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Abstract 

Acute stress is ubiquitous in everyday life, but the extent to which acute stress affects how 

people learn from the outcomes of their choices is still poorly understood. Here, we investigate 

how acute stress impacts reward and punishment learning in men using a reinforcement-learning 

task. Sixty-two male participants performed the task whilst under stress and control conditions. 

We observed that acute stress impaired participants’ choice performance towards monetary 

gains, but not losses. To unravel the mechanism(s) underlying such impairment, we fitted a 

reinforcement-learning model to participants’ trial-by-trial choices. Computational modeling 

indicated that under acute stress participants learned more slowly from positive prediction errors 

— when the outcomes were better than expected — consistent with stress-induced dopamine 

disruptions. Such mechanistic understanding of how acute stress impairs reward learning is 

particularly important given the pervasiveness of stress in our daily life and the impact that stress 

can have on our wellbeing and mental health. 

 

Keywords: computational modelling; dopamine; prediction error; reinforcement learning. 

 

 

 

 

 

 

 

 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200568


ACUTE STRESS AND REWARD LEARNING 3 

 

1. Introduction 

Learning to choose options that lead to rewards and to avoid those that result in punishments is 

crucial for adaptive behavior. Situational factors, such as stress, can have deleterious effects on 

the ability to make the best choices and learn from them (Porcelli & Delgado, 2017). Stress is 

present in our day-to-day life, but, notably, how acute stress affects reward and punishment 

learning remains largely unknown. A growing body of evidence suggests that acute stress 

impairs reward-seeking behavior (Berghorst, Bogdan, Frank, & Pizzagalli, 2013; Bogdan, Perlis, 

Fagerness, & Pizzagalli, 2010; Bogdan, Santesso, Fagerness, Perlis, & Pizzagalli, 2011; Bogdan 

& Pizzagalli, 2006; Ehlers & Todd, 2017; Morris & Rottenberg, 2015; Paret & Bublatzky, 2020; 

but see Lighthall, Gorlick, Schoeke, Frank, & Mather, 2013), but less is known about the impact 

of acute stress on punishment-avoidance behavior (Aylward et al., 2019; Petzold, Plessow, 

Goschke, & Kirschbaum, 2010). More critically, there is even less evidence on the mechanisms 

that underlie the behavioral effects of acute stress on reward and punishment learning. Here, we 

use a computational reinforcement-learning framework to investigate the impact of acute stress 

on reward and punishment learning in men.  

In the past decades, the use of computational modeling approaches to describe behavior-

brain relationships in healthy humans has played an influential role on cognitive science (Daw & 

Frank, 2009; Frank, 2015; Huys, Maia, & Frank, 2016; Maia & Frank, 2011; Maia, 2015). 

Computational models, such as reinforcement-learning models, are built and implemented to 

capture very specific cognitive and neural mechanisms, thus linking different levels of analysis, 

from cognitive and behavioral phenomena to neurobiological mechanisms (Chater, 2009; Daw & 

Frank, 2009; Frank, 2015; Nair, Rutledge, & Mason, 2020). Reinforcement-learning models are 

considered extremely useful tools to investigate the neural computations underpinning cognition 
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and behavior (Collins & Frank, 2013; Daw, 2011; Daw & Frank, 2009; Huys et al., 2016; Maia 

& Frank, 2011; Nair et al., 2020), and can thus provide a mechanistic framework to disentangle 

the effects of acute stress on reward and punishment learning (Aylward et al., 2019; Huys, 

Pizzagalli, Bogdan, & Dayan, 2013; Luksys & Sandi, 2011; Otto, Raio, Chiang, Phelps, & Daw, 

2013; Radenbach et al., 2015; Robinson, Overstreet, Charney, Vytal, & Grillon, 2013). 

  According to reinforcement-learning theory, individuals learn to gradually select more 

and more often the actions that maximize rewards and those that minimize punishments by 

learning the values of the executed actions, and such learning is driven by prediction errors 

(Maia & Frank, 2011; Schultz, Dayan, & Montague, 1997; Sutton & Barto, 1998). Specifically, 

prediction errors — which signal the difference between obtained and expected outcomes — are 

used to progressively update the values of the executed actions (Collins & Frank, 2013; Maia & 

Frank, 2011; Schultz et al., 1997; Sutton & Barto, 1998). Prediction errors can be positive or 

negative. Positive prediction errors occur when outcomes are better than expected leading to 

reward learning (Daw & Tobler, 2014; Schultz et al., 1997). Negative prediction errors occur 

when outcomes are worse than expected leading to punishment learning (Daw & Tobler, 2014; 

Schultz et al., 1997). Importantly, reinforcement-learning models can capture how quickly 

rewarding and punishing outcomes are integrated over time through distinct learning rates for 

positive and negative prediction errors, respectively (Frank, Moustafa, Haughey, Curran, & 

Hutchison, 2007). Conversely, blunted signaling of positive and negative prediction errors can be 

captured by reinforcement-learning models as reduced positive and negative learning rates, 

respectively.  

  Dopaminergic functioning plays a key role in prediction-error-based learning (Frank, 

Seeberger, & O’Reilly, 2004; Glimcher, 2011; Maia & Frank, 2011; Pessiglione, Seymour, 
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Flandin, Dolan, & Frith, 2006). Prediction-error signals are known to be encapsulated in the 

phasic activity of dopamine neurons (Daw & Tobler, 2014; Maia & Frank, 2011; Schultz et al., 

1997). Specifically, phasic bursts of dopaminergic neurons are thought to adaptively encode 

positive prediction errors, whereas dopamine dips have been associated with the adaptive 

encoding of negative prediction errors (Daw & Tobler, 2014; Maia & Frank, 2011; Schultz et al., 

1997). However, phasic-dopamine responses do not seem to be always adaptive, and there is 

evidence that dopamine can be phasically released in an aberrant spontaneous manner (Belujon, 

Grace, & Grace, 2015; Maia & Frank, 2017; Sulzer, Cragg, & Rice, 2016). Studies with non-

human male animals suggest that aberrant spontaneous phasic-dopamine release increases with 

acute stress (Anstrom, Miczek, & Budygin, 2009; Anstrom & Woodward, 2005; Valenti, Lodge, 

& Grace, 2011). Crucially, exaggerated, aberrant spontaneous dopamine release seems to reduce 

adaptive striatal phasic bursts that signal positive prediction errors (Bilder, Volavka, Lachman, & 

Grace, 2004; Daberkow et al., 2013; Grace, 2016; Maia & Frank, 2017; Werlen et al., 2020). 

