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Abstract

Multiplex assays of variant effect (MAVEs) are
being rapidly adopted in many areas of biology
including gene regulation, protein science, and
evolution. However, inferring quantitative models
of genotype-phenotype maps from MAVE data
remains a challenge. Here we introduce MAVE-NN,
a neural-network-based Python package that
addresses this problem by conceptualizing
genotype-phenotype maps as information
bottlenecks. We demonstrate the versatility,
performance, and speed of MAVE-NN on a diverse
range of published MAVE datasets. MAVE-NN is
easy to install and is thoroughly documented at
https://mavenn.readthedocs.io.
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Background
Over the last decade, the ability to quantitatively
study genotype-phenotype (G-P) maps has been rev-
olutionized by the development of multiplex assays of
variant effect (MAVEs), which can measure molecu-
lar phenotypes for thousands to millions of genotypic
variants in parallel [1]. MAVE is an umbrella term
that describes a diverse set of experimental methods
[2, 3], three examples of which are illustrated in Fig.
1. Deep mutational scanning (DMS) experiments are
one large class of MAVE [4]. These work by linking
proteins [5, 6, 7] or structural RNAs [8, 9, 10, 11] to
their coding sequences, either directly or indirectly,
then using deep sequencing to assay which variants
survive a process of activity-dependent selection (Fig.
1a). Massively parallel reporter assays (MPRAs) are
another major class of MAVE [12, 13, 14, 15], and
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are commonly used to study DNA or RNA sequences
that regulate gene expression at a variety of steps, in-
cluding transcription [16, 17, 18, 19, 20, 21], splicing
[22, 23, 24, 25, 26], polyadenylation [27], and mRNA
degradation [28, 29, 30, 31, 32]. Most MPRAs read
out the expression of a reporter gene in one of two
ways [1]: by quantifying RNA abundance via the se-
quencing of RNA barcodes that are linked to known
variants (RNA-seq MPRAs; Fig. 1c), or by quanti-
fying protein abundance using fluorescence-activated
cell sorting (FACS) then sequencing the sorted vari-
ants (sort-seq MPRAs; Fig. 1e).

MAVE data can enable rich quantitative modeling of
G-P maps. This key point was recognized in some of
the earliest work on MAVEs [17, 18] and has persisted
as a major theme in MAVE studies [33, 34, 35, 25, 31,
36]. But in contrast to MAVE experimental techniques,
which continue to advance rapidly, there remain key
gaps in the methodologies available for quantitatively
modeling G-P maps from MAVE data.

Most computational methods for analyzing MAVE
data have focused on accurately quantifying the ac-
tivities of individual assayed sequences [37, 38, 39, 40,
41, 42, 43]. However, MAVE measurements for individ-
ual sequences often cannot be interpreted as providing
direct quantification of the underlying G-P map that
one is interested in. First, MAVE measurements are
usually distorted by strong nonlinearities and noise,
and distinguishing interesting properties of G-P maps
from these confounding factors is not straight-forward.
Second, MAVE data is often incomplete. Missing data
is common, but a more fundamental issue is that re-
searchers often want to understand G-P maps over
vastly larger regions of sequence space than can be
exhaustively assayed.

Quantitative modeling can address both the incom-
pleteness and indirectness of MAVE measurements [1].
The goal here is to determine a mathematical func-
tion that, given any sequence as input, will return a
quantitative value for that sequence’s molecular phe-
notype. Quantitative models thus fill in the gaps in
G-P maps and, if appropriate inference methods are
used, can further remove confounding effects of nonlin-
earities and noise. The simplest quantitative modeling
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strategy is linear regression (e.g. [18, 44]). However,
linear regression yields valid results only when one’s
measurements are linear readouts of phenotype and
exhibit uniform Gaussian noise. Such assumptions are
often violated in dramatic fashion by MAVEs, and fail-
ure to account for them can give rise to major artifacts,
such as spurious epistatic interactions [45].

