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Abstract  
Purposes: The machine-assisted recognition of colorectal cancer using pathological images has 

been mainly focused on supervised learning approaches that suffer from a significant bottleneck of 

requiring a large number of labeled training images. The process of generating high quality image 

labels is time-consuming, labor-intensive, and thus lags behind the quick accumulation of 

pathological images. We hypothesize that semi-supervised deep learning, a method that leverages a 

small number of labeled images together with a large quantity of unlabeled images, can provide a 

powerful alternative strategy for colorectal cancer recognition.  

 

Method: We proposed semi-supervised classifiers based on deep learning that provide pathological 

predictions at both patch-level and the level of whole slide image (WSI). First, we developed a semi-

supervised deep learning framework based on the mean teacher method, to predict the cancer 

probability of an individual patch by utilizing patch-level data generated by dividing a WSI into 

many patches. Second, we developed a patient-level method utilizing a cluster-based and positive 

sensitivity strategy on WSIs to predict whether the WSI or the associated patient has cancer or not. 

We demonstrated the general utility of the semi-supervised learning method for colorectal cancer 

prediction utilizing a large data set (13,111 WSIs from 8,803 subjects) gathered from 13 centers 

across China, the United States and Germany. On this data set, we compared the performances of 

our proposed semi-supervised learning method with those from the prevailing supervised learning 

methods and six professional pathologists. 

 

Results: Our results confirmed that semi-supervised learning model overperformed supervised 

learning models when a small portion of massive data was labeled, and performed as well as a 

supervised learning model when using massive labeled data. Specifically, when a small amount of 

training patches (~3,150) was labeled, the proposed semi-supervised learning model plus ~40,950 

unlabeled patches performed better than the supervised learning model (AUC: 0.90 ± 0.06 vs. 

0.84 ± 0.07,)	value = 0.02). When more labeled training patches (~6,300) were available, the 

semi-supervised learning model plus ~37,800 unlabeled patches still performed significantly better 

than a supervised learning model (AUC: 0.98 ± 0.01vs.	0.92 ± 0.04, )	value = 0.0004), and its 

performance had no significant difference compared with a supervised learning model trained on 

massive labeled patches (~44,100) (AUC: 0.98 ± 0.01  vs. 0.987 ± 0.01 , 	)	value = 0.134) . 

Through extensive patient-level testing of 12,183 WSIs in 12 centers, we found no significant 

difference on patient-level diagnoses between the semi-supervised learning model (~6,300 labeled, 

~37,800 unlabeled training patches) and a supervised learning model (~44,100 labeled training 

patches)  (average AUC: 97.40% vs. 97.96%, )	value = 0.117 ). Moreover, the diagnosis 

accuracy of the semi-supervised learning model was close to that of human pathologists (average 

AUC: 97.17% vs. 96.91%).  

 
Conclusions: We reported that semi-supervised learning can achieve excellent performance at 

patch-level and patient-level diagnoses for colorectal cancer through a multi-center study. This 

finding is particularly useful since massive labeled data are usually not readily available. We 

demonstrated that our newly proposed semi-supervised learning method can accurately predict 

colorectal cancer that matched the average accuracy of pathologists. We thus suggested that semi-

supervised learning has great potentials to build artificial intelligence (AI) platforms for medical 
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sciences and clinical practices including pathological diagnosis. These new platforms will 

dramatically reduce the cost and the number of labeled data required for training, which in turn will 

allow for broader adoptions of AI-empowered systems for cancer image analyses. 

 

Keywords: colorectal cancer; artificial intelligence; semi-supervised learning; pathological 
diagnosis. 
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Introduction 

Colorectal cancer (CRC) is the second most common cause of cancer death in Europe and America, 

with a lifetime incidence of up to 6%. By 2030, the global burden of CRC is expected to increase 

by 60%, causing more than 2.2 million new cases and 1.1 million deaths per year [1-2]. Pathological 

diagnosis is one of the most important and authoritative methods for diagnosing CRC [3-4]. Current 

pathological diagnosis of CRC requires a professional pathologist to visually examine digital full-
scale whole slide images (WSI) of hematoxylin and eosin (H＆E) stained specimens. This process 

is typically labor intensive and time consuming. The challenges in WSI analysis stem from the 

complexity of WSI data including large image sizes (> 10,000 × 10,000 pixels), complex shapes, 

textures, and histological changes in nuclear staining [4]. Furthermore, there is a shortage of 

pathologists worldwide in stark contrast with the rapid accumulation of WSI data, and the daily 

workload of pathologists is intensive which could lead to unintended misdiagnose due to fatigue [5]. 

Hence, it is crucial to develop diagnosing strategies that is effective yet of low cost by leveraging 

recent development in artificial intelligence (AI). 

