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Abstract 31 

Sequencing and assembling a genome with a single individual have several advantages, such as 32 

lower heterozygosity and easier sample preparation. However, the amount of genomic DNA of 33 

some small sized organisms might not meet the standard DNA input requirement for current 34 

sequencing pipelines. Although few studies sequenced a single small insect with about 100 ng 35 

DNA as input, it may still be challenging for many small organisms to obtain such amount of 36 

DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality 37 

genome assembly for a single haploid male parasitoid wasp (Habrobracon hebetor) using 38 

Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) 39 

method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 40 

1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting 41 

the high level of completeness of the genome assembly. Genome comparison between H. hebetor 42 

and its relative Bracon brevicornis shows a high-level genome synteny, indicating the genome of 43 

H. hebetor is highly accurate and contiguous. Our study provides an example for de novo 44 

assembling a genome from ultra-low input DNA, and will be used for sequencing projects of 45 

small sized species and rare samples, haploid genomics as well as population genetics of small 46 

sized species. 47 
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Introduction 61 

A high-quality genome assembly is one of the most important resources for studying biological 62 

questions in organisms. However, genome sequencing and assembly can be complicated by the 63 

small body size of many organisms (i.e., very low genomic DNA from a single individual) and 64 

high heterozygosity [1, 2]. In particular, many arthropod (insect) genome projects face these 65 

problems, and obtain highly fragmented genomes with very low Contig N50 or/and Scaffold N50 66 

value [1]. These fragmented genomes will have problems in genome annotation, as some genes 67 

are incomplete in genome assembly. In addition, gene synteny analysis, chromosome evolution, 68 

quantitative trait locus mapping also will fail in such fragmented genomes [1]. 69 

 Mostly, the amount of genomic DNA is very low when obtained from single small-sized 70 

insect, which makes it hard to meet the standard DNA input requirement of long-reads sequencing 71 

(Pacbio or Nanopore) or even short-reads sequencing (Illumina) [1, 3-6]. Over the past two 72 

decades, many insects with small body size (e. g., parasitoid wasps, aphids, many Drosophila) 73 

were sequenced by using the DNA from pooled samples [2]. But pooling method raises 74 

heterozygosities in genomic regions, which will be assembled into more fragmented contigs. To 75 

reduce the heterozygosity level in pooled sample, inbreeding species were used for DNA 76 

extraction and sequencing in many cases [1, 7, 8]. Using the current hybrid genome sequencing 77 

and assembly approaches, many high-quality genome assemblies (some are chromosome-level 78 

genomes) were released [9]. However, most of insects are difficult to collect or cannot be well 79 

reared in the lab. Even if they can be reared in the lab, they might be difficult to inbreed [1, 3, 6]. 80 

Therefore, obtaining a high-quality genome assembly is still a problem for some small sized 81 

species and rare species in the wild. 82 

 Recently, to resolve these problems, some approaches were developed in sequencing from a 83 

single individual with low DNA input. Kingan et al. reported a genome assembly from a single 84 

mosquito (about 100 ng genomic DNA), Anopheles coluzzii, sequenced with three PacBio SMRT 85 

Cells [6]. Adams et al. developed a hybrid method (Illumina, Nanopore and Hi-C) to obtain a 86 

chromosome-level genome assembly from a single Drosophila melanogaster (totally ~200ng 87 

genomic DNA) [10]. These two studies provided good examples for sequencing a single small 88 

insect, but obtaining about 100 ng DNA from a single individual may still be challenging for many 89 

small insects such as parasitoid wasps. 90 
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 How to sequence and assemble a high-quality genome from a single insect with ultra-low 91 

input DNA is still a problem, and no practical experience in this field up to now. Because of the 92 

ultra-low input DNA, it is difficult to construct library for sequencing at this time. A whole 93 

genome amplification (WGA) method has to be used to increase the total amount of DNA to meet 94 

the lowest requirement of sequencing library construction [11]. The WGA method is widely used 95 

to identify single-nucleotide polymorphisms, copy number variations in low DNA sample, e. g. 96 

single cell [12, 13]. However, this method is rarely used in de novo genome assembly. It is 97 

important to note that WGA has some disadvantages, such as potential amplification biases and 98 

contaminant problems [12, 14-16], which might influence the quality of genome assembly. There 99 

are only a few cases on de novo genome assembly based on WGA data, most of them are in 100 

bacteria [17, 18]. Recently, WGA was used to build a de novo genome assembly for a fungus [19]. 101 

