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Abstract  11 

Multiplex assays of variant effect (MAVEs) are diverse techniques that include deep mutational 12 

scanning (DMS) experiments on proteins and massively parallel reporter assays (MPRAs) on 13 

cis-regulatory sequences. MAVEs are being rapidly adopted in many areas of biology, but a 14 

general strategy for inferring quantitative models of genotype-phenotype (G-P) maps from 15 

MAVE data is lacking. Here we introduce a conceptually unified approach for learning G-P maps 16 

from MAVE datasets. Our strategy is grounded in concepts from information theory, and is 17 

based on the view of G-P maps as a form of information compression. We also introduce 18 

MAVE-NN, an easy-to-use Python package that implements this approach using a neural 19 

network backend. The ability of MAVE-NN to infer diverse G-P maps—including biophysically 20 

interpretable models—is demonstrated on DMS and MPRA data in a variety of biological 21 

contexts. MAVE-NN thus provides a unified solution to a major outstanding need in the MAVE 22 

community.  23 

  24 
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Main Text  25 

Introduction 26 

Over the last decade, the ability to quantitatively study genotype-phenotype (G-P) maps 27 

has been revolutionized by the development of multiplex assays of variant effect (MAVEs), 28 

which can measure molecular phenotypes for thousands to millions of genotypic variants in 29 

parallel.1,2 MAVE is an umbrella term that describes a diverse set of experimental methods, 30 

three examples of which are illustrated in Fig. 1. Deep mutational scanning (DMS) experiments3 31 

are a type of MAVE commonly used to study protein sequence-function relationships. These 32 

assays work by linking variant proteins to their coding sequences, either directly or indirectly, 33 

then using deep sequencing to assay which variants survive a process of activity-dependent 34 

selection (e.g., Fig. 1a). Massively parallel reporter assays (MPRAs) are another major class of 35 

MAVE, and are commonly used to study DNA or RNA sequences that regulate gene expression 36 

at a variety of steps, including transcription, mRNA splicing, cleavage and polyadenylation, 37 

translation, and mRNA decay.4–7 MPRAs typically rely on either an RNA-seq readout of barcode 38 

abundances (Fig. 1c) or the sorting of cells expressing a fluorescent reporter gene (Fig. 1e). 39 

Most computational methods for analyzing MAVE data have focused on accurately 40 

quantifying the activity of individual assayed sequences.8–14 However, MAVE measurements like 41 

enrichment ratios or cellular fluorescence levels usually cannot be interpreted as providing 42 

direct quantification of biologically meaningful activities, due to the presence of experiment-43 

specific nonlinearities and noise. Moreover, MAVE data is usually incomplete, as one often 44 

wishes to understand G-P maps over vastly larger regions of sequence space than can be 45 

exhaustively assayed. The explicit quantitative modeling of G-P maps can address both the 46 

indirectness and incompleteness of MAVE measurements.1,15 The goal here is to determine a 47 

mathematical function that, given a sequence as input, will return a quantitative value for that 48 
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sequence’s molecular phenotype. Such quantitative modeling has been of great interest since 49 

the earliest MAVE methods were developed,16–18 but no general-use software has yet been 50 

described for inferring G-P maps of arbitrary functional form from MAVE data.  51 

Here we introduce a unified conceptual framework for the quantitative modeling of 52 

MAVE data. This framework is based on the use of latent phenotype models, which assume that 53 

each assayed sequence has a well-defined latent phenotype (specified by the G-P map), of 54 

which the MAVE experiment provides an indirect readout (described by the measurement 55 

process). The quantitative forms of both the G-P map and the measurement process are then 56 

inferred from MAVE data simultaneously. We further introduce an information-theoretic 57 

approach for separately assessing the performance of the G-P map and the measurement 58 

process components of latent phenotype models. This strategy is implemented in an easy-to-59 

use open-source Python package called MAVE-NN, which is built on a TensorFlow 2 backend.19 60 

In what follows, we expand on this unified MAVE modeling strategy and apply it to a diverse 61 

array of DMS and MPRA datasets. Along the way we note the substantial advantages that 62 

MAVE-NN provides over other MAVE modeling methods, illustrate how the capabilities of 63 

MAVE-NN can inform experimental design going forward, and highlight new biological insights 64 

that our quantitative modeling of MAVE data reveals.  65 

Results 66 

Latent phenotype modeling strategy 67 

MAVE-NN supports the analysis of MAVE data on DNA, RNA, and protein sequences, 68 

and can accommodate either continuous or discrete measurement values. Given a set of 69 

sequence-measurement pairs, MAVE-NN aims to infer a probabilistic mapping from sequence 70 

to measurement. Our primary enabling assumption, which is encoded in the structure of the 71 

latent phenotype model (Fig. 2a), is that this mapping occurs in two stages. Each sequence is 72 
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first mapped to a latent phenotype by a deterministic G-P map, then this latent phenotype is 73 

mapped to possible measurement values via a stochastic measurement process. During 74 

training, the G-P map and measurement process are simultaneously learned by maximizing a 75 

regularized form of likelihood. Our initial implementation of MAVE-NN assumes that latent 76 

phenotypes are one-dimensional quantities, but multidimensional latent phenotypes are fully 77 

compatible within this conceptual framework.20,21 78 

MAVE-NN includes four types of built-in G-P maps: additive, neighbor, pairwise, and 79 

black box. Additive G-P maps assume that each character at each position within a sequence 80 

contributes independently to the latent phenotype. Neighbor G-P maps incorporate interactions 81 

between nearest-neighbor characters, while pairwise G-P maps include interactions between all 82 

pairs of characters regardless of their position. Black box G-P maps have the form of a densely 83 

connected multilayer perceptron, the specific architecture of which can be controlled by the 84 

user. MAVE-NN also supports custom G-P maps that can be used, e.g., to represent specific 85 

biophysical hypotheses about the mechanisms of sequence function.  86 

To handle both discrete and continuous measurement values, two different strategies for 87 

modeling measurement processes are provided. Measurement process agnostic (MPA) 88 

regression uses techniques from the biophysics literature15,16,20,22 to analyze MAVE datasets 89 

that report discrete measurements. Here the measurement process is represented by an 90 

overparameterized neural network that takes the latent phenotype value as input and outputs 91 

the probability of each possible measurement value (Fig. 2b). Global epistasis (GE) regression, 92 

by contrast, leverages ideas previously developed in the evolution literature23–26 for analyzing 93 

datasets that contain continuous measurements (Fig. 2c). Here, the latent phenotype is 94 

nonlinearly mapped to a prediction that represents the most probable measurement value. A 95 

noise model is then used to describe the distribution of likely deviations from this prediction. 96 

MAVE-NN supports both homoscedastic and heteroscedastic noise models based on three 97 
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different classes of probability distribution: Gaussian, Cauchy, and skewed-t. We note that the 98 

skewed-t distribution, introduced by Jones and Faddy,27 reduces to Gaussian and Cauchy 99 

distributions in certain limits while also accommodating asymmetric experimental noise. Fig. 2d 100 

shows an example of a GE measurement process with a heteroscedastic skewed-t noise model.  101 

Information-theoretic measures of model performance 102 

We further propose three distinct quantities for assessing the performance of latent 103 

phenotype models (Fig. 2e). These quantities are motivated by thinking of G-P maps in terms of 104 

information compression. In information theory, a quantity called mutual information quantifies 105 

the amount of information that one variable encodes about another.28,29 Unlike standard metrics 106 

of model performance, like accuracy or 𝑅!, mutual information can be computed between any 107 

two types of variables (discrete, continuous, multi-dimensional, etc.). This property makes the 108 

information-based quantities we propose below applicable to all MAVE datasets, regardless of 109 

the specific type of experimental readout used. We note, however, that accurately estimating 110 

mutual information and related quantities from finite data is nontrivial and that MAVE-NN uses a 111 

variety of approaches to do this. 112 

Intrinsic information, 𝐼"#$, is the mutual information between the sequences and 113 

measurements contained within a MAVE dataset. This quantity provides a benchmark against 114 

which to compare the performance of inferred G-P maps. Predictive information, 𝐼%&', is the 115 

mutual information between MAVE measurements and the latent phenotype values predicted by 116 

a G-P map of interest. This quantifies how well the G-P map preserves sequence-encoded 117 

information that is determinative of experimental measurements. When evaluated on test data, 118 