 

Deep learning provides an exciting opportunity to support and accelerate medical pathological 

analysis [6], and has been applied to assist diagnosis of various tumors including lung [7,8], breast 

[9,10], and skin cancers [11,12]. Progress has been made in applying deep learning to CRC studies 

including classification of cancer tissue [13], tumor cell detection and classification [14-15, 27], and 

outcome prediction [16-18]. For example, we have developed a recognition system for CRC WSI 

using a supervised learning method, which achieved one of highest diagnosis accuracies in general 

research area of cancer, our method even performed slightly better than some experienced 

pathologists [19]. However, our earlier method was built upon learning from 62,919 labeled patches 

from 842 subjects, which were carefully selected and extensively labeled by pathologists. 

 

While supervised learning with massive labeled data can achieve high diagnostic accuracy, the 

reality is that we often have only a small amount of labeled data and a much larger amount of 

unlabeled data. Only very few studies have investigated if semi-supervised learning, a method that 

leverages both labeled and unlabeled data, can be applied to achieve satisfactory and high prediction 

accuracy in patient level pathology diagnosis. For example, on a small data set of 115 WSIs, a semi-

supervised learning method can achieve high accuracy only at the patch level [23]. However, to our 

knowledge, the CRC recognition system of semi-supervised models has not been extensively 

evaluated and validated on patient-level data with large dataset from multiple centers to assess the 

generality of the utility of semi-supervised approach. How to translate the patch level prediction to 

WSI and patient level diagnosis is not trivial, and the patient level diagnosis is required in clinical 

applications of any artificial intelligence system.  

 

To fill this gap, we used a CRC dataset composed of 13,111 WSIs collected from 8,803 patient 

subjects from 13 centers to develop semi-supervised CRC recognition model at both patch level and 

the level of WSI and patient. We evaluated the performance of the semi-supervised approach by 

comparing its performance with that of prevailing supervised learning and also with that of 

professional pathologists. At the patch level, we applied a semi-supervised learning strategy called 

the mean teacher [21], where a teacher network provided pseudo labels for unlabeled images 
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participating in training. At the WSI and patient level, we applied a cluster-based and positive 

sensitivity strategy to achieve CRC diagnosis for patients as we did recently [19]. The main 

contributions of this paper are summarized as follows: 

 

(1) We evaluated different CRC recognition methods based on semi-supervised and supervised 

learning at the patch-level and patient-level respectively collected from 13 medical centers. This 

large-scale evaluation showed that accurate recognition of CRC is feasible with a high degree of 

reliability even when the number of labeled data is limited.  

 

(2) We found that semi-supervised model perform better than supervised model when only a small 
number of labeled patches（~3,150）is available (assume a large number of unlabeled patches (e.g., 

~40,950) available for semi-supervised training, which is often the case in practice). We observed 

that when ~6,300 labeled and ~37,800 unlabeled patches are used for semi-supervised training, there 

was no significant difference between the obtained semi-supervised model and the supervised model 

on ~44,100 labeled patches. This finding holds for CRC recognition at both the patch level and 

patient level. 

 

(3) We reported that semi-supervised learning model trained on ~6,300 labeled plus ~37,800 

unlabeled patches can match the accuracy of professional pathologists. This result demonstrated the 

potential power of semi-supervised learning in an important medical application area. Our study 

thus indicated that medical AI systems can be successfully deployed based on semi-supervised 

learning, and thus will dramatically reduce the amount of labeled data required in practice, to greatly 

facilitate the development and application of AI in medical sciences. 

 

Results 
We tested our proposed semi-supervised method to CRC recognition (Figure 1, Table 1). Briefly, 

we divided each WSI into hundreds of patches. First, the cancerous probability was identified at the 

patch level. Next, the cancerous probability of WSI was inferred by using a clustering-based 

inference strategy. Finally, the prediction of patients with or without cancer was inferred based on 

the criteria conducive to positive diagnosis. We used several criteria including sensitivity, specificity, 

accuracy, and AUC (area under the curve) to evaluate the performance of various learning methods 

and pathologist diagnosis. 

 

Semi-supervised vs supervised recognition at patch level 
We aimed to evaluate two hypotheses at the patch level. First, we hypothesized that semi-supervised 

learning is better than supervised learning when only a small number (~thousands) of labeled 

patches available for both supervised and semi-supervised learning, and a large number of unlabeled 

patches is also available for semi-supervised learning. Second, we further hypothesized that there is 

no significant difference between semi-supervised learning using a few thousands of labeled patches 

(plus a larger number of unlabeled patches such as tens of thousands) and supervised learning using 

massive labeled patches (tens of thousands). To test these two hypotheses, we trained five models 

with different input data as described below.  

