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Abstract  11 

Multiplex assays of variant effect (MAVEs) are a family of methods that includes deep 12 

mutational scanning (DMS) experiments on proteins and massively parallel reporter assays 13 

(MPRAs) on gene regulatory sequences. However, a general strategy for inferring quantitative 14 

models of genotype-phenotype (G-P) maps from MAVE data is lacking. Here we introduce 15 

MAVE-NN, a neural-network-based Python package that implements a broadly applicable 16 

information-theoretic framework for learning G-P maps—including biophysically interpretable 17 

models—from MAVE datasets. We demonstrate MAVE-NN in multiple biological contexts, and 18 

highlight the ability of our approach to deconvolve mutational effects from otherwise 19 

confounding experimental nonlinearities and noise. 20 
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Main Text  22 

Introduction 23 

Over the last decade, the ability to quantitatively study genotype-phenotype (G-P) maps 24 

has been revolutionized by the development of multiplex assays of variant effect (MAVEs), 25 

which can measure molecular phenotypes for thousands to millions of genotypic variants in 26 

parallel.1,2 MAVE is an umbrella term that describes a diverse set of experimental methods, 27 

three examples of which are illustrated in Fig. 1. Deep mutational scanning (DMS) experiments3 28 

are a type of MAVE commonly used to study protein sequence-function relationships. These 29 

assays work by linking variant proteins to their coding sequences, either directly or indirectly, 30 

then using deep sequencing to assay which variants survive a process of activity-dependent 31 

selection (e.g., Fig. 1a). Massively parallel reporter assays (MPRAs) are another major class of 32 

MAVE, and are commonly used to study DNA or RNA sequences that regulate gene expression 33 

at a variety of steps, including transcription, mRNA splicing, cleavage and polyadenylation, 34 

translation, and mRNA decay.4–7 MPRAs typically rely on either an RNA-seq readout of barcode 35 

abundances (Fig. 1c) or the sorting of cells expressing a fluorescent reporter gene (Fig. 1e). 36 

Most computational methods for analyzing MAVE data have focused on accurately 37 

quantifying the activity of individual assayed sequences.8–14 However, MAVE measurements like 38 

enrichment ratios or cellular fluorescence levels usually cannot be interpreted as providing 39 

direct quantification of biologically meaningful activities, due to the presence of experiment-40 

specific nonlinearities and noise. Moreover, MAVE data is usually incomplete, as one often 41 

wishes to understand G-P maps over vastly larger regions of sequence space than can be 42 

exhaustively assayed. The explicit quantitative modeling of G-P maps can address both the 43 

indirectness and incompleteness of MAVE measurements.1,15 The goal here is to determine a 44 

mathematical function that, given a sequence as input, will return a quantitative value for that 45 
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sequence’s molecular phenotype. Such quantitative modeling has been of great interest since 46 

the earliest MAVE methods were developed,16–18 but no general-use software has yet been 47 

described for inferring G-P maps of arbitrary functional form from MAVE data.  48 

Here we introduce a unified conceptual framework for the quantitative modeling of 49 

MAVE data. This framework is based on the use of latent phenotype models, which assume that 50 

each assayed sequence has a well-defined latent phenotype (specified by the G-P map), of 51 

which the MAVE experiment provides an indirect readout (described by the measurement 52 

process). The quantitative forms of both the G-P map and the measurement process are then 53 

inferred from MAVE data simultaneously. We further introduce an information-theoretic 54 

approach for separately assessing the performance of the G-P map and the measurement 55 

process components of latent phenotype models. This strategy is implemented in an easy-to-56 

use open-source Python package called MAVE-NN, which represents latent phenotype models 57 

as neural networks and infers the parameters of these models from MAVE data using a 58 

TensorFlow 2 backend.19  59 

In what follows, we expand on this unified MAVE modeling strategy and apply it to a 60 

diverse array of DMS and MPRA datasets. Doing so, we find that MAVE-NN provides 61 

substantial advantages over other MAVE modeling approaches. Our results also highlight the 62 

substantial benefits of including sequence variants with multiple mutations in assayed sequence 63 

libraries, as doing so allows MAVE-NN to deconvolve the features of the G-P map from 64 

potentially confounding effects of experimental nonlinearities and noise. Importantly, we find that 65 

including just a modest number of multiple-mutation variants in a MAVE experiment can be 66 

beneficial even when one is primarily interested in the effects of single mutations. Finally, we 67 

illustrate how the ability of MAVE-NN to train custom G-P maps can shed light on the 68 

biophysical mechanisms of gene regulation. 69 
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Results 70 

Latent phenotype modeling strategy 71 

MAVE-NN supports the analysis of MAVE data on DNA, RNA, and protein sequences, 72 

and can accommodate either continuous or discrete measurement values. Given a set of 73 

sequence-measurement pairs, MAVE-NN aims to infer a probabilistic mapping from sequence 74 

to measurement. Our primary enabling assumption, which is encoded in the structure of the 75 

latent phenotype model (Fig. 2a), is that this mapping occurs in two stages. Each sequence is 76 

first mapped to a latent phenotype by a deterministic G-P map, then this latent phenotype is 77 

mapped to possible measurement values via a stochastic measurement process. During 78 

training, the G-P map and measurement process are simultaneously learned by maximizing a 79 

regularized form of likelihood.  80 

MAVE-NN includes four types of built-in G-P maps: additive, neighbor, pairwise, and 81 

black box. Additive G-P maps assume that each character at each position within a sequence 82 

contributes independently to the latent phenotype. Neighbor G-P maps incorporate interactions 83 

between adjacent (i.e., nearest-neighbor) characters in a sequence, while pairwise G-P maps 84 

include interactions between all pairs of characters in a sequence regardless of the distance 85 

separating the characters in each pair. Black box G-P maps have the form of a densely 86 

connected multilayer perceptron, the specific architecture of which can be controlled by the 87 

user. MAVE-NN also supports custom G-P maps that can be used, e.g., to represent specific 88 

biophysical hypotheses about the mechanisms of sequence function.  89 

To handle both discrete and continuous measurement values, two different strategies for 90 

modeling measurement processes are provided. Measurement process agnostic (MPA) 91 

regression uses techniques from the biophysics literature15,16,20,21 to analyze MAVE datasets 92 

that report discrete measurements. Here the measurement process is represented by an 93 
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overparameterized neural network that takes the latent phenotype value as input and outputs 94 

the probability of each possible measurement value (Fig. 2b). Global epistasis (GE) regression 95 