Additionally, though more speculative (Maia & Frank, 2017), aberrant spontaneous dopamine 

release might also block the effects of dopamine dips (Frank & O’Reilly, 2006) needed to signal 

negative prediction errors. Still, the extent to which stress-induced aberrant spontaneous 

dopamine release blunts signaling of positive and/or negative prediction errors remains poorly 

understood. 

The aim of the present work was twofold. First, to investigate how acute stress impacted 

behavioral performance during reward and punishment learning. Second, to inspect the 

computational mechanisms behind the effects of acute stress on reward and punishment learning. 

Given the putative roles of phasic-dopamine responses on prediction errors signaling and of 

acute stress on aberrant spontaneous phasic-dopamine release, we hypothesized that acute stress 
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would impair reward learning and that such impairment would be underpinned by a decreased 

learning rate for positive prediction errors. More tentatively, we hypothesized that acute stress 

could also impair punishment learning by decreasing the learning rate for negative prediction 

errors.  

To test those hypotheses, we used a well-established reinforcement-learning task involving 

monetary gains and losses (Pessiglione et al., 2006) combined with a novel acute stress 

manipulation. The stress manipulation consisted of exposing participants to an uncontrollable 

sound (i.e., participants could not put an end to it) whilst they performed the reinforcement-

learning task. We chose to use a repetitive alarm sound as stressor, as alarms can promote an 

alertness state accompanied by acute physiological responses (Hall et al., 2016). Furthermore, 

uncontrollable auditory stimuli can elevate stress responses (Arguelles, Ibeas, Ottone, & 

Chekherdemian, 1962; Breier et al., 1987; Rylander, 2004; Westman & Walters, 1981) and may 

disrupt dopaminergic mechanisms (Arnsten et al., 1998) and cognitive functioning (Glass, Reim, 

& Singer, 1971). Whereas in studies using other well-validated stress manipulations, such as the 

cold pressor task (e.g., Byrne, Cornwall, & Worthy, 2019; Lighthall et al., 2013) or the Trier 

social test  (e.g., Kruse, Tapia León, Stalder, Stark, & Klucken, 2018; Petzold et al., 2010), stress 

induction precedes task-solving (hence, learning), in our study we ensured that the stress 

induction occurred throughout the task, i.e. concurrently with learning. To check the success of 

the acute-stress manipulation, we collected self-report stress levels at the end of each block of the 

task and measured skin conductance response (SCR) rate throughout the task. Then, we 

inspected how acute stress altered reward and punishment learning during the reinforcement-

learning task using both classical statistical analyses and computational-model-based analyses of 

participants’ behavioral data. For the latter analyses, we fitted participants’ choices with a 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200568


ACUTE STRESS AND REWARD LEARNING 7 

 

previously established, biologically inspired, reinforcement-learning model (Frank et al., 2007), 

which has been extensively used to investigate the cognitive and behavioral impact of 

pharmacological manipulations and genetic variations in the dopaminergic system in humans 

(Diederen et al., 2017; Doll, Hutchison, & Frank, 2011; Frank & Fossella, 2011; Frank et al., 

2007; Grogan et al., 2017; Rutledge et al., 2009). The fitted reinforcement-learning model 

allowed us to examine mechanistically the effects of acute stress on learning rates for positive 

and negative prediction errors. In this study, we included only male participants due to females’ 

hormonal-dependent variations on stress responsivity, as well as on reward and punishment 

learning (Diekhof, Korf, Ott, Schädlich, & Holtfrerich, 2020; Dreher et al., 2007; Ossewaarde et 

al., 2010). 

 

2. Materials and Methods 

2.1. Participants 

Sixty-two healthy male participants (age range = 18 – 35; M = 21.9, SD = 3.7) were recruited at 

University of Minho, Portugal. This sample size more than doubled the size from that of a 

previous study where a similar probabilistic reinforcement-learning task was applied in a within-

subject design (Petzold et al., 2010). We stopped data collection after achieving this sample size, 

and thus independently of the statistical significance of the data. Four participants were excluded 

from skin-conductance analyses due to poor signal quality. No participants were a priori 

excluded from any other data analyses, although we conducted confirmatory analyses excluding 

potential outliers to ensure that our results were not driven by extreme values.  

All participants provided their informed consent before the experimental session. All 

experimental procedures were approved by the Ethics Committee of University of Minho. 
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2.2. Reinforcement-learning task 

After a short practice (12 trials), to familiarize participants with the task timings and response 

keys, participants completed four blocks of an adapted version of a well-established 

reinforcement-learning task (Pessiglione et al., 2006) (Fig. 1). During each block of 120 trials, 

participants were presented with three new pairs of abstract stimuli (40 trials per pair). Each pair 

of stimuli was associated with a valence: one pair of stimuli was associated with gains (“gain” 

0.5€/”nothing”), a second pair associated with losses (“loss” 0.5€/”nothing”), and a third pair 

associated with neutral, or non-financial outcomes (“look” 0.5€ /”nothing; for a depiction of 

neutral trials see Fig. S1a in the Supplementary Material). The outcome probabilities were 

reciprocally 0.8 and 0.2 for the stimuli in each of the three pairs. On each trial, one pair was 

randomly presented on the screen, with one stimulus from the pair above and the other below a 

central fixation cross (the stimuli position was counterbalanced across trials). Participants were 

instructed to choose between the two visual stimuli displayed on the computer screen to 

maximize payoffs. Missing choices occurred when participants did not press the response keys 

within 2000 ms (0.38% missing choices: 40 in the stress condition and 72 in the control 

condition, in a total of 29760 trials across all participants) and were signaled with a “Missed” 

message (no other outcome was provided). Missing choices were excluded from data analyses. 