But there is no report about WGA application in de novo genome assembly in insects or other 102 

more complex eukaryotic species.  103 

 Here, starting with 20 ng DNA, we present a high-quality de novo genome assembly of a 104 

single male parasitoid wasp (Habrobracon hebetor) using WGA and Nanopore, Illumina 105 

sequencing. This approach provides an example for genome sequencing and assembly using 106 

ultra-low DNA input, and is applicable for small size organisms and rare samples. 107 

 108 

Results and discussion 109 

Parasitoid wasp for sequencing 110 

Parasitoid wasps are interesting and important organisms for studying fundamental biological 111 

questions such as evolution and sex determination, and some of them are important natural 112 

enemies for insect pest management [20, 21]. In addition, parasitoid wasps are often in very small 113 

size, which makes the genome projects of them complicated. Although many studies have 114 

assembled genomes from pooled inbred lab strains [8, 22-27], most of parasitoid wasps are 115 

difficult to be reared in the lab to establish such lab strains for sequencing. There are also some 116 

problems and uncertain factors in sequencing field collected samples, such as high heterozygosity 117 

and insufficient sample. These issues are major hindrances to the development of parasitoid wasp 118 

genomics. To test the feasibility of sequencing and assembling genome from a single parasitoid 119 

wasp, we sequenced a single male adult wasp of H. hebetor (Braconidae) in the study. H. hebetor 120 
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wasp is an important biological control agent for managing multiple lepidopteran pests [28], and 121 

an ideal model for Hymenoptera sex determination researches [29, 30]. 122 

 123 

Genome sequencing 124 

In total, 102 ng high molecular weight DNA was extracted from a single male adult wasp of H. 125 

hebetor. Two studies already had provided good cases to obtain a high-quality genome assembly 126 

with approximately 100 ng of DNA [6, 10]. However, it still might be difficult to obtain ~100 ng 127 

DNA from a single individual in many small sized species. To challenge the lower input DNA for 128 

sequencing and make our method useful for more small size species, only 20 ng DNA was used 129 

for subsequent study.  130 

DNA was subjected to whole genome amplification, yielding ~4.37 μg amplified DNA. 2.02 131 

μg amplified DNA was used for Nanopore sequencing. In total, we obtained 51 Gb high-quality 132 

reads (~372X, genome size is about 137 Mb) from a single Oxford Nanopore Technology (ONT) 133 

PromethION flow cell (Table. S1). According to the handbook of this WGA method, the average 134 

amplified product length is in a range between 2 kb and 100 kb. The distribution of the Nanopore 135 

reads showed the similar pattern (Table. S1 and Figure. S1). The average length of total reads is 136 

4,484 bp, and the N50 of total reads is 7,311 bp. We also generated 13.8 Gb Illumina clean data 137 

reads using the rest of amplified DNA (Table. S2). 138 

 139 

Genome assembly 140 

We assembled a genome assembly using Flye [31, 32] with ~250X >5K Nanopore reads. This 141 

assembly was then corrected and polished by both Nanopore reads and Illumina reads. The final 142 

assembly size is 131.6 Mb, consisting of 765 contigs with a Contig N50 of 1.63 Mb (Table 1). The 143 

GC content of the genome assembly is 35.49%. Assembly statistic of H. hebetor are compared to 144 

four additional braconid genomes, and the result shows a higher N50 value of H. hebetor than 145 

