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Abstract
Over the past decade, summary statistics from genome-wide association studies (GWASs) have
been used to detect and quantify polygenic adaptation in humans. Several studies have reported
signatures of natural selection at sets of SNPs associated with complex traits, like height and
body mass index. However, more recent studies suggest that some of these signals may be caused
by biases from uncorrected population stratification in the GWAS data with which these tests
are performed. Moreover, past studies have predominantly relied on SNP effect size estimates
obtained from GWAS panels of European ancestries, which are known to be poor predictors
of phenotypes in non-European populations. Here, we collated GWAS data from multiple an-
thropometric and metabolic traits that have been measured in more than one cohort around
the world, including the UK Biobank, FINRISK, Chinese NIPT, Biobank Japan, APCDR and
PAGE. We then evaluated how robust signals of polygenic score overdispersion (which have been
interpreted as suggesting polygenic adaptation) are to the choice of GWAS cohort used to iden-
tify associated variants and their effect size estimates. We did so while using the same panel to
obtain population allele frequencies (The 1000 Genomes Project). We observe many discrepan-
cies across tests performed on the same phenotype and find that association studies performed
using multiple different cohorts, like meta-analyses and mega-analyses, tend to produce scores
with strong overdispersion across populations. This results in apparent signatures of polygenic
adaptation which are not observed when using effect size estimates from biobank-based GWASs
of homogeneous ancestries. Indeed, we were able to artificially create score overdispersion when
taking the UK Biobank cohort and simulating a meta-analysis on multiple subsets of the co-
hort. Finally, we show that the amount of overdispersion in scores for educational attainment -
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a trait with strong social implications and high potential for misinterpretation - is also strongly
dependent on the specific GWAS used to build them. This suggests that extreme caution should
be taken in the execution and interpretation of future tests of polygenic score overdispersion
based on population differentiation, especially when using summary statistics from a GWAS
that combines multiple cohorts.

Introduction
Most human phenotypes are polygenic: the genetic component of trait variation across individ-
uals is caused by differences in genotypes between individuals at a large number of variants,
each with a relatively small contribution to the trait (Fisher et al. , 1918; Turelli, 2017). This
applies to traits as diverse as a person’s height, their risk of schizophrenia or their risk of de-
veloping arthritis. The study of complex traits spans more than a century but only in the last
two decades has it become possible to systematically explore the genetic variation underlying
these traits (Sella & Barton, 2019). The advent of genome-wide association studies has led to
the identification of thousands of variants that are associated with such traits, either due to true
biological mechanisms or because of linkage with causal variants (Visscher et al. , 2012).

However, most research into the genetic aetiology of complex traits is based on GWAS data
from populations of European ancestries (Popejoy & Fullerton, 2016). This bias in representation
contributes to existing disparities in medical genetics and healthcare around the world (Martin
et al. , 2019). The low portability of European GWAS results - and, in particular, polygenic
scores - to non-European populations is particularly concerning (Martin et al. , 2017, 2019) (but
see (Ragsdale et al. , 2020)). For example, the predictive accuracy of polygenic scores for height
constructed using European effect size estimates has been shown to decrease with decreasing
European ancestry in admixed populations (Bitarello & Mathieson, 2020). Recent studies have
shown that ancestry deconvolution can be used to improve accuracy (Marnetto et al. , 2020;
Wang et al. , 2020), but important trait-associated variants in non-European populations may be
missed if they have low frequencies or are absent in European populations. Moreover, effect size
estimates for an associated variant derived from a European-ancestry GWAS may not accurately
reflect the effect of the same variant on the trait in other populations (Wojcik et al. , 2019). This
could be due to differences in epistasis, differences in linkage disequilibrium between causal and
ascertained variants, or gene-by-environment interactions, to name a few causes (Guo et al. ,
2018). Additionally, negative selection and demographic history may cause differences in genetic
architectures between populations (Durvasula & Lohmueller, 2019).

During the last decade, GWAS summary statistics have also been used to look for evidence
of directional selection pushing a trait to a new phenotypic optimum, via allele-frequency shifts
occurring across a large number of associated variants - a phenomenon known as polygenic
adaptation (Pritchard et al. , 2010; Hayward & Sella, 2019). For example, several studies have
consistently found evidence for polygenic adaptation operating on height-associated variants in
Europe, mainly across a south-to-north gradient (Turchin et al. , 2012; Berg & Coop, 2014;
Robinson et al. , 2015; Mathieson et al. , 2015; Racimo et al. , 2018; Berg et al. , 2017). To
test for selection, these studies primarily relied on summary statistics from the GIANT con-
sortium dataset, which is a meta-analysis of anthropometric GWAS from multiple European
cohorts (Allen et al. , 2010; Wood et al. , 2014). They looked for overdispersion and/or direc-
tional changes in the frequencies of trait-associated variants across populations, relative to a
neutral null model. To account for potential confounding due to population stratification, some
have tried to replicate this signal using family-based association studies (Allison et al. , 1999;
Robinson et al. , 2015). Berg et al. (2019) and Sohail et al. (2019) showed that this signal of
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polygenic score overdispersion on height-associated variants in Europe (and possibly on other
trait-associated variants) is attenuated and in some cases no longer significant when using effect
size estimates from a GWAS performed on the UK Biobank - a large cohort composed primarily
of individuals of British ancestry (Bycroft et al. , 2018). There is no single explanation yet for
these contradictory findings, but the most plausible one is that previous studies were impacted
by very subtle confounding due to uncorrected population stratification in GIANT, and that data
from family-based studies was not analyzed properly (Berg et al. , 2019; Sohail et al. , 2019).

It is as yet unclear how the choice of GWAS cohort affects tests of polygenic score overdisper-
sion based on allele frequency differences between populations. Each cohort differs in ancestries of
participants, inclusion criteria of individuals, SNP ascertainment scheme and association method.
Given the poor portability of polygenic scores across populations, is it also true that GWASs per-
formed on different cohorts will result in inconsistent signals of selection? Can we narrow down
on the reason for the inconsistencies in previous studies of polygenic adaptation by looking at a
larger number of cohorts? Here, we collated GWAS summary statistics from multiple complex
traits that have been measured in more than one cohort around the world. We then evaluated
how robust signals of polygenic score overdispersion are to the choice of cohort used to obtain ef-
fect size estimates. Across all comparisons, we used the same population genomic panel to obtain
population allele frequency estimates: The 1000 Genomes Project phase 3 (The 1000 Genomes
Project Consortium, 2015). We observe many discrepancies across tests performed on the same
phenotype and attempt to understand what may be causing these discrepancies. We compare
results for several traits and pay special attention to height, as it is the most well-characterized
and studied complex trait in the human genetics literature, as well as a trait for which we have
summary statistics from the largest number of GWAS cohorts. Finally, we perform an analogous
analysis on educational attainment - a trait that has also been highlighted in recent studies of
polygenic adaptation in humans (Racimo et al. , 2018; Uricchio et al. , 2019; Stern et al. , 2020),
and that is especially prone to be misinterpreted or misappropriated (Harmon, 2018; Novembre
& Barton, 2018). We show that overdispersion signals for this trait are also highly sensitive to
the choice of GWAS cohort.

Methods

GWAS summary statistics
We obtained GWAS summary statistics from five large-scale biobanks a GWAS meta-analysis
and a mega-analysis (Figure 1). Since we aim to make comparisons among them, our interest is
focused on traits that were measured in at least two different cohorts. This resulted in a total of
30 traits being included in our analysis.

Below, we provide a brief summary of each of the GWASs we focused on. For an overview of
the type of arrays and association methods used in each of these, see Table 1.

• UKBB: Summary statistics from the GWAS performed on all UK Biobank traits (Bycroft
et al. , 2018). These were released by the Neale lab (round 2: http://www.nealelab.is/
uk-biobank/), after filtering for individuals with European ancestries. The UK Biobank
includes genetic and phenotypic data from participants from across the United Kingdom,
aged between 40 and 69. The traits measured include a wide range of lifestyle factors, phys-
ical measurements, and other phenotypic information gained from blood, urine and saliva
samples. The Neale lab performed association testing in ∼ 340,000 unrelated individuals.

• FINRISK: Summary statistics from GWASs carried out using the National FINRISK
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1992-2012 collection from Finland (https://personal.broadinstitute.org/armartin/
sumstats/finland/. The FINRISK study is coordinated by the National Institute for
Health and Welfare (THL) in Finland and its target population is sampled from six different
geographical areas in Northern Finland. The FINRISK cohort was conducted as a cross-
sectional population survey every 5 years from 1972 to assess the risk factors of chronic
diseases and health behavior in the working age population. Blood samples were collected
from 1992 to 2012. Anthropometric measures and other lifestyle information were also
collected. The number of samples used for the GWAS results varies among the different
traits (∼25,000 to ∼5,000) (Borodulin et al. , 2018).

• PAGE: Summary statistics from a multi-ethnic GWAS mega-analysis performed by the
PAGE (Population Architecture using Genomics and Epidemiology) consortium (http:
//www.pagestudy.org/). This is a project developed by the National Human Genome
Research Institute and the National Institute on Minority Health and Health Dispari-
ties in the US, to characterize population-level disease risks in various populations from
the Americas (Matise et al. , 2011; Carlson, 2016). The association analysis was assem-
bled from four different cohorts: the Hispanic Community Health Study/Study of Latinos
(HCHS/SOL), the Women’s Health Initiative (WHI), the Multiethnic Cohort (MEC) and
the Icahn School of Medicine at Mount Sinai BioMe biobank in New York City (BioMe).
The authors performed GWAS on 26 clinical and behavioural phenotypes. The study
includes samples from 49,839 non-European-descent individuals. Genotyped individuals
self-reported as Hispanic/Latino (n = 22,216), African American (n = 17,299), Asian (n =
4,680), Native Hawaiian (n = 3,940), Native American (n = 652) or Other (n = 1,052). The
number of variants analyzed varies from 22 to 25 million for continuous phenotypes and 11
to 28 million for case/control traits. Sample sizes ranged from 9,066 to 49,796 individuals
(Wojcik et al. , 2019).

