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Abstract 63 

The decline in species richness at higher latitudes is among the most fundamental patterns in 64 

ecology. Whether changes in species composition across space (beta-diversity) contribute to 65 

this gradient of overall species richness (gamma-diversity) remains hotly debated. Previous 66 

studies that failed to resolve the issue suffered from a well-known tendency for small samples 67 

in areas with high gamma-diversity to have inflated measures of beta-diversity. Here, we 68 

provide here a novel analytical test, using beta-diversity metrics that correct the gamma-69 

diversity and sampling biases, to compare beta-diversity and species packing across a 70 

latitudinal gradient in tree species richness of 21 large forest plots along a large environmental 71 

gradient in East Asia. We demonstrate that after accounting for topography and correcting the 72 

gamma-diversity bias, tropical forests still have higher beta-diversity than temperate analogs. 73 

This suggests that beta-diversity contributes to the latitudinal species richness gradient as a 74 

component of gamma-diversity. Moreover, both niche specialization and niche marginality (a 75 

measure of niche spacing along an environmental gradient) also increase towards the equator, 76 

after controlling for the effect of topographic heterogeneity. This supports the joint 77 

importance of tighter species packing and larger niche space in tropical forests while also 78 

demonstrating the importance of local processes in controlling beta-diversity.  79 

Key words: Beta-diversity, gamma-diversity, sampling bias, latitude, species packing, niche 80 

specialization 81 
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Introduction 83 

Beta-diversity is the variation of species composition across space, and it is a key element of 84 

conservation planning because it indicates whether diversity is concentrated within a few sites 85 

or spread across many sites (Koleff et al. 2003; Anderson et al. 2011; Socolar et al. 2016). 86 

One factor enhancing beta-diversity should be large niche space, i.e., more species sharing 87 

more available niches, perhaps associated with abiotic habitat heterogeneity (MacArthur 88 

1972; Brown et al. 2013; Brown 2014; Alahuhta et al. 2017; Bracewell et al. 2018; Pontarp et 89 

al. 2019; Storch and Okie 2019). Another feature elevating beta-diversity would be dense 90 

species packing, i.e., many narrow niches result from stable climate and high productivity 91 

(Janzen 1967; MacArthur 1972; Brown 2014; Bracewell et al. 2018; Pontarp et al. 2019; 92 

Storch and Okie 2019). Both stable climate and greater productivity would then lead to higher 93 

beta-diversity at low latitudes (Gaston 2000; Willig et al. 2003; Hillebrand 2004; Pontarp et 94 

al. 2019). On the other hand, if beta-diversity is driven mostly by abiotic heterogeneity, we 95 

would not expect a latitudinal gradient in beta-diversity, since the abiotic heterogeneity 96 

should not vary with latitude. These alternatives remain unresolved and studies on the causes 97 

of the latitudinal gradient in beta-diversity appears to reach opposing conclusions (Lenoir et 98 

al. 2010; Kraft et al. 2011; De Cáceres et al. 2012; Mori et al. 2013; Myers et al. 2013; Qian 99 

et al. 2013; Sreekar et al. 2018). Underlying the debate has been controversy about statistical 100 

biases in tools for measuring beta-diversity. 101 

The bias in beta-diversity metrics arises from a dependence on sample size that interacts with 102 

gamma-diversity (Condit et al. 2005; Kraft et al. 2011; Tuomisto and Ruokolainen 2012; 103 

Myers and LaManna 2016), a bias that is easy to illustrate using simple measures of species 104 

overlap. Small samples rarely (if ever) capture all local species. Two small samples from two 105 

sites that have exactly the same composition will appear to differ by randomly capturing 106 

different subsets of the local communities. The fewer the species sampled, the greater this 107 
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artifactual beta-diversity will appear (Condit et al. 2005; Tuomisto and Ruokolainen 2012). A 108 

crucial aspect of the sample size bias is the dependence on gamma-diversity it engenders, 109 

since small samples underestimate diversity more severely in species-rich sites than in 110 

species-poor sites (Condit et al. 2005; Kraft et al. 2011; Tuomisto and Ruokolainen 2012; 111 

