1	A high-quality de novo genome assembly from a single parasitoid wasp
2	Xinhai Ye ¹ , Yi Yang ¹ , Zhaoyang Tian ³ , Le Xu ¹ , Kaili Yu ¹ , Shan Xiao ¹ , Chuanlin Yin ² , Shijiao
3	Xiong ¹ , Qi Fang ¹ , Hu Chen ^{3,*} , Fei Li ^{1,*} , Gongyin Ye ^{1,*}
4	
5	¹ State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory
6	of Molecular Biology of Crop Pathogens and Insect Pests & Key Laboratory of Biology of Crop
7	Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University,
8	Hangzhou 310058, China.
9	² Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of
10	Life Sciences, China Jiliang University, Hangzhou 310018, China.
11	³ Wuhan Benagen Tech Solutions Company Limited, Wuhan 430070, China.
12	*Correspondence authors: Gongyin Ye, chu@zju.edu.cn; Fei Li, lifei18@zju.edu.cn; Hu Chen,
13	chenhu@benagen.com.
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	

31 Abstract

33lower heterozygosity and easier sample preparation. However, the amount of genomic DNA of34some small sized organisms might not meet the standard DNA input requirement for current35sequencing pipelines. Although few studies sequenced a single small insect with about 100 ng36DNA as input, it may still be challenging for many small organisms to obtain such amount of37DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality38genome assembly for a single haploid male parasitoid wasp (Habrobracon hebetor) using39Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA)40method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of411.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting42the high level of completeness of the genome assembly. Genome comparison between H. hebetor43and its relative Bracon brevicornis shows a high-level genome synteny, indicating the genome of44H. hebetor is highly accurate and contiguous. Our study provides an example for de novo45assembling a genome from ultra-low input DNA, and will be used for sequencing projects of56sized species.57585959595959595959595959595959595959595950<	32	Sequencing and assembling a genome with a single individual have several advantages, such as
35 sequencing pipelines. Although few studies sequenced a single small insect with about 100 ng 36 DNA as input, it may still be challenging for many small organisms to obtain such amount of 37 DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality 38 genome assembly for a single haploid male parasitoid wasp (<i>Habrobracon hebetor</i>) using 39 Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) 40 method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 41 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting 42 the high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> 43 and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of 44 <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> 43 assembling a genome from ultra-low input DNA, and will be used for sequencing projects of 55 sized species. 56	33	lower heterozygosity and easier sample preparation. However, the amount of genomic DNA of
36 DNA as input, it may still be challenging for many small organisms to obtain such amount of 37 DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality 38 genome assembly for a single haploid male parasitoid wasp (Habrobracon hebetor) using 39 Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) 40 method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 41 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting 42 the high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> 43 and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of 44 <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> 45 assembling a genome from ultra-low input DNA, and will be used for sequencing projects of 46 sized species. 47 sized species. 48 sized species. 49 sized species. 41 sized species. 42 sized species. 43 sized species. 44 sized species. 55 sized species.	34	some small sized organisms might not meet the standard DNA input requirement for current
37 DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality 38 genome assembly for a single haploid male parasitoid wasp (<i>Habrobracon hebetor</i>) using 39 Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) 40 method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 41 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting 42 the high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> 43 and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of 44 <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> 45 assembling a genome from ultra-low input DNA, and will be used for sequencing projects of 46 small sized species. 47 sized species. 48	35	sequencing pipelines. Although few studies sequenced a single small insect with about 100 ng
 genome assembly for a single haploid male parasitoid wasp (<i>Habrobracon hebetor</i>) using Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting the high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species. 	36	DNA as input, it may still be challenging for many small organisms to obtain such amount of
 Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA) method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting the high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species. 	37	DNA from a single individual. Here, we use 20 ng DNA as input, and present a high-quality
 method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of 1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting the high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species. 	38	genome assembly for a single haploid male parasitoid wasp (Habrobracon hebetor) using
1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggestingthe high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> assembling a genome from ultra-low input DNA, and will be used for sequencing projects ofsmall sized species and rare samples, haploid genomics as well as population genetics of smallsized species.assembling a genome from ultra-low input DNA, and will be used for sequencing projects ofsized species.assembling a genome from ultra-low input DNA, and will be used for sequencing projects ofsized species.assembling a genome from ultra-low input DNA, and will be used for sequencing projects ofsized species.assembling a genome from ultra-low input DNA, and will be used for sequencing projects ofsized species.assembling a genome from ultra-low input DNA, and will be used for sequencing projects ofsized species.assembling a genome from ultra-low input DNA, and will be used for sequencing projects ofsized species.assembling a genome from ultra-low input DNA, and will be used for sequencing projects of smallsized species.assembling a genome for de novoassembling a genome for de novosized species.assembling a genome for de novoassembling a genome for de n	39	Nanopore and Illumina. Because of the low input DNA, a whole genome amplification (WGA)
the high level of completeness of the genome assembly. Genome comparison between <i>H. hebetor</i> and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species.	40	method is used before sequencing. The assembled genome size is 131.6 Mb with a contig N50 of
 and its relative <i>Bracon brevicornis</i> shows a high-level genome synteny, indicating the genome of <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species. 	41	1.63 Mb. A total of 99% Benchmarking Universal Single-Copy Orthologs are detected, suggesting
 <i>H. hebetor</i> is highly accurate and contiguous. Our study provides an example for <i>de novo</i> assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species. 	42	the high level of completeness of the genome assembly. Genome comparison between H. hebetor
 assembling a genome from ultra-low input DNA, and will be used for sequencing projects of small sized species and rare samples, haploid genomics as well as population genetics of small sized species. 	43	and its relative Bracon brevicornis shows a high-level genome synteny, indicating the genome of
 small sized species and rare samples, haploid genomics as well as population genetics of small sized species. 	44	H. hebetor is highly accurate and contiguous. Our study provides an example for de novo
47 sized species. 48 49 50 51 52 53 54 55 56 57 58 59	45	assembling a genome from ultra-low input DNA, and will be used for sequencing projects of
48 49 50 50 51 50 52 50 53 50 54 50 55 50 56 50 57 50 58 59	46	small sized species and rare samples, haploid genomics as well as population genetics of small
49 50 51 52 53 54 55 56 57 58 59	47	sized species.
50 51 52 53 54 55 56 57 58 59	48	
51 52 53 54 55 56 57 58 59	49	
52 53 54 55 56 57 58 59	50	
53 54 55 56 57 58 59	51	
54 55 56 57 58 59	52	
55 56 57 58 59	53	
56 57 58 59	54	
57 58 59	55	
58 59	56	
59	57	
	58	
60	59	
	60	