 

The 62,919 patches in Dataset-PATT (Table 2) were used for patch-level training and testing. For 
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simplicity, we used SSL, SL to represent semi-supervised and supervised learning methods, and a 

numerical number to represent the proportion of labels of the total 62,919 patches which led to the 

five models described as follows. Model-5%-SSL and model-10%-SSL were trained on 5% (~3,150) 

and 10% (~6,300) labeled patches, respectively, where the remained patches (~40,950 and ~37,800) 

were used, but their labels were ignored. Model-5%-SL (supervised learning) and model-10%-SL 

were trained on the same labeled patches only with model-5%-SSL and model-10%-SSL 

respectively, without using the remained patches (as unlabeled). Model-70%-SL used ~44,100 

labeled training patches (70% of 62,919). Refer to Table 3 for details. 

 

The AUC and 75% confidence interval were shown in Table 4 and Figure 2. With a very small 

amount (~ 3,150) of labeled training patches, model-5%-SSL plus ~40,950 unlabeled patches was 

superior to model-5%-SL (AUC: 0.90 ± 0.06  vs. 0.84 ± 0.07 , )	value = 0.02 ). With the 

availability of approximately 6,300 labeled and 37,800 unlabeled patches, the model-10%-SSL was 

also obviously better than model-10%-SL (AUC: 0.98 ± 0.01 vs. 	0.92 ± 0.04 , )	value =
0.0004). These results indicated that when approximately 3,150 or 6,300 patches were labeled, the 

semi-supervised models were always better than the supervised models.  

 

The performance of model-10%-SSL (with ~6,300 labeled and ~37,800 unlabeled training patches) 

had no significant difference with that of the model-70%-SL (with ~44,100 labeled training patches) 

(AUC: 0.98 ± 0.01  vs. 0.987 ± 0.01 , 	)	value = 0.134 ). Visual inspection (Supplementary 

Figure 2) confirmed that that model-10%-SL could not really find the pixels of cancer in the patches, 

while the pixels of cancer by model-10%-SSL and model-70%-SL were highly matched.  

 

Patient-level CRC recognition 
To test whether the above conclusion at patch-level still holds at patient level, we evaluated three of 

5 models using Dataset-PT. Model-5%-SSL and model-5%-SL were removed from subsequent 

experiments because they performed far worse than the other three models at the aforementioned 

patch-level comparison experiments. 

 

As illustrated in Figure 3 and Supplementary Table 2, we found that model-10%-SSL had a 

significant improvement over model-10%-SL (Average AUC: 97.40% vs. 81.88%, )	value =
0.0022), which indicated that the semi-supervised learning was significantly better than that of the 

supervised learning on patient-level prediction in the multi-centers scenario when the unlabeled 

~37,800 training patches were included in the SSL. The average AUC of model-10%-SSL was 

slightly lower than, but comparable to, that of model-70%-SL with no significant difference 

(Average AUC: 97.40% vs. 97.96%, )	value = 0.117). Among the 7 datasets (XH-dataset-PT, 

XH-dataset-HAC, PCH, TXH, FUS, SWH, TCGA, 11,290 WSIs), the AUC difference of model-

10%-SSL and model-70%-SL was smaller than 1.6%. In particular, on the largest dataset, XH-

dataset-PT (10,003 WSIs), the AUCs of model-10%-SSL and model-70%-SL were close with 98.41% 

vs. 99.16%. On the HPH, SYU, CGH and AMU (501 WSIs), the AUCs of model-10%-SSL were 

even higher than that of model-70%-SL. 

 

In the data from GPH, and ACL data centers (392 WSIs), the performance of model-10%-SSL was 

lower than that of model-70%-SL (AUC DIFF>2.22%)). It is worth noting that model-10%-SSL 
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generally achieved good sensitivity, which proved practically useful for the diagnosis of CRC. 

Visual inspection in Supplementary Figure 3 showed the cancer patches identified by model-10%-

SSL and model-70%-SL were both highly matched, to the true cancer locations on WSIs. 

 

Human-AI competition 
To evaluate the model performances for practical clinical applications, we recruited six pathologists 

with 1-18 years of independent experience (Supplementary Table 3). They independently reviewed 
1,634 WSIs from 10 data centers (Dataset-HAC) (Figure 4). 

 

We ranked the average of six expert results, model-10%-SSL and model-70%-SL. The average AUC 

of model-10%-SSL was 97.17%, ranked at the 5th, which was close to the average AUC of experts 

(96.91%). The sensitivity of model-10%-SSL was 97.68%, ranked the 5th, showing an excellent 

detection ability of cancer (Supplementary Table 5).  

 

Comparison with related studies 
We compared our methods with 7 existing CRC methods with results shown in Supplementary Table 

4. The first 6 of 7 methods had an AUC ranging from 0.904 to 0.99 based on supervised learning. 

Besides, the seventh used 86 subjects to develop a semi-supervised method, and used the test set of 

7,180 patches of 50 WSIs from the same data source with the best accuracy of 0.938 confirming the 

potential of semi-supervised learning on patch-level. However, we showed the advantages of the 

semi-supervised method in 162,919 patches and 13,111 WSIs at both patch and patient levels from 

multiple centers, attesting to the general utility of the SSL model we developed. 