Multiple MAVE analysis approaches that can sepa-
rate the effects of nonlinearities and noise from under-
lying G-P maps have been reported, but a conceptually
unified strategy is still needed. Work in the theoreti-
cal evolution literature has focused on a phenomenon
called global epistasis (GE), in which measurements re-
flect a nonlinear function of an underlying latent phe-
notype [46, 47, 48, 49, 50, 51, 52, 53, 45]. In particular,
Otwinowski et al. [46] describe a regression approach in
which one parametrically models G-P maps while non-
parametrically modeling nonlinearities in the MAVE
measurement process. Parallel work in the biophysics
literature has focused on developing ways to infer G-P
maps from high-throughput data in a manner that is
agnostic to the quantitative form of both nonlinearities
and noise [54, 55, 56, 17]. This approach focuses on the
use of mutual information as an objective function. It
arose from techniques in sensory neuroscience [57, 58]
that were elaborated and adapted for the analysis
of microarray data [59, 56], then applied to MPRAs
[33, 34, 17, 18]. However, due to difficulties in esti-
mating mutual information, such analyses of MAVE
data have relied on Metropolis Monte Carlo, which
(in our experience) is too slow to support widespread
adoption. A third thread in the literature has arisen
from efforts to apply techniques from deep learning to
modeling the genotype-phenotype map [60, 28]. Here
the emphasis has been on using the highly expressive
nature of deep neural networks to directly model ex-
perimental output from input sequences. Yet it has re-
mained unclear how such neural networks might sepa-
rate out the intrinsic features of GP maps from effects
of MAVE measurement processes. This is a manifes-
tation of the neural network interpretability problem,
one that that is not addressed by established post-hoc
attribution methods [61, 62].

Here we describe a unified conceptual and com-
putational framework for the quantitative modeling
of MAVE data, one that unites the three strains of
thought described above. As illustrated in Fig. 2,
we assume that each sequence has a well-defined la-
tent phenotype, of which the MAVE provides a noisy
nonlinear readout. To remove potentially confound-
ing effects due to the MAVE measurement process,
we model both the G-P map and the measurement
process simultaneously. As described in previous the-
oretical work [54, 55], this turns the latent phenotype

into a type of information bottleneck [63, 64], one that
separates the task of compressing sequence-encoded in-
formation (the job of the G-P map) from the task of
mapping this information to a realistic experimental
output (the job of the measurement process). Some
ambiguity between the quantitative properties of the
G-P map and those of the measurement process in-
evitably remain, but such ambiguities often affect only
a small number of parameters in the underlying G-P
map [54, 55].

We also introduce MAVE-NN, a software package
that can rapidly execute this type of bottleneck-based
inference on large MAVE datasets. MAVE-NN cur-
rently supports two inference approaches: GE regres-
sion and noise agnostic (NA) regression. GE regres-
sion is modeled after the approach of [46]. NA re-
gression is closely related to non-parametric regres-
sion using information maximization (see [54, 55]) but
is much faster due to its compatibility with back-
propagation. MAVE-NN is available as a Python API
and is built on top of TensorFlow, allowing the use
of the powerful and flexible optimization methods.
MAVE-NN is rigorously tested and is easily installed
from PyPI using the command pip install mavenn.
Comprehensive documentation is available at http:

//mavenn.readthedocs.io.

Results
Inference approaches

MAVE-NN supports the analysis of DNA, RNA, and
protein sequences. All sequences must be the same
length and, for the resulting models to be inter-
pretable, must satisfy a natural notion of alignment.
The two inference methods supported by MAVE-NN,
GE regression and NA regression, are illustrated in
Fig. 3. Each type of regression can be used to infer
three different types of model: additive, neighbor, or
pairwise. MAVE-NN represents each sequence as a bi-
nary vector ~x of one-hot encoded sequence features.
The measurement obtained for each sequence is then
assumed to depend on a latent phenotype φ, which is
assumed to depend the sequence via a linear model
φ = ~θ · ~x, where ~θ denotes model parameters. In both
types of regression, MAVE-NN assumes that the mea-
surement of each sequence is a function of a latent
phenotype φ. This function is inferred from data using
the dense subnetworks shown in Fig. 3a and 3c. Ex-
amples of these functions are shown in Fig. 3b and 3d.
For additional details, see Methods.

In the following sections, we demonstrate the utility
of MAVE-NN on previously published DMS, RNA-seq
MPRA, and sort-seq MPRA datasets.
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Global epistasis model of protein GB1

Protein G is an immunoglobulin-binding protein ex-
pressed in streptococcal bacteria [65] and is a model
system to study epistasis, protein folding, and the ef-
fects of mutations on protein function that has been
investigated multiple times through high-throughput
mutagenesis[66, 67, 68]. Here we analyze DMS data
from [66]. In this work, the authors made all single and
double mutations between 55 positions in the domain
of protein G (GB1) that binds to immunoglobulin G
(IgG). To quantify the affinity of variant GB1 domains
(expressed as individual proteins) for IgG, the authors
then used mRNA display, an assay in which variant
GB1 proteins were covalently linked to their encoding
mRNAs and enriched using IgG beads. Deep sequenc-
ing was then used to quantify the enrichment of variant
mRNAs, corresponding to the ratio of enriched counts
to library counts. Our goal here is to quantitatively
model log enrichment as a function of sequence.