61 Introduction

62 A high-quality genome assembly is one of the most important resources for studying biological 63 questions in organisms. However, genome sequencing and assembly can be complicated by the 64 small body size of many organisms (i.e., very low genomic DNA from a single individual) and high heterozygosity [1, 2]. In particular, many arthropod (insect) genome projects face these 65 66 problems, and obtain highly fragmented genomes with very low Contig N50 or/and Scaffold N50 67 value [1]. These fragmented genomes will have problems in genome annotation, as some genes 68 are incomplete in genome assembly. In addition, gene synteny analysis, chromosome evolution, 69 quantitative trait locus mapping also will fail in such fragmented genomes [1]. 70 Mostly, the amount of genomic DNA is very low when obtained from single small-sized 71 insect, which makes it hard to meet the standard DNA input requirement of long-reads sequencing 72 (Pacbio or Nanopore) or even short-reads sequencing (Illumina) [1, 3-6]. Over the past two 73 decades, many insects with small body size (e. g., parasitoid wasps, aphids, many Drosophila) 74 were sequenced by using the DNA from pooled samples [2]. But pooling method raises 75 heterozygosities in genomic regions, which will be assembled into more fragmented contigs. To 76 reduce the heterozygosity level in pooled sample, inbreeding species were used for DNA extraction and sequencing in many cases [1, 7, 8]. Using the current hybrid genome sequencing 77 78 and assembly approaches, many high-quality genome assemblies (some are chromosome-level 79 genomes) were released [9]. However, most of insects are difficult to collect or cannot be well 80 reared in the lab. Even if they can be reared in the lab, they might be difficult to inbreed [1, 3, 6]. Therefore, obtaining a high-quality genome assembly is still a problem for some small sized 81 82 species and rare species in the wild. 83 Recently, to resolve these problems, some approaches were developed in sequencing from a 84 single individual with low DNA input. Kingan et al. reported a genome assembly from a single 85 mosquito (about 100 ng genomic DNA), Anopheles coluzzii, sequenced with three PacBio SMRT 86 Cells [6]. Adams et al. developed a hybrid method (Illumina, Nanopore and Hi-C) to obtain a 87 chromosome-level genome assembly from a single Drosophila melanogaster (totally ~200ng 88 genomic DNA) [10]. These two studies provided good examples for sequencing a single small

89 insect, but obtaining about 100 ng DNA from a single individual may still be challenging for many

90 small insects such as parasitoid wasps.