Chao et al. 2014; Sreekar et al. 2018). This bias has led authors to develop metrics that 112 

correct beta-diversity for sample size (Condit et al. 2005; Chao et al. 2014; Cao et al. 2021) 113 

or tools based on comparisons with null models (Kraft et al. 2011; Myers and LaManna 114 

2016). Crucial in the sample size bias is the dependence on gamma-diversity it engenders, 115 

since larger samples are needed in species-rich sites (Condit et al. 2005; Tuomisto and 116 

Ruokolainen 2012; Chao et al. 2014; Sreekar et al. 2018). Once correcting for sample size 117 

bias, gamma-diversity dependence should be removed, and it should be straightforward to 118 

compare beta-diversity across a gradient of species diversity in order to evaluate the 119 

importance of species packing and total niche space.  120 

We carry out this comparison using a steep latitudinal gradient in tree species richness, as 121 

documented in our census of 3 million trees at 21 sites spanning 50° of latitude in East Asia 122 

(Anderson-Teixeira et al. 2015; Feng et al. 2016). We define beta-diversity within each plot, 123 

so it is a measure of how tree species partition local niche space, then we compare the local 124 

estimates of beta-diversity across the latitudinal gradient. In a previous simulation study, Cao 125 

et al. (Cao et al. 2021) identified that the corrected beta-Shannon diversity index is highly 126 

effective at removing the bias arising from beta-diversity metrics in small samples of high 127 

gamma-diversity communities (Cao et al. 2021). With this corrected index, we can answer 128 

two fundamental questions about variation in beta-diversity and its impact on the overall 129 

species richness: 1) Is there a latitudinal gradient in within-plot beta-diversity? 2) Do local 130 

environmental heterogeneity, niche marginality (the distance between the species optima 131 

relative to the overall mean habitat), and niche specialization contribute to the latitudinal 132 
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patterns of beta-diversity? By simultaneously testing the importance of local heterogeneity 133 

and latitude, we can establish whether species packing and total niche space contributes to 134 

higher richness in tropical relative to temperate forests.  135 

Materials and Methods 136 

Forest dynamic plots We used data from 21 forest dynamics plots (15-52 ha) that are part of 137 

the ForestGEO and Chinese Forest Biodiversity Monitoring Networks (Anderson-Teixeira et 138 

al. 2015; Feng et al. 2016) (figure 1a; electronic supplementary material, table S1). All stems 139 

with diameter at breast height (DBH) ≥ 1 cm were spatially mapped, tagged, measured and 140 

identified to species (Condit 1998). The plots range from tropical rain forest at 2.98° N 141 

latitude to boreal forest at 51.82° N latitude (electronic supplementary material, table S1), 142 

from sea level to more than 1400 m elevation, and local topographic variation is as low as 143 

17.7 m and as high as 298.6 m (figure 1b and electronic supplementary material, table S1).  144 

We divided plots into non-overlapping quadrats of different scales (grain sizes) (10 m × 10 m, 145 

20 m × 20 m, and 50 m × 50 m) in order to assess the effect of grain size on beta-diversity 146 

(De Cáceres et al. 2012; Sreekar et al. 2018). We define alpha diversity as the quadrat level 147 

diversity, and gamma diversity as plot level diversity. In the main results, we present only the 148 

results at grain size of 20m × 20m, and details of results at grain size of 10m × 10m and at 149 

grain size of 50m × 50 m could be found in electronic supplementary materials (Table S2, 150 

Figure S2). 151 

Plot latitudes were adjusted for mean elevation: adding 100 km of latitude per 100-m increase 152 

in elevation. Local environmental heterogeneity was quantified in terms of topography, which 153 

was the only environmental factor consistently available across all plots. Specifically, we used 154 

the ratio of surface area to planimetric as a metric of topographic heterogeneity, calculating at 155 

grain sizes of 10 m × 10 m, 20 m × 20 m, and 50 m × 50 m, which provided a useful measure 156 

of the range and roughness of the overall plot, based on digital elevation models (DEMs) 157 
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(Jenness 2004; Brown et al. 2013). Local habitat and species niches were defined using six 158 

topographic factors as environmental variables: mean elevation, convexity, slope, aspect, 159 

topographical wetness index (TWI) and altitude above channel (ACH) (Legendre et al. 2009; 160 