• BBJ: Summary statistics from GWASs performed using the Biobank Japan Project, which
enrolled 200,000 patients from 12 medical institutions located throughout Japan between
2003-2008 (http://jenger.riken.jp/en/result). The authors collected biological sam-
ples and other clinical information related to 47 diseases and self-reported anthropometric
measures. GWASs were then conducted on approximately 162,000 individuals to identify
genetic variants associated with disease susceptibility and drug responses. Around 6 mil-
lion variants were included for association testing (Nagai et al. , 2017; Hirata et al. , 2017;
Kanai et al. , 2018).

• Chinese NIPT: Summary statistics from a GWAS performed in China using non-invasive
prenatal testing (NIPT) samples from ∼ 141,431 pregnant women (https://db.cngb.org/
cmdb). The participants were recruited from 31 administrative divisions across the country.
The study aimed to investigate genetic associations with maternal and infectious traits, as
well as two antropometric traits: height and BMI (Liu et al. , 2018a). It included ∼ 60,000
individuals. The number of imputed variants used was around 2 million.

• APCDR: Summary statistics performed using the African Partnership for Chronic Disease
Research cohort, which was assembled to conduct epidemiological and genomic research of
non-communicable diseases across sub-Saharan Africa (https://personal.broadinstitute.
org/armartin/sumstats/apcdr/). The dataset includes 4,956 samples from Uganda (Baganda,
Banyarwanda, Burundi, and others). The authors performed GWAS on 34 phenotypes, in-
cluding anthropometric traits, blood factors, glycemic control, blood pressure, lipid tests,
and liver function tests (Heckerman et al. , 2016).
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• GIANT: Summary statistics published by the Genetic Investigation of Anthropometric
Traits consortium (2012-2015 version, before including UK Biobank individuals) (Wood
et al. , 2014; Locke et al. , 2015) (https://portals.broadinstitute.org/collaboration/
giant/index.php/GIANT_consortium_data_files). GIANT is a meta-analysis of sum-
mary association statistics for various anthropometric traits, and includes information from
more than 250,000 individuals of European descent. The meta-analysis was performed on
2.5 million autosomal SNPs, after imputation.

Population genomic panel
We used the 1000 Genomes Project phase 3 release data (The 1000 Genomes Project Consortium,
2015) to retrieve the allele frequencies of trait-associated variants in different population panels
sampled from around the world (Figure 1). We used these to compute polygenic scores for each
panel, using autosomal SNPs only. The dataset contains samples from 2,504 people from 26
present-day population panels, whose abbreviations and descriptions are listed in Table S1.

Identifying trait-associated SNPs
We used summary statistics for a set of 30 traits that were measured in at least two of the
previously-listed GWAS datasets. Table S2 shows the full list of the traits included in this
analysis and the number of variants and individuals per trait. For each trait, we excluded
triallelic variants, variants with a minor allele frequency lower than 0.01 across all samples and
those classified as low confident variants whenever this information was available in the summary
statistics file. We selected a set of trait-associated SNPs based on a P-value threshold, and the
effect size estimates of these variants were used to construct a set of polygenic scores. To only
include approximately independent trait-associated variants in our scores, we use a published set
of 1,703 non-overlapping and approximately independent linkage-disequilibrium (LD) blocks to
divide the genome (Berisa & Pickrell, 2016). We extracted the SNP within each block with the
lowest association P-value. To investigate the robustness of signals to different filtering schemes,
we used two P-value thresholds to extract significantly associated variants: 1) P < 1e−5 and 2)
the standard genome-wide significant cutoff, P < 5e−8. Blocks that only contain variants that
do not meet the chosen threshold were filtered out. As an example, Figure S1 (A) shows the
distribution of effect size estimates of height-associated SNPs with P < 1e−5. In turn, Figure S1
(B) shows the distribution of the product of the effect size estimates and the square root of the
study’s sample size (N). This serves as a fairer comparison among studies, as the standard error
of the effect size estimate is approximately proportional to the inverse of

√
N (see Casella &

Berger (2002); Edge (2019); Holland et al. (2016)). In order to build an empirical genome-wide
covariance matrix (F-matrix) with non-associated SNPs, we extracted all SNPs with a P-value
larger than 5e−8 and then sampled every 20th "non-associated" SNP across the entire genome.

We also used the LD score regression approach (Heckerman et al. , 2016) to obtain an LD
score regression intercept, LD score regression ratio, and a SNP heritability estimate for each
GWAS that we looked at. The LD score intercept is an estimate of the contribution of popula-
tion stratification to test statistic inflation in a GWAS analysis. The LD score regression ratio
measures the proportion of the inflation in the mean χ2 statistic that the LD Score regression
intercept ascribes to causes other than polygenic heritability. Finally, an estimate of trait heri-
tability can be obtained from the LD score regression slope (Bulik-Sullivan et al. , 2015b,a). We
note, however, that Berg et al. (2019) showed that some of the assumptions of LD score regres-
sion - which allow one to separate estimates of stratification confounding from heritability - may
be violated in the presence of background selection. Thus, these estimates may not accurately
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reflect the amount of stratification truly present in a GWAS.

Neutrality test for polygenic scores
Polygenic risk scores aim to predict the genetic risk of a disease, or the genetic value of a trait,
by combining the additive effect of a large number of trait-associated loci across the genome. For
each trait, we obtained polygenic scores by computing the sum of allele frequencies at each of the
top trait-associated SNPs from each block, weighted by their effect size estimates for that trait.
The allele frequencies for these SNPs were retrieved from The 1000 Genomes Project population
panels using glactools (Renaud, 2017). We then built a polygenic score vector for a given trait,
~Z, that contains the polygenic scores of all populations for that trait. Let ~pl ∈ [0, 1]M be the
vector of derived allele frequencies at locus l, where pl,m is the derived allele frequency at locus
l in population m, while αl is the effect size estimate of the derived allele at locus l. Then, the
vector of the polygenic scores, ~Z, has length M equal to the number of populations (M = 26)
and each element Zm is the polygenic score for population m

Zm =
L∑

l=1

2αlpl,m (1)

Here, L is the total number of trait-associated loci. For each polygenic score we built, we also
obtained 95% credible intervals, constructed using the method in Sohail et al. (2019), assuming
that the posterior distribution of the underlying population allele frequency is independent across
populations and SNPs, and that it follows a beta distribution.

Berg & Coop (2014) introduced a model designed for comparing polygenic scores across
populations, in order to test for deviations from neutrality, which could perhaps be driven by
adaptive divergence between populations. The test works by looking for overdispersion from a
multivariate normal distribution, which would fit the distribution of scores if this was determined
purely by genetic drift.

Under neutral genetic drift, Berg & Coop (2014) showed that the joint distribution of ~Z
across closely-related populations should be approximately multivariate normal under a purely
neutral model:

~Z ∼ MVN (µ~1, 2VAF) (2)

where ~1 is a vector of ones and:

µ = 2
L∑

l=1

αlpl, (3)

VA = 2
L∑

l=1

α2
l pl(1− pl) (4)

and pl is the average allele frequency of locus l across all populations. The matrix F is a genome-
wide covariance matrix that captures the co-ancestry among each pair of populations (Berg &
Coop, 2014). Based on this null model, we can measure the Mahalanobis distance of the observed
distribution of ~Z from the distribution under neutral genetic drift by computing Qx

QX =
(~Z − µ)TF−1(~Z − µ)

2VA
(5)
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Under neutrality, the QX statistic is expected to follow a chi-squared distribution with M -1
degrees of freedom, χ2

M−1 (Berg & Coop, 2014). A significantly large value of QX indicates that
there is an excess of variance in ~Z that cannot be explained by drift alone.

P-values via randomization schemes
To avoid relying on the assumption that ~Z follows a multivariate normal distribution under
neutrality, we also obtained P-values via two alternative methods (Berg & Coop, 2014; Berg
et al. , 2017; Racimo et al. , 2018). The first one relies on obtaining neutral pseudo-samples by
randomizing the sign (but not the magnitude) of the effect size estimates of all trait-associated
SNPs, and then recomputingQX . The second one involves obtaining pseudo-samples by sampling
random SNPs across the genome with the same allele frequency distribution in a particular
(target) population as the SNPs used to computed QX . For each trait-associated SNP, we thus
sampled a new SNP from a subset of the non-associated SNPs whose frequencies lie in the range
[0.01− p, p+ 0.01] where p is the derived allele frequency of the trait-associated SNP. Then, we
obtained a new P-value by computing the QX statistic on each of the pseudo-samples i:

P =
1 +

∑S
i I(Q

i
X > QA

X)

1 + S
(6)

Here, Qi
X is the QX statistic computed on pseudo-sample i, QA

X is the QX statistic computed
on the true set of trait-associated SNPs, I() is an indicator function and S is the number of
pseudo-samples used, which was set to 1,000. We tested the effect of using different population
panels as our ’target’ population for the frequency-matching scheme. Since we are utilizing
seven GWAS cohorts that are composed of Latin American individuals, Asian (Japanese and
Chinese), sub-Saharan African and European (Finnish and British) individuals, we decided to
use population panels from the 1000 Genomes that roughly matched the ancestry of the GWAS
cohorts: CHB for Chinese NIPT, JPT for BBJ, LWK for APCDR, FIN for FINRISK and GBR
for UKBB. While PAGE is a very heterogeneous cohort, we find that PUR is the panel with the
lowest amount of differentiation to PAGE, among all 1000G panels (Table S3), so we used PUR
as the closest match to PAGE.

