2 distribution of ImageJ3. The source 
code  is public and managed by git (https://github.com/morphonets/SNT). SNT stems from the rewrite of  Simple Neurite 
Tracer4’s  basecode following Scijava9 design principles  and with scripting abilities inspired by several  powerful  open-
source software for neuroanatomy, namely: L-measure14, nat(verse)16, TREES32, btmorph33, and NeuroM34. A special effort 
was put into backwards compatibility, so that SNT could supersede  Simple Neurite Tracer, and remain compatible with 
existing  Fiji  plugins  for  neuronatomy,  namely  Sholl  Analysis15.  Community-based  user  documentation  is  hosted  at 
https://imagej.net/SNT.

SNT can run in headless environments, is fully scriptable and itself extensible. It inter-operates with other core components  
of the ImageJ ecosystem namely TrakEM235,  IJ  ops36, and scenery5.  SNT functionality can be extended using ImageJ2 
commands10 or executable  scripts, allowing both experienced developers and scientists with beginner-level programming 
experience  to customize SNT. Several  scripting templates are provided in Fiji’s Script  Editor  and a built-in discovery  
mechanism automatically registers user scripts in SNT’s user interface,  as detailed in  https://imagej.net/SNT/ Scripting. 
Native  Python  is  supported  through  pyimagej37.  Scripting  tutorials  in  the  form of  Jupyter notebooks  are  provided  at 
github.com/morphonets/SNT/tree/master/notebooks.

Requirements
An up-to-date Fiji installation running Java 8 or newer. Access to “Tubular Geodesics”38 segmentation requires installation 
of external binaries, as described in the documentation (https://imagej.net/SNT). Discrete graphics card is recommended for 
sciview integration. VR support in sciview requires the OpenVR/SteamVR library5.

Installation
SNT is released through a dedicated “Neuroanatomy” update site, created to streamline and foster contributions from the 
wider  scientific  comunity.  sciview  has  not  been  officially  released  and  access  to  its  functionality  currently  requires  
subscription to a second “sciview” update site. Detailed instructions are available at https://imagej.net/SNT#Installation.

Supported File Types
Images: SNT accepts any non-RGB image recognized by ImageJ, SCIFIO39 or Bioformats40 with up to five axes, including 
multi-channel and time-lapse sequences. Neuronal reconstructions: SNT recognizes all known variants of SWC41,42, the de 
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facto standard for data sharing of neuronal morphologies, MouseLight’s JSON7 and Simple Neurite Tracer’s TRACES open 
formats.  3D graphics: Wavefront OBJ (reconstruction viewer) and STL, PLY, XYZ (sciview).  Analysis: Output of SNT 
analyses can be saved as CSV (tabular data); SVG, PDF, PNG (plots, histograms and diagrams); XML (diagrams); MPG  
(sciview animations); and NeuroML (Cx3D models).

Supported Databases
SNT can download data directly from FlyCircuit43 (flycircuit.tw), InsectBrainDatabase (insectbraindb.org)6,  MouseLight7 

(ml-neuronbrowser.janelia.org),  NeuroMorpho1 (neuromorpho.org/),  and VirtualFlyBrain8 (virtualflybrain.org)  databases, 
with ongoing support for the Max Planck Zebrafish Brain Atlas44 (fishatlas.neuro.mpg.de/).  Data can be imported from 
SNT’s user interface or programmatically using its API.