(Fig. 2c), by contrast, leverages ideas previously developed in the evolution literature for 96 

analyzing datasets that contain continuous measurements,22–25 and is becoming an increasingly 97 

popular strategy for modeling DMS data.26–28 Here, the latent phenotype is nonlinearly mapped 98 

to a prediction that represents the most probable measurement value. A noise model is then 99 

used to describe the distribution of likely deviations from this prediction. MAVE-NN supports 100 

both homoscedastic and heteroscedastic noise models based on three different classes of 101 

probability distribution: Gaussian, Cauchy, and skewed-t. We note that the skewed-t distribution, 102 

introduced by Jones and Faddy,29 reduces to Gaussian and Cauchy distributions in certain limits 103 

while also accommodating asymmetric experimental noise. Fig. 2d shows an example of a GE 104 

measurement process with a heteroscedastic skewed-t noise model.  105 

Readers should note that the current implementation of MAVE-NN places certain 106 

constraints on input data and model architecture. Input sequences must be the same length, 107 

and when analyzing continuous data, only scalar measurements (as opposed to vectors of 108 

multiple measurements) can be used to train models. In addition, because our method for 109 

learning the form of experimental nonlinearities depends on observing how multiple mutations 110 

combine, MAVE-NN’s functionality is more limited when analyzing MAVE libraries that comprise 111 

only single-mutation variants. More information on these constraints and the reasons behind 112 

them can be found below in the section “Constraints on datasets and models”.  113 

Information-theoretic measures of model performance 114 

We further propose three distinct quantities for assessing the performance of latent 115 

phenotype models: intrinsic information, predictive information, and variational information (Fig. 116 

2e). These quantities come from information theory and are motivated by thinking of G-P maps 117 
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in terms of information compression. In information theory, a quantity called mutual information 118 

quantifies the amount of information that the value of one variable communicates about the 119 

value of another.30,31 Mutual information is symmetric, nonnegative, is measured in units of 120 

“bits”, and is equal to 0 bits only if the two variables are independent. Alternatively, if knowing 121 

the value of one variable allows you to narrow down the value of the other variable to one of two 122 

possibilities that would otherwise be equally likely, the mutual information between these two 123 

variables will be 1.0 bits. If the value is narrowed down to one of four otherwise equally likely 124 

possibilities, the mutual information will be 2.0 bits. Narrowing down to one of with eight 125 

possibilities will yield 3.0 bits, and so on.  But importantly, mutual information does not require 126 

that the relationship between two variables in question be so clean cut, and mutual information 127 

can in fact be computed between any two types of variables—discrete, continuous, multi-128 

dimensional, etc.. This property makes the information-based quantities we propose applicable 129 

to all MAVE datasets, regardless of the specific type of experimental readout used. By contrast, 130 

many of the standard model performance metrics have restricted domains of applicability: 131 

accuracy can only be applied to data with discrete labels, 𝑅! can only be applied to data with 132 

univariate continuous labels, and so on. We note, however, that estimating mutual information 133 

and related quantities from finite data is nontrivial and that MAVE-NN uses a variety of 134 

approaches to do this. 135 

Intrinsic information, 𝐼"#$, is the mutual information between the sequences and 136 

measurements contained within a MAVE dataset. This quantity provides a benchmark against 137 

which to compare the performance of inferred G-P maps. Predictive information, 𝐼%&', is the 138 

mutual information between MAVE measurements and the latent phenotype values predicted by 139 

a G-P map of interest. This quantifies how well the G-P map preserves sequence-encoded 140 

information that is determinative of experimental measurements. When evaluated on test data, 141 

𝐼%&' is bounded above by 𝐼"#$, and equality is realized only when the latent phenotype losslessly 142 
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encodes relevant sequence-encoded information. Variational information, 𝐼()&, is a linear 143 

transformation of log likelihood that provides a variational lower bound on 𝐼%&'.32–34 The 144 

difference between 𝐼%&' and 𝐼()& quantifies how accurately the inferred measurement process 145 

matches the observed distribution of measurements and latent phenotypes (see Supplemental 146 

Information).  147 

MAVE-NN infers model parameters by maximizing a (lightly) regularized form of 148 

likelihood. These computations are performed using the standard backpropagation-based 149 

training algorithms provided within the TensorFlow 2 backend. With certain caveats noted (see 150 

Methods), this optimization procedure maximizes 𝐼%&' while avoiding the costly estimates of 151 

mutual information at each iteration that have hindered the adoption of previous mutual-152 

information-based modeling strategies.16  153 

Application: deep mutational scanning assays 154 

We now demonstrate the capabilities of MAVE-NN on three DMS datasets, starting with 155 

the study of Olson et al.35 on pairwise epistasis in protein G. Here the authors measured the 156 

effects of all single and nearly all double mutations to residues 2-56 of the IgG binding domain. 157 

This domain, called GB1, has long served as a model system for studying protein sequence-158 

function relationships. To assay the binding of GB1 variants to IgG, the authors combined 159 

mRNA display with ultra-high-throughput DNA sequencing (Fig. 1a). The resulting dataset 160 

reports log enrichment values for all 1,045 single- and 530,737 double-mutant GB1 variants 161 

(Fig. 1b). 162 

Inspired by the work of Otwinowski et al.,25 we used MAVE-NN to infer a latent 163 

phenotype model comprising an additive G-P map and a GE measurement process. This 164 

inference procedure required only about 5 minutes on a single node of a computer cluster 165 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2020.07.14.201475doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.201475
http://creativecommons.org/licenses/by/4.0/


 - 9 - 

(Supplemental Fig. S1). Fig. 3a illustrates the inferred additive G-P map via the effects that 166 

every possible single-residue mutation has on the latent phenotype. From this heatmap of 167 

additive effects, we can immediately identify all of the critical GB1 residues, including the IgG 168 

interacting residues at 27, 31, and 43.35 We also observe that missense mutations to proline 169 

throughout the GB1 domain tend to negatively impact IgG binding, as expected due to this 170 

amino acid’s exceptional conformational rigidity. Fig. 3b illustrates the corresponding GE 171 

measurement process, revealing a sigmoidal relationship between log enrichment 172 

measurements and the latent phenotype values predicted by the G-P map. Nonlinearities like 173 

this are ubiquitous in DMS data due to the presence of background and saturation effects. 174 

Unless they are explicitly accounted for in one’s quantitative modeling efforts, as they are here, 175 

these nonlinearities can greatly distort the parameters of inferred G-P maps. Fig. 3c shows that 176 

accounting for this nonlinearity yields predictions that correlate quite well with measurement 177 

values. Moreover, every latent phenotype model inferred by MAVE-NN can be used as a MAVE 178 

dataset simulator (see Methods). By analyzing simulated data generated by our inferred model 179 

for this GB1 experiment, we further observed that MAVE-NN can accurately and robustly 180 

recover the GE nonlinearity and ground-truth G-P map parameters (Supplementary Fig. S1).  181 