Kanagaraj et al. 2011; Punchi-Manage et al. 2013).  161 

Measurement of beta-diversity To remove gamma-diversity dependence caused by sample-162 

size bias of beta-diversity metrics, we used the correction method designed for Shannon 163 

diversity index based on the relationship between cumulative diversity and sample size (Chao 164 

et al. 2013). The beta-Shannon diversity index measures the heterogeneity of pooled 165 

communities, and is calculated as the effective number of compositionally distinct and 166 

equally abundant communities (Jost 2007; Tuomisto 2010): 167 

 𝐷 = exp − ∑ 𝑝 𝑙𝑜𝑔𝑝 − ∑ 𝑝 𝑙𝑜𝑔𝑝 − ⋯ − ∑ 𝑝 𝑙𝑜𝑔𝑝       (1) 168 

 𝐷 = exp − ∑ (𝑝 + 𝑝 +. . . +𝑝 )log(𝑝 + 𝑝 +. . . +𝑝 )                       (2) 169 

 𝐷 =
 

 
                                                                                                    170 

(3) 171 

where  𝐷 ,  𝐷  and  𝐷  are alpha-, beta-, and gamma-Shannon diversity, respectively; 172 

pi is the proportional abundance of species i; S and N are the total number of species and the 173 

total number of local communities (or plots), respectively, in the pooled communities. Alpha- 174 

and gamma-Shannon diversity are mathematically independent (i.e., gamma-diversity does 175 

not contain information of alpha-diversity) (Jost 2007). Beta-Shannon diversity weights all 176 

species by their abundance. We then used a sample-size dependence correction method to 177 

reduce the bias in beta-Shannon diversity for comparing beta-diversity among regions (Chao 178 

et al. 2013; Chao et al. 2014). As in a species accumulation curve, the expected cumulative 179 

alpha- or gamma-diversity was depicted as a function of sample size, while sample 180 
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completeness was estimated from community structures of samples (Chao et al. 2013; Chao et 181 

al. 2014). Beta-diversity was then estimated from asymptotically approximated alpha- and 182 

gamma-diversity based on the diversity-sample size curve. Details of undersampling 183 

correction method for the beta-Shannon diversity can be found in the electronic 184 

supplementary material S1. Simulation work conducted by Cao et al. (2021) confirmed that β-185 

metrics that incorporate an undersampling correction method were more effective at removing 186 

dependence on gamma-diversity and inferring casual mechanisms compared to other 187 

uncorrected beta-diversity metrics or null models (Cao et al. 2021). 188 

Community-level niche differentiation  189 

Niche differentiation was described using attributes of specialization and marginality. Niche 190 

specialization was defined as SD(available habitat)/SD(habitat used), in which SD(available 191 

habitat) represented the standard deviation of environmental conditions for a community and 192 

SD(habitat used) represented the standard deviation of environmental conditions occupied by 193 

a species (illustrated in figure 2). Niche marginality was defined as the distance between a 194 

species’ optimum and the mean environmental conditions within the plot (figure 2) (Hirzel et 195 

al. 2002; Devictor et al. 2010). Both specialization and marginality were calculated from 196 

multivariate measures of habitat, known as ecological niche factor analysis (Hirzel et al. 197 

2002). To better meet the assumption of normality of residual in regression model and 198 

approximate the linear relationship between niche specialization and explanatory variables 199 

(Supplementary material, figure S1a, 1c, 1e), the log- and Box-Cox transformations (Box and 200 