Features

Semi-automated Tracing
The core of SNT’s semi-automatic reconstruction remains Simple Neurite Tracer’s exploratory approach in which the path 
between manually placed points along the centerline of neuronal processes  is computed using bidirectional  A* search3. 
However, several improvements were made to this procedure, namely: 1) scriptable tracing (Fig. S1); 2) Support for multi-
channel and timelapse images (Figs. 1, S3); 3) refinement of centerline positioning by post-hoc fitting procedures that take 
into account the fluorescent signal around each traced node (Fig. S2); 4) Detection of signal within a local 3D neighborhood 
around the cursor; 5) improved synchronization mechanism of Simple Neurite Tracer’s original XY/ZY/XZ tracing views 
that facilitate accurate node positioning; and 76) computation of curvatures on pre-processed images. The latter allows A* 
to be computed on mirrored data (called a “secondary image”) in which the tube-like structures of neuronal processes have 
been pre-enhanced using image processing routines. For added convenience, SNT offers filtering pre-sets45,46 through IJ-
ops36, and allows pre-filtered data to be imported from third-party software, to e.g., allow for processing routines not yet  
ported into ImageJ.  Adoption of other path search algorithms such as  Tubular Geodesics38 is also possible through the 
installation of external binaries. Importantly, these features can be toggled at will during a tracing session. 

In  SNT,  the  accuracy  and  performance  of  the  automated  path  search  can  be tuned  using  Hessian-based  analysis  of 
curvatures, optimized to detect tubular structures of a particular size. A key parameter of this filtering operation is σ, the size 
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Figure S1 | Characterization of SNT’s A* tracing in fully automated tests.

(a)  2D renderings of axonal arbors of Drosophila olfactory projection neurons 
(DIADEM Challenge “OP” dataset)  used in the tests,  generated using SNT’s 
Reconstruction Plotter  command. Cells  are color-coded by number of branch 
points according to hue ramp. The 10 cells  can be split  into two complexity  
groups: ≤20 branches (group 1) and >20 branches (group 2).

(b)  Accuracy of automated A* without complementary Hessian analysis.  Each 
OP cell was traced in the absence of pre-processing routines (the default in SNT) 
and resulting reconstruction compared to each cell’s “gold standard” using the 
DIADEM similarity score, in which 1 represents perfect similarity.

(c) Effect of σ on accuracy of Hessian-based A* search. For each cell, A* search 
was  performed  on  Hessian-  filtered  data  under  varying  σ  values.  As  in  b),  
resulting reconstructions were then compared to each cell’s “gold standard”. The 
default value that is proposed to users in SNT’s interface is indicated (arrow).  
Dashed lines indicate ‘best-fit’ curves (one phase exponential).

(d)  SNT features several GUI-based tools that allow users to tune parameters  
during a tracing session. Here shown two controls for σ adjustment. Left: The 
“Hessian  widget”,  allowing  interactive  adjustments  of  σ  at  chosen  image 
locations. Right:  histogram of predicted radii,  computed for the whole image 
volume being traced using local thickness analysis (depicted data for the OP_1 
cell, the second most complex cell of group 2).
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of the Gaussian kernel used to smooth the image before detection of tube-like structures occurs 4. In order to provide users 
with sensible defaults, we ran a series of simulations to assess the impact of σ on reconstruction accuracy. For this purpose, 
we chose  images  of  Drosophila  olfactory  axons  from the  DIADEM challenge47,  because  these  images  share  common 
acquisition parameters and their respective manual reconstructions (the “gold standards”) have been well characterized in 
benchmark studies. The topologies of these axons can be loosely divided into two complexity groups according to their  
number of branches (Fig. S1a). Since A* search can be scripted in SNT, these experiments were fully automated: For each  
cell, we iterated through the branches in the gold standard reconstruction and performed A* search between the voxels 
associated with the coordinates of the first and last node of each branch. This procedure was repeated while varying σ, with 
traced structures compared to the gold standard using the DIADEM metric29 at each run. 

First, we found that in the absence of human input, the simpler cells could be traced with high accuracy in the absence of  
Hessian pre-processing (Fig. S1b, median: .90/1.00 similarity score). Second, we found that under the stringent limitations 
of the test, Hessian pre-processing can enhance the accuracy of the segmentation of the more complex topologies (Fig. S1c) 
but is sensitive to σ choice. It is worth noting that the default σ value —that is proposed to the user at startup upon loading 
of  the  image  being  traced—yielded  a  median  DIADEM  score  of  0.81  for  all  cells  combined  (Fig.  S1c). Since 
reconstructions associated with a score of ≥0.8 are considered acceptably  similar29,48,  SNT’s default  settings —that are 
computed on an image-per-image basis— are reasonably determined. Given that the fine-tuning of Hessian parameters is  
essential for accurate results, SNT provides users with an interactive widget allowing users to adjust parameters during a 
tracing session, as well as commands to estimate, a priori, the local thickness49,50 of the structures to be traced (Fig. S1d).