Fig. 3d summarizes the values of our information-theoretic metrics for model 182 

performance. On held-out test data, we find that 𝐼()& = 2.178 ± 0.027	bits and  𝐼%&' = 2.225 ±183 

0.017	bits. The similarity of these two values suggests that the inferred GE measurement 184 

process, which includes a heteroscedastic skewed-t noise model, has nearly sufficient accuracy 185 

to fully describe the distribution of residuals. We further find that 2.741 ± 0.013	bits ≤ 𝐼"#$ ≤186 

3.215 ± 0.007	bits (see Methods), meaning that the inferred G-P map accounts for 69%-81% of 187 

the total sequence-dependent information in the dataset. While this performance is impressive, 188 

the additive G-P map evidently misses some relevant sequence features. This observation 189 

motivates the more complex biophysical model for GB1 discussed later in Results.   190 
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The ability of MAVE-NN to deconvolve experimental nonlinearities from additive G-P 191 

maps requires that some of the assayed sequences contain multiple mutations. This is because 192 

such nonlinearities are inferred by reconciling the effects of single mutations with the effects 193 

observed for combinations of two or more mutations. To investigate how many multiple-mutation 194 

variants are required, we performed GE inference on subsets of the GB1 dataset containing all 195 

1,045 single-mutation sequences and either 50,000, 5,000, or 500 double-mutation sequences 196 

(see Methods). The shapes of the resulting GE nonlinearities are illustrated in Figs. 3e-g. 197 

Remarkably, MAVE-NN is able to recover the underlying nonlinearity using only about 500 198 

randomly selected double mutants, which represent only ~0.1% of all possible double mutants. 199 

The analysis of simulated data also supports the ability to accurately recover ground-truth model 200 

predictions using highly reduced datasets (Supplemental Fig. S1). These findings have 201 

important implications for the design of DMS experiments: even if one only wants to determine 202 

an additive G-P map, including a modest number of multiple-mutation sequences in the assayed 203 

library is often advisable because it may allow the removal of artifactual nonlinearities.  204 

To test the capabilities of MAVE-NN on less complete DMS datasets, we analyzed 205 

recent experiments on amyloid beta (Aβ)36 and TDP-43,37 both of which exhibit aggregation 206 

behavior in the context of neurodegenerative diseases. In these experiments, protein 207 

functionality was assayed using selective growth in genetically modified Saccaromyces 208 

cerevisiae: Seuma et al.36 performed a selection against Aβ toxicity, whereas Bolognesi et al.37 209 

positively selected for TDP-43 aggregation. Like with GB1, the variant libraries used in these 210 

two experiments included a substantial number of multiple-mutation sequences: 499 single- and 211 

15,567 double-mutation sequences for Aβ; 1,266 single- and 56,730 double-mutation 212 

sequences for TDP-43. But unlike with GB1, these datasets are highly incomplete due to the 213 

use of mutagenic PCR (for Aβ) or doped oligo synthesis (TDP-43) for variant library 214 

construction.  215 
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We used MAVE-NN to infer additive G-P maps from these two datasets, adopting the 216 

same type of latent phenotype model used for GB1. Fig. 4a illustrates the additive G-P map 217 

inferred from aggregation measurements of Aβ variants. In agreement with the original study, 218 

we see that most amino acid mutations between positions 30-40 have a negative effect on 219 

nucleation, suggesting that this region plays a major role in nucleation behavior. Fig. 4b shows 220 

the corresponding measurement process (see also Supplemental Information Fig. S2). Even 221 

though these data are much sparser than the GB1 data, the inferred model performs well on 222 

held-out test data (	𝐼()& = 1.142 ± 0.065	bits, 𝐼%&' = 1.187 ± 0.050	bits, 𝑅! = 0.763 ± 0.024). 223 

Similarly, Figs. 4c-d show the G-P map parameters and GE measurement process inferred 224 

from toxicity measurements of TDP-43 variants, revealing among other things the toxicity-225 

determining hot-spot observed by Bolognesi et al.37 at positions 310-340. The resulting latent 226 

phenotype model performs well on held-out test data (𝐼()& = 1.834 ± 0.035	bits, 𝐼%&' = 1.994 ±227 

0.023	bits, 𝑅! = 0.914 ± 0.007).  228 

Application: a massively parallel splicing assay 229 

Exon/intron boundaries are defined by 5´ splice sites (5´ss), which bind the U1 snRNP 230 

during the initial stages of spliceosome assembly. To investigate how 5´ss sequence 231 

quantitatively controls alternative mRNA splicing, Wong et al.38 used a massively parallel 232 

splicing assay (MPSA) to measure percent-spliced-in (PSI) values for nearly all 32,768 possible 233 

5´ss of the form NNN/GYNNNN in three different genetic contexts (Fig. 1c,d). Applying MAVE-234 

NN to data from the BRCA2 exon 17 context, we inferred four different types of G-P maps: 235 

additive, neighbor, pairwise, and black box. As with GB1, these G-P maps were each inferred 236 

using GE regression with a heteroscedastic skewed-t noise model. For comparison, we also 237 

inferred an additive G-P map using the epistasis package of Sailer and Harms.24 238 
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Fig. 5a compares the performance of these G-P map models on held-out test data, while 239 

Figs. 5b-d illustrate the corresponding inferred measurement processes. We observe that the 240 

additive G-P map inferred using the epistasis package24 exhibits less predictive information 241 

(𝐼%&' = 0.180 ± 0.011	bits) than the additive G-P map found using MAVE-NN (𝑃 = 3.8 × 10*+, 242 

two-sided z-test). This is likely because the epistasis package estimates the parameters of the 243 

additive G-P map prior to estimating the GE nonlinearity. We also note that, while the epistasis 244 

package provides a variety of options for modeling the GE nonlinearity, none of these options 245 

appear to work as well as our mixture-of-sigmoids approach (compare Figs. 5b,c). This finding 246 

again demonstrates that the accurate inference of G-P maps requires the explicit and 247 

simultaneous modeling of experimental nonlinearities.  248 

We also observe that increasingly complex G-P maps exhibit increased accuracy. For 249 

example, the additive G-P map gives 𝐼%&' = 0.257 ± 	0.013	bits, whereas the pairwise G-P map 250 

(Figs. 5e,f) attains 𝐼%&' = 0.374 ± 0.014	bits. Using MAVE-NN’s built-in parametric bootstrap 251 

approach for quantifying parameter uncertainty, we find that both the additive and pairwise G-P 252 

map parameters are very precisely determined (see Supplemental Information Fig. S3). The 253 

black box G-P map, which is comprised of 5 densely connected hidden layers of 10 nodes each, 254 

performed the best of all four G-P maps, achieving 𝐼%&' = 0.458 ± 0.015	bits. Remarkably, this 255 

last predictive information value exceeds the lower bound of 𝐼"#$ ≥ 0.462 ± 0.009	bits, which was 256 

estimated from replicate experiments (see Methods). We thus conclude that pairwise 257 

interaction models are not flexible enough to fully account for how 5´ss sequences control 258 

splicing. More generally, these results underscore the need for software that is capable of 259 

inferring and assessing a variety of different G-P maps through a uniform interface. 260 