There is good reason to suspect there might be
strong GE nonlinearities in these DMS data. In the
simplest case, we can imagine that the Gibbs free en-
ergy of a GB1 variant bound to IgG will be an additive
function of GB1 sequence, reflecting no energetic epis-
tasis between positions. However, even if the enrich-
ment of variant mRNAs is performed under equilib-
rium thermodynamic conditions, quantitative enrich-
ment values will reflect the occupancy of each GB1
variant, which is a sigmoidal function of binding en-
ergy. We would thus expect to observe a nonlinear re-
lationship between an additive latent phenotype (bind-
ing energy), and the experimental readout (log enrich-
ment). Note that for more complicated scenarios, such
as enrichment far from equilibrium, the experimental
readout is still likely to be a nonlinear function of the
underlying latent phenotype. Then again, even in the
improbable case where the biological quantity of inter-
est is linearly related to the experimental readout, GE
regression will learn that linear relationship.

Motivated by the argument above, as well as the
work of Otwinowski et al. [46], we fit an additive GE
model to the DMS data from [66]. We note that while
[46] also fit a GE model to these data, our goal here
is different; we aim to highlight the capabilities of
MAVE-NN. There are also important differences in
our approach: [46] implemented GE regression using
a maximum-likelihood inference procedure based on I-
splines basis, whereas MAVE-NN formulates this prob-
lem using neural networks, allowing the use of Tensor-
Flow for rapid and robust inference [69]. Moreover, the
method from [46] is currently implemented only as a
Julia script whereas MAVE-NN is a fully document
Python API.

The data we used to fit GE models consisted of
535,918 variant GB1 sequences and their correspond-
ing log enrichment values. MAVE-NN completed GE
model inference ∼ 10 minutes on a standard lap-
top computer. The results of this inference, includ-
ing model predictions, additive weights θGE

ic , and the
global epistasis nonlinearity g(φ) are shown in Fig. 4
(panels d and e) and closely match the results of [46].
Moreover, on simulated GB1 data where we know the
true underlying nonlinearity and additive parameters,
MAVE-NN is able to accurately recover both θGE

ic and
g (Fig. S1).

As a baseline, we compare the resulting GE model
to an additive model fit using linear regression. We
find that GE regression fits held-out test data much
better than linear regression does, yielding R2 = 0.94
vs. R2 = 0.86 (Fig. 4a-b). Plotting linear model pre-
dictions vs. GE model predictions suggests that there
are systematic nonlinear effects not being captured
by the linear model (Fig. 4c). Fig. 4f shows linear
model weights (θlinic ) plotted as a sequence logo. Plot-
ting the values of θGE

ic vs. θlinic reveals systematic differ-
ences, e.g., there appears to be a cluster of parameters
which is assigned roughly the same value by the linear
model (close to 0 on the x-axis), but to which the GE
model assigns a large range of values (Fig. 4g). This
analysis thus illustrates the importance of including a
global epistasis nonlinearity when modeling sequence-
function relationships from DMS data.