91	How to sequence and assemble a high-quality genome from a single insect with ultra-low
92	input DNA is still a problem, and no practical experience in this field up to now. Because of the
93	ultra-low input DNA, it is difficult to construct library for sequencing at this time. A whole
94	genome amplification (WGA) method has to be used to increase the total amount of DNA to meet
95	the lowest requirement of sequencing library construction [11]. The WGA method is widely used
96	to identify single-nucleotide polymorphisms, copy number variations in low DNA sample, e. g.
97	single cell [12, 13]. However, this method is rarely used in <i>de novo</i> genome assembly. It is
98	important to note that WGA has some disadvantages, such as potential amplification biases and
99	contaminant problems [12, 14-16], which might influence the quality of genome assembly. There
100	are only a few cases on de novo genome assembly based on WGA data, most of them are in
101	bacteria [17, 18]. Recently, WGA was used to build a <i>de novo</i> genome assembly for a fungus [19].
102	But there is no report about WGA application in <i>de novo</i> genome assembly in insects or other
103	more complex eukaryotic species.
104	Here, starting with 20 ng DNA, we present a high-quality de novo genome assembly of a
105	single male parasitoid wasp (Habrobracon hebetor) using WGA and Nanopore, Illumina
106	sequencing. This approach provides an example for genome sequencing and assembly using
107	ultra-low DNA input, and is applicable for small size organisms and rare samples.
108	
109	Results and discussion
110	Parasitoid wasp for sequencing
110 111	
	Parasitoid wasp for sequencing
111	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological
111 112	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological questions such as evolution and sex determination, and some of them are important natural
111 112 113	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological questions such as evolution and sex determination, and some of them are important natural enemies for insect pest management [20, 21]. In addition, parasitoid wasps are often in very small
111 112 113 114	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological questions such as evolution and sex determination, and some of them are important natural enemies for insect pest management [20, 21]. In addition, parasitoid wasps are often in very small size, which makes the genome projects of them complicated. Although many studies have
111 112 113 114 115	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological questions such as evolution and sex determination, and some of them are important natural enemies for insect pest management [20, 21]. In addition, parasitoid wasps are often in very small size, which makes the genome projects of them complicated. Although many studies have assembled genomes from pooled inbred lab strains [8, 22-27], most of parasitoid wasps are
111 112 113 114 115 116	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological questions such as evolution and sex determination, and some of them are important natural enemies for insect pest management [20, 21]. In addition, parasitoid wasps are often in very small size, which makes the genome projects of them complicated. Although many studies have assembled genomes from pooled inbred lab strains [8, 22-27], most of parasitoid wasps are difficult to be reared in the lab to establish such lab strains for sequencing. There are also some
111 112 113 114 115 116 117	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological questions such as evolution and sex determination, and some of them are important natural enemies for insect pest management [20, 21]. In addition, parasitoid wasps are often in very small size, which makes the genome projects of them complicated. Although many studies have assembled genomes from pooled inbred lab strains [8, 22-27], most of parasitoid wasps are difficult to be reared in the lab to establish such lab strains for sequencing. There are also some problems and uncertain factors in sequencing field collected samples, such as high heterozygosity
111 112 113 114 115 116 117 118	Parasitoid wasp for sequencing Parasitoid wasps are interesting and important organisms for studying fundamental biological questions such as evolution and sex determination, and some of them are important natural enemies for insect pest management [20, 21]. In addition, parasitoid wasps are often in very small size, which makes the genome projects of them complicated. Although many studies have assembled genomes from pooled inbred lab strains [8, 22-27], most of parasitoid wasps are difficult to be reared in the lab to establish such lab strains for sequencing. There are also some problems and uncertain factors in sequencing field collected samples, such as high heterozygosity and insufficient sample. These issues are major hindrances to the development of parasitoid wasp

121 wasp is an important biological control agent for managing multiple lepidopteran pests [28], and

an ideal model for Hymenoptera sex determination researches [29, 30].