Application: biophysically interpretable G-P maps 261 
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Biophysical models, unlike the phenomenological models considered thus far, have 262 

mathematical structures that reflect specific hypotheses about how sequence-dependent 263 

interactions between macromolecules mechanistically define G-P maps. Thermodynamic 264 

models, which rely on a quasi-equilibrium assumption, are the most commonly used type of 265 

biophysical model.39–41 Previous studies have shown that precise thermodynamic models can 266 

be inferred from MAVE datasets,16 but no software intended for use by the broader MAVE 267 

community has yet been developed for doing this. MAVE-NN meets this need by enabling the 268 

inference of custom G-P maps. We now demonstrate this biophysical modeling capability in the 269 

contexts of protein-ligand binding (using DMS data; Fig. 1a) and bacterial transcriptional 270 

regulation (using sort-seq MPRA data; Fig. 1e). An expanded discussion of how these models 271 

are mathematically formulated and specified within MAVE-NN is provided in the “Biophysical 272 

modeling” section of Supplemental Information.  273 

Otwinowski42 showed that a three-state thermodynamic G-P map (Fig. 6a), one that 274 

accounts for GB1 folding energy in addition to GB1-IgG binding energy,43 can explain the DMS 275 

data of Olson et al.35 better than a simple additive G-P map does. This biophysical model 276 

subsequently received impressive confirmation in the work of Nisthal et al.,44 who measured the 277 

thermostability of 812 single-mutation GB1 variants. We tested the ability of MAVE-NN to 278 

recover the same type of thermodynamic model that Otwinowski had inferred using custom 279 

analysis scripts. Our analysis yielded a G-P map with significantly improved performance on the 280 

data of Olson et al. (𝐼()& = 2.303 ± 0.013	bits, 	𝐼%&' = 2.357 ± 0.007	bits, 	𝑅! = 0.947 ± 0.001) 281 

relative to the additive G-P map of Fig. 3. Fig. 6b shows the two inferred energy matrices that 282 

respectively describe the effects of every possible single-residue mutation on the Gibbs free 283 

energies of protein folding and protein-ligand binding. The folding energy predictions of our 284 

model also correlate as well with the data of Nisthal et al. (𝑅! = 0.570 ± 0.049) as the 285 
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predictions of Otwinowski’s model does (𝑅! = 0.515 ± 0.056). This demonstrates that MAVE-NN 286 

can infer accurate and interpretable quantitative models of protein biophysics.  287 

To test MAVE-NN’s ability to infer thermodynamic models of transcriptional regulation, 288 

we re-analyzed the MPRA data of Kinney et al.,16 in which random mutations to a 75 bp region 289 

of the Escherichia coli lac promoter were assayed. This promoter region binds two regulatory 290 

proteins, σ,- RNA polymerase (RNAP) and the transcription factor CRP. As in Kinney et al.,16 291 

we proposed a four-state thermodynamic model that quantitatively explains how promoter 292 

sequences control transcription rate (Fig. 6c). The parameters of this G-P map include the 293 

Gibbs free energy of interaction between CRP and RNAP (Δ𝐺.), as well as energy matrices that 294 

describe the CRP-DNA and RNAP-DNA interaction energies. Because the sort-seq MPRA of 295 

Kinney et al. yielded discrete measurement values (Figs. 1e,f), we used an MPA measurement 296 

process in our latent phenotype model (Fig. 6d). The biophysical parameter values we thus 297 

inferred (Fig. 6e), including a CRP-RNAP interaction energy of Δ𝐺. = −2.598 ± 0.018	kcal/mol, 298 

largely match those of Kinney et al., but were obtained far more rapidly (in ~10 min versus 299 

multiple days) thanks to the use of stochastic gradient descent rather than Metropolis Monte 300 

Carlo. 301 

Constraints on datasets and models 302 

As stated above, MAVE-NN places certain limitations on both input datasets and latent 303 

phenotype models. Some of these constraints have been adopted to simplify the initial release 304 

of MAVE-NN and can potentially be relaxed in future updates. Others reflect fundamental 305 

mathematical properties of latent phenotype models. Here we summarize the primary 306 

constraints users should be aware of. 307 

MAVE-NN currently requires that all input sequences be the same length. This constraint 308 

has been adopted because a large fraction of MAVE datasets have this form, and all of the built-309 
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in G-P maps operate only on fixed-length sequences. Users who wish to analyze variable length 310 

sequences can still do so by padding the ends of sequences with dummy characters. 311 

Alternatively, users can provide a multiple-sequence alignment as input and include the gap 312 

character as one of the characters to consider when training models.  313 

As stated above, MAVE-NN can analyze MAVE datasets that have either continuous or 314 

discrete measurements. At present, both types of measurements must be one-dimensional, i.e., 315 

users cannot fit a single model to vectors of multiple measurements (e.g., joint measurements of 316 

protein binding affinity and protein stability, as in Ref. 27). This constraint has been adopted only 317 

to simplify the user interface of the initial release. It is not a fundamental limitation of latent 318 

phenotype models and is scheduled to be relaxed in upcoming versions of MAVE-NN.  319 

The current implementation of MAVE-NN also supports only one-dimensional latent 320 

phenotypes (though the latent phenotype of custom G-P maps can depend on multiple 321 

precursor phenotypes, e.g., binding energy or folding energy). This restriction was made 322 

because accurately interpreting multi-dimensional latent phenotypes is substantially more 323 

fraught than interpreting one-dimensional latent phenotypes, and we believe that additional 324 

computational tools need to be developed to facilitate such interpretation. That being said, the 325 

mathematical form of latent phenotype models is fully compatible with multi-dimensional latent 326 

phenotypes. Indeed, this modeling strategy has been used in other work,20,27,28,45 and we plan to 327 

enable this functionality in future updates to MAVE-NN.  328 

More fundamental constraints come into play when analyzing MAVE data that contains 329 

only single-mutation variants. In such experiments, the underlying effects of individual mutations 330 

are hopelessly confounded by the biophysical, physiological, and experimental nonlinearities 331 

that may be present. By contrast, when the same mutation is observed in multiple genetic 332 

backgrounds, MAVE-NN can use systematic differences in the mutational effects observed 333 
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between stronger and weaker backgrounds to remove these confounding influences. Thus, for 334 

datasets that comprise only single-mutant effects, we limit MAVE-NN to inferring only additive 335 