Participants were informed that they would be paid the amount obtained during a randomly 

selected block, but they all left with the same fixed amount (15€). The experiment was 

programmed and presented with Cogent 2000 (http://www.vislab.ucl.ac.uk/cogent.php) 

implemented in MATLAB R2015a (MathWorks). 
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Fig. 1. Reinforcement-learning task. On each trial of the task, participants had to choose either 

the upper or the lower of two abstract visual stimuli presented on a computer screen and to 

subsequently observe the obtained outcome, whilst under acute stress and under control 

conditions. (a) In the depicted stress-condition example, the chosen stimulus was associated with 

a probability of 0.8 of winning 0.5€ and with a probability of 0.2 of obtaining nothing. The other 

(not chosen) stimulus was associated with a probability of 0.8 of obtaining nothing and a 0.2 

probability of winning 0.5€. (b) In the depicted control-condition example, the chosen stimulus 

was associated with a probability of 0.8 of losing 0.5€ and with a probability of 0.2 of obtaining 

nothing. The other (not chosen) stimulus was associated with a probability of 0.8 of obtaining 

nothing and with a 0.2 probability of losing 0.5€. Participants completed a total of four blocks, 
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consisting of an alternation between two stress and two control blocks. To assess stress 

responses, self-reported stress levels were collected at the end of each block and skin 

conductance was measured throughout the task. 

 

2.3. Acute stress manipulation 

During the experimental session, participants performed two blocks of the reinforcement-

learning task whilst exposed to a stressor (i.e., stress condition; Fig. 1a) and two blocks without 

the stressor (i.e., control condition; Fig. 1b). To elicit stress responses we exposed participants to 

a predictable, but uncontrollable auditory stimulus, a constant alarm (“Annoying modern office 

building alarm.wav”, retrieved from freesound.org, and programmed to loop uninterruptedly), 

played through the same set of over-ear headphones (GOODIS model GWH4093, with the  

volume set to the maximum), with the sound volume adjusted in the laptop to level 27 (in a scale 

from 0-100) for all participants. We conducted a brief pilot to qualitatively confirm that this 

volume was tolerable, yet stressful. Stress blocks were signaled by a warning sign and a red 

background (Fig. 1a), and control blocks were signaled by a safe sign and blue background (Fig. 

1b). Stress and control blocks were administered alternately and in counterbalanced order. The 

experiment was conducted in a soundproof room to avoid interference due to environmental 

noise, and between 12 pm and 6 pm to minimize diurnal variability in stress responses.  

 

2.4. Manipulation check 

Stress levels were assessed by asking participants at the end of each block to rate how stressed 

they felt during that block on a scale of 1 (nothing) to 9 (extremely). To further assess the impact 

of the acute stressor on autonomic responses, we acquired skin conductance responses (SCRs) 
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using BIOPAC MP150 and a pair of finger electrodes. Electrodes were attached to participants’ 

left index and ring fingers; the gain was set to 5, the low pass filter to 10 Hz, and the high pass 

filters to DC. Recordings were performed using Acqknowledge 4.4. Data were acquired at 200 

Hz, downsampled to 62 Hz, and smoothed with a median filter in order to remove outliers. Each 

participant’s SCRs were detected using a threshold of 0 μs and a rejection rate of 10% (Kim, 

Bang, & Kim, 2004). The SCR rate was calculated by dividing the number of SCRs detected in 

each block by the duration of that block (in minutes).  

Self-reported stress levels and SCR rates were analysed using repeated-measures analyses 

of variance (ANOVAs), with condition (stress and control) and block (1 and 2) as within-subject 

factors, and post-hoc paired t-tests. ANOVAs effect sizes are reported as eta-squared, ƞ2, and 

post-hoc paired t-tests’ effect sizes are reported as Cohen’s d and 95% confidence intervals. We 

further conducted non-parametric Wilcoxon signed-rank tests, which are more robust to outliers, 

to confirm the results from post-hoc paired t-tests. Additionally, to confirm that our findings 

were robust to extreme values, we repeated the SCR rate analyses excluding participants with 

abnormally large SCR rates. Statistical analyses were conducted using JASP 0.9. 

 

2.5. Task performance analyses 

To examine the impact of acute stress on choice performance during the reinforcement-learning 

task, we applied a generalized linear mixed-effects (glme) model to participants’ choice data 

(with correct and incorrect choices coded as 1 and 0, respectively). We used a “logit” link 

function to account for the binomial distribution of the data. As predictor variables in the glme 

model we included condition (stress or control), valence (gains or losses), block number (1 or 2), 

and trial number (1 to 40), and the interaction of interest (condition × valence; see Table S1 in 
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the Supplementary Material for a full description of the glme model). The glme included a fixed 

intercept, as well as random intercepts for each participant. We fitted the glme model to the 

behavioral data using MATLAB’s fitglme function and conducted post-hoc analyses via contrast 

matrices using the MATLAB’s coefTest function. To assess the robustness of our findings, we 

also tested the significance of the interaction of interest (condition × valence) using confirmatory 

likelihood ratio tests (Daw, 2011) between the aforementioned full glme model and two nested 

models, which assumed equal performance in stress and control conditions during either gain or 

loss trials, through the MATLAB’s lratiotest function. Additionally, we repeated the analyses 

excluding participants that performed below chance levels, which is indicative that participants 

did not learn to perform the task correctly and may reflect additionally non-compliance with the 

experimental setting. 

To confirm that the choice probabilities estimated by the glme model showed a close 

correspondence with the actual observed choices, we used MATLAB’s predict function. Then, 

we assessed the Pearson’s correlation between the percentage of actual “correct” choices (i.e., 

choice of the stimuli associated with a probability of 0.8 of winning or a probability of 0.2 of 

losing) for each participant in each condition (averaged across blocks) and the percentage of 

“correct” choices as estimated by the glme model. We also performed confirmatory Spearman’s 

correlations, which are more robust to outliers.  