Global epistasis model of splice site activity

Splicing is a key step in the expression of human
genes. Mutations at 5′ splice sites (5′ ss), which define
the boundaries between upstream exons and down-
stream introns, often cause exon skipping by disrupt-
ing spliceoseome recognition, and can result in disease
[70, 71]. Here we analyze data from a massively paral-
lel splicing assay (MPSA, a type of RNA-seq MPRA)
that was used to quantify the effects of variant 5′ ss se-
quences on exon skipping. Specifically, Wong et al. [26]
measured the effects of all 32,768 possible 9-nucleotide
5′ ss sequences in three gene contexts: BRCA2 exon
17, SMN1 exon 7, and IKBKAP exon 20. Their exper-
imental strategy used a three-exon minigene, in which
the 5′ ss of the central exon was varied. Minigene plas-
mids were transfected into HeLa cells, bulk RNA was
extracted, and exon inclusion was assayed using RT-
PCR coupled to high-throughput sequencing (Fig. 1c).
From the resulting sequence data, the authors calcu-
lated a percent-spliced-in (PSI) value based on the
amount of exon inclusion RNA relative to total RNA
(Fig. 1d). Our goal is to model PSI as a function of
the 5′ ss sequence.
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As in the case of GB1, there is good reason to suspect
strong GE nonlinearities in these MPSA data. Splic-
ing is a highly complex process involving more than
200 proteins [72], but a simplified argument for why
GE nonlinearities might be present is still illuminat-
ing. 5′ ss RNA sequences directly bind the U1 small
nuclear ribonucleoprotein (snRNP), a component of
the spliceosome, in the early stages of spliceosome as-
sembly. We can imagine that the Gibbs free energy
of the U1 snRNP bound to RNA at the 5′ ss will be
an approximately linear function of the 5′ ss sequence,
whereas PSI will reflect the occupancy of the 5′ ss by
the U1 snRNP. Even this highly simplified model re-
quires a strongly nonlinear relationship between a lin-
ear latent phenotype (energy) and the experimental
readout (PSI).

Previous comparative genomics studies have ob-
served pairwise nucleotide-position dependencies in 5′

ss sequences [73, 74, 75]. Additionally, Wong et al. [26]
reported that fitting a linear pairwise model to their
MPSA data (using linear regression) better explained
the relationship between PSI and 5′ ss sequences com-
pared to just an additive model. Motivated by these
points, we fit both additive and pairwise GE models to
these MPSA data. MAVE-NN was able to infer each of
these models in ∼ 5 minutes. For comparison, we also
fit additive and pairwise models using linear regres-
sion. All MPSA results, including model predictions
and global epistasis nonlinearities, are shown in Fig.
5. Note that we fit our models to log10 PSI values, as
these transformed values exhibit approximately uni-
form noise.

We find that an additive model fit using linear re-
gression produces an R2 value of only 0.22 on held-out
test data, while a linear pairwise model improves that
value substantially (Fig. 5a-b). Both linear models,
however, show strongly nonlinear patterns of residu-
als, indicating substantial model misspecification. The
additive GE model outperforms both models fit by lin-
ear regression (Fig. 5c), and exhibits a highly nonlin-
ear link function g(φ) (Fig. 5d). However, there are a
number of measurements that deviate far from the flat
part of the function g(φ), suggesting that the additive
model for the latent phenotype might not be sufficient
for explaining these data. This is confirmed by Fig.
5e, which shows that the pairwise GE model substan-
tially outperforms all the other models. Fig. 5f illus-
trates this improved fit: unlike in panel d, the cluster
of points above the flat part of the function g(φ) now
cluster tightly to the pairwise global epistasis nonlin-
earity. The “neck” of points near the transition region
of the nonlinearity is also much thinner. Using simu-
lated pairwise 5′ ss data, we show that MAVE-NN is
able to accurately recover both pairwise latent model

and pairwise g accurately (Fig. S2). This analysis high-
lights the importance of including global epistasis non-
linearities even when pairwise features are included.

Noise agnostic regression on lac promoter data
The lac promoter of Escherichia coli has long served as
a model system for studying transcriptional regulation.
Kinney et al. [17] used this system to demonstrate a
massively parallel reporter assay called Sort-Seq (Fig.
1e), which was the first MAVE developed for studies
in living cells. The authors created a library of lac pro-
moters mutagenized within a 75 bp region that binds
two transcription factors, CRP and σ70 RNA poly-
merase (RNAP) [76]. These variant promoters were
then used to drive the expression of GFP. Cells con-
taining expression constructs were sorted according to
GFP fluorescence into 5-10 bins, and the variant pro-
moters within each bin were sequenced. The resulting
data consisted of a list of unique promoter variants
along with the number of times each variant was ob-
served in each bin (Fig. 1f). The authors performed
a total of six such experiments, using different pro-
moter libraries, host strains, and growth conditions.
From these data, they were able to infer precise addi-
tive models for the in vivo sequence-dependent binding
energies of CRP and RNAP.