G-P maps using GE regression, and while the noise model in the GE measurement process is 336 

allowed to be heteroscedastic, the nonlinearity is constrained to be linear.  337 

We emphasize that, in practice, only a modest number of multiple-mutant variants are 338 

required for MAVE-NN to learn the form of a non-linear measurement process (see Fig. 3e-g). 339 

In this way, including a small fraction of the possible double-mutation variants in MAVE libraries 340 

can be beneficial even just for determining the effects of single mutations. Adding such non-341 

comprehensive sets of double mutants to MAVE libraries is experimentally straight-forward, and 342 

our numerical experiments suggest that assaying roughly the same number of double-mutation 343 

variants as single-mutation variants should often suffice. We therefore recommend that 344 

experimentalists—even those primarily interested in the effects of single mutations—consider 345 

augmenting their MAVE libraries with a small subset of double-mutation variants.  346 

Discussion 347 

In this work we have presented a unified strategy for inferring quantitative models of G-P 348 

maps from diverse MAVE datasets. At the core of our approach is the conceptualization of G-P 349 

maps as a form of information compression, i.e., the G-P map first compresses an input 350 

sequence into a latent phenotype value, which the MAVE then reads out indirectly via a noisy 351 

nonlinear measurement process. By explicitly modeling this measurement process, one can 352 

remove potentially confounding effects from the G-P map, as well as accommodate diverse 353 

experimental designs. We have also introduced three information-theoretic metrics for 354 

assessing the performance of the resulting models. These capabilities have been implemented 355 

within an easy-to-use Python package called MAVE-NN. 356 
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We have demonstrated the capabilities of MAVE-NN in diverse biological contexts, 357 

including in the analysis of both DMS and MPRA data. We have also demonstrated the superior 358 

performance of MAVE-NN relative to the epistasis package of Sailer and Harms.24 Along the 359 

way, we observed that MAVE-NN can deconvolve experimental nonlinearities from additive G-P 360 

maps when a relatively small number of sequences containing multiple mutations are included 361 

in the assayed libraries. This capability provides a compelling reason for experimentalists to 362 

include such sequences in their MAVE libraries, even if they are primarily interested in the 363 

effects of single mutations. Finally, we showed how MAVE-NN can learn biophysically 364 

interpretable G-P maps from both DMS and MPRA data.  365 

MAVE-NN thus fills a critical need in the MAVE community, providing user-friendly 366 

software capable of learning quantitative models of G-P maps from diverse MAVE datasets. 367 

MAVE-NN has a streamlined user interface and is readily installed from PyPI by executing “pip 368 

install mavenn” at the command line. Comprehensive documentation and step-by-step tutorials 369 

are available at http://mavenn.readthedocs.io. 370 
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step tutorials, is available at http://mavenn.readthedocs.io. Source code, the data sets analyzed 381 
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 388 

Figure 1. Examples illustrating the diversity of MAVEs. (a) DMS assays using either affinity purification or selective 389 

growth. (i) The DMS assay of Olson et al.35 used a library of variant GB1 proteins covalently linked to their coding 390 

mRNAs via mRNA display. Functional GB1 proteins were then enriched using IgG beads. (ii) The DMS studies of 391 

Seuma et al.36 and Bolognesi et al.37 used selective growth in genetically modified Saccharomyces cerevisiae cells to 392 

respectively assay the functionality of variant Aβ and TDP-43 proteins. In all three experiments, deep sequencing was 393 

used to determine an enrichment ratio for each protein variant. (b) The resulting DMS dataset consists of variant 394 

protein sequences and their corresponding log enrichment values. (c) The MPSA of Wong et al..38 A library of 3-exon 395 

minigenes was constructed from exons 16, 17, and 18 of BRCA2, with each minigene having a variant 5´ss at exon 396 

17 and a random 20 nt barcode in the 3’ UTR. This library was transfected into HeLa cells, and deep sequencing was 397 

used to quantify mRNA isoform abundance. (d) The resulting MPSA dataset comprises variant 5´ss with (noisy) PSI 398 
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values. (e) The sort-seq MPRA of Kinney et al..16 A plasmid library was generated in which randomly mutagenized 399 

versions of the Escherichia coli lac promoter drove the expression of GFP. Cells carrying these plasmids were sorted 400 

using FACS, and the variant promoters in each bin of sorted cells as well as the initial library were sequenced. (f) The 401 

resulting dataset comprises a list of variant promoter sequences, as well as a matrix of counts for each variant in 402 

each FACS bin. MAVE: multiplex assay of variant effect; DMS: deep mutational scanning; MPSA: massively parallel 403 

splicing assay; 5´ss: 5´ splice site(s); PSI: percent spliced in; GFP: green fluorescent protein; FACS: fluorescence-404 

activated cell sorting. 405 

  406 
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 407 

Figure 2. MAVE-NN quantitative modeling strategy. (a) Structure of latent phenotype models. A G-P map 𝑓(𝑥) maps 408 

each sequence 𝑥 to a latent phenotype 𝜙, after which a measurement process 𝑝(𝑦|𝜙) determines the measurement 409 

𝑦. (b) Example of an MPA measurement process inferred from the sort-seq MPRA data of Kinney et al..16 MPA 410 

measurement processes are used when 𝑦 values are discrete. (c) Structure of a GE regression model, which is used 411 

when 𝑦 is continuous. A GE measurement process assumes that the mode of 𝑝(𝑦|𝜙), called the prediction 𝑦), is given 412 

by a nonlinear function 𝑔(𝜙), and the scatter about this mode is described by a noise model 𝑝(𝑦|𝑦)). (d) Example of a 413 

GE measurement process inferred from the DMS data of Olson et al..35 Shown are the nonlinearity, the 68% CI, and 414 

the 95% CI. (e) Information-theoretic quantities used to assess model performance.  Intrinsic information, 𝐼!"#, is the 415 

mutual information between sequences 𝑥 and measurements 𝑦. Predictive information, 𝐼$%&, is the mutual information 416 

between measurements 𝑦 and the latent phenotype values 𝜙 assigned by a model.  Variational information, 𝐼'(% , is a 417 

linear transformation of log likelihood. The inequality 𝐼!"# ≥ 𝐼$%& ≥ 𝐼'(% always holds on test data (modulo finite data 418 

uncertainties), with 𝐼!"# = 𝐼$%& when the G-P map is correct, and 𝐼$%& = 𝐼'(% when the measurement process correctly 419 

describes the distribution of 𝑦 conditioned on 𝜙. G-P: genotype-phenotype; MPA: measurement process agnostic; 420 

GE: global epistasis; CI: confidence interval. 421 
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 423 

Figure 3. Analysis of DMS data for protein GB1. MAVE-NN was used to infer a latent phenotype model, consisting of 424 

an additive G-P map and a GE measurement process having a heteroskedastic skewed-t noise model, from the DMS 425 

data of Olson et al..35 All 530,737 pairwise variants reported for positions 2 to 56 of the GB1 domain were analyzed. 426 