123

124 Genome sequencing

125 In total, 102 ng high molecular weight DNA was extracted from a single male adult wasp of *H*.

126 *hebetor*. Two studies already had provided good cases to obtain a high-quality genome assembly

127 with approximately 100 ng of DNA [6, 10]. However, it still might be difficult to obtain ~100 ng

128 DNA from a single individual in many small sized species. To challenge the lower input DNA for

sequencing and make our method useful for more small size species, only 20 ng DNA was usedfor subsequent study.

DNA was subjected to whole genome amplification, yielding ~4.37 µg amplified DNA. 2.02 131 132 µg amplified DNA was used for Nanopore sequencing. In total, we obtained 51 Gb high-quality 133 reads (~372X, genome size is about 137 Mb) from a single Oxford Nanopore Technology (ONT) 134 PromethION flow cell (Table. S1). According to the handbook of this WGA method, the average 135 amplified product length is in a range between 2 kb and 100 kb. The distribution of the Nanopore 136 reads showed the similar pattern (Table. S1 and Figure. S1). The average length of total reads is 4,484 bp, and the N50 of total reads is 7,311 bp. We also generated 13.8 Gb Illumina clean data 137 138 reads using the rest of amplified DNA (Table. S2).

139

140 Genome assembly

141 We assembled a genome assembly using Flye [31, 32] with ~250X >5K Nanopore reads. This

142 assembly was then corrected and polished by both Nanopore reads and Illumina reads. The final

assembly size is 131.6 Mb, consisting of 765 contigs with a Contig N50 of 1.63 Mb (Table 1). The

- 144 GC content of the genome assembly is 35.49%. Assembly statistic of *H. hebetor* are compared to
- 145 four additional braconid genomes, and the result shows a higher N50 value of *H. hebetor* than
- 146 Fopius arisanus (0.98 Mb) [33], Diachasma alloeum (0.65 Mb) [23], Macrocentrus cingulum
- 147 (0.19 Mb) [26] and *Microplitis demolitor* (1.1 Mb) [34]. Our analysis indicates that this assembly
- 148 of a single wasp is more continuous than most wasp genomes which generated by pooled samples.
- 149

150 Genome quality assessment

151 The completeness of the assembly was assessed by using Benchmarking Universal Single-Copy Orthologs (BUSCO) [35], 1,643 out of 1,658 (99%) conserved arthropod genes were found in the 152 153 genome, 97.3% occurred as single copies (Table 2). The complete and duplicated BUSCO 154 component of the genome was 1.7%. Only three BUSCOs (0.2%) were found fragmented in the genome. There are still twelve BUSCOs (0.8%) cannot be deleted in this genome. We also 155 156 mapped the Illumina paired-end genomic sequencing reads to the assembled genome, 99.27% of reads could be mapped to the genome. These results indicate that the genome assembly is both 157 158 highly accurate and near completion. 159 We next mapped *H. hebetor* genome to a genome of *Bracon brevicornis* which is a close 160 relative of *H. hebetor*. The mapping result shows a high-level genome synteny between these two 161 wasps, suggesting the genome assembly of *H. hebetor* obtained from a single wasp is accurate and 162 contiguous (Figure 1). From these results, we didn't find the evidence to support that 163 amplification biases of WGA could largely influence the quality of genome assembly. We 164 reasoned that might due to the relatively small size genome of parasitoid wasps. 165 In summary, we report a high-quality genome assembly of a single parasitoid wasp H. 166 hebetor (~20 ng starting DNA) using WGA, Nanopore and Illumina sequencing technologies. 167 This study presents an example for *de novo* assembling a genome from ultra-low input DNA, 168 which could be used for many small sized species sequencing projects, haploid genomics and

169 population genetics of small sized species.