 

Discussion 
Pathological examination is an important cancer diagnosis method. However, accurately diagnosing 

pathological images requires years of training, leading to a global shortage of pathologists [2]. 

Almost all computer-assisted pathology diagnosis currently relies on massive labeled data with 

supervised learning approach, but labeled data is usually time-consuming and costly, due to one-by-

one manual labeling process by medical experts. On the other hand, there exists a large amount of 

unlabeled data in clinics. This leads to an increasing interest in building an accurate diagnosis system 

with far less labeled data plus the ever-increasing unlabeled data. 

 

In this study, we developed a semi-supervised learning method based on the mean teacher method 

for CRC diagnosis, and evaluated its performance using a large collection of WSIs across 13 medical 

centers in China, the United States and Germany, consisting of 13,111 WSIs from 8,803 patients. 

On this large data set, we conducted a range of comparison of CRC recognition performance among 

semi-supervised learning, supervised learning and six human pathologists, at both patch level and 

patient level. 

 
We demonstrated that semi-supervised learning outperformed supervised learning at patch-level 

recognition when only a small amount of labeled and large amounts of unlabeled data were available. 

In our previous study [19], we used 62,919 labeled patches from 842 WSIs, which achieved accurate 

patch-level recognition. When semi-supervised learning was used as demonstrated in this study, 

only about a tenth (6,300) of those many labeled patches plus 37,800 unlabeled patches were used 
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to achieve similar AUC to [19] (i.e. model-70%-SL). In contrast, a supervised learning model 

trained by the same number (6,300) of labeled patches was difficult to achieve satisfactory results. 

 
To demonstrate that semi-supervised learning can be used to achieve accurate CRC recognition, we 

conducted extensive testing of three models for patient level prediction on 12 centers (Dataset-PT). 

When the training data and testing data came from the same center (XH-Dataset-PT), the AUCs of 

model-70%-SL, model-10%-SSL and model-10%-SL were 99.16%, 98.41% and 96.44% 

respectively (Supplementary Table 2). Just like the patch level, at the patient level, the semi-

supervised model outperformed the supervised model when a small number of labeled patches was 

available, and close to the supervised model when using a large number of labeled patches. The 

AUC of model-10%-SL was 96.44%, maybe because the testing data and training data were from 

XH-Dataset-PT.  

 

However, using the data from 12 centers, the average AUC of model-10%-SL was dramatically 

reduced to 81.88% from 96.44% in XH-Dataset-PT. This result showed that when training data and 

testing data were not the same source, the generalization performance of model-10%-SL was 

significantly reduced. The cancerous prediction of model-10%-SL cannot be extended to other 

centers. Moreover, many cancerous patches predicted by model-10%-SL was deviated from true 

cancer locations in a WSI (Supplementary Figure 3).  

 

When a large number of unlabeled patches was added for model-10%-SSL, the generalization 

performance across centers can be maintained, where there was no significant difference when 

comparing with model-70%-SL using massive labeled patches. These results showed that when 

labeled patches were seriously insufficient, using unlabeled data can greatly improve the 

generalization ability across different data sets. The patient-level results indicated that with semi-

supervised learning, we may not need as much labeled data as in supervised learning. Since it is 

well known that unlabeled medical data are relatively easy to obtain, it is of great importance and 

with urgent need to develop semi-supervised learning methods, capitalizing on recent advances in 

deep learning. 

 

We compared the diagnosis of six pathologists from our semi-supervised model. We found that our 

semi-supervised model reached an average AUC of pathologists, which was approximately 

equivalent to a pathologist with five years of clinical experience. The Human-AI competition in this 

regard thus showed that it was feasible to build an expert-level method for clinical practice based 

on semi-supervised learning approach, so as to greatly reduce the tremendous cost of labeling 

required of professional pathologists. 

 

In practice, the exact amount of the data that needs to be labeled is generally unknown. Nonetheless, 

as shown in our experiments, it is an alternative low-cost approach to conduct semi-supervised 

training with a small amount of labeled data plus a large amount of unlabeled data. Hence, it is an 

effective strategy to wisely utilize all data so that a small amount of data is first labeled to build a 

baseline model based on a semi-supervised learning. If the results are not satisfactory for this 

baseline model, the amount of labeled data should be increased. This strategy is feasible since as 

expected, semi-supervised learning requires a much smaller number of labeled data to achieve the 
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same performance compared with a supervised learning method. 

 

Although studies have shown that semi-supervised learning achieved nice results in tasks like 

natural image processing [22], semi-supervised learning has not been widely evaluated for analyzing 

pathological images with complex shapes, textures, and histological changes in nuclear staining. It 

is unclear whether existing semi-supervised methods can overcome the limitation of insufficient 

labeled pathological images. Our work confirmed that unlabeled data can improve CRC recognition 

and drastically reduced the number of required labeled patches. As demonstrated in our study, semi-

supervised learning has great potentials to overcome the limitation of insufficient labeled data as in 

many medical domains. 