𝐼%&' is bounded above by 𝐼"#$, and equality obtains only when the latent phenotype losslessly 119 

encodes relevant sequence-encoded information. Variational information, 𝐼()&, is a linear 120 

transformation of log likelihood that provides a variational lower bound on 𝐼%&'.30–32 The 121 
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difference between 𝐼%&' and 𝐼()& quantifies how accurately the inferred measurement process 122 

matches the observed distribution of measurements and latent phenotypes (see Supplemental 123 

Information).  124 

MAVE-NN infers model parameters by maximizing a (lightly) regularized form of 125 

likelihood. These computations are performed using the standard backpropagation-based 126 

training algorithms provided within the TensorFlow 2 backend. With certain caveats noted (see 127 

Methods), this optimization procedure maximizes 𝐼%&' while avoiding the costly estimates of 128 

mutual information at each iteration that have hindered the adoption of previous mutual-129 

information-based modeling strategies.16  130 

Application: deep mutational scanning assays 131 

We now demonstrate the capabilities of MAVE-NN on three DMS datasets, starting with 132 

the study of Olson et al.33 on pairwise epistasis in protein G. Here the authors measured the 133 

effects of all single and nearly all double mutations to residues 2-56 of the IgG binding domain. 134 

This domain, called GB1, has long served as a model system for studying protein sequence-135 

function relationships. To assay the binding of GB1 variants to IgG, the authors combined 136 

mRNA display with ultra-high-throughput DNA sequencing (Fig. 1a). The resulting dataset 137 

reports log enrichment values for all 1,045 single- and 530,737 double-mutant GB1 variants 138 

(Fig. 1b).  139 

Inspired in by the work of Otwinowski et al.,26 we used MAVE-NN to infer a latent 140 

phenotype model comprising an additive G-P map and a GE measurement process. This 141 

inference procedure required only about 3 minutes on a standard laptop computer 142 

(Supplemental Fig. S1). Fig. 3a illustrates the inferred additive G-P map via the effects that 143 

every possible single-residue mutation has on the latent phenotype. From this heatmap of 144 

additive effects, we can immediately identify all of the critical GB1 residues, including residues 145 
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27, 31, 41, 43, and 52. We also observe that missense mutations to proline throughout the GB1 146 

domain tend to negatively impact IgG binding, as expected due to this amino acid’s exceptional 147 

conformational rigidity. Fig. 3b illustrates the corresponding GE measurement process, 148 

revealing a sigmoidal relationship between log enrichment measurements and the latent 149 

phenotype values predicted by the G-P map. Nonlinearities like this are ubiquitous in DMS data 150 

due to the presence of background and saturation effects. Unless they are explicitly accounted 151 

for in one’s quantitative modeling efforts, as they are here, these nonlinearities can greatly 152 

distort the parameters of inferred G-P maps. Fig. 3c shows that accounting for this nonlinearity 153 

yields predictions that correlate quite well with measurement values. Moreover, every latent 154 

phenotype model inferred by MAVE-NN can be used as a MAVE dataset simulator (see 155 

Methods). By analyzing simulated data generated by our inferred model for this GB1 156 

experiment, we further observed that MAVE-NN can accurately and robustly recover the GE 157 

nonlinearity and ground-truth G-P map parameters (Supplementary Fig. S1).  158 

Fig. 3d summarizes the values of our information-theoretic metrics for model 159 

performance. On held-out test data, we find that 𝐼()& = 2.194 ± 0.020	bits and  𝐼%&' = 2.220 ±160 

0.008	bits and. The similarity of these two values suggests that the inferred GE measurement 161 

process, which includes a heteroscedastic skewed-t noise model, has nearly sufficient accuracy 162 

to fully describe the distribution of residuals. We further find that 2.680 ± 0.008	bits ≤ 𝐼"#$ ≤163 

3.213 ± 0.033	bits (see Methods), meaning that the inferred G-P map accounts for 70%-84% of 164 

the total sequence-dependent information in the dataset. While this performance is impressive, 165 

the additive G-P map evidently misses some relevant sequence features. This observation 166 

motivates the more complex biophysical model for GB1 discussed later in Results.   167 

The ability of MAVE-NN to deconvolve experimental nonlinearities from additive G-P 168 

maps requires that some of the assayed sequences contain multiple mutations. This is because 169 

such nonlinearities are inferred by reconciling the effects of single mutations with the effects 170 
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observed for combinations of two or more mutations. To investigate how many multiple-mutation 171 

variants are required, we performed GE inference on subsets of the GB1 dataset containing all 172 

1,045 single-mutation sequences and either 50,000, 5,000, or 500 double-mutation sequences 173 

(see Methods). The shapes of the resulting GE nonlinearities are illustrated in Figs. 3e-g. 174 

Remarkably, MAVE-NN is able to recover the underlying nonlinearity using only about 500 175 

randomly selected double mutants, which represent only ~0.1% of all possible double mutants. 176 

The analysis of simulated data also supports the ability to accurately recover ground-truth model 177 

predictions using highly reduced datasets (Supplemental Fig. S1). These findings have 178 

important implications for the design of DMS experiments: even if one only wants to determine 179 

an additive G-P map, including a modest number of multiple-mutation sequences in the assayed 180 

library is often advisable because it may allow the removal of artifactual nonlinearities.  181 

To test the capabilities of MAVE-NN on less complete DMS datasets, we analyzed 182 

recent experiments on amyloid beta (Aβ)34 and TDP-43,35 both of which exhibit aggregation 183 

behavior in the context of neurodegenerative diseases. Like with GB1, the variant libraries used 184 

in both experiments included a substantial number of multiple-mutation sequences: 499 single- 185 

and 15,567 double-mutation sequences for Aβ; 1,266 single- and 56,730 double-mutation 186 

sequences for TDP-43. But unlike with GB1, these datasets are highly incomplete due to the 187 

use of mutagenic PCR for variant library creation.  188 

We used MAVE-NN to infer additive G-P maps from these two datasets, adopting the 189 

same type of latent phenotype model used for GB1. Fig. 4a illustrates the additive G-P map 190 

inferred from aggregation measurements of Aβ variants. In agreement with the original study, 191 

we see that most amino acid mutations between positions 30-40 have a negative effect on 192 

nucleation, suggesting that this region plays a major role in nucleation behavior. Fig. 4b shows 193 

the corresponding measurement process. Even though these data are much sparser than the 194 

GB1 data, the inferred model performs well on held-out test data (	𝐼()& = 1.147 ± 0.043	bits,195 
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𝐼%&' = 1.254 ± 0.024	bits, 𝑅! = 0.793 ± 0.071). Similarly, Figs. 4c-d show the G-P map 196 

parameters and GE measurement process inferred from toxicity measurements of TDP-43 197 

variants, revealing among other things the toxicity-determining hot-spot observed by Bolognesi 198 

et al.35 at positions 310-340. The resulting latent phenotype model performs well on held-out 199 

test data (𝐼()& = 1.806 ± 0.018	bits, 𝐼%&' = 2.011 ± 0.019	bits, 𝑅! = 0.912 ± 0.052).  200 

Application: a massively parallel splicing assay 201 

Exon/intron boundaries are defined by 5´ splice sites (5´ss), which bind the U1 snRNP 202 

during the initial stages of spliceosome assembly. To investigate how 5´ss sequence 203 

quantitatively controls alternative mRNA splicing, Wong et al.36 used a massively parallel 204 

splicing assay (MPSA) to measure percent-spliced-in (PSI) values for nearly all 32,768 possible 205 