Data were split 90:5:5 into training, validation, and test sets. (a) The G-P map parameters inferred from all pairwise 427 

variants. Gray dots indicate wildtype residues. Amino acids are ordered as in Olson et al..35 (b) GE plot showing 428 

measurements versus predicted latent phenotype values for 5,000 randomly selected test-set sequences (blue dots), 429 
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alongside the inferred nonlinearity (solid orange line) and the 95% CI (dashed lines) of the noise model. Gray line 430 

indicates the latent phenotype value of the wildtype sequence. (c) Measurements plotted against 𝑦) predictions for 431 

these same sequences. Dashed lines indicate the 95% CI of the noise model. Gray line indicates the wildtype 432 

sequence 𝑦). (d) Corresponding information metrics computed during model training (using training data) or for the 433 

final model (using test data); uncertainties in these estimates are roughly the width of the plotted lines. Gray shaded 434 

area indicates allowed values for intrinsic information based on upper and lower bounds estimated as described in 435 

Methods. (e-g) Test set predictions (blue dots) and GE nonlinearities (orange lines) for models trained using subsets 436 

of the GB1 data containing all single mutants and 50,000 (e), 5,000 (f), or 500 (g) double mutants. The GE 437 

nonlinearity from panel b is shown for reference (yellow-green lines). Uncertainties reflect standard errors. GE: global 438 

epistasis; G-P: genotype-phenotype; CI: confidence interval. 439 
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 441 

Figure 4. Analysis of DMS data for Aβ and TDP-43. (a,b) Seuma et al.36 measured nucleation scores for 499 single 442 

mutants and 15,567 double mutants of Aβ. These data were used to train a latent phenotype model comprising (a) an 443 

additive G-P map and (b) a GE measurement process with a heteroskedastic skewed-t noise model. (c,d) Bolognesi 444 

et al.37 measured toxicity scores for 1,266 single mutants and 56,730 double mutants of TDP-43. The resulting data 445 

were used to train (c) an additive G-P map and (d) a GE measurement process of the same form as in panel b. In 446 

both cases, data were split 90:5:5 into training, validation, and test sets. In (a,c), gray dots indicate the wildtype 447 

sequence, amino acids are ordered as in the original publications, and * indicates a stop codon. White squares 448 

[355/882 (40.2%) for Aβ; 433/1764 (24.5%) for TDP-43] indicate residues that were not observed in the training set 449 

and thus could not be assigned values for their additive effects.  In (b,d), blue dots indicate latent phenotype values 450 

versus measurements for held-out test data, gray line indicates the latent phenotype value of the wildtype sequence, 451 

solid orange line indicates the GE nonlinearity, and dashed orange lines indicate a corresponding 95% CI for the 452 

inferred noise model. Values for  𝐼'(%, 𝐼$%&, and 𝑅) (between 𝑦 and 𝑦)) are also shown. Uncertainties reflect standard 453 

errors. Supplemental Fig. S2 shows measurements plotted against the 𝑦) predictions of these models.  Aβ: amyloid 454 

beta; TDP-43: TAR DNA-binding protein 43; G-P: genotype-phenotype; GE: global epistasis; CI: confidence interval. 455 
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 457 

Figure 5. Analysis of MPSA data from Wong et al..38 This dataset reports PSI values, measured in the BRCA2 exon 458 

17 context, for nearly all 32,768 variant 5´ss of the form NNN/GYNNNN. Data were split 60:20:20 into training, 459 

validation, and test sets. Latent phenotype models with one of four types of G-P map (additive, neighbor, pairwise, or 460 

black box), as well as a GE measurement process with a heteroscedastic skewed-t noise model, were inferred. The 461 

epistasis package of Sailer and Harms24 was also used to infer an additive G-P map and GE nonlinearity. (a) 462 
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Performance of trained models as quantified by 𝐼'(% and 𝐼$%&, computed on test data. The lower bound on 𝐼!"# was 463 

estimated from experimental replicates (see Methods). p-value reflects a two-sided z-test.  𝐼'(% was not computed for 464 

the additive (epistasis package) model because that package does not infer an explicit noise model. (b-d) 465 

Measurement values versus latent phenotype values, computed on test data, using the additive (epistasis package) 466 

model (b), the additive model (c), and the pairwise model (d). The corresponding GE measurement processes are 467 

also shown. (e) Sequence logo46 illustrating the additive effects component of the pairwise G-P map. Dashed line 468 

indicates the exon/intron boundary. G at +1 serves as a placeholder because no other bases were assayed at this 469 

position. Only values for U and C at +2 were inferred. (f) Heatmap showing the pairwise effects component of the 470 

pairwise G-P map. White diagonals correspond to unobserved bases. Error bars indicate standard errors. 471 

Supplemental Information Fig. S3 shows the uncertainties in these parameters. MPSA: massively parallel splicing 472 

assay; PSI: percent spliced in; G-P: genotype-phenotype; GE: global epistasis. 473 
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 475 

Figure 6. Biophysical models inferred from DMS and MPRA data. (a) Thermodynamic model for IgG binding by GB1. 476 

This model comprises three GB1 microstates (unfolded, folded-unbound, and folded-bound). The Gibbs free energies 477 

of folding (Δ𝐺*) and binding (Δ𝐺+) are computed from sequence using additive models called energy matrices. The 478 

latent phenotype is given by the fraction of time GB1 is in the folded-bound state. (b) The ΔΔ𝐺 parameters of the 479 

energy matrices for folding and binding, inferred from the data of Olson et al.35 using GE regression. Supplemental 480 

Fig. S5 plots folding energy predictions against the measurements of Nisthal et al..44 (c) A four-state thermodynamic 481 

model for transcriptional activation at the E. coli lac promoter. The Gibbs free energies of RNAP-DNA binding (Δ𝐺,) 482 

and CRP-DNA binding (Δ𝐺-) are computed using energy matrices, whereas the CRP-RNAP interaction energy Δ𝐺. is 483 

a scalar. The latent phenotype is the fraction of time a promoter is bound by RNAP. (d,e) The latent phenotype model 484 

inferred from the sort-seq MPRA of Kinney et al.,16 including both the MPA measurement process (d) and the 485 

parameters of the thermodynamic G-P map (e). Supplemental Fig. S4 provides detailed definitions of the 486 

thermodynamic models in panels a and c. Sequence logos in panel e were generated using Logomaker,46 and 487 

standard errors for the protein-protein interaction energy were determined using the built-in parametric bootstrapping 488 
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approach described in Methods. GE: global epistasis. RNAP: RNA polymerase. MPA: measurement-process 489 

agnostic. G-P: genotype-phenotype. 490 

  491 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2020.07.14.201475doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.201475
http://creativecommons.org/licenses/by/4.0/