Kinney et al. [17] fit binding energy models to
Sort-Seq data using an inference method called in-
formation maximization (IM) regression. Specifically,
they searched for additive phenotype parameters that
would maximize the mutual information I[bin;φ] be-
tween the phenotype value φ (which they interpreted
as binding energy) and the bin in which each sequence
was found. This approach has a strong theoretical ra-
tionale when fitting models to data with uncertain
noise characteristics [56, 55, 54]. But in practice, IM re-
gression presents multiple challenges. One difficulty is
estimating I[bin;φ] from finite data. While there are
many approaches for estimating mutual information,
these methods are relatively slow and IM inference re-
quires doing this after each update of the model pa-
rameters. Moreover, Kinney et al. [17] and subsequent
work [33, 34, 35] have performed IM inference using
custom Metropolis Monte Carlo implementations that
are slow and which have not been deployed as robust
general-use software.

For data like those reported in [17], which consist of
sequences and associated counts across multiple bins,
MAVE-NN uses an inference strategy that is closely
related to but distinct from IM inference: MAVE-NN
performs a semiparametric optimization of log likeli-
hood over both the parameters of φ and the experi-
mental noise model π(bin|φ), which represents a prob-
ability distribution over bins conditioned on the la-
tent phenotype. We call this approach NA regression.
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The connection between IM and NA regression has
been elaborated in previous work [55, 54], and is sum-
marized here in the Supplemental Information. Im-
portantly, NA regression is readily formulated using
neural networks and thus carried out using stochas-
tic gradient descent within TensorFlow. This enables
robust optimization and dramatically reduces compu-
tation times.

Here we demonstrate NA regression on the Sort-
Seq data of [17] by inferring additive models for the
sequence-dependent activity at the RNAP binding
site. The results are shown in Fig. 6. Each row in
Fig. 6 represents a different Sort-Seq experiment; these
five experiments assayed different variant libraries un-
der different experimental conditions (see Supplemen-
tal Information for details). In each row, the left-most
panel shows sequence logos representing additive mod-
els inferred by NA regression. Sequence logos in Fig.
4 and Fig. 6 were made using Logomaker [77]. Cen-
ter panels illustrate the corresponding noise models
π(bin|φ). Although these noise models differ greatly

from experiment to experiment, the parameters ~θ de-
scribing RNAP binding site strength are remarkably
consistent with each other and with the known bipar-
tite structure of the RNAP binding motif.

The right-most panels in Fig. 6 plot the NA-inferred
parameters ~θ against those reported by Kinney et al.
[17] using IM regression. These plots reveal a high
level of correspondence, but they still leave open the
question of which set of parameters perform better. To
address this question, we estimated the mutual infor-
mation I[bin;φ] for binding models inferred by both
approaches (see Methods). The computed I[bin;φ] val-
ues are displayed within each scatter plot. Although
mutual information values for IM and NA regression
are comparable, NA regression consistently achieves
higher I[bin;φ], suggesting better performance. More-
over, NA regression, as implemented by MAVE-NN,
dramatically reduces the inference time compared
to IM regression computed using Metropolis Monte
Carlo: NA regression takes a few tens of seconds on a
standard laptop computer to infer each of these RNAP
models whereas IM regression takes several hours [un-
published data]. Finally, using simulated data, we
show that MAVE-NN (using NA regression) recov-
ers ground-truth RNAP additive parameters nearly
perfectly (see Fig. S3).

Discussion
In this work we have presented MAVE-NN, a software
package for inferring quantitative models of genotype-
phenotype (G-P) maps from diverse MAVE datasets.
At the core of MAVE-NN is the conceptualization of
G-P maps as a type of information bottleneck [64, 63].

Specifically, MAVE-NN assumes that, in a MAVE ex-
periment, the underlying G-P map first compresses an
input sequence into a single meaningful scalar – the
latent phenotype – and that this quantity is read out
only indirectly by a noisy and nonlinear measurement
process. By explicitly modeling this measurement pro-
cess along with the G-P map, MAVE-NN is able to
remove potentially confounding effects from the G-P
map. We have demonstrated this capability in the con-
text of three diverse MAVE experiments: a deep mu-
tational scanning assay [66], an RNA-seq-based mas-
sively parallel splicing assay [26], and a FACS-based
massively parallel reporter assay [17]. We have also
benchmarked the performance of MAVE-NN on anal-
ogous simulated data.

MAVE-NN currently supports two inference meth-
ods: GE regression, which is suitable for datasets
with continuous target variables and uniform Gaussian
noise, and NA regression, which is suitable for datasets
with categorical target variables. MAVE-NN also sup-
ports three types of G-P models: additive, neighbor,
and pairwise. The information bottleneck strategy be-
hind MAVE-NN is very general, however, and we an-
ticipate expanding and generalizing the capabilities of
MAVE-NN in the near future.