Fopius arisanus (0.98 Mb) [33], Diachasma alloeum (0.65 Mb) [23], Macrocentrus cingulum 146 

(0.19 Mb) [26] and Microplitis demolitor (1.1 Mb) [34]. Our analysis indicates that this assembly 147 

of a single wasp is more continuous than most wasp genomes which generated by pooled samples. 148 

 149 

Genome quality assessment 150 
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The completeness of the assembly was assessed by using Benchmarking Universal Single-Copy 151 

Orthologs (BUSCO) [35], 1,643 out of 1,658 (99%) conserved arthropod genes were found in the 152 

genome, 97.3% occurred as single copies (Table 2). The complete and duplicated BUSCO 153 

component of the genome was 1.7%. Only three BUSCOs (0.2%) were found fragmented in the 154 

genome. There are still twelve BUSCOs (0.8%) cannot be deleted in this genome. We also 155 

mapped the Illumina paired-end genomic sequencing reads to the assembled genome, 99.27% of 156 

reads could be mapped to the genome. These results indicate that the genome assembly is both 157 

highly accurate and near completion.  158 

 We next mapped H. hebetor genome to a genome of Bracon brevicornis which is a close 159 

relative of H. hebetor. The mapping result shows a high-level genome synteny between these two 160 

wasps, suggesting the genome assembly of H. hebetor obtained from a single wasp is accurate and 161 

contiguous (Figure 1). From these results, we didn’t find the evidence to support that 162 

amplification biases of WGA could largely influence the quality of genome assembly. We 163 

reasoned that might due to the relatively small size genome of parasitoid wasps.  164 

In summary, we report a high-quality genome assembly of a single parasitoid wasp H. 165 

hebetor (~20 ng starting DNA) using WGA, Nanopore and Illumina sequencing technologies. 166 

This study presents an example for de novo assembling a genome from ultra-low input DNA, 167 

which could be used for many small sized species sequencing projects, haploid genomics and 168 

population genetics of small sized species. 169 

 170 

Methods 171 

DNA extraction and whole genome amplification 172 

High molecular weight DNA was extracted from a single male adult H. hebetor using TIANamp 173 

Micro DNA Kit (DP316) following manufacturer’s recommendations. Two DNA quantification 174 

methods Qubit and Nanodrop were used to measure DNA concentration. Then, ~20 ng genomic 175 

DNA was amplified using a whole-genome amplification (WGA) kit according to the 176 

manufacturer's instructions (Qiagen REPLI-g Mini Kit, Qiagen, Valencia, CA). The REPLI-g Kit 177 

is developed based on multiple displacement amplification (MDA), a WGA method with high 178 

processivity and low error rate [36, 37]. Purified genomic DNA was firstly mixed with a 179 

denaturation buffer by vortexing and centrifuge briefly. This reaction was quenched by 3 min 180 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200725doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200725


 7 

incubation (at room temperature) with neutralization buffer. The master mix components with 181 

REPLI-g Mini DNA Polymerase were added to denatured DNA. The amplification step performed 182 

by incubation at 30°C for 16 hours. Next, REPLI-g Mini DNA Polymerase was inactivated by 183 

heating the sample for 3 min at 65°C. Following WGA, DNA concentration was determined by 184 

using Qubit. 185 

 186 

Nanopore sequencing 187 

A total amount of 2.02 μg DNA was used as input for ONT 1D library construction and 188 

sequencing. In brief, the gDNA was sheared using the Megaruptor. Then, the large fragments were 189 

selected and purified using AMPure beads. A ONT 1D sequencing library was prepared using the 190 

Nanopore Ligation Sequencing Kit (SQK-LSK109; Oxford Nanopore, Oxford, UK) and was 191 

sequenced on ONT PromethION 24 platform with one nanopore flow cell (FLO-PRO002). 192 