5´ss of the form NNN/GYNNNN in three different genetic contexts (Fig. 1c,d). Applying MAVE-206 

NN to data from the BRCA2 exon 17 context, we inferred four different types of G-P maps: 207 

additive, neighbor, pairwise, and black box. As with GB1, these G-P maps were each inferred 208 

using GE regression with a heteroscedastic skewed-t noise model. For comparison, we also 209 

inferred an additive G-P map using the epistasis package of Sailer and Harms.25 210 

Fig. 5a compares the performance of these G-P map models on held-out test data, while 211 

Figs. 5b-d illustrate the corresponding inferred measurement processes. We observe that the 212 

additive G-P map inferred using the epistasis package25 exhibits less predictive information 213 

(𝐼%&' = 0.220 ± 0.012	bits) than the additive G-P map found using MAVE-NN (𝑃 = 0.007, two-214 

sided z-test). This is likely because the epistasis package estimates the parameters of the 215 

additive G-P map prior to estimating the GE nonlinearity. We also note that, while the epistasis 216 

package provides a variety of options for modeling the GE nonlinearity, none of these options 217 

appear to work as well as our mixture-of-sigmoids approach (compare Figs. 5b,c). This finding 218 
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again demonstrates that the accurate inference of G-P maps requires the explicit and 219 

simultaneous modeling of experimental nonlinearities.  220 

We also observe that increasingly complex G-P maps exhibit increased accuracy. For 221 

example, the additive G-P map gives 𝐼%&' = 0.262 ± 	0.011	bits, whereas the pairwise G-P map 222 

(Figs. 5e,f) attains 𝐼%&' = 0.367 ± 0.015 bits. We note that the parameters of the pairwise G-P 223 

map appear to be very precisely determined, as MAVE-NN was able to accurately recover 224 

ground-truth parameters from simulated datasets of the same size (Supplemental Fig. S2). 225 

The black box G-P map, which is comprised of 5 densely connected hidden layers of 10 nodes 226 

each, performed the best of all four G-P maps, achieving 𝐼%&' = 0.489 ± 0.012	bits. Remarkably, 227 

this last predictive information value exceeds the lower bound of 𝐼"#$ ≥ 0.461 ± 0.007	bits, which 228 

was estimated from replicate experiments (see Methods). We thus conclude that pairwise 229 

interaction models are not flexible enough to fully account for how 5´ss sequences control 230 

splicing. More generally, these results underscore the need for software that is capable of 231 

inferring and assessing a variety of different G-P maps through a uniform interface. 232 

Application: biophysically interpretable G-P maps 233 

Biophysical models, unlike the phenomenological models considered thus far, have 234 

mathematical structures that reflect specific hypotheses about how sequence-dependent 235 

interactions between macromolecules mechanistically define G-P maps. Thermodynamic 236 

models, which rely on a quasi-equilibrium assumption, are the most commonly used type of 237 

biophysical model.37–39 Previous studies have shown that precise thermodynamic models can 238 

be inferred from MAVE datasets,16 but no software intended use by the broader MAVE 239 

community has yet been developed for doing this. MAVE-NN meets this need by enabling the 240 

inference of custom G-P maps. We now demonstrate this biophysical modeling capability in the 241 
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contexts of protein-ligand binding (using DMS data; Fig. 1a) and bacterial transcriptional 242 

regulation (using sort-seq MPRA data; Fig. 1e). 243 

Otwinowski40 showed that a three-state thermodynamic G-P map (Fig. 6a), one that 244 

accounts for GB1 folding energy in addition to GB1-IgG binding energy,41 can explain the DMS 245 

data of Olson et al.33 better than a simple additive G-P map does. This biophysical model 246 

subsequently received impressive confirmation in the work of Nisthal et al.,42 who measured the 247 

thermostability of 812 single-mutation GB1 variants. We tested the ability of MAVE-NN to 248 

recover the same type of thermodynamic model that Otwinowski had inferred using custom 249 

analysis scripts. Our analysis yielded a G-P map with significantly improved performance on the 250 

data of Olson et al. (𝐼()& = 2.353 ± 0.012	bits, 	𝐼%&' = 2.373 ± 0.009	bits, 	𝑅! = 0.948 ± 0.002) 251 

relative to the additive G-P map of Fig. 3. Fig. 6b shows the two inferred energy matrices that 252 

respectively describe the effects of every possible single-residue mutation on the Gibbs free 253 

energies of protein folding and protein-ligand binding. The folding energy predictions our model 254 

also correlate as well with the data of Nisthal et al. (𝑅! = 0.548 ± 0.050) as the predictions of 255 

Otwinowski’s model does (𝑅! = 0.517 ± 0.058). This demonstrates that MAVE-NN can infer 256 

accurate and interpretable quantitative models of protein biophysics.  257 

To test MAVE-NN’s ability to infer thermodynamic models of transcriptional regulation, 258 

we first re-analyzed the MPRA data of Kinney et al.,16 in which random mutations to a 75 bp 259 

region of the Escherichia coli lac promoter were assayed. This promoter region binds two 260 

regulatory proteins, σ*+ RNA polymerase (RNAP) and the transcription factor CRP. As in Kinney 261 

et al.,16 we proposed a four-state thermodynamic model that quantitatively explains how 262 

promoter sequences control transcription rate (Fig. 6c). The parameters of this G-P map include 263 

the Gibbs free energy of interaction between CRP and RNAP, as well as energy matrices that 264 

describe the CRP-DNA and RNAP-DNA interaction energies. Because the sort-seq MPRA of 265 
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Kinney et al. yielded discrete measurement values (Figs. 1e,f), we used an MPA measurement 266 

process in our latent phenotype model (Fig. 6d). The biophysical parameter values we thus 267 

inferred (Fig. 6e) largely match those of Kinney et al., but were obtained far more rapidly (in ~10 268 

min versus multiple days) thanks to the use of stochastic gradient descent rather than 269 

Metropolis Monte Carlo. 270 

Next we analyzed sort-seq MPRA data obtained by Belliveau et al.43 for the xylE 271 

promoter, which had no regulatory annotation prior to that study and for which no biophysical 272 

model had yet been developed. Based on their MPRA data, as well as follow-up mass 273 

spectrometry experiments, Belliveau et al. proposed that xylE is regulated by RNAP, CRP, and 274 

the locus-specific regulator XylR. These findings motivated us to propose and train an eight-275 

state thermodynamic model describing how interactions between these three regulatory proteins 276 

might control xylE expression (Fig. 6f). The resulting quantitative model includes energy matrix 277 

descriptions for RNAP, CRP, and XylR binding to DNA, as well as Gibbs free energy values for 278 

the CRP-XylR and XylR-RNAP interactions (Fig. 6g). From this model we see that XylR 279 

activates RNAP through what appears to be a class II activation mechanism,44 as energetic 280 

contributions from the -35 region of the RNAP binding site are markedly reduced in the xylE 281 

context relative to the lac context (Fig. 6e). We also see that CRP—a homodimer with dyadic 282 

symmetry—binds its site with remarkable asymmetry (again, compare to Fig. 6e). The 283 

biophysical factors that determine whether symmetric transcription factors like CRP interact with 284 