SNT can also execute “path fitting” routines that automatically estimate radii and the optimal position of reconstruction 
nodes relative to signal (Fig. S2a). To expedite its usage, fitting operations are undoable, and can be perused by means of  
the “Fitting inspector” interface. SNT also allows users to identify and annotate portions of built-up topologies with colors  
and searchable tags based on custom labels, image data, or computed directly from morphometric traits (Fig. S2b).

Proof Editing and Automated Tracing
Proof-editing of automated segmentation is a major bottleneck in neuron reconstruction51. To expedite the proof-editing of 
traced structures, SNT features an “Edit mode” in which the topology of neuronal arbors can be edited/refined with sub-
pixel accuracy by means of mouse clicks or keyboard shortcuts. The ability to manipulate neuron topology is essential when 
attempting automated reconstructions (typically  involving high contrast images of simpler,  unambiguous topologies). In 
SNT, this procedure occurs in multiple steps: the user provides a thresholded image that is skeletonized 52.  Such image is 
then internally converted into a graph-theoretic representation from which the reconstructed arbor is extracted. Similarly to 
other software packages53, this reconstruction can then be manually edited and corrected in SNT’s graphical user interface.
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Figure  S2 | Post-hoc  optimization  of  curvatures  and 
proof-editing tools.

(a) Refinement  of  node  positioning  through  automated 
fitting.  The “gold standard” reconstruction of the “OP_1” 
neuron (depicted as a Z-Projection) was programmatically 
degraded (magenta). Voxel intensities were used to correct 
degradation:  SNT  computed  cross-sections  along  each 
traced path, ‘snapping’ nodes to their centroid, as depicted 
in insets. The same procedure can be used to estimate radii 
along the traced structure

(b)  The  Path  Manager’s  search  bar  provides  expedite 
commands  for  annotating,  filtering,  and  selecting  paths. 
Such operations can be based on image data, morphometric 
properties or user-provided tags. These are complementary 
to the topology-editing commands available in “Edit Mode” 

  (not shown).
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Multidimensional Imaging
In addition to 2D and 3D images, SNT supports multi-channel and time-lapse images, up to 5 dimensions. With time-lapse  
imagery, SNT allows users to associate paths associated with the same neurite across frames using a two-pronged approach:  
1) tags (automated and user-based) that associate paths with neurites and frames, and 2) a matching mechanism that groups  
paths across frames that share a common origin. The latter can occur in a lax manner to accommodate for motion artifacts  
across the image (Fig. S3a).

A key feature of SNT is seamless integration with ImageJ: Image processing routines can be inter-leaved with tracing tasks,  
and the entire suite of ImageJ plugins remains accessible during a tracing session. Special emphasis was put into allowing  
users to access image and reconstructed data in convenient ways. For example, reconstructed paths can be converted into  
functional ROIs and voxel intensities profiled along their center-lines. With multi-color fluorescence microscopy producing 
multi-channel images, this functionality allows users to quantify fluorescent signal along traced structures, and measure the 
signal from other probes in the imaged tissue (Fig. 1c). Although such features are of proven utility for many types of data 
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Figure S3 | Analysis of 4D and 5D imagery.

a) Time-lapse Analyses:  Dialog of the “Match Path(s) 
Across  Time”  command  showcasing  the  options  for 
matching  paths  across  time  so  that  they  remain 
associated with their common dendrite. The command is 
part  of  the  “Time-lapse  Utilities”  that  allow  for 
morphometric time profiles (Fig. 1b).