MAVE-NN is implemented in TensorFlow, which
makes the underlying computations fast and robust.
It also has an easy-to-use Python API, is thoroughly
tested, and can be installed from PyPI by executing
“pip install mavenn”. Comprehensive documenta-
tion as well as examples and step-by-step tutorials are
available at http://mavenn.readthedocs.io.

Methods
We represent each MAVE dataset as a set of N obser-
vations, {(~xn, yn)}Nn=1, where each observation consists
of a sequence ~xn and a measurement yn of sequence ac-
tivity. Here, yn can be either a continuous real-valued
number, or a categorical variable representing the bin
in which the nth sequence was found. Note that, in
this representation, the same sequence ~x can be ob-
served multiple times in each dataset and be assigned
different values for y each time due to experimental
noise. Datasets with real-valued measurements y are
analyzed using GE regression, while datasets with cat-
egorical y values are analyzed using NA regression.
Both types of regression assume that yn is a noisy indi-
rect readout of some latent phenotype φ(~xn; ~θ), which

is a linear function of its parameters ~θ.

Latent phenotype models
We assume that all sequences have the same length L,
and that at each of the L positions in each sequence
there is one of C possible characters (C = 4 for DNA
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and RNA; C = 21 for protein, representing 20 amino
acids and the termination signal). In what follows, each
sequence ~x is represented as a binary C × L matrix
having elements

xcl =

{
1 if character c occurs at position l
0 otherwise

. (1)

Here, l = 1, 2, . . . , L indexes positions within the se-
quence, while c indexes possible nucleotides or amino
acids.

Our goal is to derive a function that can, given a
sequence ~x, predict the value of the latent phenotype
that was indirectly measured by the experiment. To
do this we assume that this phenotype is given by a
function φ(~x; ~θ) that depends on the sequence ~x and a

set of parameters ~θ. MAVE-NN supports three func-
tional forms for φ: an “additive” model, where each
position in ~x contributes independently to the latent
phenotype,

φadditive(~x; ~θ) =

L∑
l=1

∑
c

θclxcl, (2)

a “neighbor” model, which accounts for potential
epistatic interactions between neighboring positions,

φneighbor(~x; ~θ) =
L−1∑
l=1

∑
c,c′

θcc′lxclxc′(l+1). (3)

and a “pairwise” model, which includes interactions
between all pairs of positions,

φpairwise(~x; ~θ) =
L−1∑
l=1

L∑
l′=l+1

∑
c,c′

θcc′ll′xclxc′l′ . (4)

All three types of latent phenotype models can be in-
ferred using either GE regression or NA regression.

Global epistasis (GE) regression
GE models assume that each measurement y of a se-
quence ~x is a nonlinear monotonic function g(·) of a
latent phenotype φ plus uniform Gaussian noise ε:

y = g(φ(~x)) + ε. (5)

Given a MAVE dataset {(~xn, yn)}Nn=1, the global epis-
tasis non-linearity g(·) and the linear model parame-

ters ~θ are inferred by fitting a neural network having
the architecture shown in Fig. 3a and using a quadratic

loss function,

L[~θ, g] =
1

2N

N∑
n=1

(yn−ŷn)2 where ŷn = g(φ(~xn; ~θ)).

(6)

Noise agnostic (NA) regression
In NA regression, we assume that the measurement y
of a sequence ~x is governed by a noise model π(y|φ),
which represents a probability distribution over possi-
ble bins y conditioned on a deterministic latent phe-
notype φ(~x, ~θ). The defining feature of NA regression
is that the noise model π is not assumed a priori, as it
is in standard likelihood-based inference, but rather is
inferred from data concurrently with the latent pheno-
type parameters ~θ. Specifically, given a MAVE dataset
{(~xn, yn)}Nn=1, the noise model π and parameters ~θ are
inferred by fitting a neural network, having the archi-
tecture shown in Fig. 3c, using the log likelihood ob-
jective function,

L[~θ, π] =
1

N

M∑
m=1

∑
y

cmy log[π(y|φ(~xm; ~θ))]. (7)

Here, m = 1, 2, . . . ,M indexes unique sequences ~xm,
y indexes possible bins, and cmy represents the to-
tal number of counts observed for the sequence ~xm
in bin y. Note that M and N are related via N =∑M

m=1

∑
y cmy.