 193 

Illumina sequencing 194 

Sequencing library was generated using Truseq Nano DNA HT Sample preparation Kit (Illumina 195 

USA) following manufacturer’s recommendations. Briefly, the DNA firstly sheared by Covaris S2 196 

system (Covaris, Inc. Woburn, MA, USA), then DNA fragments were end polished, A-tailed, and 197 

ligated with the full-length adapter for Illumina sequencing with further PCR amplification. At last, 198 

PCR products were purified (AMPure XP system) and libraries were analyzed for size distribution 199 

by Agilent2100 Bioanalyzer and quantified using real-time PCR. The final library was sequenced 200 

by Illumina NovaSeq platform. 201 

 202 

Genome assembly 203 

Nanopore long reads flagged as ‘‘passing’’ were corrected by NECAT 204 

(https://github.com/xiaochuanle/NECAT). Flye (version: 2.7.1-b1590) [31, 32] was used to 205 

assemble the genome with default parameters using >5K Nanopore reads (~250X). Then, Racon 206 

(https://github.com/isovic/racon) was used for correcting the assembly. In addition, iterative 207 

polishing was conducted using Pilon (version: 1.22) [38] with adapter-trimmed paired-end 208 

Illumina reads. The Pilon program was run with default parameters to fix bases, fill gaps, and 209 

correct local misassemblies.  210 
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 211 

Evaluation 212 

Benchmarking Universal Single-Copy Orthologs method (BUSCO version 4.0) [35] was used to 213 

search the 1,658 bench-marking universal single-copy orthologous genes in insecta_odb9. 214 

 215 

Genome comparison 216 

An online tool D-GENIES [39] was used to compare the H. hebetor and B. brevicornis genome 217 

[40].  218 

 219 

Data availability 220 

All sequence data are available at the NCBI, Bioproject number PRJNA644201. 221 
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Table 1. Information of the genome assembly. 241 

Statistic  Habrobracon hebetor 

Total length (bp) 131,644,965 

Total length without N (bp) 131,644,965 

Contig number 765 

GC content (%) 35.49 

Contig N50 (bp) 1,625,734 

Contig N90 (bp) 140,615 

Average (bp) 172,084.92 

Median (bp) 9,847.00 

Min (bp) 177 

Max (bp) 7,063,052 

 242 

Table 2. BUSCO assessment of the final assembly. 243 

Category Number of BUSCOs 

Complete BUSCOs (C) 1,643 (99.0%) 

Complete and single‐copy BUSCOs (S) 1,614 (97.3%) 

Complete and duplicated BUSCOs (D) 29 (1.7%) 

Fragmented BUSCOs (F) 3 (0.2%) 

Missing BUSCOs (M) 12 (0.8%) 

Total BUSCO genes 1,658 (100%) 

 244 
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 249 

 250 
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 252 
Figure 1. Genome comparison between H. hebetor and B. brevicornis genome.  253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.200725doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.200725


 11 

Table S1. Nanopore sequencing data. 268 

Type TotalBase TotalReads MaxLen AvgLen N50 N90 meanQ 

>0 51,597,252,675  11,507,945 124,237 4,484 7,311 2,127 11 

>2000 46,957,240,951  7,372,598 124,237 6,369 8,039 3,113 11 

>5000 34,318,006,006  3,510,066 124,237 9,777 10,379 5,877 11 

>10000 18,071,218,227  1,193,518 124,237 15,141 14,941 10,769 11 

>20000 4,376,715,930  170,092 124,237 25,731 24,876 20,737 11 

>100000 534,472 5 124,237 106,894 102,023 100,525 10 

 269 

Table S2. Illumina sequencing data. 270 

Raw Reads 
Clean 

Reads 

Clean 

Base（Gb） 
Q20(%) Q30(%) 

GC 

Content 

(%) 

46,619,030 46,061,685 13.82 95.51 91.23 35.27 

 271 

 272 
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 286 

Figure S1. Distribution of the Nanopore reads. 287 
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