170

171 Methods

172 DNA extraction and whole genome amplification

173 High molecular weight DNA was extracted from a single male adult *H. hebetor* using TIANamp

174 Micro DNA Kit (DP316) following manufacturer's recommendations. Two DNA quantification

- 175 methods Qubit and Nanodrop were used to measure DNA concentration. Then, ~20 ng genomic
- 176 DNA was amplified using a whole-genome amplification (WGA) kit according to the
- 177 manufacturer's instructions (Qiagen REPLI-g Mini Kit, Qiagen, Valencia, CA). The REPLI-g Kit
- 178 is developed based on multiple displacement amplification (MDA), a WGA method with high
- 179 processivity and low error rate [36, 37]. Purified genomic DNA was firstly mixed with a
- 180 denaturation buffer by vortexing and centrifuge briefly. This reaction was quenched by 3 min

181 incubation (at room temperature) with neutralization buffer. The master mix components with

182 REPLI-g Mini DNA Polymerase were added to denatured DNA. The amplification step performed

183 by incubation at 30°C for 16 hours. Next, REPLI-g Mini DNA Polymerase was inactivated by

184 heating the sample for 3 min at 65°C. Following WGA, DNA concentration was determined by

185 using Qubit.

186

187 Nanopore sequencing

- 188 A total amount of 2.02 µg DNA was used as input for ONT 1D library construction and
- 189 sequencing. In brief, the gDNA was sheared using the Megaruptor. Then, the large fragments were
- 190 selected and purified using AMPure beads. A ONT 1D sequencing library was prepared using the
- 191 Nanopore Ligation Sequencing Kit (SQK-LSK109; Oxford Nanopore, Oxford, UK) and was
- sequenced on ONT PromethION 24 platform with one nanopore flow cell (FLO-PRO002).

193

194 Illumina sequencing

- 195 Sequencing library was generated using Truseq Nano DNA HT Sample preparation Kit (Illumina
- 196 USA) following manufacturer's recommendations. Briefly, the DNA firstly sheared by Covaris S2
- 197 system (Covaris, Inc. Woburn, MA, USA), then DNA fragments were end polished, A-tailed, and
- 198 ligated with the full-length adapter for Illumina sequencing with further PCR amplification. At last,

199 PCR products were purified (AMPure XP system) and libraries were analyzed for size distribution

- by Agilent2100 Bioanalyzer and quantified using real-time PCR. The final library was sequenced
- 201 by Illumina NovaSeq platform.
- 202

203 Genome assembly

- 204 Nanopore long reads flagged as "passing" were corrected by NECAT
- 205 (https://github.com/xiaochuanle/NECAT). Flye (version: 2.7.1-b1590) [31, 32] was used to
- assemble the genome with default parameters using >5K Nanopore reads (~250X). Then, Racon
- 207 (https://github.com/isovic/racon) was used for correcting the assembly. In addition, iterative
- 208 polishing was conducted using Pilon (version: 1.22) [38] with adapter-trimmed paired-end
- 209 Illumina reads. The Pilon program was run with default parameters to fix bases, fill gaps, and
- 210 correct local misassemblies.