Evaluating population structure
To look for population stratification along different axes of population variation Sohail et al.
(2019), we first selected those variants that were present in the 1000 Genomes Project, the UKBB
height GWAS and another non-UKBB height GWAS used for comparison against UKBB. We
filtered out variants that had minor allele frequency < 5% in the 1000 Genomes Project, or that
were located in the MHC locus (chr6:28477797-33448354) or in the chromosome eight inversion
region (chr8:7643092-11528113). We then performed LD pruning on the resulting set of variants
(using the –indep-pairwise 200 100 0.2 option). The remaining SNPs were used to perform a
PCA on a matrix of genotypes from all the 1000 Genomes Project individuals, from which we
obtained the first 20 PC loadings of population structure, using plink. Then, we performed linear
regression of the PC scores on the genotypes of each SNP that was previously removed due to
the pruning procedure. Finally, we plotted the correlations between each of the PCs and the
effect size estimates from one of the two GWASs: UKBB or non-UKBB.

7

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2020.07.13.200030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200030
http://creativecommons.org/licenses/by-nd/4.0/


Assessing different association methods
We were also interested in evaluating the effects of different types of association methods on
the significance of the QX statistic. We used the UKBB cohort to perform different types of
association studies on height. Starting from 805,426 genotyped variants across the genome,
we restricted to SNPs with a minor allele frequency (MAF) > 5% globally, and performed
associations on three different sets of individuals from the UKBB cohort: 1) self-reported white
British individuals ("British"), 2) self-reported "white" individuals, and 3) "all ethnicities", i.e. a
UKBB set including all self-reported ethnicity categories. We applied the following quality filters
in each of the resulting sets: 1) removed variants with P < 1e − 10 from the Hardy-Weinberg
equilibrium test, 2) removed variants with MAF < 0.1% in the set, 3) removed variants with an
INFO score less than 0.8, 4) removed variants outside the autosomes, and 5) removed individuals
that were 7 standard deviations away from the first six PCs in a PCA of the set (following the
Neale lab’s procedure for defining British ancestry after performing PCA on the UKBB dataset).
We then performed a GWAS via a linear model (LM) using PLINK 1.9 (Chang et al. , 2015)
and a GWAS via a linear mixed model (LMM) using BOLT-LMM (Loh et al. , 2018), on each
of the three sets (Table 2). We used sex, age, age2, sex*age, sex*age2 and the first 20 PCs as
covariates. We also aimed to test whether a meta-analysis approach could lead to overdispersion
of polygenic scores, and consequently, an inflated QX statistic. Therefore, we created a set of
artificial meta-analyses on the entire UKBB cohort, approximately emulating the number of
individual sub-cohorts that were included in GIANT. We used both the "all ethnicities" and the
"white British" UKBB cohorts to compare the results of a meta-analysis on a homogeneous vs.
a diverse cohort of individuals. For each of the two cohorts, we divided the corresponding set
of individuals into 75 subsets, using two different approaches. In one approach, we obtained 75
clusters from a K-means clustering of the first three principal components from a PCA of the
individuals. Under this approach, different cohorts have different sample sizes (though they do
not exactly match the cohort size distribution observed in GIANT). In the other approach, we
created 75 groups of equal size, randomly assigning individuals to each group, regardless of their
placement in the PCA.

We used PLINK 1.9 to perform a linear association model in each of the 75 clusters or groups.
As before, we used sex, age, age2, sex*age, sex*age2 and the first 20 PCs as covariates. These
covariates were included in the analysis of each cohort before the meta-analysis. We explored how
PC correction affected the meta-analyses. As the first 20 PCs, we used either the components
from a PCA performed on each of the 75 sub-cohorts or the components from a PCA performed
on all individuals together, before they were split. We note that the latter PCA would not be
available to a researcher performing a meta-analysis in practice, but we carried it out to check
whether lack of power to correctly model population structure via the cohort-specific PCAs was
somehow misleading us. Afterwards, we integrated all summary statistics into a meta-analysis,
using two different methods (Table 2): an inverse variance method and a sample size-based
method, both implemented in METAL (Willer et al. , 2010). This led to a total of 16 different
types of meta-analyses artificially performed on the UKBB data.

Educational attainment GWAS
We also performed an assessment of robustness in the distribution of population-wide polygenic
scores for educational attainment. In this case, together with effect size estimates from the UK
Biobank, we also obtained estimates from three studies carried out by the Social Science Genetic
Association Consortium (SSGAC) (ttps://www.thessgac.org):

• A meta-analysis of 126,559 individuals (42 discovery cohorts and 12 replication cohorts)
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(Rietveld et al. , 2013)

• A meta-analysis of 293,723 individuals (64 cohorts) (Okbay et al. , 2016).

• A meta-analysis of 1,131,881 individuals (Lee et al. , 2018) (71 cohorts in total). Note that
this study includes the samples from the Okbay et al. (2016) study and the UK Biobank
as well.

Source code
The code used to perform the analyses in this manuscript is available at: https://github.com/
albarema/GWAS_choice/.

Results

Robustness of signal of selection and population-level differences
We obtained sets of trait-associated SNPs for GWASs performed on seven different cohorts:
UK Biobank, FINRISK, Chinese NIPT, Biobank Japan, APCDR and PAGE. Using the effect
size estimates from each GWAS, we calculated population-wide polygenic scores for each of the
26 population panels from the 1000 Genome Project (The 1000 Genomes Project Consortium,
2015), using allele frequencies from each population panel. We then tested for overdispersion of
these scores using the QX statistic, which was designed to detect deviations from neutral genetic
drift affecting a set of trait-associated SNPs (Berg & Coop, 2014). We focused on 30 traits that
were phenotyped in two or more cohorts, so that we could compare the P-value of this statistic
using effect size estimates from at least two different cohorts (see Methods).

We applied the QX statistic to each of the 30 traits by selecting SNPs we deemed to be
significantly associated with each trait . We used two different P-value cutoffs to select these
SNPs: 1) a lenient cutoff, P < 1e−5 and 2) the standard genome-wide significance cutoff P <
5e−8. To verify that significant P-values of the QX statistics were not due to violations of the chi-
squared distributional assumption, we also computed P-values using two randomization schemes:
one is based on randomizing the sign of the effect size estimates of the trait-associated SNPs
(but not their magnitude), while the other is based on using frequency-matched non-associated
SNPs (see Methods). In general, P-values obtained from the three schemes are broadly similar
across the various approaches used. However, we observe a few inconsistencies in the sign-
randomization scheme, when compared to the other two approaches (Figures S2 and S3). The
number of significant SNPs for each of the traits under the two cutoffs is shown in Figures S4
and S5.

We used two types of multiple-testing Bonferroni corrections: one that applies to us - cor-
recting for both the number of traits assessed and the number of cohorts on which each of those
traits were tested (we call this number m) - and another that would apply to a person that was
blind to the other cohorts - and so would only correct for the n traits tested within their available
cohort (Figures 2, S2). We only find few traits with significant overdispersion in QX . Under
the P < 1e−5 SNP-association cutoff, the only traits with significant overdispersion in at least
one cohort are height and white blood cells (WBC) (Figures 2, S2). Potassium levels in urine
and mean corpuscular hemoglobin (MCH) also result in significant values of QX when using the
P < 5e−8 SNP-association cutoff (Figures S3, S6).

Figure 3 shows polygenic scores computed for each of the 1000 Genomes populations for
height. In agreement with previous studies (Berg et al. , 2019; Sohail et al. , 2019), we observe
that differences in polygenic height scores when using effect size estimates from the UKBB are
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greatly attenuated relative to differences in scores built when using estimates from GIANT.
Extending this analysis across all datasets, we observe that PAGE scores are also over-dispersed,
though in different directions than GIANT scores (Figure 3). Additionally, the observation
that Europeans have very high polygenic scores when using GIANT effect size estimates cannot
be replicated using any of the other GWAS estimates. After multiple testing correction (for
both association P-value threshold schemes), we only obtain significant QX P-values when using
summary statistics from PAGE and GIANT. The number of SNPs used for polygenic scores are
shown in Table 3. The LD score regression ratio is substantially higher for PAGE and FINRISK
than for the other cohorts (Tables 4, S4).

We also tested how the choice of the SNP association P-value threshold influenced the results.
Sohail et al. (2019) showed that between-population differences in polygenic height scores grow
stronger when using more lenient SNP association P-value cutoffs. However, one then runs the
risk of including more variants that may be significantly associated due to uncorrected popula-
tion stratification. We see there is a smaller score overdispersion when using the genome-wide
significant SNPs, than when using the more lenient P-value cutoff (right column, Table 3 and
Figure S7).

Finally, we computed polygenic scores on a single set of candidate SNPs ascertained in the
largest biobank (UKBB) but using effect size estimates from each of the other GWAS in turn.
Signals of overdispersion in height scores are greatly attenuated in each of the non-UKBB GWAS,
and are much more similar to the patterns observed in UKBB (Figure S8 and Figure S9). This
suggests an important reason for the observed overdispersion patterns in these other GWAS is
the choice of significant SNPs recovered from each study.

We also looked in closer detail at other traits with evidence for significant overdispersion via
the QX test. White blood cell counts (WBC), for example, shows strong overdispersion when
using PAGE, but not when using the UKBB or BBJ effect size estimates (Figure S10). We also
observe a similar pattern when looking at mean corpuscular hemoglobin (MCH) scores (Figure
S11). In the case of potassium levels in urine, larger between-population differences are found in
UKBB than in BBJ, when we use the stringent threshold (Figures S12). In general, we observe
that between-population differences in scores tend to be more similar between studies when using
the stricter SNP-association P-value threshold, than when using the more lenient threshold.