DNA in symmetric or asymmetric poses are poorly understood, and represent just one avenue 285 

of investigation opened up by the capabilities of MAVE-NN. More generally, these results 286 

provide a proof-of-principle demonstration of how MAVE-NN can be used, together with MPRA 287 

experiments, to establish biophysical models for previously uncharacterized gene regulatory 288 

sequences.  289 

Discussion 290 
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In this work we have presented a unified strategy for inferring quantitative models of G-P 291 

maps from diverse MAVE datasets. At the core of our approach is the conceptualization of G-P 292 

maps as a form of information compression, i.e., that the G-P map first compresses an input 293 

sequence into a latent phenotype value, which the MAVE then reads out indirectly via a noisy 294 

nonlinear measurement process. By explicitly modeling this measurement process, one can 295 

remove potentially confounding effects from the G-P map, as well as accommodate diverse 296 

experimental designs. We have also introduced three information-theoretic metrics for 297 

assessing the performance of the resulting models. These capabilities have been implemented 298 

within an easy-to-use Python package called MAVE-NN. 299 

We have demonstrated the capabilities of MAVE-NN in diverse biological contexts, 300 

including in the analysis of both DMS and MPRA data. We have also demonstrated the superior 301 

performance of MAVE-NN relative to the epistasis package of Sailer and Harms.25 Along the 302 

way, we observed that MAVE-NN can deconvolve experimental nonlinearities from additive G-P 303 

maps when a relatively small number of sequences containing multiple mutations are included 304 

in the assayed libraries. This capability provides a compelling reason for experimentalists to 305 

include such sequences in their MAVE libraries, even if they are primarily interested in the 306 

effects of single mutations. Finally, we showed how MAVE-NN can learn biophysically 307 

interpretable G-P maps from both DMS and MPRA data.  308 

Applying MAVE-NN to the MPSA data of Wong et al.,36 we discovered that pairwise 309 

interaction models are not sufficient to describe how 5´ss sequences govern alternative mRNA 310 

splicing, and that higher-order epistatic interactions are needed to describe this critical aspect of 311 

eukaryotic biology. We also inferred the first biophysical model for transcriptional regulation by 312 

the xylE promoter. This biophysical model reveals that the well-studied transcription factor CRP 313 

binds its target site with surprising asymmetry in vivo, an intriguing phenomenon about which 314 

much remains to be learned.  315 
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MAVE-NN thus fills a critical need in the MAVE community, providing user-friendly 316 

software capable of learning quantitative models of G-P maps from diverse MAVE datasets. 317 

MAVE-NN has a streamlined user interface, is thoroughly tested, and is readily installed from 318 

PyPI by executing “pip install mavenn” at the command line. Comprehensive documentation, 319 

worked examples, and step-by-step tutorials are available at http://mavenn.readthedocs.io. 320 
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 331 

 332 

Figure 1. Three example MAVEs. (a) The DMS assay of Olson et al..33 A library of variant GB1 proteins were 333 

covalently linked to their coding mRNAs using mRNA display. Functional GB1 proteins were then enriched using IgG 334 

beads, and deep sequencing was used to determine an enrichment ratio for each GB1 variant. (b) The resulting DMS 335 

dataset consists of variant protein sequences and their corresponding log enrichment values. (c) The MPSA of Wong 336 

et al..36 A library of 3-exon minigenes was constructed from exons 16, 17, and 18 of BRCA2, with each minigene 337 

having a variant 5´ss at exon 17 and a random 20 nt barcode in the 3’ UTR. This library was transfected into HeLa 338 

cells, and deep sequencing was used to quantify mRNA isoform abundance. (d) The resulting MPSA dataset 339 

comprises variant 5´ss with (noisy) PSI values. (e) The sort-seq MPRA of Kinney et al..16 A plasmid library was 340 

generated in which randomly mutagenized versions of the Escherichia coli lac promoter drove the expression of GFP. 341 

Cells carrying these plasmids were sorted using FACS, and the variant promoters in each bin of sorted cells as well 342 

as the initial library were sequenced. (f) The resulting dataset comprises a list of variant promoter sequences, as well 343 

as a matrix of counts for each variant in each FACS bin. MAVE: multiplex assay of variant effect; DMS: deep 344 
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mutational scanning; MPSA: massively parallel splicing assay; 5´ss: 5´ splice site(s); PSI: percent spliced in; GFP: 345 

green fluorescent protein; FACS: fluorescence-activated cell sorting. 346 
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 348 

 349 

Figure 2. MAVE-NN quantitative modeling strategy. (a) Structure of latent phenotype models. A G-P map 𝑓(𝑥) maps 350 

each sequence 𝑥 to a latent phenotype 𝜙, after which a measurement process 𝑝(𝑦|𝜙) determines the measurement 351 

𝑦. (b) Example of an MPA measurement process inferred from the sort-seq MPRA data of Kinney et al..16 MPA 352 

measurement processes are used when 𝑦 values are discrete. (c) Structure of a GE regression model, which is used 353 

when 𝑦 is continuous. A GE measurement process assumes that the mode of 𝑝(𝑦|𝜙), called the prediction 𝑦), is given 354 

by a nonlinear function 𝑔(𝜙), and the scatter about this mode is described by a noise model 𝑝(𝑦|𝑦)). (d) Example of a 355 

GE measurement process inferred from the DMS data of Olson et al..33 Shown is the nonlinearity, the 68% CI, and 356 

the 95% CI. (e) Information-theoretic quantities used to assess model performance.  Intrinsic information, 𝐼!"#, is the 357 

mutual information between sequences 𝑥 and measurements 𝑦. Predictive information, 𝐼$%&, is the mutual information 358 

between measurements 𝑦 and the latent phenotype values 𝜙 assigned by a model.  Variational information, 𝐼'(% , is a 359 

linear transformation of log likelihood. The inequality 𝐼!"# ≥ 𝐼$%& ≥ 𝐼'(% always holds on test data (modulo finite data 360 

uncertainties), with 𝐼!"# = 𝐼$%& when the G-P map is correct, and 𝐼$%& = 𝐼'(% when the measurement process correctly 361 

describes the distribution of 𝑦 conditioned on 𝜙. G-P: genotype-phenotype; MPA: measurement process agnostic; 362 

GE: global epistasis; CI: confidence interval. 363 
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 365 

Figure 3. Analysis of DMS data for protein GB1. MAVE-NN was used to infer a latent phenotype model, consisting of 366 

an additive G-P map and a GE measurement process having a heteroskedastic skewed-t noise model, from the DMS 367 

data of Olson et al..33 All 1,045 single variants and 530,737 pairwise variants reported for positions 2 to 56 of the GB1 368 

domain were analyzed. Data were split 80:10:10 into training, validation, and test sets. (a) The G-P map parameters 369 

inferred from all pairwise variants. Gray dots indicate wildtype residues. Amino acids are ordered as in Olson et al..33 370 

(b) GE plot showing measurements versus predicted latent phenotype values for 5,000 randomly selected test-set 371 
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sequences (blue dots), alongside the inferred nonlinearity (solid orange line) and the 95% CI (dashed lines) of the 372 

noise model. Gray line indicates the latent phenotype value of the wildtype sequence. (c) Measurements plotted 373 

against 𝑦) predictions for these same sequences. Dashed lines indicate the 95% CI of the noise model. Gray line 374 

indicates the wildtype sequence 𝑦). (d) Corresponding information metrics computed during model training (using 375 

training data) or for the final model (using test data); uncertainties in these estimates are roughly the width of the 376 

plotted lines. Gray shaded area indicates allowed values for intrinsic information based on upper and lower bounds 377 

estimated as described in Methods. (e-g) Test set predictions (blue dots) and GE nonlinearities (orange lines) for 378 

models trained using subsets of the GB1 data containing all single mutants and 50,000 (e), 5,000 (f), or 500 (g) 379 

double mutants. The GE nonlinearity from panel b is shown for reference (yellow-green lines). Uncertainties reflect 380 

standard errors. GE: global epistasis; G-P: genotype-phenotype; CI: confidence interval. 381 
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 383 

Figure 4. Analysis of DMS data for Aβ and TDP-43. (a,b) Seuma et al.34 measured nucleation scores for 499 single 384 

mutants and 15,567 double mutants of Aβ. These data were used to train a latent phenotype model comprising (a) an 385 

additive G-P map and (b) a GE measurement process with a heteroskedastic skewed-t noise model. (c,d) Bolognesi 386 

et al.35 measured toxicity scores for 1,266 single mutants and 56,730 double mutants of TDP-43. The resulting data 387 

were used to train (c) an additive G-P map and (d) a GE measurement process of the same form as in panel b. In 388 

both cases, data were split 90:5:5 into training, validation, and test sets. In (a,c), gray dots indicate the wildtype 389 

sequence, amino acids are ordered as in the original publications, and * indicates a stop codon. In (b,d), blue dots 390 

indicate latent phenotype values versus measurements for held-out test data, gray line indicates the latent phenotype 391 

value of the wildtype sequence, solid orange line indicates the GE nonlinearity, and dashed orange lines indicate a 392 

corresponding 95% CI for the inferred noise model. Values for  𝐼'(%, 𝐼$%&, and 𝑅) (between 𝑦 and 𝑦)) are also shown. 393 