 

2.6. Computational modeling 

2.6.1. Reinforcement-learning model 

We modeled participants’ trial-by-trial behavior in the stress and control conditions using a 

reinforcement-learning framework (Sutton & Barto, 1998) that has been extensively used to 
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investigate the behavioral and neural impact of pharmacological manipulations and genetic 

variations in the dopaminergic system in humans (Diederen et al., 2017; Doll et al., 2011; Frank 

& Fossella, 2011; Frank et al., 2007; Grogan et al., 2017; Rutledge et al., 2009). Importantly, the 

fitted model included separate learning rates for positive (α+) and negative (α-) prediction errors, 

to account both for the differential firing of dopaminergic neurons for positive and negative 

prediction errors (Daw & Tobler, 2014; Maia & Frank, 2011; Maia & Conceição, 2017) and the 

differential effects of dopamine onto the plasticity of the corticostriatal synapses implicated in 

action-value learning (Frank & O’Reilly, 2006; Maia & Frank, 2017; Maia & Conceição, 2017; 

Möller & Bogacz, 2019). This model also included the inverse temperature parameter, β, which 

controls the stochasticity of choice selection, or the exploration/exploitation trade-off (Daw, 

2011; Sutton & Barto, 1998), as detailed below.  

In the context of our experimental study, the specific reinforcement-learning model used 

(Frank et al., 2007) assumes that each participant gradually learns the value of choosing a given 

stimulus (say A or B) from a given pair of stimuli (here, “gain” or “loss” stimuli pairs, as the 

“neutral” pair of stimuli always yielded null monetary outcomes) as a function of the outcome 

that was obtained on that trial following stimulus selection. Specifically, each expected pair-

stimulus value, or Q-value, was initialized to zero, and for each trial, , within that pair of 

stimuli, the value of the chosen stimulus (say A was chosen) was updated according to: 

, 

where  was the prediction error: 

, 

where was 0.5 for gains, 0 for neutral outcomes, and -0.5 for losses. The learning rate, α , 

was given by: 
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where  and  were the learning rates for positive and negative prediction errors, respectively 

(Frank et al., 2007). 

The probability of choosing one stimulus over another (say A over B) was given by the 

softmax equation: 

 , 

where the β parameter, or inverse temperature, controlled the amount of exploration/ 

exploitation. A null β results in random behavior (i.e., similar choice probabilities irrespective of 

the corresponding action values), whereas the higher the β the more deterministic is the behavior 

(in our case, the stimulus with the highest expected value becomes progressively more and more 

likely to be the one selected from the pair).  

 

2.6.2. Model fitting, parameter analyses, and model validation 

We fitted the reinforcement-learning model to the trial-by-trial choice data from each participant 

in each condition. Model fitting involved estimating the values of the parameters (α+, α-, and β) 

that best accounted for the respective trial-by-trial choices in each condition.  

We estimated the best-fitting model parameters (α+, α-, and β) for each subject in each 

condition using maximum a posteriori estimation (Daw, 2011). Specifically, to optimize model 

parameters, we drew the learning rates from Beta distributions [Beta(1.1, 1.1)] and the inverse 

temperature from a Gamma distribution [Gamma(1.2, 5)] (Palminteri, Khamassi, Joffily, & 

Coricelli, 2015). We then used the MATLAB’s fmincon function, initialized at 100 random 

starting points of the parameter space, to search for the parameter values that minimized  
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the negative log posterior of the observed sequence of choices, given the previously observed 

outcomes, with respect to different settings of the model parameters (Daw, 2011). 

To assess the effects of acute stress on the parameters estimated by the reinforcement-

learning model, we conducted repeated-measures ANOVAs with condition (stress and control) 

and valence (positive and negative) as within-subject factors, and post-hoc paired t-tests. 

ANOVAs’ effect sizes are reported as eta-squared, ƞ2, and post-hoc paired t-tests effect sizes are 

reported as Cohen’s d and 95% confidence intervals. We also confirmed all results from post-hoc 

tests using non-parametric tests (Wilcoxon signed-rank tests), which are more robust to outliers. 

Additionally, we repeated all analyses excluding participants that performed below chance levels 

to test whether the significance of the results remained unchanged. These statistical analyses 

were conducted using JASP 0.9. 

To validate the used reinforcement-learning model, we computed trial-by-trial choice 

probabilities for all participants using the best-fitting set of parameters in each condition. The 

actual observed choices and outcomes were used to update the choice probabilities. To assess 

whether the choice probabilities estimated by the reinforcement-learning model (for each subject, 

the choice probabilities were averaged across gains or loss trials in each condition) followed the 

same pattern as the actual observed choices, we conducted Pearson’s correlations and 

confirmatory Spearman’s correlations for both conditions, using the respective mean 

percentages. 

To further validate the robustness of our model-fitting procedure, we examined the 

capacity of recovering subject-condition-specific parameters using simulated datasets. 

Specifically, we simulated the task-choice behavior of 62 virtual participants using the parameter 

values that we had estimated for each of the 62 participants in each condition. We ran 100 
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simulations. Then, for each simulation, we fitted the model to the virtual participants’ data to 

estimate new (recovered) parameters. Finally, we tested the correlations between the original and 

these recovered parameters using Pearson’s and confirmatory Spearman’s correlations. 