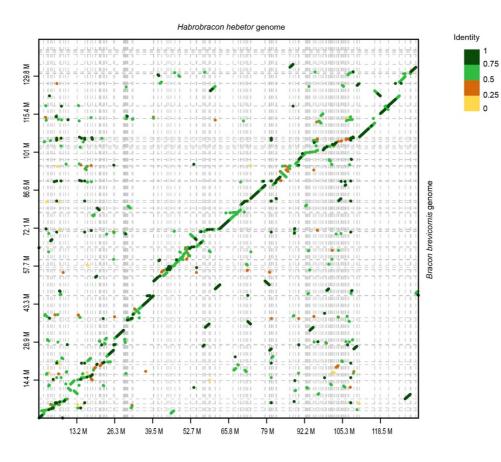

211	
212	Evaluation
213	Benchmarking Universal Single-Copy Orthologs method (BUSCO version 4.0) [35] was used to
214	search the 1,658 bench-marking universal single-copy orthologous genes in insecta_odb9.
215	
216	Genome comparison
217	An online tool D-GENIES [39] was used to compare the <i>H. hebetor</i> and <i>B. brevicornis</i> genome
218	[40].
219	
220	Data availability
221	All sequence data are available at the NCBI, Bioproject number PRJNA644201.
222	
223	Acknowledgements
224	This work was supported by Key Program of National Natural Science Foundation of China
225	(NSFC) (Grant no. 31830074 to GYY), Major International (Regional) Joint Research Project of
226	NSFC (Grant no. 31620103915 to GYY), XHY and LX thank "Academic Star" Program for Ph. D
227	Student of Zhejiang University for support. XHY thanks the China Scholarship Council (No.
228	201906320376) for its support during his research period in the Rochester, New York, US. We
229	thank Prof. John H. Werren (University of Rochester) for valuable discussions.
230	
231	Author contributions
232	GYY conceived and designed the works, and supervised the project. GYY, FL and QF coordinated
233	the project. KLY and SJX prepared the samples for sequencing. XHY, ZYT, HC sequenced and
234	assembled the genome. XHY and YY performed the bioinformatics analysis. XHY wrote the draft
235	manuscript. YY, LX, SX, CLY, HC, FL, QF and GYY improved and revised the manuscript. All
236	authors read and approved the final manuscript.
237	
238	Conflict of interest statement
239	The authors declare no competing interests.
240	

Table 1. Information of the genome assembly.

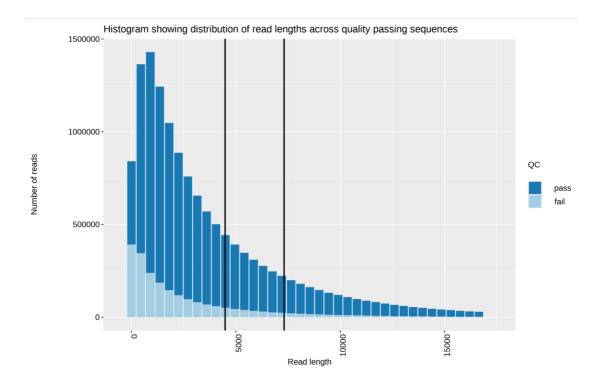

Statistic	Habrobracon hebetor
Total length (bp)	131,644,965
Total length without N (bp)	131,644,965
Contig number	765
GC content (%)	35.49
Contig N50 (bp)	1,625,734
Contig N90 (bp)	140,615
Average (bp)	172,084.92
Median (bp)	9,847.00
Min (bp)	177
Max (bp)	7,063,052

243 Table 2. BUSCO assessment of the final assembly.

Category	Number of BUSCOs
Complete BUSCOs (C)	1,643 (99.0%)
Complete and single-copy BUSCOs (S)	1,614 (97.3%)
Complete and duplicated BUSCOs (D)	29 (1.7%)
Fragmented BUSCOs (F)	3 (0.2%)
Missing BUSCOs (M)	12 (0.8%)
Total BUSCO genes	1,658 (100%)

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.13.200725; this version posted July 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Туре	TotalBase	TotalReads	MaxLen	AvgLen	N50	N90	meanQ
>0	51,597,252,675	11,507,945	124,237	4,484	7,311	2,127	11
>2000	46,957,240,951	7,372,598	124,237	6,369	8,039	3,113	11
>5000	34,318,006,006	3,510,066	124,237	9,777	10,379	5,877	11
>10000	18,071,218,227	1,193,518	124,237	15,141	14,941	10,769	11
>20000	4,376,715,930	170,092	124,237	25,731	24,876	20,737	11
>100000	534,472	5	124,237	106,894	102,023	100,525	10


268 Table S1. Nanopore sequencing data.

270 Table S2. Illumina sequencing data.

	_	_			GC
Raw Reads	Clean	Clean	Q20(%)	Q30(%)	Content
	Reads	Base (Gb)			(%)
46,619,030	46,061,685	13.82	95.51	91.23	35.27

2	7	1
Ζ	1	Т

-

287 Figure S1. Distribution of the Nanopore reads.

References:

306	1.	Richards S, Murali SC: Best practices in insect genome sequencing: what works and what
307		doesn't. Curr Opin Insect Sci 2015, 7:1-7.
308	2.	Li F, Zhao X, Li M, He K, Huang C, Zhou Y, Li Z, Walters JR: Insect genomes: progress
309		and challenges. Insect Mol Biol 2019, 28:739-758.
310	3.	Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, Scheffler B, Hackett
311		K, Korlach J, Geib SM: A high-quality genome assembly from a single, field-collected
312		spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system. Gigascience
313		2019, 8.
314	4.	Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson
315		HM, Poelchau MF, Waterhouse RM, Ioannidis P, et al: Molecular evolutionary trends and
316		feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome.
317		Genome Biol 2019, 20: 64.
318	5.	Thomas GWC, Dohmen E, Hughes DST, Murali SC, Poelchau M, Glastad K, Anstead CA,
319		Ayoub NA, Batterham P, Bellair M, et al: Gene content evolution in the arthropods.
320		Genome Biol 2020, 21: 15.
321	6.	Kingan SB, Heaton H, Cudini J, Lambert CC, Baybayan P, Galvin BD, Durbin R, Korlach J,
322		Lawniczak MKN: A high-quality de novo genome assembly from a single mosquito using
323		PacBio Sequencing. Genes (Basel) 2019, 10.
324	7.	Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li
325		PW, Hoskins RA, Galle RF, et al: The genome sequence of Drosophila melanogaster.
326		Science 2000, 287: 2185-2195.
327	8.	Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, Nasonia Genome
328		Working G, Werren JH, Richards S, Desjardins CA, et al: Functional and evolutionary
329		insights from the genomes of three parasitoid Nasonia species. Science 2010, 327:343-348.
330	9.	Rice ES, Green RE: New approaches for genome assembly and scaffolding. Annu Rev
331		Anim Biosci 2019, 7:17-40.
332	10.	Adams M, McBroome J, Maurer N, Pepper-Tunick E, Saremi NF, Green RE, Vollmers C,
333		Corbett-Detig RB: One fly-one genome: chromosome-scale genome assembly of a single
334		outbred Drosophila melanogaster. Nucleic Acids Res 2020.
335	11.	Czyz ZT, Kirsch S, Polzer B: Principles of whole-genome amplification. Methods Mol Biol
336		2015, 1347: 1-14.
337	12.	de Bourcy CF, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR: A quantitative
338		comparison of single-cell whole genome amplification methods. PLoS One 2014,
339		9: e105585.
340	13.	Macaulay IC, Voet T: Single cell genomics: advances and future perspectives. PLoS Genet
341		2014, 10: e1004126.
342	14.	Lack JB, Weider LJ, Jeyasingh PD: Whole genome amplification and sequencing of a
343		Daphnia resting egg. Mol Ecol Resour 2018, 18:118-127.
344	15.	Ahsanuddin S, Afshinnekoo E, Gandara J, Hakyemezoglu M, Bezdan D, Minot S, Greenfield
345		N, Mason CE: Assessment of REPLI-g multiple displacement whole genome
346		amplification (WGA) techniques for metagenomic applications. J Biomol Tech 2017,
347		28: 46-55.
348	16.	Sabina J, Leamon JH: Bias in whole genome amplification: causes and considerations.
	-	