Relationship between GWAS effect size estimates
To better understand where the differences in overdispersion of QX could stem from, we per-
formed pairwise comparisons of the effect size estimates from the different GWAS. Since the
UKBB GWAS is the GWAS with the largest number of individuals, we decided to compare the
estimates from each of the other studies to the UKBB estimates. Here, we only focused on the
1,703 approximately-independent SNPs (the best tag SNP within each LD block). We began by
only using SNPs that were classified as significant in UKBB using the lenient cutoff (P < 1e−5)
(Figure 4). We observe that effect size estimates are correlated, as expected, but the strength
of this correlation varies strongly across comparisons. UKBB vs. GIANT shows the highest
correlation, while UKBB vs. APCDR shows the lowest. Those SNPs that also have a signifi-
cant P-value in the non-UKBB GWAS in each comparison (colored in red in Figure 4) show a
higher correlation than the rest of the SNPs: a pattern expected due to the winner’s curse, and
exacerbated by differences in sample sizes and LD patterns between GWAS cohorts (Berg et al.
, 2019).

The same analysis was carried out with SNPs classified as significant in each of the non-
UKBB studies. The correlation of effect size estimates is generally lower (Figure S13), and
a high percentage of SNPs deemed to be significant in the non-UKBB GWAS have effect size
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estimates approximately equal to zero in the UKBB GWAS (Figure S13). This pattern is stronger
when we do not filter the 1,703 approximately independent SNPs by a particular SNP-association
P-value cutoff (Figures S14 and S15).

We computed pairwise Pearson correlation coefficients between estimated effect sizes in the
UKBB GWAS and each of the other GWAS (Table S5 when using SNPs that are significant in
UKBB and Table S6 when using SNPs that are significant in the other GWAS). We observe that
GWAS performed on individuals living geographically close to Britain have higher correlations
to UKBB estimates than those that are performed on distant individuals. For instance, GIANT
and FINRISK (both European-based GWAS), show high correlation in effect size estimates with
UKBB (0.9958 and 0.790, respectively). In contrast, the GWAS carried out on an African cohort
- APCDR - shows an extremely low correlation in effect size estimates with UKBB (correlation
coefficient = 0.087). This cohort has by far the smallest sample size of all the cohorts we analyzed
(n = 4,778), which may explain the low correlation. We also observe higher correlations when
filtering for significantly associated SNPs using either of the two SNP significance thresholds
(P < 1e−5 and P < 5e−8) from the 1703 LD blocks.

The sample size of the GWAS might also affect the correlation in effect size estimates. We
can see in Figure S16 that there is a positive relationship between the log10 of the number of
samples included in the non-UKBB GWAS and the Pearson correlation coefficients between the
estimated effects in the non-UKBB GWAS and those estimated in the UKBB GWAS (which
has the largest sample size). We note, however, that the slope of a linear regression between
these variables is only significantly different from zero when ascertaining SNPs in the non-UKBB
study, and filtering for SNPs with P < 1e − 5. Most of our results stem from using LD block
partitions derived from a European panel of the 1000 Genomes Project (Berisa & Pickrell, 2016;
The 1000 Genomes Project Consortium, 2012). To investigate the sensitivity of our results to the
choice of LD blocks (particularly when querying non-European GWASs), we also show results
under an LD blocking scheme obtained from a population panel that was close to the GWAS
from which we obtained effect size estimates (Berisa & Pickrell, 2016). For BBJ and Chinese
NIPT, we use a set of 1,445 LD blocks constructed using LD patterns in the East Asian panels of
the 1000 Genomes Project. For APCDR, we use a set of 2,582 LD blocks constructed using LD
patterns in the African panels of the 1000 Genomes Project (Table S7). In the case of PAGE,
we do not have a Latin-American-specific LD block partitioning scheme. However, when we use
European LD blocks, we can detect a significant residual population structure pattern in PAGE,
but this pattern is no longer significant when we use African LD blocks (Figure S17), so we show
PAGE results using African LD blocks in Table S7.

Evidence for population stratification
Berg et al. (2019) looked for latent population stratification by studying the relation between
allele frequency differences in two populations and the difference in effect size estimates in two
GWAS. Presumably, if neither GWAS is affected by population stratification, there should not be
a relation between these two variables. We plotted SNP differences in allele frequency between
northern European and East Asian, African, and southern European samples (GBR, CHB, LWK
and TSI subsets of 1000 Genomes, respectively) against the difference in height effect size between
a pair of GWAS. When comparing the UKBB and GIANT, we replicate the signal of correlation
in differences between northern and southern European from Berg et al. (2019) (P < 1e−5, see
Figure S18). This pattern is also observed in the GBR vs. CHB and GBR vs. LWK comparisons
(Figures S19 and S20, panel A and B). However, these differences are not observed for any other
pairwise GWAS comparisons (Figures S18, S21, S22 and S23). We can see SNPs with large effect
size differences tend to be low-frequency SNPs, as the standard error of the effect size estimate
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for a SNP in a GWAS is a function of the SNP’s expected heterozygosity (Holland et al. , 2016).
We also followed Sohail et al. (2019)’s approach to look for GWAS stratification along

different PCA axes of population structure. We first performed a PCA on a matrix of genotypes
from all 1000 Genomes Project individuals. Then, we computed the correlation between the first
20 loadings of that PCA and the effect size estimates obtained from the UKBB height GWAS,
as well as the correlation between the same PC loadings and the effect size estimates from a
different (non-UKBB) height GWAS, on the same set of sites (see Methods). We plotted each
of these PC-specific correlations and colored them by the correlation between the corresponding
PC and the allele frequency differences between two population panels: GBR vs. TSI (Figure 5);
and GBR vs. CHB (Figure S24). This allows us to compare patterns of stratification between
two GWASs (UKBB and non-UKBB) along particular axes of genetic variation. We observe
large correlations between axes of population structure and effect size estimates in GIANT and
PAGE, and to a lesser degree in FINRISK, but not in the other GWAS we queried. Overall, this
suggests GIANT and PAGE might be more strongly confounded by stratification than the other
GWASs under study.

Assessing different association methods
We find strong differences in the amount of polygenic score overdispersion across GWASs, but the
GWASs we assessed were carried out using different association methods. We wanted to evaluate
the effect of different association methods on the overdispersion of polygenic scores, while using
the same underlying association cohort. We chose the UKBB cohort for this assessment, as
it is the largest cohort among the ones we tested. We first split the UKBB cohort into three
increasingly more expansive sets: 1) "British", 2) "White", and 3) "all ethnicities", based on a
self-identified ethnicity classification carried out by the UKBB consortium. We then performed
linear model (LM) and linear mixed model (LMM) association methods on each of the three sets
of individuals (Table 2, see Methods). We also wanted to see if we could replicate the strong
overdispersion in polygenic scores we saw in GIANT, by partitioning the entire UKBB cohort into
75 cohorts (approximately emulating the number of cohorts in GIANT), and then performing a
meta-analysis on the summary statistics obtained from individual GWASs performed separately
on each of these cohorts (Table 2, see Methods).

The population-wide polygenic scores and the QX scores obtained using effect size estimates
from each of these different methods are in Figures 6 and 7, respectively. We have more power
to detect height-associated SNPs when we used the mixed model, and the distribution of poly-
genic scores differs quite markedly between the linear model and the mixed model approaches.
For example, African polygenic scores tend to be higher when using the mixed model approach.
Regardless of whether one uses a linear or a mixed model, GWASs performed on a more ex-
pansive category of people ("all-ethnicities") lead to increased overdispersion of polygenic scores
than when using more restrictive categories ("British" or "White"). Additionally, our artificial
meta-analysis on the UKBB data resulted in even stronger overdispersion of the scores and,
consequently, an even more strongly inflated QX statistic, regardless of the set used. How-
ever, polygenic scores dispersion is slightly attenuated when we use the "British" set. The most
extreme QX -derived P-values across settings were those from the meta-analyses in the "all eth-
nicities" set (Figure S25). This increased overdispersion is particularly evident when looking at
the scores of European (FIN, CEU, GBR) and Latin American (PEL, CLM, MXL) populations in
the meta-analysis setting (Figure 6). The choice of method for PC correction against population
stratification does not lead to notably different results (Figure S26).
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The case of educational attainment
Previous studies have also found evidence for strong score overdispersion in variants associated
with educational attainment (Racimo et al. , 2018; Uricchio et al. , 2019) - a trait consisting
in the number of school years an individual has received. This trait has received considerable
attention in both the media and the scientific literature, due to its potential for misappropriation
and misuse by far-right groups (Harmon, 2018; Novembre & Barton, 2018). Though associated
variants have been shown to be disproportionally located in genes involved in brain development,
this trait is also highly affected by the environment (Okbay et al. , 2016; Lee et al. , 2018), and
potentially likely to be confounded by unaccounted factors, such as cultural and socioeconomic
background, and parental salary and education. Like height, the genetic value of this trait has
also been shown to be significantly similar among spouses, due to assortative mating (Abdellaoui
et al. , 2015; Hugh-Jones et al. , 2016; Yengo et al. , 2018; Robinson et al. , 2017), which could,
in turn, affect the interpretation of population genetic tests that assume individuals are not
segregating on the basis of trait preferences. The robustness of previously reported signals of
overdispersion thus warrants some attention, and we therefore set out to assess how consistent
patterns of overdispersion were across available GWAS cohorts.

Though educational attainment is only available in one of the cohorts we had access to
(UKBB), there are also 3 publicly available GWAS on this trait that were carried out in indi-
viduals of European ancestry by the SSGAC consortium: Rietveld et al. (2013); Okbay et al.
(2016); Lee et al. (2018). The SSGAC consortium used increasingly larger meta-analyses to
test for genetic associations with this trait (Lee et al. (2018) included both the Okbay et al.
(2016) cohorts and the UK Biobank cohort in its meta-analysis). To be able to replicate the
results of Racimo et al. (2018) as much as possible, we also computed polygenic scores on the
Okbay et al. (2016) GWAS estimates using the posterior-probability approach (PPA) used in
that study, and compared them to the P-value approach used throughout this manuscript.

