Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation

View ORCID ProfileIlya Belevich, View ORCID ProfileEija Jokitalo
doi: https://doi.org/10.1101/2020.07.13.200105
Ilya Belevich
Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ilya Belevich
  • For correspondence: ilya.belevich@helsinki.fi eija.jokitalo@helsinki.fi
Eija Jokitalo
Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eija Jokitalo
  • For correspondence: ilya.belevich@helsinki.fi eija.jokitalo@helsinki.fi
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article Information

doi 
https://doi.org/10.1101/2020.07.13.200105
History 
  • July 14, 2020.
Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

Author Information

  1. Ilya Belevich* and
  2. Eija Jokitalo*
  1. Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
  1. ↵*Corresponding authors Ilya Belevich (ilya.belevich{at}helsinki.fi) and Eija Jokitalo (eija.jokitalo{at}helsinki.fi)
Back to top
PreviousNext
Posted July 14, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation
Ilya Belevich, Eija Jokitalo
bioRxiv 2020.07.13.200105; doi: https://doi.org/10.1101/2020.07.13.200105
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
DeepMIB: User-friendly and open-source software for training of deep learning network for biological image segmentation
Ilya Belevich, Eija Jokitalo
bioRxiv 2020.07.13.200105; doi: https://doi.org/10.1101/2020.07.13.200105

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Cell Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (2428)
  • Biochemistry (4784)
  • Bioengineering (3328)
  • Bioinformatics (14657)
  • Biophysics (6630)
  • Cancer Biology (5163)
  • Cell Biology (7417)
  • Clinical Trials (138)
  • Developmental Biology (4357)
  • Ecology (6869)
  • Epidemiology (2057)
  • Evolutionary Biology (9905)
  • Genetics (7341)
  • Genomics (9510)
  • Immunology (4545)
  • Microbiology (12658)
  • Molecular Biology (4937)
  • Neuroscience (28285)
  • Paleontology (199)
  • Pathology (804)
  • Pharmacology and Toxicology (1388)
  • Physiology (2019)
  • Plant Biology (4487)
  • Scientific Communication and Education (977)
  • Synthetic Biology (1297)
  • Systems Biology (3909)
  • Zoology (725)