349		Methods Mol Biol 2015, 1347:15-41.
350	17.	Rodrigue S, Malmstrom RR, Berlin AM, Birren BW, Henn MR, Chisholm SW: Whole
351		genome amplification and de novo assembly of single bacterial cells. PLoS One 2009,
352		4: e6864.
353	18.	Roux S, Trubl G, Goudeau D, Nath N, Couradeau E, Ahlgren NA, Zhan Y, Marsan D, Chen F,
354		Fuhrman JA, et al: Optimizing de novo genome assembly from PCR-amplified
355		metagenomes. PeerJ 2019, 7:e6902.
356	19.	Montoliu-Nerin M, Sanchez-Garcia M, Bergin C, Grabherr M, Ellis B, Kutschera VE,
357		Kierczak M, Johannesson H, Rosling A: Building de novo reference genome assemblies of
358		complex eukaryotic microorganisms from single nuclei. Sci Rep 2020, 10:1303.
359	20.	Heraty J: Parasitoid diversity and insect pest management. In R. G. Foottit & P. H. Adler
360		(Eds.), Insect biodiversity: Science and society (pp. 445-462). Hoboken, NJ:
361		Wiley-Blackwell.
362	21.	Quicke, DLJ: Parasitic Wasps. 1997. London, UK: Chapman & Hall.
363	22.	Lindsey ARI, Kelkar YD, Wu X, Sun D, Martinson EO, Yan Z, Rugman-Jones PF, Hughes
364		DST, Murali SC, Qu J, et al: Comparative genomics of the miniature wasp and pest
365		control agent Trichogramma pretiosum. BMC Biol 2018, 16:54.
366	23.	Tvedte ES, Walden KKO, McElroy KE, Werren JH, Forbes AA, Hood GR, Logsdon JM,
367		Feder JL, Robertson HM: Genome of the parasitoid wasp Diachasma alloeum, an
368		emerging model for ecological speciation and transitions to asexual reproduction.
369		Genome Biol Evol 2019, 11:2767-2773.
370	24.	Martinson EO, Mrinalini, Kelkar YD, Chang CH, Werren JH: The evolution of venom by
371		co-option of single-copy genes. Curr Biol 2017, 27:2007-2013 e2008.
372	25.	Xiao JH, Yue Z, Jia LY, Yang XH, Niu LH, Wang Z, Zhang P, Sun BF, He SM, Li Z, et al:
373		Obligate mutualism within a host drives the extreme specialization of a fig wasp genome.
374		Genome Biology 2013, 14.
375	26.	Yin C, Li M, Hu J, Lang K, Chen Q, Liu J, Guo D, He K, Dong Y, Luo J, et al: The genomic
376		features of parasitism, polyembryony and immune evasion in the endoparasitic wasp
377		Macrocentrus cingulum. BMC Genomics 2018, 19:420.
378	27.	Ye X, Yan Z, Yang Y, Xiao S, Chen L, Wang J, Wang F, Xiong S, Mei Y, Wang F, et al: A
379		chromosome-level genome assembly of the parasitoid wasp Pteromalus puparum. Mol
380		Ecol Resour 2020.
381	28.	Katayama Y, Suzuki T, Ebisawa T, Ohtsuka J, Wang S, Natsume R, Lo YH, Senda T,
382		Nagamine T, Hull JJ, et al: A class-A GPCR solubilized under high hydrostatic pressure
383		retains its ligand binding ability. Biochim Biophys Acta 2016, 1858:2145-2151.
384	29.	Whiting PW: Multiple alleles in complementary sex determination of Habrobracon.
385		Genetics 1943, 28:365-382.
386	30.	Snell GD: The determination of sex in Habrobracon. Proc Natl Acad Sci USA 1935,
387		21: 446-453.
388	31.	Kolmogorov M, Yuan J, Lin Y, Pevzner PA: Assembly of long, error-prone reads using
389		repeat graphs. Nat Biotechnol 2019, 37:540-546.
390	32.	Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA: Assembly of long
391		error-prone reads using de Bruijn graphs. Proc Natl Acad Sci USA 2016,
392		113: E8396-E8405.

393	33.	Geib SM, Liang GH, Murphy TD, Sim SB: Whole genome sequencing of the braconid
394		parasitoid wasp Fopius arisanus, an important biocontrol agent of pest tepritid fruit flies.
395		<i>G3 (Bethesda)</i> 2017, 7: 2407-2411.
396	34.	Burke GR, Walden KKO, Whitfield JB, Robertson HM, Strand MR: Whole Genome
397		Sequence of the parasitoid wasp Microplitis demolitor that harbors an endogenous virus
398		mutualist. G3 (Bethesda) 2018, 8:2875-2880.
399	35.	Waterhouse RM, Seppey M, Simao FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva
400		EV, Zdobnov EM: BUSCO applications from quality assessments to gene prediction and
401		phylogenomics. Mol Biol Evol 2017.
402	36.	Hosono S, Faruqi AF, Dean FB, Du Y, Sun Z, Wu X, Du J, Kingsmore SF, Egholm M, Lasken
403		RS: Unbiased whole-genome amplification directly from clinical samples. Genome Res
404		2003, 13: 954-964.
405	37.	Han T, Chang CW, Kwekel JC, Chen Y, Ge Y, Martinez-Murillo F, Roscoe D, Tezak Z, Philip
406		R, Bijwaard K, Fuscoe JC: Characterization of whole genome amplified (WGA) DNA for
407		use in genotyping assay development. BMC Genomics 2012, 13:217.
408	38.	Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q,
409		Wortman J, Young SK, Earl AM: Pilon: an integrated tool for comprehensive microbial
410		variant detection and genome assembly improvement. PLoS One 2014, 9:e112963.
411	39.	Cabanettes F, Klopp C: D-GENIES: dot plot large genomes in an interactive, efficient and
412		simple way. PeerJ 2018, 6:e4958.
413	40.	Pannebakker drirBA, Ferguson, KB: The Bracon brevicornis genome, supporting data.
414		DANS 2019.
- -		