As with height, we find strong inconsistencies in patterns of score dispersion, depending on
the P-value cutoff used to include SNPs in the score, and on which cohort we use for deriving
effect size estimates (Figure 8 and Table 5). For example, when using genome-wide significant
SNPs to build scores, the strongest pattern of overdispersion is found when utilizing estimates
from Okbay et al. (2016) with the PPA method (QX -derived P = 0.0037). When including
SNPs into the score via the more lenient SNP association P-value cutoff (1e− 05), the strongest
pattern of ovedispersion is found when using estimates from Lee et al. (2018) (QX -derived
P = 1.397e − 5). Importantly though, the patterns of dispersion are different under these two
conditions: European scores are highest in the latter, but East Asian scores are highest in the
former. The UKBB score pattern when using genome-wide significant SNPs resembles the Okbay
et al. (2016) pattern (as noted in Racimo et al. (2018)) but is very different from the Lee et al.
(2018) pattern, and is also different from scores derived from the same (UKBB) cohort under
the more lenient association P-value scheme.

Discussion
When looking at patterns of polygenic score overdispersion across populations, we observe highly
inconsistent signals depending on the GWAS cohort from which we obtained effect size estimates.
Because we are using the exact same population panels to obtain population allele frequencies in
all tests, the source of the inconsistencies must necessarily come from differences in the effect size
estimates in the different GWAS. These inconsistencies are not limited to tests involving height-
associated SNPs: they also appear in tests involving SNPs associated with other phenotypes, like
white blood cell count, mean corpuscular hemoglobin, potassium levels in urine, and educational
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attainment.
For those phenotypes for which we have effect size estimates from more than two different

sources, we find that the GWASs performed using multiple cohorts of diverse ancestries - GIANT
and PAGE - show strong overdispersion in genetic scores via the QX statistic. In biobank-based
GWAS conducted using panels with relatively homogeneous ancestries, the signals of selection are
generally (but not always) more attenuated. Furthermore, in the case of height, the distribution of
genetic scores when using GIANT estimates and when using PAGE estimates are not consistent.
This suggests differences in scores are likely not driven by a biological signal and are instead
driven by population stratification in GIANT and/or PAGE. An alternative explanation is that
the overdispersion in PAGE or GIANT-derived scores is truly biological, and perhaps the GWAS
performed in more homogeneous biobank studies are overcorrecting for population stratification,
increasing the false negative rate of the QX statistic. Moreover, our power to find signals of
polygenic adaptation might stem from SNPs with large contributions to phenotypic variance in
non-European populations (e.g. African populations) and thus we might only be able to see
these signals when we include individuals of African ancestry in a GWAS, as is done in PAGE.
Though plausible, these other explanations seem less likely than stratification, but we cannot
discard them at the moment, at least until a more extensive simulation study can allow us to
compare these scenarios and their resulting score dispersion patterns. Another possible cause for
these inconsistencies could be differences in the number of SNPs or individuals included in each
GWAS, leading to differences in power to detect score overdispersion on trait-associated variants.
Indeed, in some of the smaller cohorts (FINRISK and APCDR) we observe little to no evidence
for strong deviations from neutrality in the distribution of genetic scores across populations.

We find that the type of test performed to obtainQX P-values does not yield strong differences
in such P-values, at least not of the magnitude observed when using effect size estimates from
different GWAS cohorts. Those phenotypes and GWAS cohorts for which we find significant
overdispersion via the chi-squared distributional assumption for the QX statistic also tend to be
the ones for which we find significant overdispersion when not relying on it. This suggests that
this assumption - while not entirely accurate (Berg & Coop, 2014) - is still reasonably valid,
across all the phenotypes we looked at, assuming the effect size estimates are not affected by
stratification.

We were able to replicate the finding by Berg et al. (2019): there is a significant relationship
between the differences in allele frequencies between GBR and other worldwide populations and
the differences in effect size estimates between UKBB and GIANT. We note that a similar rela-
tionship was found by Uricchio et al. (2019), who showed an increase in the magnitude of allele
frequency differences between GBR and TSI when ordering SNPs by their P-value in GIANT -
an increase not observed when ordering them by their P-value in UKBB. We note, however, that
this relationship is relatively absent in comparisons of UKBB and other GWAS, again suggesting
that population stratification in GIANT, rather than over-correction of effect size estimates in
UKBB, may be the culprit. In any case, Haworth et al. (2019), Novembre & Barton (2018),
Coop (2019) and Rosenberg et al. (2019) encourage caution about the interpretation of signals
of polygenic adaptation due to the presence of residual stratification even in GWAS panels with
no clear evidence for stratification, as these signals may be subtle enough to escape notice, yet
still affect this type of tests.

Furthermore, when we performed an artificial meta-analysis on the UKBB data, emulating the
methodology of GIANT, we observed more dispersion of polygenic scores among populations than
when using a single GWAS cohort, echoing findings by Kerminen et al. (2019) at a more localized
geographic scale. As we previously observed in the vanilla (single-cohort) UKBB analysis, the
less homogeneous the ancestries of the individuals in the cohort (“all ethnicities” vs. “white
British”), the more dispersion is observed, which in turn causes a more inflated QX statistic.
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Nevertheless, both meta-analyses (“all ethnicities” and “white British”) show higher QX statistics
than their single-cohort counterparts, regardless of the meta-analysis method deployed. This is
also observed regardless of whether one uses cohort-specific PCs to correct for stratification in
the meta-analysis or global PCs from a PCA including all individuals. Overall, this adds weight
to the hypothesis that a failure of GWAS meta-analyses to control for population stratification
may affect polygenic score tests against a neutral null hypothesis. We note that several of
the component GWAS amalgamated in GIANT were not corrected via PCA or other standard
methods of correction in common use today (Wood et al. , 2014), so it is likely that we are being
over-conservative in our simulations.

It is important to keep in mind that each particular GWAS used imposes strong conditions
on the set of SNPs that are included in the QX analysis. We expect SNPs associated with a
phenotype in a given cohort to explain more variance in the population from which that cohort
was obtained than in other populations, simply because the significant SNPs need to have high
enough allele frequencies in the study cohort for them to be recovered in the first place. It is
unclear how this will affect false positive and false negative rates of tests of score overdispersion
performed in different cohorts. For example, if we see a score overdispersion signal when using
a GWAS from cohort 1 but not when using a GWAS from cohort 2, this could be due to a true
positive and a lack of power in cohort 2, or due to an artefact caused by cohort 1. It is also
possible that, if negative selection acts on some of the trait-related variation, it might affect
statistical power by constraining large-effect alleles to be kept at lower frequencies, thus making
large-effect alleles more population-specific.

Ultimately, the set of SNPs used in each analysis depends on a complex combination of
factors including allele frequencies, linkage disequilibrium with causal variants, statistical power
for detection and effect size inflation due to the winner’s curse, together with the underlying
evolutionary genetic process that "generates" the observed data. While modeling the individual
effect of each of these on the inflation of the QX statistic is beyond the scope of this study, we
note that all of these factors may be influencing the differences we observe among score sets.

In future studies of polygenic adaptation, we recommend the use of large homogeneous data
sets and the verification of signals of polygenic score overdispersion in multiple GWAS cohorts
(e.g. Chen et al. (2019)). We also recommend caution even when finding that statistics testing
against neutrality are significant in multiple GWAS cohorts: it is still possible that all the
GWAS cohorts may be affected by subtle stratification or other confounding issues, possibly
affecting different axes of population structure in different ways. To try to avoid stratification
issues, recent studies have proposed to look for evidence for polygenic adaptation within the
same panel that was used to obtain SNP effect size estimates, i.e. avoiding comparisons between
populations that might be made up of individuals outside of the GWAS used to obtain effect size
estimates (e.g. Liu et al. (2018b)). The argument favored by these studies is that, by ensuring
that the population on which the GWAS was performed and from which allele frequencies are
obtained matches exactly, one need not be confounded by differences in estimates between these
populations (for example, due to gene-by-environment interactions). However, Mostafavi et al.
(2019) recently showed that the accuracy of polygenic scores often depends on the age and sex
composition of the GWAS study participants, even when studying individuals of roughly similar
ancestries within a single cohort, due to heritability differences along these axes of variation.
This implies that ancestry-based stratification is not the only confounder that researchers should
be aware of when trying to detect polygenic adaptation.

Approaches based on tree sequence reconstructions along the genome (Rasmussen et al. ,
2014; Hubisz & Siepel, 2020; Kelleher et al. , 2016; Speidel et al. , 2019) appear to be a fruitful
avenue of research towards the development of methods that can properly control for some of
these confounders. These methods can model local genealogical relationships among individuals,
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which can in turn serve to track the segregation of trait-associated alleles backwards in time. For
example, Stern et al. (2020) recently showed that a method for detecting polygenic adaptation
based on tree sequences is highly robust to GWAS stratification, ascertainment bias in SNP
effects and negative selection, among other potential confounders. They were also able to show
that the signal of polygenic adaptation previously found at educational attainment-associated
variants may be due to indirect selection on other, correlated, traits.