 

3. Results 

3.1. Manipulation check 

First, we confirmed that the acute stress manipulation successfully elicited stress responses in the 

participants. Self-reported stress levels differed significantly between conditions, F(1, 61) = 

107.67, p < .001, ƞ2 = 0.64, as participants reported higher levels of stress in the stress condition 

(M = 5.16, SEM = 0.21) than in the control condition (M = 3.31, SEM = 0.20), t(61) = 10.38, p < 

.001, d = 1.32, 95% confidence interval (CI) = [1.49, 2.20] (Fig. 2a). SCR rate also differed 

significantly between conditions, F(1,57) = 20.61, p < .001, ƞ2 = 0.27, being higher in the stress 

condition (M = 2.89, SEM = 0.27) than in the control condition (M = 2.46, SEM =  0.22), t(57) = 

4.54, p < .001, d = 0.57, 95% CI = [0.24, 0.62] (Fig. 2b). The condition × block interactions were 

non-significant for the self-reported stress levels, F(1, 61) = 0.004, p = .95, ƞ2 = 0, and for the 

SCR rate, F(1,57) = 0.46, p = .50, ƞ2 = 0.0080, suggesting that both the self-reported stress levels 

and the SCR rate remained stable across blocks within conditions. Furthermore, confirmatory 

non-parametric Wilcoxon signed-rank tests replicated the effects of acute stress on self-reported 

stress levels, when comparing the stress condition with the control condition, Z = 6.29, p < .001, 

and SCR rate, Z = 4.08, p < .001. Additionally, to check whether our results were robust to 

extreme values, we identified two participants with abnormally large SCR rate and reanalyzed 

the data without those participants. The significance of the results remained unchanged (main 

effect of condition: F(1, 55) = 19.47, p < .001, ƞ2 = 0.26), with higher SCR rate in the stress 
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condition than in the control condition, t(55) = 4.41, p < .001, d = 0.59, 95% CI = [0.21, 0.56], 

even after excluding the two participants.  

In sum, these results suggest that the acute stress manipulation successfully elicited stress 

responses. 
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Fig. 2. Manipulation check and task performance. (a) Participants (n = 62) reported higher stress 

levels in the stress condition (red) compared with the control condition (blue). (b) Skin 

conductance response rate (n = 58) was significantly higher in the stress condition than in the 

control condition. (c) Learning curves represent the trial-by-trial percentage of participants (n = 

62) who chose the “correct” gain stimulus (associated with a probability of 0.8 of winning 0.5€; 

upper part of the graph) and the “incorrect” loss stimulus (associated with a probability of 0.8 of 

losing 0.5€; lower part of the graph), in the stress and control conditions. (d) Participants 

performed significantly worse when seeking monetary gains, but not when avoiding monetary 

losses, in the stress condition relatively to the control condition. The reported p-values are from 

the generalized linear mixed-effects model that included each participant’s trial-by-trial choices 

and respective post-hoc tests. (e) The choices estimated by the generalized linear mixed-effects 

model captured the evolution of the actual observed choices during the reinforcement-learning 

task (to compare the choices estimated by the model with the actual observed choices, compare 

the overlap of the curves between the stress and control conditions depicted here with the overlap 

of the curves depicted in Fig. 2c). In panels a, b, and d, connected dots represent data points from 

the same participant; error bars displayed on the sides of those scatter plots indicate the sample 

mean ± standard errors of the mean. In panels c and e, the central lines represent the means and 

the filled areas the ± standard errors of the means. 

 

3.2. Task performance 

After confirming that self-reported stress levels and SCR rate were augmented in the stress 

condition, we examined the impact of acute stress on choice performance during the 

reinforcement-learning task (Fig. 2c) using a glme model. We found a significant condition × 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200568


ACUTE STRESS AND REWARD LEARNING 19 

 

valence interaction, β = -0.19, p = .018, 95% CI = [-0.34, -0.031] (Fig. 2d), and post-hoc 

analyses revealed that under stress, comparatively to the control condition, participants 

performed significantly worse when seeking monetary gains, F (1, 19755) = 12.87, p < .001, but 

not when avoiding losses, F (1, 19755) = 0.14, p = .71. As performance below chance levels 

might be indicative of non-compliance with the experimental setting, we also inspected whether 

each participant’s behavioral performance across gains and losses was below chance levels (i.e., 

less than 50% of correct choices) in the stress or control conditions. One participant performed 

below chance levels in the stress condition, and two participants performed below chance levels 

in the control condition. Thus, we repeated the aforementioned analyses excluding these three 

participants. We found that the condition × valence interaction was even more significant after 

excluding participants that did not learn how to perform the task, β = -0.28, p < .001, 95% CI = [-

0.44, -0.12]. We also confirmed the robustness of our findings using likelihood ratio tests. We 

found that the full glme model (which assumed different performance towards gains between the 

stress and control conditions) had a significantly better fit than a model that assumed no 

differences in performance towards gains between conditions, χ2 (1) = 12.80, p < .001, and that 

the same full model did not have a significantly better fit than a model that assumed no 

differences in performance towards losses between the stress and control conditions χ2 (1) = 

0.20, p = .66. These analyses indicate that behavioral performance towards gains, but not losses, 

significantly differed between the stress and control conditions.  

In sum, acute stress selectively impaired choice performance towards monetary gains 

during the reinforcement-learning task. As an additional check, we confirmed that the choices 

estimated by the glme model showed close correspondence with the observed choices across 

trials in both conditions, Pearson’s r > 0.65, p < .001, Spearman’s r > 0.51, p < .001  (Fig. 2e).   

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200568


ACUTE STRESS AND REWARD LEARNING 20 

 

Additionally, given that acute stress is thought to increase aberrant spontaneous phasic-

dopamine release (Anstrom et al., 2009; Anstrom & Woodward, 2005; Valenti et al., 2011), 

which, in turn, may lead to augmented learning and behavioral responding for neutral stimuli 

(Maia & Frank, 2017; Roiser, Howes, Chaddock, Joyce, & McGuire, 2013), we performed an 

exploratory analysis of participants’ choices for the neutral stimuli pairs (the pairs not associated 

with financial outcomes; for further details see Table S2 and “Analyses of neutral trials” in the 

“Supplementary Analyses” section of the Supplementary Material). We found that, within the 

pairs of neutral stimuli, acute stress increased behavioral responding towards the stimuli that 

more often yielded as outcome a coin with no financial value (the high-probability “look” 

stimuli) relative to the stimuli that yielded no outcome at all (Fig. S1b in the Supplementary 

Material). This tentative finding seems consistent with the idea that acute stress might bias 

behavioral responding for neutral stimuli due to augmented aberrant spontaneous phasic-

dopamine release. 