Cox 1964) were applied for niche specialization across grain sizes (Supplementary material, 201 

figure S1b, 1d, 1f). Based on the precise mapping of all individuals in these plots, the 202 

community-level niche marginality and specialization were respectively quantified as species-203 

level niche marginality and specialization weighted by relative species abundance. Higher 204 

community-level niche specialization indicates the fine partitioning of available niche space, 205 
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while higher community-level niche marginality indicates a larger deviation from mean 206 

environmental conditions of a community, and thus suggesting a larger niche space. 207 

Topographic variables are typically strongly correlated with the variation in resources such as 208 

water availability and soil conditions (Wright 2002; Fortunel et al. 2018), thus can capture 209 

potentially important axes of niche differentiation. Aspect was computed as sin(aspect) and 210 

cos(aspect), and other topographic variables were Box-Cox transformed before being 211 

included into analyses (Box and Cox 1964).  212 

Statistical analysis To examine the significance of latitudinal gradients in local beta-213 

diversity, niche specialization and niche marginality, we first modeled beta-diversity, 214 

community-level niche specialization and niche marginality against topographic heterogeneity 215 

and adjusted latitude separately using simple linear regression models. Subsequently, to 216 

determine the relative effect sizes of adjusted latitude and topography, we performed multiple 217 

linear regression models with beta-diversity, niche specialization, and niche marginality as 218 

response variables, respectively, and all variables were scaled using (x – mean(x))/SD(x) 219 

before being included.  220 

All statistical analyses were performed with R software, version 3.6.4 (R Core Team 2019). 221 

The corrected beta-Shannon diversity was calculated using R package 'entropart' and 'vegan' 222 

(Marcon and Hérault 2015; Oksanen et al. 2018). The topographic variables were computed 223 

using the ‘RSAGA’ package (Brenning 2008) and the SAGA GIS software (Conrad et al. 2015). 224 

Ecological niche factor analysis was implemented to calculate niche metrics using R package 225 

'adehabitatHS' (Calenge 2006). 226 

 227 

Results 228 

Gamma-diversity declined by more than forty-fold from tropical to temperate latitudes, from 229 

818 species at Pasoh to 18 at Daxinganling (electronic supplementary material, table S1). 230 
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Beta-diversity measured by the corrected beta-Shannon diversity also declined with latitude, 231 

although this pattern was not significant (figure 3a). However, the corrected beta-Shannon 232 

diversity was significantly correlated with latitude (e.g., 20m × 20m, standardized effect size 233 

= -0.39, p = 0.033) in multiple regression models, after controlling for the effect of local 234 

topographic heterogeneity (electronic supplementary material, figure S2c). We also found that 235 

beta-diversity was positively correlated with community-level niche specialization, niche 236 

marginality and local topographic heterogeneity (figures 3b-3d, electronic supplementary 237 

material, figure S3). We obtained similar results across three grain sizes although the effect 238 

size of topographic heterogeneity and latitude varied with grain sizes (electronic 239 

supplementary material, Figs. S2, S3).  240 

Various predictors of beta-diversity were also associated with latitude. Both community-level 241 

niche specialization and niche marginality significantly decreased from tropical to temperate 242 

forests at some grain sizes (figures 4a, 4c, S6a, S6c). However, topographic heterogeneity did 243 

not have a significant relationship with latitude (electronic supplementary material, figure 244 

S5). Both niche specialization and niche marginality were positively correlated with each 245 

other (electronic supplementary material, figures. S4g-4i), and both were also positively 246 

associated with local topographic heterogeneity (figures 4b, 4d, electronic supplementary 247 

material, figures. S4a-4f). Multiple linear regression models confirmed these results, showing 248 

that specialization and marginality both significantly declined with latitude after controlling 249 

for topographic heterogeneity at most grain sizes. In the multiple regression models, the effect 250 

sizes of topographic heterogeneity were larger than those of adjusted latitude in predicting 251 

specialization and marginality (electronic supplementary material, Table S3, figures S6b and 252 

6d). 253 

 254 

Discussion 255 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2022. ; https://doi.org/10.1101/2020.07.14.200006doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.200006
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 
 