b) Analysis  of  non-neuronal  imagery.  K-fibers  were 
traced during anaphase in a multi-channel 3D timelapse 
of dividing S2 cells66 (IJ1 “mitosis” 5D sample image). 
Traces  were  color-coded  uniquely,  according  to  their 
location along the X- axis. Histogram depicts how the 
voxel data underlying traced data can be easily accessed 
from  built-in  commands.  Conversion  of  tracings  into 
functional ImageJ ROIs is also easily accomplished, as 
exemplified  by  point  ROIs  (‘+’  markers)  highlighting 
chromosome-attachment sites.

Figure S4 | Neuroanatomy viewers.

(a) Reconstruction Plotter assembles multi-panel 2D plots of reconstructed cells. Here, 
four  dendritic  arbors  from  the  MouseLight database  (IDs  AA001–4),  were 
automatically aligned, ranked and color-coded by cable length. When called from the 
GUI (graphical user interface), data can be transformed interactively (inset). Axis and 
scale bar in µm.

(b)  Reconstruction  Viewer  (RV)  is  a  3D  visualization  tool  designed  to  handle 
neuroanatomy  exclusively.  Transverse  view  of  the  mouse  brain,  depicting  a 
MouseLight pyramidal cell (ID AA0596; axon in yellow, dendrites in magenta) in the 
motor cortex (green). All axonal branch points within the Thalamus (red) have been 
identified and color-coded by depth, as per hue ramp. The vector connecting the cell 
soma to the centroid of thalamic branch points is highlighted. RV Controls (bʹ) are 
organized  in  a  layout  modeled  after  Path  Manager (Fig.  S2b)  in  SNT’s  tracing 
interface. Extra functionality, such as access to Allen CCF ontologies (bʹʹ) is provided 
through dedicated dialogs. 

(c)  Sciview integration allows SNT data to be rendered with arbitrarily large image 
volumes.  Left: Surface visualization of the multi-channel volume described in  Fig.  1 
(reconstructed  dendrites in  red).  Right:  Ortho-view of the same data  (experimental 
feature  at  the  time  of  this  writing).  For  clarity,  components  of  the  sciview  user 
interface (scene inspector, interactive scripting shell, Cx3D bridge, etc.) were omitted.
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(Fig. S3), we anticipate immediate utility in studies focused on neuroregeneration and neuron-glia interactions, in which the 
cellular environments around neurons is imaged and analyzed.

Visualization and Analysis
For simplified visualization of single-cell data SNT implements “Reconstruction Plotter”, a two-dimensional (2D) canvas 
for  vector-based  plotting  of  reconstructions  (Fig.  S1a,  S4a).  The  main advantage  of  this  type  of  viewer  is  that 
reconstructions can be scaled up or down to any resolution without being affected by aliasing artifacts. However, it can only 
render 2D data. For rendering more complex 3D data, SNT features two additional viewers:  Reconstruction Viewer and 
sciview5.                                                                                                                                   

Reconstruction Viewer (RV) is hardware accelerated, supporting both surface meshes and reconstruction files (Fig. S4b). 
The viewer can render both local and remote files on the same scene, which allows for direct loading of reconstructions  
from all of the supported databases and meshes for several template brains, i.e.: Drosophila (larval and adult) via Virtual Fly 
Brain,  FlyLight,  and  FlyCircuit8,43,54;  Allen  Mouse  Brain  Common Coordinate  Framework55,56 (CCF,  adult  mouse)  via 
MouseLight database7; and Zebrafish via the Max Planck Zebrafish Brain Atlas44. In the case of the Allen Mouse Brain 
Atlas56, the full stack of anatomical ontologies is supported (Fig. S4b′′). Reconstruction Viewer can also be used as a stand-
alone application (i.e., in the absence of SNT’s tracing interface), allowing it to be accessed from other environments such  
as  IPython.  All  Reconstruction  Viewer  instances  can  be  scripted  once  displayed,  and  can  be  instantiated  in  “high-
performance” mode, suitable for visualization of large amounts of data. As a proof-of-principle we used this feature to 
visualize the entire MouseLight database on a laptop computer without a discrete graphics card (Sup. Video 1). Another key 
feature of Reconstruction Viewer is its ability to perform geometric analyses on both meshes and reconstructions, which is 
key for studying the topographic organization of neurons across neuropils (Fig. S4b).