Computation of mutual information
We use the mutual information between bin y and la-
tent phenotype φ to evaluate the performance of NA
regression. This is given by,

I[y;φ] =
∑
y

∫
dφ p(y, φ) log2

p(y|φ)

p(y)
. (8)

The computation of mutual information requires
knowing the probability densities in Eq. 8, where
p(y, φ) and its marginal distributions represent what
would be observed in the limit of infinite data. We do
not have direct access to these distributions, so instead
we make the following approximations. First, we ap-
proximate expectation values with respect to p(y, φ)
as an average over our N observations,

∑
y

∫
dφ p(y, φ)f(y, φ) ≈ 1

N

N∑
n=1

f(yn, φn)

=
1

N

M∑
m=1

∑
y

cmyf(y, φm),

(9)
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where φn = φ(~xn; ~θ), φm = φ(~xm; ~θ), and f(y, φ) is
any function of interest. Additionally, we approximate
p(y|φ) by the inferred noise model π(y|φ), and p(y) by

π(y) = N−1
∑M

m=1 cmy, the total fraction of counts in
bin y. Putting these together gives

I[y;φ] ≈ 1

N

M∑
m=1

∑
y

cmy log2

π(y|φm)

π(y)
. (10)

We used Eq. 10 to compute the mutual information
reported in Fig. 6.

We note that our method for approximating mu-
tual information differs from that used in [17]. Specif-
ically, Kinney et al. [17] assigned a rank order R to
each of their model predictions φ, then for each value
of y they estimated the joint distribution p(y,R) by
smoothing with a Gaussian kernel in the R-direction.
This smoothed p(y,R) was then used to estimate the
mutual information I[y;R] which, due to the reparam-
eterization invariance of mutual information, was used
as an estimate of I[y;φ].
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Figure 1 Three different multiplex assays of variant effect (MAVEs) and their resulting datasets. (a) The deep mutational scanning
(DMS) assay of [66]. Randomly mutagenized gene sequences (gray) produced variant proteins (colored bells). To quantify the
affinity of variant GB1 sequences for IgG, mRNA display was used in which variant GB1 proteins were covalently linked to their
encoding mRNAs (silver wavy lines) and enriched using IgG beads. Deep sequencing was then used to quantify the enrichment of
variant mRNAs, corresponding to the ratio of enriched counts to library counts. From these read counts, a log enrichment value was
assigned to each sequence. (b) The dataset produced by this DMS assay consists of variant protein coding sequences and their
corresponding log enrichment values. (c) The massively parallel splicing assay (MPSA) assay of [26]. A 3-exon minigene library was
generated in which, for each minigene, the 5′ ss sequence of exon 2 was replaced by a randomized 9-nt sequence, and a unique 20-nt
barcode was inserted into the 3′ UTR. This library was transfected into HeLa cells, followed by RNA extraction and reverse
transcription. Barcodes from two different classes of mRNA were then amplified and sequenced: (i) mRNA that included exon 2 and
(ii) total mRNA. PSI was calculated using the ratio of inclusion to total barcode counts, normalized to the value obtained for the
consensus 5′ ss sequence (CAGGUAAGU). Colored half arrows represent PCR primers. (d) The data produced by this MPSA consists
of randomized splice site sequences and their corresponding PSI values. (e) The Sort-Seq assay of [17]. A plasmid library was
generated in which mutagenized versions of a bacterial promoter drive the expression of a fluorescent protein. Cells carrying these
plasmids were then sorted according to measured fluorescence using fluorescence-activated cell sorting (FACS). The variant
promoters in each bin of sorted cells were then sequenced. (f) The Sort-Seq dataset consists of variant promoter sequences and their
read counts in the input library (bin 0) and the nine output bins (1-9).
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Figure 2 Quantitative modeling strategy. Each input sequence x is mapped to a latent phenotype φ via a deterministic
genotype-phenotype (G-P) map. A stochastic measurement process then maps φ to a observed measurement y. Model inference
consists of identifying a G-P map, as well as a measurement process, that together explain the (x, y) pairs in a MAVE dataset. It is
the role of φ as an information bottleneck that allows some (but not all) properties of the G-P map to be distinguished from
properties of the measurement process [54, 55].
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Figure 3 MAVE-NN model architectures. (a) Global epistasis model architecture[48]. A one-layer neural network is used to model
the linear dependence of molecular phenotype φ on sequence ~x. A global epistasis nonlinearity g, which maps φ to output ŷ, is
modeled as a dense subnetwork with a nonlinearly activated hidden layer and a linearly activated output node ŷ. (b) The output ŷ of
the global epistasis model is a nonlinear function of the latent phenotype φ. (c) Noise agnostic model architecture. A one-layer
neural network is used to model the linear dependence of φ on sequence ~x. This value φ is then fed to the noise model, a neural
network network with a nonlinearly activated hidden layer and a softmax output layer. (d) The noise model, π(bin|φ), represents a
probability distribution over bins conditioned on φ.
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Figure 4 GE regression vs. linear regression on DMS data from [66]. (a) GE regression achieves R2 = 0.94 on held-out test data. (b)
Linear regression on the same data yields only R2 = 0.86. (c) Plotting linear model predictions vs. GE model predictions reveals
systematic nonlinear deviations. (d) Sequence logo showing additive model weights (θGE