 

3.3. Computational modeling 

To further probe the nature of the effects of acute stress on reward and punishment learning, we 

fitted a biologically inspired reinforcement-learning model (Frank et al., 2007) to participants’ 

trial-by-trial choices (see subsection 2.6.1. in “Materials and Methods” for a full description of 

the model). The fitted model included separate learning rates for positive (α+) and negative (α-) 

prediction errors, to account for the differential firing of dopaminergic neurons for positive and 

negative prediction errors (Schultz et al., 1997). The model also included the inverse temperature 

parameter, β, which controls the exploration/exploitation trade-off (Daw, 2011; Sutton & Barto, 

1998). We then analysed the best-fitting model parameters using ANOVAs.  
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These analyses revealed a main effect of condition on learning rates, F(1, 61) = 4.69, p = 

.034, ƞ2 = 0.071, but a non-significant condition × valence interaction, F(1, 61) = 2.13, p = .15, 

ƞ2 = 0.034 (Fig. 3a). For completeness we performed post-hoc paired t-tests. Post-hoc tests 

revealed that α+ was significantly lower in the stress condition (M = 0.40, SEM = 0.033) than in 

the control condition (M = 0.51, SEM = 0.038), t(61) = -2.25, p = .028, d = -0.29, 95% CI = [-

0.21, -0.013], while α- was not significantly different between the stress (M = 0.25, SEM = 0.025) 

and control conditions (M =0.27, SEM = 0.027), t(61) = -0.72, p = .47, d = -0.092, 95% CI = [-

0.098, 0.046] (Fig. 3a). Additionally, as for task-performance analyses, we repeated all statistical 

analyses excluding the three participants that performed below chance levels. Exclusion of these 

three participants revealed that the condition × valence interaction reached significance, F(1, 58) 

= 4.61, p = 0.036, ƞ2 = 0.074), such that α+ was significantly lower in the stress condition than in 

the control condition, t(58) = -2.48, p = .016, d = -0.32, 95% CI = [-0.22, -0.024], and α- did not 

differ significantly between conditions t(58) = -0.16, p = .88, d = -0.021, 95% CI = [-0.073, 

0.063]. Thus, our findings suggest that acute stress selectively decreases α+. 

The parameter β, which controls the amount of exploration/exploitation in choice 

selection, also did not differ significantly between the stress (M = 9.52, SEM = 0.49) and control 

(M = 9.53, SEM = 0.51) conditions, t(61) = -0.016, p = .99, d = 0.0020, 95% CI = [-0.98, 0.99] 

(Fig. 3b). 
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Fig. 3. Model-fitting results. (a) Participants (n = 62) had lower learning rates (α+ and α-) in the 

stress condition (red) compared with the control condition (blue). Post-hoc tests revealed a 

significantly lower learning rate for positive prediction errors (α+) in the stress condition 

comparatively to the control condition. (b) The inverse temperature (β) did not differ between 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200568


ACUTE STRESS AND REWARD LEARNING 23 

 

conditions. (c) α+*β, but not α-*β, was significantly reduced in the stress condition compared 

with the control condition. In panels a, b and c, connected dots represent data points from the 

same participant. The error bar displayed on the side of the scatter plots indicate the sample 

mean ± standard error of the mean. (d) The probabilities of choosing the “correct” gain (upper 

part of the graph) and the “incorrect” loss (lower part of the graph) stimuli estimated by the 

reinforcement-learning model followed the same pattern of the actual observed choices (compare 

the overlap of the curves related to the stress and control conditions depicted here with the 

overlap of the curves that represent the actual observed choices depicted in Fig. 2c). The central 

lines represent the means and the filled areas represent the ± standard errors of the means. 

  

We further tested whether stress had a differential effect on reward compared with 

punishment learning by analysing the products between each learning rate (α±) and the inverse 

temperature (β). In reinforcement-learning models, α± and β tend to be inversely coupled (Daw, 

2011; Supplementary Material of Maia & Conceição, 2017) because α± multiply by state-action 

values and the state-action values themselves are multiplied by β to compute choice probabilities 

(see equations in subsection 2.6.1). As a result, the parameters viewed separately can have larger 

estimation errors, while their product tends to be more reliably estimated (Daw, 2011; Schonberg 

et al., 2007), and thus better recovered. Note that the products α±*β control how strongly the 

outcomes impact subsequent choice preferences (Schonberg et al., 2007). Statistical analyses 

revealed a significant  condition × valence interaction, F(1, 61) = 4.85, p = 0.032, ƞ2 = 0.074, 

meaning that acute stress significantly decreased α+*β (stress: M =  3.72, SEM =  0.34, control: 

M = 4.87, SEM = 0.48), t(61) = -2.58, p = .012, d = -0.33, 95% CI = [-2.04, -0.26], while not 

significantly affecting α-*β (stress: M = 2.33, SEM = 0.28, control: M = 2.44, SEM = 0.25), t(61) 
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= -0.33, p = .74, d = -0.042, 95% CI = [-0.71, 0.51] (Fig. 3c). Exclusion of the three participants 

that performed below chance levels did not change the significance of the results for the 

parameter β,  t(58) = 0.15, p = .88, d = 0.020, 95% CI = [-0.94, 1.10], nor for α±*β  condition × 

valence interaction,  F(1, 58) = 4.45, p = 0.039, ƞ2 = 0.071. Notably, the previous results were 

fully replicated when comparing the estimated parameters between the stress and control 

conditions using non-parametric Wilcoxon signed-rank, rather than parametric, post-hoc tests 

(α+: Z = -2.22, p = .026; α-: Z = -0.17, p = .86; β: Z = -0.11, p = .91; α+*β: Z = -2.19, p = .028; α-

*β: Z = -0.35, p = .73).  