 

Conclusion 
Currently, patient-level computer-assisted CRC diagnosis is solely based on supervised learning, 

which requires a large number of labeled data to achieve good performance. However, the 

annotation and labelling of data are often difficult, slow, and expensive. In this study, we applied a 

semi-supervised method for colorectal cancer recognition and extensively evaluated its performance 

on multi-center datasets. We demonstrated that semi-supervised learning with a small number of 

labeled data achieved comparable prediction accuracy as that of supervised learning with massive 

labeled data and that of experienced pathologists. This study thus supported potential applications 

of semi-supervised learning to develop medical AI systems. 

 
Acknowledgement 
K.S.W was partially supported by the National Natural Science Foundation of China (#81673491) 

and the Natural Science Foundation of Hunan Province (#2015JJ2150). H.M.X was partially 

supported by the National Key Research and Development Plan of China (2017YFC1001103, 

2016YFC1201805), National Natural Science Foundation of China (#81471453), and Jiangwang 

Educational Endowment. H.W.D. were partially supported by grants from National Institutes of 

Health (R01AR059781, P20GM109036, R01MH107354, R01MH104680, R01GM109068, 

R01AR069055, U19AG055373, R01DK115679), the Edward G. Schlieder Endowment and the Drs. 

W. C. Tsai and P. T. Kung Professorship in Biostatistics from Tulane University.  

 
 

References 
[1] Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global patterns and 

trends in colorectal cancer incidence and mortality. Gut 2017; 66:683-691.  

 

[2] Metter DM, Colgan TJ, Leung ST, Timmons CF, Park JY. Trends in the US and Canadian 

Pathologist Workforces From 2007 to 2017. JAMA Netw Open 2019;2: e194337. 

 

[3] Ivan Damjanov. Robbins Review of Pathology[J]. Modern Pathology, 2000, 13(9):1028-1028.  

 

[4] Group C C C W. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment 

guidelines for colorectal cancer 2018 (English version) [J]. Chinese Journal of Cancer Research, 

2019, 31(1): 99-116. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.201582doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201582
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

[5] Sayed S, Lukande R, Fleming KA. Providing Pathology Support in Low-Income Countries. J 

Glob Oncol 2015; 1:3-6. 

 

[6] Komura D, Ishikawa S. Machine Learning Methods for Histopathological Image Analysis. 

Comput Struct Biotechnol J. 2018; 16:34-42. 

 

[7] Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from 

non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559-

1567. 

 

[8] Hua KL, Hsu CH, Hidayati SC, Cheng WH, Chen YJ. Computer-aided classification of lung 

nodules on computed tomography images via deep learning technique. Onco Targets Ther. 2015 

Aug 4;8:2015-22. 

 

[9] Veta, M., van Diest, P.J., Willems, S.M., Wang, H., Madabhushi, A., Cruz-Roa, A., Gonzalez, F., 

Larsen, A.B., Vestergaard, J.S., Dahl, A.B., et al. (2015). Assessment of algorithms for mitosis 

detection in breast cancer histopathology images. Med Image Anal 20, 237-248. 

 

[10] Ehteshami Bejnordi, B., Veta, M., Johannes van Diest, P., van Ginneken, B., Karssemeijer, N., 

Litjens, G., van der Laak, J., the, C.C., Hermsen, M., Manson, Q.F., et al. Diagnostic Assessment of 

Deep Learning Algorithms for Detection of Lymph Node Metastases in Women with Breast Cancer. 

JAMA. 2017;318(22):2199-2210. 

 

[11] Zhang N , Cai Y X , Wang Y Y , et al. Skin Cancer Diagnosis Based on Optimized Convolutional 

Neural Network[J]. Artificial Intelligence in Medicine, 2019, 102:101756. 

 

[12] Andre Esteva, Brett Kuprel, Roberto A. Novoa, et al, Dermatologist-level classification of skin 

cancer with deep neural networks, Nature,2017, 542(2): 115-126. 

 

[13] Haj-Hassan, H., Chaddad, A., Harkouss, Y., Desrosiers, C., Toews, M., and Tanougast, C. 

Classifications of Multispectral Colorectal Cancer Tissues Using Convolution Neural Network. J 

Pathol Inform,2017,8: 1. 

 

[14] Sirinukunwattana K, Ahmed Raza SE, Yee-Wah T, Snead DR, Cree IA, Rajpoot NM. Locality 

Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer 

Histology Images. IEEE Trans Med Imaging 2016; 35:1196-206. 