Sciview is  a  powerful  SciJava-based  visualization tool for  volumetric  and mesh-based  data (Fig.  S4c, Sup.  Video 2). 
Sciview has been recently improved to support  out-of-core volume rendering of images up to  9.261×1027 voxels5 (via 
BigDataViewer57), making it an appealing choice for visualization of large imagery.

SNT analytical  capabilities are three-fold:  1) Analysis of imagery data already discussed; 2) Morphometric analysis of 
single cells in isolation and 3) Analysis of groups of cells in a common, annotated space (a reference brain/neuropil), which  
requires handling of neuroanatomical volumes. For morphometric analyses, SNT supports commonly used metrics14

, graph 
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Figure S5 | Overview of analysis API.

Functional scripts (written in Python) showcasing SNT’s  API (application programming interface) on dendritic arbors from the MouseLight 
database (cells IDs AA0001–4) that can be access offline from within SNT as “demo trees”. For each panel, the script code (as typed in Fiji’s  
script editor) is showed on the left. Script’s output on the right.

(a,b) Statistics of morphometric traits can be extracted from groups of neurons (a), a single neuron (b), or parts thereof (not shown). Convenience 
methods allow data to be output in histograms, plots and tables. (c) Distribution of cable length across brain areas of the cell’s neuropil, in this 
case compartments from the Allen Mouse CCF. (d) Neuronal reconstructions can be converted to graphs succinctly, programmatically annotated 
and displayed in SNT’s interactive Graph Viewer. This code snippet also demonstrates how SNT interacts with the SciJava9 API.
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theory based analysis, and popular quantification strategies, such as Sholl15 and Strahler58–60. In addition, SNT’s API allows 
for analyses based on persistent homology61,62 (including persistence landscapes63) and other ad-hoc statistical measurements 
complementary to those available through the user interface (Fig. S5).

Modeling
Cortex3D (Cx3D) is a computational modeling tool for simulating neurodevelopmental processes12 and has been used to 
define generative models of cortical circuits64. We integrate Cx3D with SNT through the sciview visualization package by 
rewriting Cx3D to grow neuronal  processes  with sciview’s data structures.  This facilitates the use of  both SNT’s and 
ImageJ’s functionality when designing Cx3D models. We present two important examples that benefit from the unification 
of quantitative neuroanatomy and morphological modeling: statistical discrimination between morphological cell types, and 
image-based modeling of neural morphologies. However, there are many additional possibilities enabled by this coupling, 
from generative testing of new quantitative measurements to data-driven model fitting.

Morphological Discrimination Between Cell Types
Morphological discrimination between neuronal cell types is an important aspect  of  cell classification. The quantitative 
measurements made by SNT can be used to statistically test the difference between morphological populations of cells. To 
test this, we generated thousands of unique artificial neurons that ‘developed’ in silico under similar conditions and asked if 
SNT metrics could resolve such morphologically-related topologies.