Whether beta-diversity contributes to the latitudinal diversity gradient has been intensely 256 

debated in recent years, largely because of the bias in beta-diversity metrics in small samples 257 

of high gamma-diversity communities (Condit et al. 2005; Kraft et al. 2011; Tuomisto and 258 

Ruokolainen 2012; Qian et al. 2013; Myers and LaManna 2016; Sreekar et al. 2018). To 259 

move this debate forward, we first examined the latitudinal gradient in beta-diversity by 260 

removing the gamma-diversity and sample size bias with a correction for undersampling 261 

(Chao et al. 2013; Chao et al. 2014), while also accounting for the effect of topographic 262 

heterogeneity statistically. Our results showed that beta-diversity increased from high to lower 263 

latitudes, in lines with a number of previous studies also finding higher beta-diversity in the 264 

tropics (Koleff et al. 2003; Willig et al. 2003; Vazquez and Stevens 2004; Myers et al. 2013). 265 

This supports the hypothesis that beta-diversity contributes to the latitudinal gradient in 266 

species richness. Since topographic heterogeneity did not systematically vary with latitude, it 267 

appears that local topographic heterogeneity does not contribute to the latitudinal gradient in 268 

beta-diversity, in line with previous findings (Alstad et al. 2016; Chu et al. 2019).  269 

High beta diversity in the tropics reveals higher species turnover at lower latitudes, meaning 270 

tighter species packing and expanded niche space in tropical relative to temperate forests 271 

(Ricklefs and Schluter 1993; Gaston 2000; Vazquez and Stevens 2004; Brown 2014; Pontarp 272 

et al. 2019). These hypotheses have been investigated for decades, with dense species-273 

packing in large niche space attributed to stable climate and higher productivity in the tropics 274 

(MacArthur 1965; Ricklefs and Schluter 1993; Evans et al. 2005; Brown 2014; Pontarp et al. 275 

2019). We found increasing niche marginality and specialization towards lower latitudes, 276 

supporting this hypothesis. Perhaps larger niche space enables more species to utilize more 277 

variable resources, while higher niche specialization allows species to specialize on narrower 278 

subsets of the resources available (MacArthur 1965; Ricklefs and Schluter 1993; Evans et al. 279 

2005; Brown 2014; Pontarp et al. 2019). These consequently reduce niche overlap and 280 
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competition between co-occurring species and facilitates species coexistence (Arellano et al. 281 

2017). Tighter species packing and larger niche space in the tropics could be related to other 282 

mechanisms as well, such as higher diversification rate (Fine 2015) and stronger conspecific 283 

negative density dependence (Fine et al. 2004; Umaña et al. 2017) at lower latitudes.  284 

We also conclude that beta-diversity at extent of 15-52 ha is largely driven largely by local 285 

processes—specifically, topographic heterogeneity and the niche differentiation it fosters. 286 

However, topographic heterogeneity did not contribute to the latitudinal gradient in beta-287 

diversity (figures 3 and 4). This may seem an unsurprising result, but the roles of local 288 

ecological processes have been questioned given the broad latitudinal gradient of gamma-289 

diversity (Gaston 2000; Kraft et al. 2011). We suggest that the effect of local processes have 290 

been obscured by the biases in beta-diversity metrics of small samples from high gamma-291 

diversity communities in previous studies (Myers and LaManna 2016). Moreover, our large 292 

samples over 55 degrees of latitude provide comparable measures of niche differentiation, 293 

topographic heterogeneity, and beta-diversity, well beyond what was available in early studies 294 