Overall, we generally urge caution in the interpretation of signals of polygenic score overdis-
persion based on human GWAS data, at least until we have robust generative models that can
explain how stratification is creeping into these tests (Young et al. , 2019). This is especially
important when working with socially-charged traits like educational attainment, which are rife
for misuse and misinterpretation, and potentially affected by unaccounted socioeconomic and
cultural confounding factors. Due to the high risk of misappropriation of this type of results
by hate groups (Harmon, 2018), we also recommend that researchers make an effort to explain
the caveats and problems associated with these tests in their publications (Novembre & Barton,
2018; Rosenberg et al. , 2019; Coop, 2019), as well as the strong sensitivity of their performance
to the input datasets that we choose to feed into them.
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Figures

Figure 1: Map containing the geographic provenance of the panels of each association study we
examined (large circles), as well as the 26 population panels from the 1000 Genomes Project
(black squares). Small colored dots denote the provenance of the individual GWAS cohorts that
were used in GIANT and in PAGE.
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Figure 2: Each cell of this heatmap is the −log10(P-value) of a QX test using SNPs associated
with different traits and effect size estimates obtained from different GWASs. Each row corre-
sponds to one of the six GWASs we are evaluating and the columns correspond to the different
traits for each GWAS that have SNPs with a lower P-value than 1e− 5. BMI, body mass index;
DBP, Diastolic blood pressure; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein;
LDL, low-density lipoprotein; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
hemoglobin concentration; MCV, mean corpuscular volume; RBC, red blood cell count; SBP,
systolic blood pressure; WBC, white blood cell count; WHR, waist-to-hip ratio. Significance
thresholds after Bonferroni correction: *** <= 0.05/m, ** <= 0.05/n, * <= 0.05, where n is the
number of traits in each GWAS (row-dependent) and m is the total number of tests calculated,
across all GWASs.
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Figure 3: Polygenic scores for height using candidate SNPs with P < 1e−5. The 1000 Genomes
Project populations colored by their super-population code. The corresponding number of trait-
associated SNPs and the QX P-value for each GWAS are shown in Table 3. Error bars denote
95% credible intervals, constructed using the method in Sohail et al. (2019), assuming that
the posterior distribution of the underlying population allele frequency is independent across
populations and SNPs.
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Figure 4: Regression of UKBB effect size estimates against non-UKBB effect size estimates, after
filtering for SNPs with P < 1e−5 in the UKBB GWAS. The SNPs are colored based on their
P-value in the non-UKBB GWAS, as are the corresponding regression lines (red: P < 1e − 5;
blue: P > 1e − 5). The black regression line was obtained using all SNPs, regardless of their
P-value in the non-UKBB GWAS.
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Figure 5: Pearson correlations between 20 PC loadings and height effect size estimates from
a non-UKBB GWASs, compared to the same correlation using effect size estimates from the
UKBB GWAS, for different choices of non-UKBB GWAS. The correlations were computed using
SNPs that are present in both the UKBB and non-UKBB GWAS cohorts, and in the 1000
Genomes Project. The barplots are coloured by the correlation between each loading and the
allele frequency difference between GBR and TSI. A) GIANT vs. UKBB. B) BBJ vs. UKBB.
C) Chinese NIPT vs. UKBB. D) PAGE vs. UKBB. E) FINRISK vs. UKBB. F) APCDR vs.
UKBB.
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Figure 6: Polygenic scores for height in each of the 1000 Genomes population panels, using
effect size estimates from UKBB, obtained via different types of association methods. The types
of GWAS methods used are described in Table 2. Error bars denote 95% credible intervals,
constructed using the method in Sohail et al. (2019), assuming that the posterior distribution
of the underlying population allele frequency is independent across populations and SNPs.
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Figure 7: QX statistics and P-values for the trait height, obtained by using different types of
association methods on the UKBB data. The asterisk denotes a significance cutoff for QX of
P < 0.05. "-log10(Chi squared P)" = -log10(P), obtained assuming a chi-squared distribution
for the QX statistic. "-log10(randomized P)" = -log10(P-value), obtained using the effect sign-
randomization scheme. All other P-values were obtained by sampling random SNPs from the
genome using the allele frequency matching scheme in different populations, as described in the
Methods section. The different types of GWAS methods along the y-axis are described in Table
2.
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Figure 8: Polygenic scores for educational attainment in each of the 1000 Genomes population
panels, using effect size estimates from three SSGAC consortium GWAS studies (Rietveld et al.
, 2013; Okbay et al. , 2016; Lee et al. , 2018) and the UKBB Neale lab effect size estimates. A.
Polygenic scores for variants with P < 1e− 5. B. Polygenic scores for variants with P < 5e− 8.
C. Variants selection using a posterior-probability approach (PPA) on the Okbay et al. (2016)
summary statistics, emulating Racimo et al. (2018). Error bars denote 95% credible intervals,
constructed using the method in Sohail et al. (2019), assuming that the posterior distribution
of the underlying population allele frequency is independent across populations and SNPs.
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Tables

Table 1: Information on genotyping, imputation and association methods for each GWAS ana-
lyzed in this study. LM+PCs = linear model with principal components as covariates. LMM =
linear mixed model.

GWAS cohort No. individuals No. genotyped
SNPs

No. imputed
SNPs

Association
method GWAS array Filters

UKBB 360388 820967 10,800,000 LM+PCs UK Biobank Axiom Array
INFO > 0.8
MAF > 1e-4

HWE P-value > 1e-10

GIANT 253288 [meta-analysis] 2,834,208 LM+PCs
Affymetrix 500K platform,
Illumina genotyping arrays
and custom Perlegen arrays

Removed low quality SNPs

BBJ 159,095 958,497 27,896,057 LM+PCs Illumina
HumanOmniExpressExome

INFO >= 0.4
MAF > 1.0%

HWE P-value >= 1e6

Chinese NIPT 61,321 NA 2,130,000 LM+PCs Ultra low depth
shotgun sequencing

INFO > 0.4
HWE P-value > 1e6

PAGE 49,781 1,748,250 39,723,562 LMM Illumina Multi-Ethnic
Genotyping Array (MEGA) INFO > 0.4

FINRISK 24,725 551,004 11,670,715 LM+PCs Illumina CoreExome
INFO > 0.7
MAF > 1.0%

HWE P-value > 1e6

APCDR 4,778 2,382,209 16,477,797 LMM Illumina Omni2.5 INFO >= 0.3
MAF > 0.5%

Table 2: Description of types of methods used to obtain SNP associations from UKBB.

Code Cohort composition Description of association method

british linear-model Self-reported "British" individuals from UKBB linear model
implemented in PLINK 1.9

british mixed-model Self-reported "British" individuals from UKBB linear mixed model
implemented in BOLT-LMM

white linear-model Self-reported "White" individuals from UKBB linear model
implemented in PLINK 1.9

white mixed-model Self-reported "White" individuals from UKBB linear mixed model
implemented in BOLT-LMM

all ethnicities linear-model All self-reported ethnicities from UKBB linear model
implemented in PLINK 1.9

all ethnicities mixed-model All self-reported ethnicities from UKBB linear mixed model
implemented in BOLT-LMM

meta-analysis.inverseSE 75 sub-cohorts of equal size, composed of randomly
sampled individuals from UKBB (all ethnicities)

inverse-variance-based meta-analysis
implemented in METAL

meta-analysis.inverseSE 75 sub-cohorts obtained from K-means clustering
using 1st 3 PCs of UKBB individuals (all ethnicities)

inverse-variance-based meta-analysis
implemented in METAL

meta-analysis.samplesize 75 sub-cohorts of equal size, composed of randomly
sampled individuals from UKBB (all ethnicities)

sample-size-based meta-analysis
implemented in METAL

meta-analysis.samplesize 75 sub-cohorts obtained from K-means clustering
using 1st 3 PCs of UKBB individuals (all ethnicities)

sample-size-based meta-analysis
implemented in METAL
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Table 3: Height QX scores and P-values, assuming a chi-squared distribution for the scores. The
number of trait-associated SNPs used to compute the scores are shown for both cutoffs.

Lenient association threshold (P < 1e−5) Strict association threshold (P < 5e−8)
GWAS cohort Num. trait associated SNPs QX Num. trait associated SNPs QX

UKBB 1140 45.57 (P = 0.01) 810 39.72(P = 0.04)
GIANT 739 102.73 (P = 4e-3) 468 69.18 (P = 8e-8)
BBJ 759 9.255 (P = 0.99) 431 35.00 (P = 0.11)
Chinese NIPT 164 12.82 (P = 0.99) 60 24.68(P = 0.54)
PAGE 528 77.31 (P = 5e-7) 84 49.52 (P = 4e-3)
FINRISK 209 36.43 (P = 0.08) 47 41.48 (P = 0.03)
APCDR 61 21.15 (P = 0.73) 0 NA

Table 4: SNP-based heritability and LD Score regression ratio and intercept estimates (with
standard errors in parentheses) for height measured in different cohorts. LD scores were computed
for the super-population panels in the 1000 Genomes Project. The APCDR heritability estimate
is not shown because it was estimated to be negative, due to the small sample size of the cohort.

GWAS cohort Genome-wide significant
SNPs (P < 5e−8)

Observed scale
heritability (SE)

LD regression
ratio (SE)

LD regression
intercept (SE) Super Population

UKBB 30891 0.4205 (0.0183) 0.1184 (0.0098) 1.4384 (0.0362) EUR
GIANT 11625 0.3159 (0.0146) 0.1419 (0.0094) 1.2727 (0.0181) EUR
BBJ 9976 0.4168 (0.019) 0.1142 (0.0128) 1.1829 (0.0204) EAS
Chinese NIPT 1573 0.329 (0.0201) 0.0746 (0.0353) 1.0425 (0.0201) EAS
PAGE 564 0.2578 (0.0237) 0.371 (0.0336) 1.1762 (0.016) AMR
FINRISK 415 0.4557 (0.0446) 0.3775 (0.035) 1.1358 (0.0126) EUR
APCDR 0 NA NA NA AFR

Table 5: Educational attainment QX scores, assuming a chi-squared distribution for the scores.
The number of trait-associated SNPs used to compute the scores are shown for both SNP P-value
cutoffs.