First we integrated a computational model of artificial gene regulatory networks (GRNs) 13 into Cx3D for the control of 
cellular processes. An overview of the GRN architecture and mechanism of simulating GRN dynamics is described in detail  
in the previous publication13. Second, we generated five unique GRNs. While each of the five unique GRNs are randomly 
generated, all GRNs are provided with common inputs: directional cues for each 3-dimensional axis, length of the neurite 
segment, volume of the neurite segment, and local branch order. Additionally, all GRNs have common outputs: directional 
bias for each 3-dimensional axis, directional bias for previous direction of growth, directional bias for taking a random 
direction, a factor for increasing the segmentation of a neurite, and a factor for increasing the probability of branching. This 
type of input/output behavior is  described extensively in previous publications of the Cx3D simulator 12,64.  The specific 
connectivity and number of regulatory components of the GRN were randomized. However, completely randomized GRNs 
have a low probability of being capable of generating viable morphologies. To address this, rejection sampling was used 
when generating the random GRNs by testing that each network satisfied a minimal viability criteria. The viability test was 
performed as follows: the GRN is simulated for 100 time-steps with constant input values,  with the following  criteria 
assessed at the first and final time-step of the viability test: (1)  all behavior regulating protein concentrations should change, 
(2) the GRN must bifurcate enough to have reasonable growth, (3) the GRN must not over-bifurcate, (4) the GRN must 
trigger branching, and (5) the GRN must not overbranch. While these criteria will have an impact on the distribution of 
possible GRNs that are selected, the rationale for this approach is to compensate for the fact that most randomly generated 
GRNs are not capable of generating physically plausible neurodevelopment.
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For  each  GRN,  we stochastically  generated  1,000 artificial  neurons—under  the  same environmental  conditions—  and 
analyzed their skeletons with SNT core metrics (Fig. S6). We then performed Principal Component Analysis (PCA) and 
statistically tested the difference between principal components with two-sample Kolmogorov-Smirnov tests combined with 
the Fisher combined probability test (Methods). We obtained statistical significance on all comparisons. All groups were 
similarly resolved when extending this approach to other dimensionality reduction techniques (t-SNE30 and UMAP31).

Image-based Modeling
By unifying SNT and Cx3D, we can leverage  ImageJ  within Cx3D to enable  support  for  image-based modeling.  We 
demonstrate a proof-of-concept simulation based upon an  in vitro microfluidic assay designed for screening the effect of 
chemoattractants on neuronal growth65.  We recreated their microfluidic circuit  topology as a 3-dimensional image,  and 
define gradients of chemoattractant using intensity values of the image voxels, analogous to the original experiment’s Netrin 
assay. Neurite outgrowths follow chemical gradients of increasing concentration defined within the microfluidic circuit. We 
show a simulated neuron and image-based environment in Sup. Video 3.
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GRN 1 GRN 2 GRN 3 GRN 4 GRN 5

 PCA N/A * * * * * N/A * * * * * N/A * * * * * N/A * * * * * N/A

 UMAP N/A * * * * * N/A * * * * * N/A * * * * * N/A * * * * * N/A

Figure S6 | Statistical discrimination between between morphological populations of cells generated in silico.

Top: Density maps for the five neurodevelopmental cell types artificially generated using unique GRNs, obtained by overlaying all soma-
aligned cells in the group. Color coding reflects the density of neurites at a given location for the 5 groups.

Middle: Representative exemplars of each group. For clarity, cells from GRNs 4 and 5 were separated by a vertical offset.

Bottom: Summary of pairwise  statistical  measures  of  morphological  differences  between the  five  groups  analyzed  under different 
dimensionality reduction techniques. Principal components, t-SNE features (not shown) and UMAP components were computed from 
default SNT metrics and compared using a modified two-sample Kolmogorov Smirnov test. *: p<0.001; N/A: no test performed between 
same sample. Computed results available at https://github.com/morphonets/ SNTManuscript.

Cells from GRNs 4 and 5 were re-scaled in top and middle panel so that all cells could be rendered under equivalent dimensions. N=1000  
cells per group.
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The neurodevelopment  model  encodes  a  minimal  artificial  environment  reminiscent  of  an  in  vitro assay.  A neuron is 
initialized as a single soma at a randomly selected position within +/- 40 spatial units of the origin (0, 0, 0) along the X-, Y-, 
and Z- axes. Three extracellular morphogen gradients are established and extend for 300 spatial units along the three axes in 
a Gaussian distribution concentration. The simulation begins by extending an initial neurite segment from the soma. The 
GRNs then  regulate  the  growth of  neurites  with the previously described  inputs  and outputs.  The model  proceeds  by 
iteratively simulating physical constraints encoded in the Cx3D simulation engine and the dynamics of the GRN to grow the 
artificial neuron.