To validate the used reinforcement-learning model, we confirmed that the probability of 

choices estimated under the reinforcement-learning model had a close correspondence with the 

actual observed choices across trials in both conditions, Pearson’s r > 0.76, p < .001, Spearman’s 

r > 0.70, p < .001 (Fig. 3d). Next, to further validate that our previous model-fitting results were 

reliable, we conducted parameter-recovery analyses. Those parameter-recovery analyses 

demonstrated that the results of our model-fitting procedure were robust both in the stress and 

control conditions, Pearson’s r > 0.67, p < .001, Spearman’s r > 0.69, p < .001 (see Fig. S2 in the 

Supplementary Material). Additionally, Bayesian model averaging analyses (Hoeting, Madigan, 

Raftery, & Volinsky, 1999) using both the aforementioned, neurobiologically inspired 

reinforcement-learning model (with separate learning rates for positive and negative prediction 

errors) and a nested, alternative candidate model (with a single learning rate) provided further 

support for the robustness of the parameters estimated by the model with separate learning rates 

(see Fig. S3 and “Model comparison and Bayesian model averaging” in the “Supplementary 

Analyses” section of the Supplementary Material). 
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Taken together, these computational findings indicate that under acute stress participants 

incorporated positive prediction errors at a lower rate, which seems to explain why acute stress 

impaired behavioral performance towards monetary gains during the reinforcement-learning 

task.  

 

4. Discussion 

Acute stress is present in day-to-day life, and people recurrently need to make choices and learn 

from the rewarding or punishing outcomes of those choices whilst under stress. In this study we 

investigated whether and how acute stress impacted reward and punishment learning in men 

using a reinforcement-learning framework. We hypothetized that acute stress would impair 

reward, and possibly punishment, learning by reducing learning rates for positive and negative 

prediction errors, respectively. We found that acute stress impaired behavioral performance 

towards monetary gains, but not losses, and that this impaired performance was explained by a 

decreased learning rate for positive prediction errors.  

 

4.1. Effect of acute stress on reward learning 

Our finding that acute stress impaired reward-seeking performance is consistent with previous 

several studies which found reduced reward responsiveness under acute stress (Bogdan et al., 

2010, 2011; Bogdan & Pizzagalli, 2006; Morris & Rottenberg, 2015; Paret & Bublatzky, 2020), 

particularly in high stress-reactive individuals (Berghorst et al., 2013). At a first sight, however, 

some of the extant literature may seem equivocal, possibly due to critical methodological 

differences related to stress operationalization (Porcelli & Delgado, 2017). A significant number 

of studies have investigated the effects of stress on learning using different paradigms, such as 
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the cold pressor test (Byrne et al., 2019; Ehlers & Todd, 2017; Glienke, Wolf, & Bellebaum, 

2015; Lighthall et al., 2013; Otto et al., 2013; Paul, Bellebaum, Ghio, Suchan, & Wolf, 2019) or 

the Trier social stress test (Boyle, Stanton, Eisenberger, Seeman, & Bower, 2019; Kruse et al., 

2018; Petzold et al., 2010; Radenbach et al., 2015), in which acute stress is induced before the 

learning task. In these paradigms, stress induction precedes any learning processes, thus the 

stress-induced emotional state may be less concurrent with the cognitive processes that operate 

during the task. As such, it is unclear whether these paradigms probe the effects of acute stress or 

of recovery from stress on learning (Hermans, Henckens, Joëls, & Fernández, 2014). Critically, 

studies that induce stress before the learning task may suggest divergent behavioral results from 

ours (e.g., Byrne et al., 2019; Lighthall et al., 2013), whereas studies that have induced stress 

during the learning task (as ours) seem to be in agreement with our findings of impaired reward 

learning during acute-stress exposure (Berghorst et al., 2013; Bogdan et al., 2010, 2011; Bogdan 

& Pizzagalli, 2006; Morris & Rottenberg, 2015; Paret & Bublatzky, 2020). Therefore, cross-

study comparisons suggest that individuals may perform more poorly when learning to maximize 

rewards whilst exposed to an acute stressor.  

In this study we further inspected the computational mechanisms behind impaired reward 

learning under acute stress. Using a reinforcement-learning model with separate learning rates 

for positive and negative prediction errors (Frank et al., 2007), we found that acute stress reduced 

the rate at which participants learned from positive prediction errors. A reduced learning rate for 

positive predictions errors means that under acute stress individuals learned more slowly about 

unexpected rewards and therefore took longer to adapt their behavior on the basis of the more 

recent rewarding outcomes of their choices. Other studies have successfully applied this 

reinforcement-learning model to analyze data from distinct tasks to describe the genetic (Doll et 
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al., 2011; Frank et al., 2007) and neural (Diederen et al., 2016; Lefebvre, Lebreton, Meyniel, 

Bourgeois-Gironde, & Palminteri, 2017; Niv, Edlund, Dayan, & Doherty, 2012) correlates of 

cognition and behavior. However, to the best of our knowledge, no studies had attempted to 

model how acute stress affects cognition, particularly reward and punishment learning, using 

such model. Another reinforcement-learning model commonly used in the stress literature 

includes distinct learning rates for gain and loss trials regardless of the valence of the prediction 

error (Aylward et al., 2019; Robinson et al., 2013; Treadway et al., 2017), meaning that learning 

from rewards in gain trials (or punishments in loss trials) is modeled the same way as learning 

from omission of rewards in gain trials (or omission of punishments in loss trials, respectively), 

which may not be so well supported by neurobiological evidence as a model that assumes 

distinct learning rates based on the prediction errors’ valence (as the one we used)  (Maia & 

Frank, 2011; O’Doherty, Dayan, Friston, Critchley, & Dolan, 2003; Schultz et al., 1997). Thus, 

our findings seem to contribute to a better mechanistic understanding of how acute stress may 

impact reward learning. 