 

[15] Chaddad A, Tanougast C. Texture Analysis of Abnormal Cell Images for Predicting the 

Continuum of Colorectal Cancer. Anal Cell Pathol (Amst) 2017; 2017:8428102. 

 

[16] Bychkov D, Linder N, Turkki R, et al. Deep learning based tissue analysis predicts outcome in 

colorectal cancer. Sci Rep 2018; 8:3395. 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.13.201582doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.13.201582
http://creativecommons.org/licenses/by-nc-nd/4.0/


[17] Kather JN, Krisam J, Charoentong P, et al. Predicting survival from colorectal cancer histology 

slides using deep learning: A retrospective multicenter study. PLOS Medicine 2019;16:e1002730. 

 

[18] Skrede, O. J., De Raedt, S., Kleppe, A., Hveem, T. S., Liestøl, K., Maddison, J., et al. Deep 

learning for prediction of colorectal cancer outcome: a discovery and validation study. The Lancet, 

2020, 395(10221), 350-360. 

 

[19] Wang, Kuan-Song & Yu, Gang & Xu, Chao, et al, Accurate Diagnosis of Colorectal Cancer 

Based on Histopathology Images Using Artificial Intelligence. bioRxiv preprint: 

10.1101/2020.03.15.992917. 

 

[20] ari CT, Gunduz-Demir C. Unsupervised Feature Extraction via Deep Learning for 

Histopathological Classification of Colon Tissue Images. IEEE Trans Med Imaging. 

2019;38(5):1139-1149. 

 

[21] Antti Tarvainen, Harri Valpola, Mean teachers are better role models: Weight-averaged 

consistency targets improve semi-supervised deep learning results, arXiv preprint 

arXiv:1703.01780v6 

 

[22] I Zeki Yalniz, Herv´e J´egou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale 

semisupervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019. 

 

[23] Shayne Shaw, Maciej Pajak, Aneta Lisowska, Sotirios A. Tsaftaris, Alison Q. ONel, Teacher-

student chain for efficient semi-supervised histology image classification, arXiv preprint 

arXiv:2003.08797v2, 2020. 

 

[24] Szegedy C, Wei L, Yangqing J, et al. Going Deeper with Convolutions. Proceedings of the 

IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, 7-12 June 2015, 1-9. 

 

[25]. Heller R, Stanley D, Yekutieli D, Rubin N, Benjamini Y. Cluster-based analysis of FMRI data. 

Neuroimage 2006, 33:599-608. 

 

[26] Campanella G, Hanna MG, Geneslaw L, et al. Clinical-grade computational pathology using 

weakly supervised deep learning on whole slide images. Nature Medicine 2019. 

 

[27] Wei, J. W., Suriawinata, A. A. , Vaickus, L. J. , Ren, B. , Liu, X. , & Lisovsky, M. , et al. (2019). 

Deep neural networks for automated classification of colorectal polyps on histopathology slides: a 

multi-institutional evaluation, arXiv preprint arXiv: 1909.12959v2, 2019. 

 

 

Methodology 
Datasets 
Our dataset was composed of 13,111 WSIs collected from 13 sources, including 10 hospitals, a 

professional clinical laboratory (ACL), two public databases (Table 1). The data were divided into 
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four datasets (Dataset-PATT, Dataset-PAT, Dataset-PT, Dataset-HAC).  

 

Digitization and annotation 
In the 10 hospitals and ACL, the technicians randomly selected slides from archive library. The 

slides from 2010-2019 were scanned with a KF-PRO-005 scanner (KFBIO company, Ningbo City, 

China) at 20X magnification. The number of selected patients collected on the same day was limited 

to less than 50 to make sure the selected WSIs for this study were not unduly influenced by samples 

collected on any one single day. 

 
Dataset-PATT, PAT and PT were reviewed by two experienced pathologists. If two experts disagreed 

with each other or with the previous diagnosis, the WSI would be excluded. Dataset-HAC was used 

for human-AI competition, and the review criteria were more rigorous. The WSIs were reviewed by 

five experienced pathologists and it was included if they reached an agreement.  

 

From the 842 WSIs in Dataset-PATT, two pathologists manually selected some representative 

patches, each of which was 300 * 300 pixels in size and weakly labeled with either cancer or cancer-

free. In order to ensure the diversity of the data, the number of selected patches on one positive WSI 

was not more than 100, and the numbers of patches with many and a few cancer cells were similar. 

Meanwhile, the number of various CRC subtypes were basically consistent with the subtype 

morbidity in the population. A total of 30,056 patches with cancer and 32,863 patches without cancer 

were obtained.  

 

The Dataset-PATT was randomly divided into training set and testing set according to the 

proportions showed in Table 3, and the patches from the same subject would not be in different sets, 

to ensure independence of the different data sets. Meanwhile, the patches from 70% subjects were 

used as the training set, while the remaining 30% subjects were used as the testing set. Because 

training a deep learning model is time-consuming, for illustration, we repeated the process 8 times 

and calculated 75% confidence interval. 