Glosssary

GRNs Artificial gene regulatory networks (GRNs) are mathematical algorithms inspired by mechanisms of  biological  gene regulation. 
GRNs can be used to model or solve problems with a strong dynamic or stochastic component

Mesh A polygon  mesh  defines  the  shape  of  a  three-dimensional  polyhedral  object.  In  neuronal  anatomy,  meshes  define  neuropil 
annotations, typically compartments of a reference brain atlas (e.g., the hippocampal formation in mammals, or mushroom bodies in  
insects)

Multi-dimensional image An image with more than 3 dimensions (3D). Examples include fluorescent images associated with multiple  
fluorophores (multi-channel) and images with a time-dimension (time-lapse videos). A 3D multi-channel timelapse has 5 dimensions

Neurite Same as neuronal process. Either an axon or a dendrite

Path Can be defined as a sequence of branches, starting from soma or a branch point until a termination. In manual and assisted (semi-
automated) tracing, neuronal arbors are traced using paths, not branches. Fitting algorithms that take into account voxel intensities can be 
used to refine the center-line coordinates of a path, typically to obtain more accurate curvatures. Fitting procedures can also be used to  
estimate the volume of the neurite(s) associated with a path

(Neuronal) morphometry Quantification of neuronal morphology

Neuropil  Any area in the nervous system. The cellular tissue around neuronal processes

Out-of-core Software with out-of-core capabilities is able to process data that is too large to fit into a computer’s main memory

Reconstruction See Tracing

ROI Region of Interest. Define specific parts of an image to be processed in image processing routines

Skeleton A thinned version of a digitize shape (such as a neuronal reconstruction) or of a binary image

Tracing A digital reconstruction of a neuron or neurite. The term predates computational neuroscience and reflects the  manual ‘tracing’  
on paper performed with camera lucida devices by early neuroanatomists

Volume rendering A visualization technique for displaying image volumes (3D images) directly as 3D objects

Supplementary Videos
Video S1 |  Example of a programmatic animation: “Cumulative” rendering of the complete MouseLight database in  Reconstruction Viewer. 
Animation, was generated on a laptop computer lacking a dedicated GPU, using a single script that downloaded, measured, and rendered each  
cell. See https://github.com/morphonets/ SNTManuscript for details. Note that the number of cells in the database has meanwhile surpassed those 
rendered.

Video S2 | Showcase sexample of scivew capabilities, in which segmentation and volumetric data are rendered in the same scene.  All data  was 
loaded from the Cremi challenge (https://www.cremi.org) sample dataset “A”, with the ten largest volumes (by voxel count) shown in random  
colors. In addition, half the volume of the EM raw data is shown as a semi-transparent direct volume rendering.

Video S3 | Example of image-based modeling using Cx3D and a 3D volumetric image defining a microfluidic circuit designed to assess neurite  
outgrowth in response to Netrin-1 and and Slit265. The simulation shows a single cell (magenta) with chemotaxis and branching preference for a  
steady-state chemical gradient (low concentration: purple; high concentration: yellow).
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Figure S7  | Connectivity “Ferris Wheel” diagrams for two cell populations in Layer 5/6 of the secondary motor area in the  
mouse brain.  The two populations are described in detail in Fig. 6 of Winnubst et al7. For simplicity, only brain areas at mid-
ontology level (depth=6) and one morphometric criteria (no. of axonal endings at target location) were considered. The cells were 
retrieved  from  the  MouseLight  database  and,  as  in  Fig.  2,  diagrams  were  programmatically  generated  (see 
https://github.com/morphonets/SNTManuscript for details). No of cells per group: 20 (corticothalamic); 14 (pyramidal-tract).
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