Given that the (quantifiable) parameters from the reinforcement-learning model that we 

used seem to reflect specific dopaminergic-related neural mechanisms (e.g., Frank et al., 2007; 

Frank & O’Reilly, 2006), our computational findings may shed light on putative neural 

mechanisms underlying the impact of acute stress on cognition and behavior. Specifically, our 

computational findings seem broadly consistent with the proposed neurobiological account of 

dopaminergic neurons functioning under acute stress. Acute stress is thought to induce aberrant 

spontaneous dopamine release (Anstrom et al., 2009; Anstrom & Woodward, 2005; Cabib & 

Puglisi-Allegra, 2012; Valenti et al., 2011); stress-induced spontaneous dopamine release, in 

turn, may disrupt the adaptive striatal phasic-burst dopamine responses that signal positive 
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prediction errors (Bilder et al., 2004; Daberkow et al., 2013; Grace, 2016; Maia & Frank, 2017; 

Werlen et al., 2020), which would explain the stress-induced impairment of reward learning. 

While our computational results suggest that acute stress disrupts striatal responses to prediction 

errors during reward learning (see also Huys et al., 2013), we cannot disregard, however, that 

acute stress may also affect reward learning via prefrontal cortex disturbances (Lighthall et al., 

2013; Otto et al., 2013; Whitmer, Frank, & Gotlib, 2012). 

 

4.2. Effect of acute stress on punishment learning 

Acute stress impaired reward learning, but we found no evidence for an effect of acute stress on 

punishment learning. In line with this behavioral data, computational-modeling analyses also 

provided no evidence that acute stress affected the learning rate for negative prediction errors.  

According to a long standing influential loss aversion framework (Kahneman & Tversky, 

1979), losses can have more debilitative potential than gains; therefore, as an adaptive strategy, it 

is possible that individuals may be more attuned to losses than to gains (Lejarraga, Hertwig, & 

Gonzalez, 2012; Yechiam, 2019; Yechiam & Hochman, 2013), explaining why punishment 

learning was spared under acute stress. However, recent evidence suggests that individuals learn 

gain associations better than loss associations in reinforcement-learning tasks despite 

symmetrical task structure and symmetrical outcome probabilities (Lin, Cabrera-Haro, & Reuter-

Lorenz, 2020) (as in our task). Indeed, our behavioral data indicated that participants performed 

better when learning to seek gains than when learning to avoid losses in both the stress and 

control conditions. In addition, our computational data indicated that the learning rate for 

positive prediction errors was significantly higher than the learning rate for negative prediction 

(see also Lefebvre et al., 2017) in both conditions. Thus, it seems unlikely that acute stress 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200568doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200568


ACUTE STRESS AND REWARD LEARNING 29 

 

preserved the mechanisms involved in punishment learning, but not in reward learning, due to 

heightened attention towards losses relatively to gains (i.e., by preferentially decreasing attention 

towards gains).  

One potential neurocognitive explanation for such lack of effect of acute stress on loss 

avoidance is that D2 dopamine receptors, which mediate punishment learning (Frank & 

O’Reilly, 2006; Maia & Frank, 2011), are already mostly activated at baseline dopamine levels, 

so their activation might be affected by decreases, but less so by increases, in dopamine levels 

(Maia & Conceição, 2017; Möller & Bogacz, 2019). Finally, non-dopaminergic mechanisms 

may also be involved in punishment learning (Boureau & Dayan, 2011; Moran et al., 2018), 

which may partially explain why previous studies using the same reinforcement-learning task 

also did not find significant effects of pharmacological manipulations of the dopaminergic 

system on punishment learning (Eisenegger et al., 2014; Pessiglione et al., 2006). 

 

4.3. Acute stress and behavioral performance in neutral trials 

We found preliminary evidence that acute stress biased behavioral responding to neutral stimuli, 

as the choice of the high-probability “look” stimuli — compared to the stimuli with a high 

probability of yielding “nothing” — was augmented under stress compared to the control 

condition (for a detailed discussion about this finding, see the Supplementary Material). 

Although very tentative, this finding might be of relevance as excessive, aberrant spontaneous 

dopamine release is thought to underlie increased behavioral responding and aberrant learning 

for neutral stimuli (Maia & Frank, 2017; Roiser et al., 2013). Still, whether acute stress promotes 

aberrant valuation of neutral stimuli via dopaminergic disturbances remains unknown and should 

be further investigated. 
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4.4. Limitations 

In this study, we induced acute stress in participants, using a repetitive and uncontrollable sound, 

whilst they completed a reinforcement-learning task. We exposed participants to the sound 

during the learning task to ensure that acute stress was contingent on the learning processes, but 

at the expense of possibly confounding the induction of stress with distraction. To avoid this 

potential confound, we used a sound that was always constant and repetitive, as evidence 

suggests that rare and unexpected changes in an otherwise repetitive sound sequence seem to 

induce distraction more robustly (Hughes, 2014; Parmentier, 2014; Parmentier, Elford, Escera, 

Andrés, & Miguel, 2008). Furthermore, if the sound was acting as a distractor, rather than as a 

stressor, we would expect a general behavioral impairment rather than a selective effect in gains. 

Relatedly, if the manipulation had acted mostly as a distractor, we would expect participants to 

behave more at random (Tsushima & Nakayama, 2010), which would likely be captured in a 

reduction of the inverse temperature parameter — reflecting increased random behavior — in the 

stress condition.  

Finally, only men were included in this study, to avoid the potential confounding effects of 

menstrual-cycle-dependent variation on stress responsivity (Ossewaarde et al., 2010) and reward 

and punishment processing (Diekhof et al., 2020; Dreher et al., 2007). Our finding that acute 

stress disrupts reward learning in men seems to be in line with previous reports showing that 

acute stress disrupts reward-seeking behavior in women (Berghorst et al., 2013; Bogdan et al., 

2010, 2011; Bogdan & Pizzagalli, 2006; Morris & Rottenberg, 2015; Paret & Bublatzky, 2020), 

but further studies are needed to assess whether acute stress has the same computational effects 

on reward and punishment learning in men and women. 
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5. Conclusion 

We present evidence that acute stress reduces how quickly male adults integrate the unexpected 

rewarding outcomes of their choices over time. Our results are consistent with a neurobiological 

framework of stress-induced dopaminergic disturbances and can thus contribute to a better 

understanding of the computational mechanisms that underlie the deleterious impact of acute 

stress on reward learning. Ultimately, this study might offer key mechanistic insights into the 

impact of acute stress in everyday life.  
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