 - 29 - 

Online Methods 492 

Notation 493 

We represent each MAVE dataset as a set of 𝑁 observations, {(𝑥/, 𝑦/)}/0-1*2, where each 494 

observation consists of a sequence 𝑥/ and a measurement 𝑦/. Here, 𝑦/ can be either a 495 

continuous real-valued number, or a nonnegative integer representing the “bin” in which the 𝑛th 496 

sequence was found. Note that, in this representation the same sequence 𝑥 can be observed 497 

multiple times, potentially with different values for 𝑦 due to experimental noise. 498 

G-P maps 499 

We assume that all sequences have the same length 𝐿, and that at each of the 𝐿 500 

positions in each sequence there is one of 𝐶 possible characters. MAVE-NN represents 501 

sequences using a vector of one-hot encoded features of the form 502 

𝑥3:5 = O	1 if	character	𝑐	occurs	at	position	𝑙
	0 otherwise

	 , (1) 503 

where 𝑙 = 0,1, … , 𝐿 − 1 indexes positions within the sequence, and 𝑐 indexes the 𝐶 distinct 504 

characters. MAVE-NN supports built-in alphabets for DNA, RNA and protein (with or without 505 

stop codons), as well as user-defined sequence alphabets. 506 

We assume that the latent phenotype is given by a linear function 𝜙(𝑥; 𝜃) that depends 507 

on a set of G-P map parameters 𝜃. As mentioned in the main text, MAVE-NN supports four 508 

types of G-P map models, all of which can be inferred using either GE regression or MPA 509 

regression. The additive model is given by, 510 

𝜙additive(𝑥; 𝜃) = 𝜃- +__𝜃3:5
5

6*2

30-

𝑥3:5 	,	 (2) 511 
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and thus each position in 𝑥 contributes independently to the latent phenotype. The neighbor 512 

model is given by, 513 

𝜙neighbor(𝑥; 𝜃) = 𝜃- +__𝜃3:5
5

6*2

30-

𝑥3:5 +__𝜃3:5,382:5/
5,5/

6*!

30-

𝑥3:5𝑥382:5/ 	, (3) 514 

and further accounts for potential epistatic interactions between neighboring positions. The 515 

pairwise model is given by, 516 

𝜙pairwise(𝑥; 𝜃) = 𝜃- +__𝜃3:5
5

6*2

30-

𝑥3:5 +_ _ _𝜃3:5,3/:5/
5,5/

6*2

3/0382

6*!

30-

𝑥3:5𝑥3/:5/ 	, (4) 517 

and includes interactions between all pairs of positions. Note our convention of requiring 𝑙′ > 𝑙 in 518 

the pairwise parameters 𝜃3:5,3/:5/.  519 

Unlike these three parametric models, the black box G-P map does not have a fixed 520 

functional form. Rather, it is given by a multilayer perceptron that takes a vector of sequence 521 

features (additive, neighbor, or pairwise) as input, contains multiple fully-connected hidden 522 

layers with nonlinear activations, and has a single node output with a linear activation. Users are 523 

able to specify the number of hidden layers, the number of nodes in each hidden layer, and the 524 

activation function used by these nodes. 525 

MAVE-NN further supports custom G-P maps that users can define by subclassing the G-526 

P map base class. These G-P maps can have arbitrary functional form, e.g., representing specific 527 

biophysical hypotheses of sequence function. This feature of MAVE-NN is showcased in the 528 

analyses of Fig. 6.  529 

Gauge modes and diffeomorphic modes 530 
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G-P maps typically have non-identifiable degrees of freedom that must be fixed, i.e., 531 

pinned down, before the values of individual parameters can be meaningfully interpreted or 532 

compared between models. These degrees of freedom come in two flavors: gauge modes and 533 

diffeomorphic modes. Gauge modes are changes to 𝜃 that do not alter the values of the latent 534 

phenotype 𝜙. Diffeomorphic modes15,20 are changes to 𝜃 that do alter 𝜙, but do so in ways that 535 

can be undone by transformations of the measurement process 𝑝(𝑦|𝜙). As shown by Kinney 536 

and Atwal,15,20 the diffeomorphic modes of linear G-P maps like those considered here will in 537 

general correspond to affine transformations of 𝜙, although additional unconstrained modes can 538 

occur in special situations. 539 

MAVE-NN fixes both gauge modes and diffeomorphic modes of inferred models (except 540 

when using custom G-P maps). The diffeomorphic modes of G-P maps are fixed by 541 

transforming 𝜃 via 542 

𝜃- → 𝜃- − 𝑎	, (5) 543 

and then 544 

𝜃 →
𝜃
𝑏
,	 (6) 545 

where 𝑎 = mean({𝜙/}) and 𝑏 = std({𝜙/}) are the mean and standard deviation of 𝜙 values 546 

computed on the training data. This produces a corresponding change in latent phenotype 547 

values 𝜙 → (𝜙 − 𝑎)/𝑏. To avoid altering likelihood values, MAVE-NN makes a corresponding 548 

transformation to the measurement process 𝑝(𝑦|𝜙). In GE regression this is done by adjusting 549 

the GE nonlinearity via 550 

𝑔(𝜙) → 𝑔(𝑎 + 𝑏𝜙)	, (7) 551 

while keeping the noise model 𝑝(𝑦|𝑦i) fixed. In MPA regression MAVE-NN transforms the full 552 

measurement process via 553 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2022. ; https://doi.org/10.1101/2020.07.14.201475doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.14.201475
http://creativecommons.org/licenses/by/4.0/


 - 32 - 

𝑝(𝑦|𝜙) → 𝑝(𝑦|𝑎 + 𝑏𝜙)	.	 (8) 554 

For the three parametric G-P maps, gauge modes are fixed using what we call the 555 

“hierarchical gauge.” Here, the parameters 𝜃 are adjusted so that the lower-order terms in 556 

𝜙(𝑥; 𝜃) account for the highest possible fraction of variance in 𝜙. This procedure requires a 557 

probability distribution on sequence space with respect to which these variances are computed. 558 

MAVE-NN assumes that such distributions factorize by position, and can thus be represented 559 

by a probability matrix with elements 𝑝3:5, denoting the probability of character 𝑐 at position 𝑙. 560 

MAVE-NN provides three built-in choices for this distribution: uniform, empirical, or wildtype. 561 