ic ) extracted from the first layer of the GE
model. (e) Observations (gray) versus GE latent phenotype values. The GE nonlinearity g(φ) is shown in black. (f) Sequence logo
showing the weights (θlin

ic ) inferred using linear regression. (g) Comparison of linear model weights and GE additive weights yields

R2 = 0.62. The data used to fit these models consisted of 535,918 variant GB1 sequences and their corresponding log enrichment
values, which were split 60% : 20% : 20% into training, validation, and test sets. We chose a global epistasis architecture with 1
sigmoidally activated hidden layer comprising 200 nodes. The first layer consists of 1100 parameters which constitute the additive
model weights. The nonlinear subnetwork consists of 600 parameters, with the total number of parameters in the model equaling
1702 (including biases). We used the Adam optimizer with a learning rate of 5× 10−4 and used mean squared error as the loss
function. All predictions (ŷ), observations (y), and R2 values are reported using held-out test data. Sequence logos in panels (d, f)
are mean centered and variance normalized.
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Figure 5 Four models fit to the BRCA2 MPSA data from [26]. (a) Linear regression using additive sequence features yields only
R2 = 0.22 on held out test data. (b) Using pairwise sequence features as input to linear regression substantially improves R2 on the
same test data. (c) GE regression with additive input features achieves R2 = 0.63. (d) Observations (gray) versus GE additive latent
phenotype values. The GE additive nonlinearity g(φ) is shown in black. (e) GE regression with pairwise input features achieves
R2 = 0.78, substantially improving performance compared to the additive GE model and pairwise linear model. (f) Observations
(gray) versus pairwise GE latent phenotype values. The data used to fit these models are illustrated in Fig. 1d. They consist of
32,768 randomized 5′ ss sequences and their corresponding measurements (y = log10 PSI), which were split 60% : 20% : 20% into
training, validation, and test sets. For both additive and pairwise GE models, we chose a global epistasis architecture with 1
sigmoidally activated hidden layer comprising 50 nodes. Weights connecting the input layer to the latent phenotype layer, which
constitute the linear model, consist of 36 parameters, with the total number of parameters of the entire model equaling 188
(including biases). We used the Adam optimizer with a learning rate of 10−3 and used mean squared error as the loss function. The
points plotted in all panels are from the training sets. The R2 values shown are computed using test sets.
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Figure 6 Noise agnostic regression for five different Sort-Seq experiments probing the in vivo binding of E. coli σ70 RNA polymerase
(RNAP) [17]. Each panel presents results from one experiment: (a) full-wt, (b) rnap-wt, (c) full-500, (d) full-150, and (e) full-0; see
S.I. for descriptions of experimental conditions. Shown are the NAR parameters θNAR

ic (sequence logo), the inferred noise model

P (bin|φ) (heat map), and a scatter plot of NAR parameters vs. the IM parameters (θIM
ic ) reported in [17]. The data used to fit these

models are illustrated in Fig. 1f; bin 0 represents the promoter library and higher bin numbers correspond to higher activity values.
For all experiments we used a noise model with a sigmoidally activated hidden layer and a softmax-activated output layer, the Adam
optimizer with a learning rate of 10−3, log likelihood loss, and an 60% : 20% : 20% split into training, validation, and test sets.
Mutual information in bits (I[bin;φ]) is shown for models inferred by IM and by NAR. Parameters from both NAR and IM inference
are mean centered and variance normalized.
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