 

We trained five patch-level models (Table 3). In model-5%-SSL and model-10%-SSL, we used 

semi-supervised learning and keep labels for small proportions (i.e., 5% and 10%) of total patches 

(62,919) and masked label information for the remaining patches. In model-5%-SL, model-10%-SL 

and model-70%-SL, we used supervised training with 5%, 10%, 70% of the total 62,919 patches. 

The Dataset-PAT was used as an independent test.  

 

Algorithm pipeline 
Because the WSI is very large (>50,000 pixels), the patch-level models were trained to recognize 

cancerous probability, and all the patch-level results on a WSI were combined to infer the cancerous 

probability of the WSI. The flow chart is shown in Figure 1. 

 
Patch-level models  
We tested the known CNNs, such as VGG16, ResNET V1 and V2, Inception V1-V4, Mobilenet, 

etc., and found that InceptionV3 [26] achieved most consistent results on many datasets. Therefore, 

we used Inception V3 as the baseline model. 
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The patch-level models included supervised and semi-supervised versions. The input patch size was 

scaled to 	299 × 299, the default input size of Inception V3. The top output layer was removed, 

and the output category was modified to two (cancer or non-cancer). The semi-supervised version 

was based on the mean teacher method [21], where two Inception V3 were trained, one as student 

and the other as teacher.  

 
Network training at patch level 
The Inception V3 adopted the pre-trained model on ImageNet database, and was deeply fine-tuned. 

We used the same preprocessing in protocols we used earlier [19]. All background patches without 

any cell tissue were removed. After data augmentation (image zoom, flip, color change), the 

grayscale of each pixel was normalized to [-1,1]. 

 
In semi-supervised learning, because of the imbalance between the labeled and unlabeled data, we 

maintained the same proportion of labeled and unlabeled patches in each mini-batch. The training 

cycle was 100 epochs, each epoch included 100 steps. L2 decay was used and deck weight was set 

to 0.0001. The teacher model was initialized with the student model, and the updated weight was 

set to 0.9. For unlabeled patches, unsupervised loss was obtained by calculating mean square from 

the pseudo labels given by the teacher model and the predicted label of the student model. For the 

labeled training data, the cross entropy of the predictive label and the real label was used to calculate 

the supervised loss. The weighted sum of the two loss was used to update the student model. The 

student model would update the weights in each step, but the teacher model used exponential 

moving average to update the weights after one epoch end.  

 
Clustered-based WSI inference  
Because the accuracy of patch-level models cannot be 100%, there were serious false positives in 

WSI predictions if patch level prediction is simply used to extrapolate the WSI cancerous status. 

Intuitively, because the tissues in WSI were continuous, the area with cancer should be distributed 

continuously and included several continuous patches. This intuition had been used to effectively 

control the false-positive of functional magnetic resonance images [25]. We designed a simple 

clustering-based inference method. If some continuous patches were identified as having cancer by 

patch-level model, the cancer may indeed exist on WSI. The cluster size of four patches was 

expected to best control the false-positive per our early study [19]. that is, the condition of 

continuously identifying 4 patches with cancer on WSI was used as the basis for determining the 

existence of cancer in WSI.  

 

Patient-level diagnosis  
Clinically, multiple WSIs may be obtained for one patient. The inference on patient level was based 

on positive sensitivity, that is, if all WSIs from the same patient were identified as negative (no 

cancer), then the patient was negative, otherwise the patient was positive. 

 

For further information on the methodology, please refer to Supplementary Files A-C.  
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Table 1. Datasets used from multi-center data sources 

Data source 

Dataset Usage 
Sample 

preparation  

Examination type 

Radical surgery / 

Colonoscopy 

Population 

CRC  Non-CRC Total 

subjects slides subjects slides subjects slides 

Xiangya Hospital (XH) PATT FFPE 100% / 0% Changsha, China 614 614 228 228 842 842 

NCT-UMM (NCT-CRC-HE-100K) PAT FFPE NA Germany NA NA NA NA NA 86 

Xiangya Hospital (XH-dataset-PAT) PT FFPE 80% / 20% Changsha, China 3,990 7,871 1,849 2,132 5,839 10,003 

Xiangya Hospital (XH-dataset-HAC) HAC FFPE 89% / 11% Changsha, China 98 99 97 114 195 213 

Pingkuang Collaborative Hospital (PCH) PT & HAC FFPE 60% / 40% Jiangxi, China 50 50 46 46 96 96 

The Third Xiangya Hospital of CSU (TXH) PT & HAC FFPE 61% / 39% Changsha, China 48 70 48 65 96 135 

Hunan Provincial People’s Hospital (HPH) PT& HAC FFPE 61% / 39% Changsha, China 49 50 49 49 98 99 