Uncertainties reflect standard errors. Supplemental Fig. S3 shows measurements plotted against the 𝑦) predictions 394 

of these models.  Aβ: amyloid beta; TDP-43: TAR DNA-binding protein 43; G-P: genotype-phenotype; GE: global 395 

epistasis; CI: confidence interval. 396 
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 398 

Figure 5. Analysis of MPSA data from Wong et al..36 This dataset reports PSI values, measured in the BRCA2 exon 399 

17 context, for nearly all 32,768 variants 5´ss of the form NNN/GYNNNN. Data were split 60:20:20 into training, 400 

validation, and test sets. Latent phenotype models with one of four types of G-P map (additive, neighbor, pairwise, or 401 

black box), as well as a GE measurement process with a heteroscedastic skewed-t noise model, were inferred. The 402 

epistasis package of Sailer and Harms25 was also used to infer an additive G-P map and GE nonlinearity. (a) 403 
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Performance of trained models as quantified by 𝐼'(% and 𝐼$%&, computed on test data. The lower bound on 𝐼!"# was 404 

estimated from experimental replicates (see Methods). p-value reflects a two-sided z-test.  𝐼'(% was not computed for 405 

the additive (epistasis package) model because that package does not infer an explicit noise model. (b-d) 406 

Measurement values versus latent phenotype values, computed on test data, using the additive (epistasis package) 407 

model (b), the additive model (c), and the pairwise model (d). The corresponding GE measurement processes are 408 

also shown. (e) Sequence logo45 illustrating the additive effects component of the pairwise G-P map. Dashed line 409 

indicates the exon/intron boundary. G at +1 serves as a placeholder because no other bases were assayed at this 410 

position. Only values for U and C at +2 were inferred. (f) Heatmap showing the pairwise effects component of the 411 

pairwise G-P map. White diagonals correspond to unobserved bases. Error bars indicate standard errors. MPSA: 412 

massively parallel splicing assay; PSI: percent spliced in; G-P: genotype-phenotype; GE: global epistasis. 413 
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 415 

Figure 6. Biophysical models inferred from DMS and MPRA data. (a) Thermodynamic model for IgG binding by GB1. 416 

This model comprises three GB1 microstates (unfolded, folded-unbound, and folded-bound). The Gibbs free energies 417 

of folding (Δ𝐺*) and binding (Δ𝐺+) are computed from sequence using additive models called energy matrices. The 418 

latent phenotype is given by the fraction of time GB1 is in the folded-bound state. (b) The ΔΔ𝐺 parameters of the 419 

energy matrices for folding and binding, inferred from the data of Olson et al.33 using GE regression. Supplemental 420 

Fig. S5 plots folding energy predictions against the measurements of Nisthal et al..42 (c) A four-state thermodynamic 421 
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model for transcriptional activation at the E. coli lac promoter. The Gibbs free energies of RNAP-DNA binding (Δ𝐺,) 422 

and CRP-DNA binding (Δ𝐺-) are computed using energy matrices, whereas the CRP-RNAP interaction energy Δ𝐺. is 423 

a scalar. The latent phenotype is the fraction of time a promoter is bound by RNAP. (d,e) The latent phenotype model 424 

inferred from the sort-seq MPRA of Kinney et al.,16 including both the MPA measurement process (d) and the 425 

parameters of the thermodynamic G-P map (e). (f) An eight-state thermodynamic model for transcriptional activity at 426 

the xylE promoter. (g) Corresponding G-P map parameters inferred from the sort-seq MPRA data of Belliveau et al..43 427 

These parameters include energy matrices describing the CRP-DNA, RNAP-DNA, and XylR-DNA interactions, as 428 

well as scalar values for the CRP-XylR and XylR-RNAP interaction free energies. Supplemental Fig. S4 provides 429 

detailed definitions of the thermodynamic models in panels a,c,f. In panels e,g, sequence logos were generated 430 

using Logomaker,45 and standard errors for protein-protein interactions energies were determined by analyzing 431 

simulated data. GE: global epistasis. RNAP: RNA polymerase. MPA: measurement-process agnostic. G-P: genotype-432 

phenotype. 433 
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Online Methods 435 

Notation 436 

We represent each MAVE dataset as a set of 𝑁 observations, {(𝑥,, 𝑦,)},-+./0, where each 437 

observation consists of a sequence 𝑥, and a measurement 𝑦,. Here, 𝑦, can be either a 438 

continuous real-valued number, or a nonnegative integer representing the “bin” in which the 𝑛th 439 

sequence was found. Note that, in this representation the same sequence 𝑥 can be observed 440 

multiple times, potentially with different values for 𝑦 due to experimental noise. 441 

G-P maps 442 

We assume that all sequences have the same length 𝐿, and that at each of the 𝐿 443 

positions in each sequence there is one of 𝐶 possible characters. MAVE-NN represents 444 

sequences using a vector of one-hot encoded features of the form 445 

𝑥1:3 = D	1 if	character	𝑐	occurs	at	position	𝑙
	0 otherwise

	 , (1) 446 

where 𝑙 = 0,1, … , 𝐿 − 1 indexes positions within the sequence, and 𝑐 indexes the 𝐶 distinct 447 

characters. MAVE-NN supports built-in alphabets for DNA, RNA and protein (with or without 448 

stop codons), as well as user-defined sequence alphabets. 449 

We assume that the latent phenotype is given by a linear function 𝜙(𝑥; 𝜃) that depends 450 

on a set of G-P map parameters 𝜃. As mentioned in the main text, MAVE-NN supports four 451 

types of G-P map models, all of which can be inferred using either GE regression or MPA 452 

regression. The additive model is given by, 453 

𝜙additive(𝑥; 𝜃) = 𝜃+ +XX𝜃1:3
3

4/0

1-+

𝑥1:3 	,	 (2) 454 
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and thus each position in 𝑥 contributes independently to the latent phenotype. The neighbor 455 

model is given by, 456 

𝜙neighbor(𝑥; 𝜃) = 𝜃+ +XX𝜃1:3
3

4/0

1-+

𝑥1:3 +XX𝜃1:3,160:3/
3,3/

4/!

1-+

𝑥1:3𝑥160:3/ 	, (3) 457 

and further accounts for potential epistatic interactions between neighboring positions. The 458 

pairwise model is given by, 459 

𝜙pairwise(𝑥; 𝜃) = 𝜃+ +XX𝜃1:3
3

4/0

1-+

𝑥1:3 +X X X𝜃1:3,1/:3/
3,3/

4/0

1/-160

4/!