(Brown et al. 2013; Shen et al. 2013). Our results could be refined by considering the 295 

influence of additional factors that contribute to local environmental heterogeneity and niche 296 

differentiation, such as soil types and soil nutrients (Baldeck et al. 2013), which could also 297 

contribute to beta-diversity. The biases in beta-diversity metrics in small sample from high 298 

gamma-diversity communties are also associated with other attributes of communities such as 299 

the species abundance distributions (Chao and Jost 2012), and tests of the alternative 300 

techniques in other systems are warranted. 301 

In conclusion, our results support that a latitudinal gradient in beta-diversity contributes to the 302 

latitudinal gradient in tree species richness after separately controlling for local topographic 303 

heterogeneity and the bias in beta-diversity metrics in small samples of high gamma-diversity 304 

areas. Our results further suggest tighter species packing and larger niche space in tropical 305 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2022. ; https://doi.org/10.1101/2020.07.14.200006doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.200006
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

forests (MacArthur 1965; Ricklefs and Schluter 1993; Gaston 2000), but also confirmed 306 

environmental heterogeneity as a determinant of beta-diversity. Our findings help resolve the 307 

ongoing debates on the contribution of local beta-diversity to latitudinal gradient of species 308 

richness. 309 
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 518 

Figure 1. The spatial distribution of forest dynamics plots (a), and their elevational 519 

ranges (b). Panel (b) shows the latitudinal pattern of elevation range, which was transformed 520 

by subtracting the minimum elevation of each plot. The width of each violin plot reflects 521 

probability density distribution of mean elevation for 20 m × 20 m subplots in each forest 522 

dynamics plot. Full plot names are listed in electronic supplementary material, table S1. 523 

 524 

Figure 2. Illustration of niche specialization and marginality of Euonymus oblongifolius and 525 

Symplocos stellaris in the Gutianshan forest dynamics plot (600 m × 400 m). a. Red solid points 526 

represent the spatial distribution of E. oblongifolius, and blue circles represent the spatial 527 

distribution of S. stellaris. b. Illustration of niche specialization and marginality of E. 528 

oblongifolius and S. stellaris in two-dimensional niche space based on mean elevation and 529 

convexity of distributed 20 m◊20 m quadrats. Niche marginality is the distance from the mean 530 

habitat of the focal species to the mean habitat of community habitats. μE, μS and μG represent 531 

centroids of environmental conditions for E. oblongifolius, S. stellaris and the entire 532 

community, and distances ME and MS are niche marginalities of two species. Likewise, niche 533 

specialization is ratio of the entire habitat range of a community to habitat range of the focal 534 

species. πE, πS and πG stand for the distributional range of for E. oblongifolius, S. stellaris and 535 

the entire community in two-dimensional niche space respectively, the ratio of πG /πE and πG /πS 536 

are niche specialization of two species. Grey points indicate the topographic variation of the 537 

entire community, red squares show higher niche specialization and marginality of E. 538 

oblongifolius, whereas blue triangles indicate lower specialization and marginality of S. 539 

stellaris. c. Hypothetical relationships between beta-diversity and niche. Higher community-540 

level niche specialization indicates the fine partitioning of available niche space, while higher 541 

community-level niche marginality suggests a larger niche space. Therefore, higher 542 
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specialization and marginality lead to a higher beta-diversity (left), while lower specialization 543 

and marginality lead to a lower beta-diversity (right). 544 

 545 
Figure 3. Relationships of beta-diversity (measured corrected beta-Shannon diversity) 546 

with adjusted latitude (a), and local topographic heterogeneity (b), community-level 547 

niche specialization (c), and niche marginality (d) at grain size of 20 m × 20 m. In each 548 

panel, different colours of points and lines represent grain sizes. In panels a and b, solid and 549 

dashed lines indicate significant and insignificant linear correlations (significance level, α = 550 

0.05), respectively, and the shaded areas represent the 95% confidence intervals of the 551 

predictions (electronic supplementary material, table S2). Full plot names in (a) are listed in 552 

electronic supplementary material, table S1. Community-level niche specialization was Box-553 

Cox transformed in (c).  554 

 555 

Figure 4. The relationships of community-level niche specialization (a and b) and 556 

marginality (c and d) with adjusted latitude and local topographic heterogeneity at grain 557 

size of 20 m × 20 m. Community-level niche specialization was Box-Cox transformed. In 558 

each panel, R2 and p-value of the linear regression models was shown at each panel, and 559 

shaded areas represent the 95% confidence intervals of the predictions (electronic 560 

supplementary material, table S4).  561 

 562 
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