Lenient association threshold (P < 1e−5) Strict association threshold (P < 5e−8)
GWAS cohort Num. trait associated SNPs QX Num. trait associated SNPs QX

UKBB 746 40.087 (P = 0.038) 246 42.859 (P = 0.02)
Leeetal.2018 907 67.761 (P = 1.4e-5) 416 51.62 (P = 0.002)
Okbayetal.2016 319 36.814 (P = 0.08) 74 35.175 (P = 0.1)
Rietveldetal.2013 54 35.444 (P = 0.102) 4 29.005 (P = 0.311)
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Supplementary Figures

Figure S1: A. Distribution of effect size estimates (with respect to the derived allele) for approx-
imately independent height-associated SNPs with P <1e−5. B. Distribution of the product of
the effect size estimates and the square root of the sample size of the study from which they were
obtained, for the same set of SNPs as in panel A.
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Figure S2: Evidence for polygenic score overdispersion on trait-associated SNPs (−log10(P-
value)), using the QX test statistic. Each row in the heatmap corresponds to a specific GWAS
cohort and a specific type of scheme to determine the significance of the QX statistic. The
columns correspond to the different traits for each GWAS cohort that have SNPs with a P-value
lower than 1e−5. "Freq-matched P-value" = P-value obtained by sampling SNPs with matching
frequencies to the trait-associated SNPs in a particular cohort. "Sign-randomized P-value" =
P-value obtained by randomizing the signs of the effect size estimates. "Chi-squared P-value" =
P-value obtained by assuming the QX statistics has a chi-squared distribution.
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Figure S3: Evidence for polygenic score overdispersion on trait-associated SNPs (−log10(P-
value)), using the QX test statistic. Each row in the heatmap corresponds to a specific GWAS
cohort and a specific type of scheme to determine the significance of the QX statistic. The
columns correspond to the different traits for each GWAS cohort that have SNPs with a P-value
lower than 5e−8. "Freq-matched P-value" = P-value obtained by sampling SNPs with matching
frequencies to the trait-associated SNPs in a particular cohort. "Sign-randomized P-value" =
P-value obtained by randomizing the signs of the effect size estimates. "Chi-squared P-value" =
P-value obtained by assuming the QX statistics has a chi-squared distribution.
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Figure S4: Number of significant SNPs used to compute the QX statistics for each cell of Figure
2. P < 1e−5

Figure S5: Number of significant SNPs for each trait in each GWAS with P < 5e−8.
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Figure S6: Evidence for polygenic score overdispersion on trait-associated SNPs (−log10(P-
value)), using the QX test statistic. Each row in the heatmap corresponds to one of the six
GWAS cohorts we are evaluating and the columns correspond to the different traits for each
GWAS cohort that have SNPs with a P-value lower than 5e−8. BMI, body mass index; DBP,
Diastolic blood pressure; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-
density lipoprotein; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin
concentration; MCV, mean corpuscular volume; RBC, red blood cell count; SBP, systolic blood
pressure; WBC, white blood cell count; WHR, waist-to-hip ratio. Significance thresholds after
Bonferroni corrections: *** denotes P <= 0.05/m, ** denotes P <= 0.05/n, * denotes P <=
0.05 where n is the number of traits measured in each GWAS (row-dependent) and m is the
total number of tests calculated, across all GWAS.
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Figure S7: Polygenic scores for height using candidate SNPs with P < 5e−8 in 1000 Genome pop-
ulations colored by their super-population code. The corresponding number of trait-associated
SNPs and the QX P-value for each GWAS are shown in the bottom row of Table 3. Error bars
denote 95% credible intervals, constructed using the method in Sohail et al. (2019), assuming
that the posterior distribution of the underlying population allele frequency is independent across
populations and SNPs.
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Figure S8: Polygenic scores for height 1000 Genome populations colored by their super-
population code. Candidate SNPs were ascertained in the UKBB using the cutoff of P < 1e−5.
Error bars denote 95% credible intervals, constructed using the method in Sohail et al. (2019),
assuming that the posterior distribution of the underlying population allele frequency is inde-
pendent across populations and SNPs.
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Figure S9: Polygenic scores for height 1000 Genome populations colored by their super-
population code. Candidate SNPs were ascertained in the UKBB using the cutoff of P < 5e−8.
Error bars denote 95% credible intervals, constructed using the method in Sohail et al. (2019),
assuming that the posterior distribution of the underlying population allele frequency is inde-
pendent across populations and SNPs.
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Figure S10: Polygenic scores for white blood cell counts using candidate SNPs with A. P < 1e−5
and B. P < 5e−8 in the 1000 Genomes Project populations colored by their super-population
code. Error bars denote 95% credible intervals, constructed using the method in Sohail et al.
(2019), assuming that the posterior distribution of the underlying population allele frequency is
independent across populations and SNPs.
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Figure S11: Polygenic scores for mean corpuscular hemoglobin using candidate SNPs with A.
P < 1e−5 and B. P < 5e−8 in 1000 Genome populations colored by their super-population code.
X trait-associated SNPs. Error bars denote 95% credible intervals, constructed using the method
in Sohail et al. (2019), assuming that the posterior distribution of the underlying population
allele frequency is independent across populations and SNPs.

Figure S12: Polygenic scores for potassium level using candidate SNPs with A. P < 1e−5 and
B. P < 5e−8 in 1000 Genome populations colored by their super-population code. Error bars
denote 95% credible intervals, constructed using the method in Sohail et al. (2019), assuming
that the posterior distribution of the underlying population allele frequency is independent across
populations and SNPs.
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Figure S13: Regression of UKBB height effect size estimates against non-UKBB height effect
size estimates, after filtering for SNPs with P < 1e−5 in the non-UKBB GWAS. The SNPs
are colored based on their P-value in the UKBB, as are the corresponding regression lines (red:
P < 1e− 5; blue: P > 1e− 5). The black regression line was obtained using all SNPs, regardless
of their P-value in the UKBB GWAS.

43

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 12, 2021. ; https://doi.org/10.1101/2020.07.13.200030doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200030
http://creativecommons.org/licenses/by-nd/4.0/


Figure S14: Regression of non-UKBB height effect size estimates against UKBB height effect size
estimates, after filtering for the SNPs with the lowest UKBB P-values in 1,703 approximately-
independent LD blocks. The SNPs are colored based on their P-value in the non-UKBB GWAS,
as are the corresponding regression lines (red: P < 1e−5; blue: P > 1e−5). The black regression
line was obtained using all SNPs, regardless of their P-value in the non-UKBB GWAS.
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Figure S15: Regression of UKBB height effect size estimates against non-UKBB height ef-
fect size estimates, after filtering for the SNPs with the lowest non-UKBB P-values in 1,703
approximately-independent LD blocks. The SNPs are colored based on their P-value in the
UKBB GWAS, as are the corresponding regression lines (red: P < 1e − 5; blue: P > 1e − 5).
The black regression line was obtained using all SNPs, regardless of their P-value in the UKBB
GWAS.
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Figure S16: Correlation between the number of individuals in a GWAS and the correlation of
effect size estimates between two different GWAS. In all panels, we compare UKBB against one
of the other studies. A and B. Coefficients obtained when we include the SNPs from the 1,703
LD blocks. C and D. Coefficients obtained when we filter out those SNPs with a P-value above
the threshold (P > 1e− 5).
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Figure S17: Regression of effect size estimates obtained from PAGE and APCDR. In the top
panels (A and B), we used European LD blocks and in the lower panels (C and D) we used
African LD blocks. In the left panel (A and C) we ascertained significant SNPs based on their P-
values in the PAGE GWAS (P < 1e−5). In the right panel (B and D), we ascertained significant
SNPs based on their P-values in the APCDR GWAS (P < 1e−5). The SNPs are colored based
on their P-value in the non-ascertained GWAS, as are the corresponding regression lines (red:
P < 1e− 5; blue: P > 1e− 5). The black regression line was obtained using all SNPs, regardless
of their P-value in the non-ascertained GWAS.
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Figure S18: Regression of GWAS height effect size differences against allele frequency differences
between northern and southern European population panels (GBR and TSI). We selected SNPs
for this analysis that had P < 1e−5. SNPs are colored by their expected heterozygosity (2p(1-p))
in the GBR population.
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Figure S19: Each panel in this figure shows the same regressions as Figure S18, except that the
difference in allele frequency is between a European population panel and an Asian one (GBR
and CHB). SNPs are colored by their expected heterozygosity (2p(1-p)) in the GBR population.
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Figure S20: Each panel in this figure shows the same regressions as Figure S18, except that the
difference in allele frequency is between the European and African populations panels (GBR and
LWK).SNPs are colored by their expected heterozygosity (2p(1-p) in the GBR population.
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Figure S21: Regression of GWAS height effect size differences against allele frequency differences
between the northern and southern European populations (GBR and TSI). A,B. We selected
SNPs for this analysis that had P < 1e−5. SNPs are colored by their expected heterozygosity
(2p(1-p)) in the GBR population.
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Figure S23: Each panel in this figure shows the same regressions as Figure S21, except that the
difference in allele frequency is between the European and African population panels (GBR and
LWK). SNPs are colored by their expected heterozygosity (2p(1-p)) in the GBR population.
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Figure S22: Each panel in this figure shows the same regressions as Figure S21, except that the
difference in allele frequency is between the European and Asian population panels (GBR and
CHB). SNPs are colored by their expected heterozygosity (2p(1-p)) in the GBR population.
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Figure S24: Pearson correlations between 20 PC loadings and height effect size estimates from
a non-UKBB GWASs, compared to the same correlation using effect size estimates from the
UKBB GWAS, for different choices of non-UKBB GWAS. The correlations were computed using
SNPs that are present in both the UKBB and non-UKBB GWAS cohorts, and in the 1000
Genomes Project. The barplots are coloured by the correlation between each loading and the
allele frequency difference between GBR and CHB. A) GIANT vs. UKBB. B) BBJ vs. UKBB.
C) Chinese NIPT vs. UKBB. D) PAGE vs. UKBB. E) FINRISK vs. UKBB. F) APCDR vs.
UKBB.
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Figure S25: QX statistics and P-values for the trait height, obtained by using different types
of meta-analysis methods on the UKBB data (inverse variance and sample size based) and two
PCA correction approaches (global vs. per-GWAS). The meta-analyses were performed in "all
ethnicities" as well as "White-British" set of individuals. The asterisk denotes a significance
cutoff for QX of P < 0.05. "-log10(Chi squared P)" = -log10(P-value), obtained assuming a chi-
squared distribution for the QX statistic. "-log10(randomized P)" = -log10(P-value), obtained
using the effect sign-randomization scheme. All other P-values were obtained by sampling random
SNPs from the genome using the allele frequency matching scheme in different populations, as
described in the Methods section.
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Figure S26: Polygenic scores for height in each of the 1000 Genomes population panels, using
effect size estimates from UKBB, obtained via different types of meta-analysis methods (inverse
variance and sample size based) and two PCA correction approaches (global vs. per-GWAS).
The meta-analyses were performed in the "all ethnicities" as well as in the "White-British" set
of UKBB individuals. Error bars denote 95% credible intervals, constructed using the method
in Sohail et al. (2019), assuming that the posterior distribution of the underlying population
allele frequency is independent across populations and SNPs.
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Supplementary Tables