Adicon clinical laboratory (ACL) PT & HAC FFPE 22% / 78% Changsha, China 100 100 107 107 207 207 

Fudan University Shanghai Cancer Center (FUS) PT & HAC FFPE 97% / 3% Shanghai, China 100 100 98 98 198 198 

Guangdong Provincial People’s Hospital (GPH) PT & HAC FFPE 77% / 23% Guangzhou, China 100 100 85 85 185 185 

Southwest Hospital (SWH) PT & HAC FFPE 93% / 7% Chongqing, China 99 99 100 100 199 199 

The First Affiliated Hospital Air Force Medical 

University (AMU) 
PT & HAC FFPE 95% / 5% Xi’an, China 101 101 104 104 205 205 

Sun Yat-Sen University Cancer Center (SYU) PT & HAC FFPE 100% / 0% Guangzhou, China 91 91 6 6 97 97 

Chinese PLA General Hospital (CGH) PT FFPE NA Beijing, China 0 0 100 100 100 100 

The Cancer Genome Atlas (TCGA-FFPE) PT FFPE 100% / 0% U.S. 441 441 5 5 446 446 

Total 5,881 9,786 2,922 3,239 8,803 13,111 
PATT: patch-level training and test.  PAT: independent patch-level test.  PT: patient-level test.  HAC: human-AI competition.  XH-dataset-PAT: XH data in dataset-PAT.   XH-dataset-HAC: XH data in dataset-HAC. 

NCT-UMM: National Center for Tumor diseases, University Medical Center Mannheim, Heidelberg University, Germany, was downloaded at https://zenodo.org/record/1214456#.XV2cJeg3lhF. 

The TCGA data were downloaded at https://portal.gdc.cancer.gov/. 
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Table 2. Dataset-PATT and Dataset-PAT 

Dataset Cancer Non-cancer Total 
subjects slides patches subjects slides patches subjects slides patches 

Dataset-PATT  614 614 30056 228 228 32863 842 842 62919 

Dataset-PAT NA NA 14,317 NA NA 85,683 NA 86 100,000 

Total >614 >614 44,373 >228 >228 118,546 >842 928 162,919 
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Table 3. Training and testing sets for patch-level models 

Model 
Dataset-PATT (training) Dataset-PATT (test) Dataset-PAT 

Cancer Non-cancer unused 

label 

cancer Non-cancer cancer Non-cancer 

Model-5%-SSL 5% 5%a 65%d 30% 30% 14317 85683 

Model-10%-SSL 10% 10%b 60%e 30% 30% 14317 85683 

Model-5%-SL 5% 5% a - 30% 30% 14317 85683 

Model-10%-SL 10% 10% b - 30% 30% 14317 85683 

Model-70%-SL 70% 70%c - 30% 30% 14317 85683 

a, b, c, d, e: About 3,150, 6,300, 44,100, 40,950, 37,800 patches, because the patches from 5%, 10%, 

70%, 65% and 60% patients in Dataset-PATT are used, and there are no too many patches extracted 

from any patient. 
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Table 4. AUC and 75% Confidence interval of two test sets 

Model Dataset-PATT (test) Dataset-PAT Both sets !	#$%&'a 
Model-5%-SSL 0.90 ± 0.08 0.90 ± 0.02 0.90 ± 0.06 0.02 
Model-5%-SL 0.79 ± 0.02 0.89 ± 0.04 0.84 ± 0.07 

Model-10%-SSL 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.0004 

Model-10%-SL 0.94 ± 0.04 0.91 ± 0.03 0.92 ± 0.04 

Model-10%-SSL 0.99 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.134 
Model-70%-SL 0.994 ± 0.01 0.98 ± 0.01 0.987 ± 0.01 

a: Wilcoxon signed rank test 
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Figure 1. The flow chart of the study. (a) Semi-supervised and supervised training are performed 

on patches of the Dataset-PATT training set. (b) The patch-level test of five models on Dataset-PAT. 

(c) The patient-level test used Dataset-PT. The heatmap shows the cancer locations in WSI.  
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(a) Dataset-PATT (test) 

 

(b) Dataset-PAT 

 

Figure 2. The AUC distribution of five models at patch level on two datasets.  
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(a) Model-10%-SSL 

  

(b) Model-10%-SL 

  

(c) Model-70%-SL 
Figure 3. Patient-level comparison of model-10%-SSL, model-10%-SL and model-70%-SL on 
twelve independent datasets. Left: Radar maps illustrating the sensitivity, specificity, and AUC. 
Right: Boxplots showing the distribution of sensitivity, specificity, accuracy, and AUC in these 
datasets. The horizontal bar in a boxplot indicates the median, while the cross indicates the 
mean of that distribution.  
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Figure 4. AUC comparison of in the Human-AI contest using Dataset-HAC. Colored lines 
indicate the AUCs achieved by three models and six pathologists (A-F).  
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