Abstract
RNA-binding proteins (RBPs) play diverse roles in regulating co-transcriptional RNA-processing and chromatin functions, but our knowledge of the repertoire of chromatin-associated RBPs (caRBPs) and their interactions with chromatin remains limited. Here, we developed SPACE (Silica Particle Assisted Chromatin Enrichment) to isolate global and regional chromatin components with high specificity and sensitivity, and SPACEmap to identify the chromatin-contact regions in proteins. Applied to mouse embryonic stem cells, SPACE identified 1,459 chromatin-associated proteins, ∼48% of which are annotated as RBPs, indicating their dual roles in chromatin and RNA-binding. Additionally, SPACEmap stringently verified chromatin-binding of 404 RBPs and identified their chromatin-contact regions. Notably, SPACEmap showed that about half of the caRBPs bind to chromatin by intrinsically disordered regions (IDRs). Studying SPACE and total proteome dynamics from mES cells grown in 2iL and serum medium indicates significant correlation (R = 0.62). One of the most dynamic caRBPs is Dazl, which we find co-localized with PRC2 at transcription start sites of genes that are distinct from Dazl mRNA binding. Dazl and other PRC2-colocalised caRBPs are rich in intrinsically disordered regions (IDRs), which could contribute to the formation and regulation of phase-separated PRC condensates. Together, our approach provides an unprecedented insight into IDR-mediated interactions and caRBPs with moonlighting functions in native chromatin.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
SPACEmap was developed to identify chromatin contact sites of proteins SPACE sensitivity was assessed to be as few as 20,000 cells Dazl ChIP-SPACE was added Comparison with RICK, CARIC, Chromatin pelleting and Dm-ChP was added. Data analysis was revised. In summary, proteins quantified with at least one forward and 1 reverse SILAC experiments were considered for statistical analysis.