Table S1: Full population descriptions of 1000 Genomes Project panels used in our analysis

Population code Description Super population
CHB Han Chinese in Beijing, China EAS
JPT Japanese in Tokyo, Japan EAS
CHB Southern Han Chinese EAS
CDX Chinese Dai in Xishuangbanna, China EAS
KHV Kinh in Ho Chi Minh City, Vietnam EAS

CEU Utah Residents with Northern and
Western European Ancestries EUR

TSI Toscani in Italia EUR
FIN Finnish in Finland EUR
GBR British in England and Scotland EUR
IBS Iberian Population in Spain EUR
YRI Yoruba in Ibadan, Nigeria AFR
LWK Luhya in Webuye, Kenya AFR
GWD Gambian in Western Divisions in the Gambia AFR
MSL Mende in Sierra Leone AFR
ESN Esan in Nigeria AFR
ASW Americans of African Ancestry in SW USA AFR
ACB African Caribbeans in Barbados AFR
MXL Mexican Ancestry from Los Angeles USA AMR
PUR Puerto Ricans from,Puerto Rico AMR
CLM Colombians from Medellin, Colombia AMR
PEL Peruvians from Lima, Peru AMR
GIB Gujarati Indian from Houston, Texas SAS
PJL Punjabi from Lahore, Pakistan SAS
BEB Bengali from Bangladesh SAS
STU Sri Lankan Tamil from the UK SAS
ITU Indian Telugu from the UK SAS
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Table S2: Full list of all traits tested and the number of individuals is shown for the GWAS in
which this data was available.

Traits UKBB BBJ FINRISK PAGE APCDR Chinese
NIPT GIANT

Anthropometric BMI 359,983 158,284 24,722 49,335 - 60,652 231,410
Height 360,388 159,095 24,725 49,781 4,778 61,321 253,288
Waist circumference 360,564 - - 33,942 - - -
Waist hip ratio
(WHR) - - 24,671 33,904 - - -

Blood pressure diastolic blood pressure
(DBP) 340,162 136,615 21,588 35,433 - - -

Systolic blood pressure
(SBP) 340,159 136,597 21,591 35,433 - - -

Inflammatory Platelet 361,141 108,208 6,404 29,328 - - -
Monocyte 349,856 62,076 - - - - -
C-reactive protein
(CRP) - 75,391 16,529 28,537 - - -

Hemoglobin (HbA1c) 350,474 42,790 - 11,178 - - -
Mean corpuscular hemoglobin
concentration (MCHC) 350,468 108,728 - 19,803 - - -

Mean corpuscular hemoglobin
(MCH) 350,472 108,054 - - - - -

Mean corpuscular volume
(MCV) 350,473 108,256 - - - - -

Basophil count 349,856 62,076 - - - - -
Hematocrit count 350,475 108,757 - - - - -
White blood cell count
(WBC) 350,470 107,964 - 28,534 - - -

Red blood cell count
(RBC) 350,475 108,794 - - - - -

Lymphocyte count 349,856 62,076 - - - - -
Monocyte count 349,856 62,076 - - - - -
Neutrophil count 349,856 62,076 - - - - -

Kidney-related Creatinine 350,812 142,097 6,376 - - - -
Liver-related Billirubin - 110,207 - - 4,778 - -
Metabolic Cholesterol 361,141 128,305 - 4,778 - -

High density lipoprotein
(HDL) - 70,657 21,620 33,063 4,778 - -

Low density lipoprotein
(LDL) - 72,866 21,250 32,221 4,778 - -

Triglycerides - 105,597 21,619 33,096 4,778 - -
Glucose - 93,146 4,418 23,923 - - -

Electrolits Potassium 350,053 132,938 - - - - -
Sodium 350,061 127,304 - - - - -

Lifestyle Cigarettes per day 25,348 - - 15,862 - - -
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Table S3: Pairwise Fst computed using SNPs present in PAGE, to estimate population differen-
tiation between PAGE and each of the 1000 Genomes Project panels.

Population panel Super-population Fst against PAGE
PUR AMR 0.013
CLM AMR 0.017
MXL AMR 0.023
ASW AFR 0.026
PJL SAS 0.029
BEB SAS 0.03
GIH SAS 0.033
ITU SAS 0.033
STU SAS 0.033
IBS EUR 0.034
TSI EUR 0.035
CEU EUR 0.036
FIN EUR 0.036
GBR EUR 0.036
ACB AFR 0.045
PEL AMR 0.054
LWK AFR 0.058
CHB EAS 0.062
JPT EAS 0.062
KHV EAS 0.062
GWD AFR 0.063
CHS EAS 0.064
YRI AFR 0.064
ESN AFR 0.065
MSL AFR 0.065
CDX EAS 0.066

Table S4: SNP-based heritability and LD Score regression ratio and intercept estimates (with
standard errors in parentheses) for height measured in different cohorts. LD scores were computed
using the closest population in the 1000 Genomes Project to each GWAS cohort (meta-analyses
of multiple populations were not included here, but see Table 4). The APCDR heritability
estimate is not shown because it was estimated to be negative, due to the small sample size of
the cohort. For Chinese NIPT GWAS, we filtered out all the sites with INFO scores less than
0.4.

GWAS cohort Genome-wide significant
SNPs (P 5e-8)

Observed scale
heritability (SE)

LD regression
ratio (SE)

LD regression
intercept (SE) Population

UKBB 30891 0.3911 (0.0211) 0.1887 (0.0099) 1.7056 (0.0371) GBR
BBJ 9976 0.4168 (0.019) 0.1142 (0.0128) 1.1829 (0.0204) JPT
Chinese NIPT 1573 0.2594 (0.0298) 0.2878 (0.0452) 1.1641 (0.0257) CHB
FINRISK 415 0.4042 (0.0401) 0.3609 (0.0389) 1.1305 (0.0141) FIN
APCDR 0 NA 14.8323 (9.7253) 1.0156 (0.0102) LWK
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Table S5: Pairwise Pearson correlation coefficient between effect size estimates from the UKBB
GWAS and from another GWAS. The SNPs used were determine based on their P-value in the
UKBB. n = number of SNPs used to compute the correlation.

GIANT FINRISK PAGE Chinese NIPT BBJ APCDR SNP filtering scheme
Filtering based

on UKBB
P-values

0.867
(n = 1703)

0.531
(n = 1703)

0.339
(n = 1703)

0.510
(n = 1703)

0.219
(n = 1703)

0.061
(n = 1703)

SNP with lowest P-value
in block

0.948
(n = 1059)

0.738
(n = 1124)

0.624
(n = 1139)

0.625
(n = 1064)

0.360
(n = 1095)

0.107
(n = 1100)

SNP with lowest P-value
in block, if P <1e-5

0.958
(n = 809)

0.790
(n = 870)

0.615
(n = 881)

0.654
(n = 814)

0.X
(n = X)

0.087
(n = 856)

SNP with lowest P-value
in block, if P <5e-8

Table S6: Pairwise Pearson correlation coefficient between effect size estimates from the UKBB
GWAS and from another GWAS. The SNPs used were determine based on their P-value in the
non-UKBB study. n = number of SNPs used to compute the correlation.

GIANT FINRISK PAGE Chinese NIPT BBJ APCDR SNP filtering scheme
Filtering based
on non-UKBB

P-values

0.698
(n = 1703)

0.167
(n = 1703)

0.128
(n = 1703)

0.335
(n = 1703)

0.018
(n = 1703)

0.121
(n = 1703)

SNP with lowest P-value
in block

0.931
(n = 738)

0.322
(n = 199)

0.258
(n = 366)

0.687
(n = 157)

0.561
(n = 709)

0.138
(n = 29)

SNP with lowest P-value
in block if P <1e-5

0.938
(n = 570)

0.334
(n = 136)

0.260
(n = 257)

0.654
(n = 112)

0.X
(n = X)

0.087
(n = 15)

SNP with lowest P-value
in block if P <5e-8

Table S7: Height QX scores when using LD blocks derived from closely related populations. In
the case of BBJ and the Chinese biobank, we used the ASN-specific LD blocks. In the case
of APCDR, we used the AFR-specific blocks. In the case of PAGE, we used the AFR-specific
blocks. The left columns show scores obtained when we used a P < 1e−5 threshold to include
SNPs in the polygenic scores. The right columns show scores obtained using the genome-wide
significant threshold (P < 5e−8). The number of trait-associated SNPs used to compute the
scores are shown for both cutoffs.

Lenient P-value threshold (1e-5) Strict P-value threshold (5e−8)
GWAS cohort Num. trait-associated SNPs Qx Num. trait-associated SNPs Qx
BBJ 693 9.701 (P = 0.99) 401 36.00 (P = 9e-2)
Chinese NIPT 160 13.05 (P = 0.98) 59 26.41 (P = 0.44)
PAGE 592 97.23 (P = 4e-10) 94 65.86 (P = 3e-5)
APCDR 60 21.15 (P = 0.73) 0 NA
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