1-+

𝑥1:3𝑥1/:3/ 	, (4) 460 

and includes interactions between all pairs of positions. Note our convention of requiring 𝑙′ > 𝑙 in 461 

the pairwise parameters 𝜃1:3,1/:3/.  462 

Unlike these three parametric models, the black box G-P map does not have a fixed 463 

functional form. Rather, it is given by a multilayer perceptron that takes a vector of sequence 464 

features (additive, neighbor, or pairwise) as input, contains multiple fully-connected hidden 465 

layers with nonlinear activations, and has a single node output with a linear activation. Users are 466 

able to specify the number of hidden layers, the number of nodes in each hidden layer, and the 467 

activation function used by these nodes. 468 

MAVE-NN further supports custom G-P maps that users can define by subclassing the G-469 

P map base class. These G-P maps can have arbitrary functional form, e.g., representing specific 470 

biophysical hypotheses of sequence function. This feature of MAVE-NN is showcased in the 471 

analyses of Fig. 6.  472 

Gauge modes and diffeomorphic modes 473 
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G-P maps typically have non-identifiable degrees of freedom that must be fixed, i.e., 474 

pinned down, before the values of individual parameters can be meaningfully interpreted or 475 

compared between models. These degrees of freedom come in two flavors: gauge modes and 476 

diffeomorphic modes. Gauge modes are changes to 𝜃 that do not alter the values of the latent 477 

phenotype 𝜙. Diffeomorphic modes15,20 are changes to 𝜃 that do alter 𝜙, but do so in ways that 478 

can be undone by transformations of the measurement process 𝑝(𝑦|𝜙). As shown by Kinney 479 

and Atwal,15,20 the diffeomorphic modes of linear G-P maps like those considered here will in 480 

general correspond to affine transformations of 𝜙, although additional unconstrained modes can 481 

occur in special situations. 482 

MAVE-NN fixes both gauge modes and diffeomorphic modes of inferred models (except 483 

when using custom G-P maps). The diffeomorphic modes of G-P maps are fixed by 484 

transforming 𝜃 via 485 

𝜃+ → 𝜃+ − 𝑎	, (5) 486 

and then 487 

𝜃 →
𝜃
𝑏
,	 (6) 488 

where 𝑎 = mean({𝜙,}) and 𝑏 = std({𝜙,}) are the mean and standard deviation of 𝜙 values 489 

computed on the training data. This produces a corresponding change in latent phenotype 490 

values 𝜙 → (𝜙 − 𝑎)/𝑏. To avoid altering likelihood values, MAVE-NN makes a corresponding 491 

transformation to the measurement process 𝑝(𝑦|𝜙). In GE regression this is done by adjusting 492 

the GE nonlinearity via 493 

𝑔(𝜙) → 𝑔(𝑎 + 𝑏𝜙)	, (7) 494 

while keeping the noise model 𝑝(𝑦|𝑦d) fixed. In MPA regression MAVE-NN transforms the full 495 

measurement process via 496 
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𝑝(𝑦|𝜙) → 𝑝(𝑦|𝑎 + 𝑏𝜙)	.	 (8) 497 

For the three parametric G-P maps, gauge modes are fixed using what we call the 498 

“hierarchical gauge.” Here, the parameters 𝜃 are adjusted so that the lower-order terms in 499 

𝜙(𝑥; 𝜃) account for the highest possible fraction of variance in 𝜙. This procedure requires a 500 

probability distribution on sequence space with respect to which these variances are computed. 501 

MAVE-NN assumes that such distributions factorize by position, and can thus be represented 502 

by a probability matrix with elements 𝑝1:3, denoting the probability of character 𝑐 at position 𝑙. 503 

MAVE-NN provides three built-in choices for this distribution: uniform, empirical, or wildtype. 504 

The corresponding values of 𝑝1:3 are given by 505 

𝑝1:3 = e
1/𝐶 for	uniform
𝑛1:3/𝑁 for	empirical
𝑥1:37$ for	wildtype

	, (9) 506 

where 𝑛1:3 denotes the number of sequences (out of 𝑁 total) that have character 𝑐 at position 𝑙, 507 

and 𝑥1:37$ is the one-hot encoding of a user-specified wildtype sequence. In particular, the 508 

wildtype gauge was used for illustrating the additive G-P maps in Fig. 3 and Fig. 4, while the 509 

uniform gauge was used for illustrating the pairwise G-P map in Fig. 5 and the energy matrices 510 

in Fig. 6. After a sequence distribution is chosen, MAVE-NN fixes the gauge of the pairwise G-P 511 

map by transforming 512 

𝜃+ → 𝜃+																																																																									
+XX𝜃1:3/

3/1

𝑝1:3/																															

+XXX𝜃1:3,1/:3/
3,3/1/911

𝑝1:3  𝑝1/:3/	,

(10) 513 
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𝜃1:3 → 𝜃1:3 																																																			

−X𝜃1:3/
3/

 𝑝1:3/ 																														

+XX𝜃1:3,1/:3/
3/1/91

𝑝1/:3/																						

+XX𝜃1/:3/,1:3
3/1/:1

𝑝1/:3/																						

−X X 𝜃1:3/,1/:30
3/,301/91

𝑝1:3/  𝑝1/:30 			

−X X 𝜃1/:30,1/:3/
3/,301/:1

𝑝1:3/  𝑝1/:30	 ,

(11) 514 

and 515 

𝜃1:3,1/:3/ → 𝜃1:3,1/:3/																																																												
−X𝜃1:30,1/:3/

30
𝑝1:30																															

−X𝜃1:3,1/:30
30

𝑝1/:30																															

+ X 𝜃1:30,1/:32
30,32

 𝑝1:30	 𝑝1/:32 	.		

(12) 516 

This transformation is also used for the additive and neighbor G-P maps, but with 𝜃1:3,1/:3/ = 0 for 517 

all 𝑙, 𝑙′ (additive) or whenever 𝑙′ ≠ 𝑙 + 1 (neighbor). 518 

GE nonlinearities 519 

GE models assume that each measurement 𝑦 is a nonlinear function of the latent 520 

phenotype 𝑔(𝜙) plus some noise. In MAVE-NN, this nonlinearity is represented as a sum of 521 

tanh sigmoids: 522 

𝑔(𝜙; 𝛼) = 𝑎 +X 𝑏;

</0

;-+

tanh(𝑐;𝜙 + 𝑑;)	. (13) 523 
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Here, 𝐾 specifies the number of hidden nodes contributing to the sum, and 𝛼 = {𝑎, 𝑏; , 𝑐; , 𝑑;} are 524 

trainable parameters. We note that this mathematical form is an example of the bottleneck 525 

architecture previously used by21,24 for modeling GE nonlinearities. By default, MAVE-NN 526 

constrains 𝑔(𝜙; 𝛼) to be monotonic in 𝜙 by requiring all 𝑏; ≥ 0 and 𝑐; ≥ 0, but this constraint 527 

can be relaxed. 528 

GE noise models 529 

MAVE-NN supports three types of GE noise model: Gaussian, Cauchy, and skew-t. 530 

These all support the analytic computation of quantiles and confidence intervals, as well as the 531 

rapid sampling of simulated measurement values. The Gaussian noise model is given by 532 

𝑝=)>??(𝑦|𝑦d; 𝑠) =
1

√2𝜋𝑠!
exp p−

(𝑦 − 𝑦d)!

2𝑠! q	 , (14) 533 

where 𝑠 denotes the standard deviation. Importantly, MAVE-NN allows this noise model to be 534 

heteroskedastic by representing 𝑠 as an exponentiated polynomial in 𝑦d, i.e., 535 

𝑠(𝑦d) = exp rX𝑎;

<

;-+

𝑦d;s	 , (15) 536 

where 𝐾 is the order of the polynomial and {𝑎;} are trainable parameters. The user has the 537 

option to set 𝐾, and setting 𝐾 = 0 renders this noise model homoscedastic. Quantiles are 538 

computed using 𝑦@ = 𝑦d + 𝑠 √2 erf/0(2𝑞 − 1) for user-specified values of 𝑞 ∈ [0,1]. Similarly, the 539 

Cauchy noise model is given by 540 

𝑝A)>ABC(𝑦|𝑦d; 𝑠) = p𝜋𝑠 x1 +
(𝑦 − 𝑦d)!

𝑠!
yq

/0

	, (16) 541 

where the scale parameter 𝑠 is an exponentiated 𝐾’th order polynomial in 𝑦d, and quantiles are 542 

computed using 𝑦@ = 𝑦d + 𝑠 tan z𝜋(𝑞 − 0
!
){. 543 
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The skew-t noise model is of the form described by Jones and Faddy,27 and is given by 544 

𝑝?D'7$(𝑦|𝑦d; 𝑠, 𝑎, 𝑏) = 𝑠/0𝑓(𝑡; 𝑎, 𝑏)	, (17) 545 

where 546 

𝑡 = 𝑡∗ +
𝑦 − 𝑦d
𝑠

,						𝑡∗ =
(𝑎 − 𝑏)√𝑎 + 𝑏
√2𝑎 + 1√2𝑏 + 1

	, (18) 547 

and 548 

𝑓(𝑡; 𝑎, 𝑏) =
20/F/G

√𝑎 + 𝑏
𝛤(𝑎 + 𝑏)
𝛤(𝑎)𝛤(𝑏) �

1 +
𝑡

√𝑎 + 𝑏 + 𝑡!
�
F60!

			

× �1 −
𝑡

√𝑎 + 𝑏 + 𝑡!
�
G60!

	 .

(19) 549 

Note that the 𝑡 statistic here is an affine function of 𝑦 chosen so that the distribution’s mode 550 

(corresponding to 𝑡∗) is positioned at 𝑦d. The three parameters of this noise model, {𝑠, 𝑎, 𝑏}, are 551 

each represented using 𝐾-th order exponentiated polynomials with trainable coefficients. 552 

Quantiles are computed using 553 

𝑦@ = 𝑦d + �𝑡@ − 𝑡∗�𝑠	, (20) 554 

where 555 

𝑡@ =
�2𝑥@ − 1�√𝑎 + 𝑏

�1 − (2𝑥@ − 1)!
,						𝑥@ = 𝐼@/0(𝑎, 𝑏)	, (21) 556 

and 𝐼/0 denotes the inverse of the regularized incomplete Beta function 𝐼H(𝑎, 𝑏). 557 

MPA measurement process 558 

In MPA regression, MAVE-NN directly models the measurement process 𝑝(𝑦|𝜙). At 559 

present, MAVE-NN only supports MPA regression for discrete values of 𝑦 indexed using 560 
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nonnegative integers. MAVE-NN supports two alternative forms of input for MPA regression. 561 

One is a set of sequence-measurement pairs {(𝑥,, 𝑦,)},-+./0, where 𝑁 is the total number of 562 

reads, {𝑥,} is a set of (typically) non-unique sequences, each 𝑦, ∈ {0,1, … , 𝑌 − 1} is a bin 563 

number, and 𝑌 is the total number of bins. The other is a set of sequence-count-vector pairs 564 

{(𝑥I, 𝑐I)}I-+J/0, where 𝑀 is the total number of unique sequences and 𝑐I = (𝑐I+, 𝑐I0, … , 𝑐I(L/0)) 565 

is a vector that lists the number of times 𝑐IN that the sequence 𝑥I was observed in each bin 𝑦. 566 

MPA measurement processes are represented as multilayer perceptron with one hidden layer 567 

(having tanh activations) and a softmax output layer. Specifically, 568 

𝑝(𝑦|𝜙) =
𝑤N(𝜙)

∑ 𝑤N/N/ (𝜙)
	, (22) 569 

where570 

𝑤N(𝜙) = exp�𝑎N +∑ 𝑏N;</0
;-+ tanh�𝑐N;𝜙 + 𝑑N;�� (23) 571 

and 𝐾 is the number of hidden nodes per value of 𝑦. The trainable parameters of this 572 

measurement process are 𝜂 = �𝑎N , 𝑏N; , 𝑐N; , 𝑑N;�. 573 

Loss function 574 

Let 𝜃 denote the G-P map parameters, and 𝜂 denote the parameters of the 575 

measurement process. MAVE-NN optimizes these parameters using stochastic gradient 576 

descent on a loss function given by 577 

ℒ = ℒO"D' + ℒ&'=	, (24) 578 

where ℒO"D' is the negative log likelihood of the model, given by 579 

ℒO"D'[𝜃, 𝜂] = −X log
./0

,-+

[𝑝(𝑦,|𝜙,; 𝜂)]	 (25) 580 
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where 𝜙, = 𝜙(𝑥,; 𝜃),	and ℒ&'= provides for regularization of the model parameters. 581 

In the context of GE regression, we can write 𝜂 = (𝛼, 𝛽) where 𝛼 represents the 582 

parameters of the GE nonlinearity 𝑔(𝜙; 𝛼), and 𝛽 denotes the parameters of the noise model 583 

𝑝(𝑦|𝑦d; 𝛽). The likelihood contribution from each observation 𝑛 then becomes 𝑝(𝑦,|𝜙,; 𝜂) =584 

𝑝(𝑦,|𝑦d,; 𝛽) where 𝑦d, = 𝑔(𝜙,; 𝛼). In the context of MPA regression with a dataset of the form 585 

{(𝑥I, 𝑐I)}I-+J/0, the loss function simplifies to 586 

ℒO"D'[𝜃, 𝜂] = − X X𝑐IN

L/0

N-+

J/0

I-+

log[𝑝(𝑦|𝜙I; 𝜂)] (26) 587 

where 𝜙I = 𝜙(𝑥I; 𝜃). For the regularization term, MAVE-NN uses an 𝐿! penalty of the form 588 

ℒ&'=[𝜃, 𝜂] = 𝜆P�𝜃|! + 𝜆Q�𝜂|!	, (27) 589 

where the user-adjusted parameters 𝜆P and 𝜆Q respectively control the strength of regularization 590 

for the G-P map and measurement process parameters.  591 

Predictive information 592 

In what follows, we use 𝑝RST'O(𝑦|𝜙) to denote a measurement process inferred by 593 

MAVE-NN, whereas 𝑝$&>'(𝑦|𝜙) denotes the empirical conditional distribution of 𝑦 and 𝜙 values 594 

that would be observed in the limit of infinite test data. 595 

Predictive information 𝐼%&' = 𝐼[𝑦; 𝜙], where 𝐼[⋅;⋅] represents mutual information computed 596 

on data not used for training (i.e., a held-out test set or data from a different experiment), 𝐼%&' 597 

provides a measure of how strongly a G-P map predicts experimental measurements. 598 

Importantly, this quantity does not depend on the corresponding measurement process 599 

𝑝RST'O(𝑦|𝜙). To estimate 𝐼%&', we use k’th nearest neighbor (kNN) estimators of entropy and 600 

mutual information adapted from the NPEET Python package.46 Here, the user has the option of 601 
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adjusting 𝑘, which controls a variance/bias tradeoff. When 𝑦 is discrete (MPA regression), 𝐼%&' is 602 

computed using the classic kNN entropy estimator47,48 via the decomposition 𝐼[𝑦; 𝜙] = 𝐻[𝜙] −603 

∑ 𝑝N (𝑦)𝐻N[𝜙], where 𝐻N[𝜙] denotes the entropy of 𝑝$&>'(𝜙|𝑦). When 𝑦 is continuous (GE 604 

regression), 𝐼[𝑦; 𝜙] is estimated using the kNN-based Kraskov Stögbauer Grassberger (KSG) 605 

algorithm.48 This approach optionally supports the local nonuniformity correction of Gao et al.,49 606 

which is important when 𝑦 and 𝜙 exhibit strong dependencies, but which also requires 607 

substantially more time to compute. 608 

Variational information 609 

We define variational information as an affine transformation of ℒO"D', 610 

𝐼()& = 𝐻[𝑦] −
log!(𝑒)
𝑁

ℒO"D'	. (28) 611 

Here, 𝐻[𝑦] is the entropy of the data {𝑦,}, which is estimated using the 𝑘’th nearest neighbor 612 

(kNN) estimator from the NPEET package.46 Noting that this quantity can also be written as 613 

𝐼()& = 𝐻[𝑦] − mean({𝑄,}), where 𝑄, = −log!𝑝(𝑦,|𝜙,), we estimate the associated uncertainty 614 

using 615 

𝛿𝐼()&[𝑦; 𝜙] = �𝛿𝐻[𝑦]! +
var({𝑄,})

𝑁 	. (29) 616 

The inference strategy used by MAVE-NN is based on the fact that 𝐼()& provides a tight 617 

variational lower bound on 𝐼%&'.30 Indeed, in the large data limit, 618 

𝐼%&' = 𝐼()& + 𝐷UV(𝑝true||𝑝model)	, (30) 619 

where 𝐷UV(⋅) ≥ 0 is the Kullback-Leibler divergence, and thus quantifies the accuracy of the 620 

inferred measurement process. From Eq. 30 one can see that, with appropriate caveats, 621 

maximizing 𝐼()& (or equivalently, ℒO"D') will also maximize 𝐼%&'.20 But unlike 𝐼%&', 𝐼()& is readily 622 
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compatible with backpropagation and stochastic gradient descent. See Supplemental 623 

Information for a derivation of Eq. 30 and an expanded discussion of this key point. Note: 624 

Sharpee et al.50 cleverly showed that 𝐼%&' can, in fact, be optimized using stochastic gradient 625 

descent. Computing gradients of 𝐼%&', however, requires a time-consuming density estimation 626 

step. Optimizing 𝐼()&, on the other hand, can be done using standard per-datum 627 

backpropagation. 628 

Intrinsic information 629 

Intrinsic information, 𝐼"#$ = 𝐼[𝑥; 𝑦], is the mutual information between the sequences 𝑥 630 

and measurements 𝑦 in a dataset. This quantity is somewhat tricky to estimate due to the high-631 

dimensional nature of sequence space. We instead used three different methods to obtain the 632 

upper and lower bounds on 𝐼"#$ shown in Fig. 3d and Fig. 5a. More generally, we believe the 633 

development of both computational and experimental methods for estimating 𝐼"#$ is be an 634 

important avenue for future research. 635 

To compute the upper bound on 𝐼"#$ for GB1 data (in Fig. 3d), we used the fact that 636 

𝐼[𝑥; 𝑦] = 𝐻[𝑦] − ⟨𝐻H[𝑦]⟩H	, (31) 637 

where 𝐻[𝑦] is the entropy of all measurements 𝑦, 𝐻H[𝑦] is the entropy of 𝑝(𝑦|𝑥) for a specific 638 

choice of sequence 𝑥, and ⟨⋅⟩H indicates averaging over all sequences 𝑥. In this dataset, the 639 

measurement values were computed using 640 

𝑦 = log! �
𝑐_ + 1
𝑐` + 1

�	, (32) 641 

where 𝑐` is the input read count and 𝑐_ is the selected read count. 𝐻[𝑦] was estimated using the 642 

KNN estimator.47 We estimated the uncertainty in 𝑦 by propagating errors expected due to 643 

Poisson fluctuations in read counts, which gives 644 
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𝛿𝑦 = log!(𝑒)�
0

3360
+ 0

3460
	 . (33)645 

Then, assuming 𝑝(𝑦|𝑥) to be approximately Gaussian, we find the corresponding conditional 646 

entropy to be 647 

𝐻H[𝑦] =
1
2

log!(2𝜋𝑒 𝛿𝑦
!)	. (34) 648 

These 𝐻[𝑦] and 𝐻H[𝑦] values were then used in Eq. 31 to estimate 𝐼"#$. This should provide an 649 

upper bound on the true value of 𝐼"#$ because uncertainty in 𝑦 must be at least that expected 650 

under Poisson sampling of reads. We note, however, that the use of linear error propagation 651 

and the assumption that 𝑝(𝑦|𝑥) is approximately Gaussian complicate this conclusion. Also, 652 

when applied to MPSA data, this method yielded an upper bound of 0.96 bits. We believe this 653 

value is likely to be far higher than the true value of 𝐼"#$, and that this mismatch probably 654 

resulted from read counts in the MPSA data being over-dispersed. 655 

To compute the lower bound on 𝐼"#$ for GB1 data (Fig. 3d) we used the predictive 656 

information 𝐼%&' (on test data) of a GE regression model having a blackbox G-P map. This 657 

provides a lower bound because 𝐼"#$ ≥ 𝐼%&' for any model (when evaluated on test data) due to 658 

the Data Processing Inequality and the Markov Chain nature of the dependencies 𝑦 ← 𝑥 → 𝜙 in 659 

Fig. 2e.20,29 660 

To compute a lower bound on 𝐼"#$ for MPSA data (Fig. 5c), we leveraged the availability 661 

of replicate data in Wong et al..36 Let 𝑦 and 𝑦′ represent the original and replicate 662 

measurements obtained for a sequence 𝑥. Because 𝑦 ← 𝑥 → 𝑦′ forms a Markov chain, 𝐼[𝑥; 𝑦] ≥663 

𝐼[𝑦; 𝑦′].29 We therefore used an estimate of 𝐼[𝑦; 𝑦′], computed using the KSG method,46,48 as the 664 

lower bound for 𝐼"#$. 665 

Uncertainties in kNN estimates 666 
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MAVE-NN quantifies uncertainties in 𝐻[𝑦] and 𝐼[𝑦; 𝜙] using multiple random samples of 667 

half the data. Let 𝒟0++% denote a full dataset, and let 𝒟b+%,c denote a 50% subsample (indexed 668 

by 𝑟) of this dataset. Given an estimator 𝐸(⋅) of either entropy or mutual information, as well as 669 

the number of subsamples 𝑅 to use, the uncertainty in 𝐸(𝒟0++%) is estimated as 670 

𝛿𝐸(𝒟0++%) =
1
√2

std z�𝐸�𝒟b+%,c��c-+
d/0{	 . (35) 671 

MAVE-NN uses 𝑅 = 25 by default. We note that computing such uncertainty estimates 672 

substantially increases computation time, as 𝐸(⋅) needs to be evaluated 𝑅 + 1 times instead of 673 

just once. We also note that bootstrap resampling51,52 is often inadvisable in this context, as it 674 

systematically underestimates 𝐻[𝑦] and overestimates 𝐼[𝑦; 𝑧]. 675 

Datasets 676 

For the GB1 DMS dataset of Olson et al.,33 measurements were computed using 677 

𝑦! = log"
($!"#$%&)/($%&

"#$%&)
($!'(%&)/($%&

'( %&)
 , 678 

where 𝑐!)* and 𝑐!+,- respectively represent the number of reads from the input and output 679 

samples (i.e., pre-selection and post-selection libraries), and 𝑛 = WT represents the 55 aa 680 

wildtype sequence, corresponding to positions 2-56 of the GB1 domain. To infer the model in 681 

Fig. 3b and to compute the information metrics in Fig. 3c, only double-mutant sequences with 682 

𝑐!)* ≥ 10 were used; these represent 530,737 out of the 536,085 possible double mutants. For 683 

the models in Figs. 3d-f, 𝑦! values for the 1045 single-mutant were also used in the inference 684 

procedure.  685 
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For the Aβ DMS data of Seuma et al.34 and TDP-43 DMS data of Bolognesi et al.,35 𝑦! 686 

values respectively represent nucleation scores and toxicity scores reported by the authors.  687 

For the MPSA data of Wong et al.,36 we used the data of library 1 replicate 1 obtained 688 

for the BRCA2 minigene data. Measurements were computed as 689 

𝑦! = log&. -100 ×
($!'()%&)/($*+,-

'() %&)
($!$"$%&)/($*+,-

$"$ %&)
/ , 690 

where 𝑐!)*/ and 𝑐!-+-respectively represent the number of barcode reads obtained from exon 691 

inclusion isoforms and from total mRNA, and 𝑛 = CONS corresponds to the consensus 5´ss 692 

sequence CAG/GUAAGU. Corresponding PSI values were computed as PSI! = 100!. Only 693 

sequences with 𝑐!-+- ≥ 10 were used, representing 30,483 of the 32,768 possible sequences of 694 

the form NNN/GYNNNN. 695 

For the 𝑙𝑎𝑐 promoter sort-seq MPRA data of Kinney et al.,16 we used data from the “full-696 

wt” experiment (available at https://github.com/jbkinney/09_sortseq). For the xylE promoter 697 

sort-seq MPRA data of Bellilveau et al.,43 we used data kindly provided by the authors.  698 

  699 
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