The corresponding values of 𝑝3:5 are given by 562 

𝑝3:5 = j
1/𝐶 for	uniform
𝑛3:5/𝑁 for	empirical
𝑥3:59$ for	wildtype

	, (9) 563 

where 𝑛3:5 denotes the number of sequences (out of 𝑁 total) that have character 𝑐 at position 𝑙, 564 

and 𝑥3:59$ is the one-hot encoding of a user-specified wildtype sequence. In particular, the 565 

wildtype gauge was used for illustrating the additive G-P maps in Fig. 3 and Fig. 4, while the 566 

uniform gauge was used for illustrating the pairwise G-P map in Fig. 5 and the energy matrices 567 

in Fig. 6. After a sequence distribution is chosen, MAVE-NN fixes the gauge of the pairwise G-P 568 

map by transforming 569 

𝜃- → 𝜃-																																																																									
+__𝜃3:5/

5/3

𝑝3:5/																															

+___𝜃3:5,3/:5/
5,5/3/;33

𝑝3:5  𝑝3/:5/	,

(10) 570 
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𝜃3:5 → 𝜃3:5 																																																			

−_𝜃3:5/
5/

 𝑝3:5/ 																														

+__𝜃3:5,3/:5/
5/3/;3

𝑝3/:5/																						

+__𝜃3/:5/,3:5
5/3/<3

𝑝3/:5/																						

−_ _ 𝜃3:5/,3/:50
5/,503/;3

𝑝3:5/  𝑝3/:50 			

−_ _ 𝜃3/:50,3/:5/
5/,503/<3

𝑝3:5/  𝑝3/:50	 ,

(11) 571 

and 572 

𝜃3:5,3/:5/ → 𝜃3:5,3/:5/																																																												
−_𝜃3:50,3/:5/

50
𝑝3:50																															

−_𝜃3:5,3/:50
50

𝑝3/:50																															

+ _ 𝜃3:50,3/:52
50,52

 𝑝3:50	 𝑝3/:52 	.		

(12) 573 

This transformation is also used for the additive and neighbor G-P maps, but with 𝜃3:5,3/:5/ = 0 for 574 

all 𝑙, 𝑙′ (additive) or whenever 𝑙′ ≠ 𝑙 + 1 (neighbor). 575 

GE nonlinearities 576 

GE models assume that each measurement 𝑦 is a nonlinear function of the latent 577 

phenotype 𝑔(𝜙) plus some noise. In MAVE-NN, this nonlinearity is represented as a sum of 578 

tanh sigmoids: 579 

𝑔(𝜙; 𝛼) = 𝑎 +_ 𝑏=

>*2

=0-

tanh(𝑐=𝜙 + 𝑑=)	. (13) 580 
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Here, 𝐾 specifies the number of hidden nodes contributing to the sum, and 𝛼 = {𝑎, 𝑏= , 𝑐= , 𝑑=} are 581 

trainable parameters. We note that this mathematical form is an example of the bottleneck 582 

architecture previously used by23,45 for modeling GE nonlinearities. By default, MAVE-NN 583 

constrains 𝑔(𝜙; 𝛼) to be monotonic in 𝜙 by requiring all 𝑏= ≥ 0 and 𝑐= ≥ 0, but this constraint 584 

can be relaxed. 585 

GE noise models 586 

MAVE-NN supports three types of GE noise model: Gaussian, Cauchy, and skew-t. 587 

These all support the analytic computation of quantiles and confidence intervals, as well as the 588 

rapid sampling of simulated measurement values. The Gaussian noise model is given by 589 

𝑝?)@AA(𝑦|𝑦i; 𝑠) =
1

√2𝜋𝑠!
exp t−

(𝑦 − 𝑦i)!

2𝑠! u	 , (14) 590 

where 𝑠 denotes the standard deviation. Importantly, MAVE-NN allows this noise model to be 591 

heteroskedastic by representing 𝑠 as an exponentiated polynomial in 𝑦i, i.e., 592 

𝑠(𝑦i) = exp v_𝑎=

>

=0-

𝑦i=w	 , (15) 593 

where 𝐾 is the order of the polynomial and {𝑎=} are trainable parameters. The user has the 594 

option to set 𝐾, and setting 𝐾 = 0 renders this noise model homoscedastic. Quantiles are 595 

computed using 𝑦B = 𝑦i + 𝑠 √2 erf*2(2𝑞 − 1) for user-specified values of 𝑞 ∈ [0,1]. Similarly, the 596 

Cauchy noise model is given by 597 

𝑝C)@CDE(𝑦|𝑦i; 𝑠) = t𝜋𝑠 |1 +
(𝑦 − 𝑦i)!

𝑠!
}u

*2

	, (16) 598 

where the scale parameter 𝑠 is an exponentiated 𝐾’th order polynomial in 𝑦i, and quantiles are 599 

computed using 𝑦B = 𝑦i + 𝑠 tan ~𝜋(𝑞 − 2
!
)�. 600 
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The skew-t noise model is of the form described by Jones and Faddy,29 and is given by 601 

𝑝AF'9$(𝑦|𝑦i; 𝑠, 𝑎, 𝑏) = 𝑠*2𝑓(𝑡; 𝑎, 𝑏)	, (17) 602 

where 603 

𝑡 = 𝑡∗ +
𝑦 − 𝑦i
𝑠

,						𝑡∗ =
(𝑎 − 𝑏)√𝑎 + 𝑏
√2𝑎 + 1√2𝑏 + 1

	, (18) 604 

and 605 

𝑓(𝑡; 𝑎, 𝑏) =
22*H*I

√𝑎 + 𝑏
𝛤(𝑎 + 𝑏)
𝛤(𝑎)𝛤(𝑏) �

1 +
𝑡

√𝑎 + 𝑏 + 𝑡!
�
H82!

			

× �1 −
𝑡

√𝑎 + 𝑏 + 𝑡!
�
I82!

	 .

(19) 606 

Note that the 𝑡 statistic here is an affine function of 𝑦 chosen so that the distribution’s mode 607 

(corresponding to 𝑡∗) is positioned at 𝑦i. The three parameters of this noise model, {𝑠, 𝑎, 𝑏}, are 608 

each represented using 𝐾-th order exponentiated polynomials with trainable coefficients. 609 

Quantiles are computed using 610 

𝑦B = 𝑦i + �𝑡B − 𝑡∗�𝑠	, (20) 611 

where 612 

𝑡B =
�2𝑥B − 1�√𝑎 + 𝑏

�1 − (2𝑥B − 1)!
,						𝑥B = 𝐼B*2(𝑎, 𝑏)	, (21) 613 

and 𝐼*2 denotes the inverse of the regularized incomplete Beta function 𝐼J(𝑎, 𝑏). 614 

Empirical noise models 615 

MAVE-NN further supports the inference of GE regression models that account for user-616 

specified measurement noise. In such cases, the user provides a set of measurement-specific 617 
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uncertainties {𝑠/}/0-1*2 along with the corresponding sequences and measurements. These uncertainties 618 

can, for example, be estimated by using a software package like Enrich211 or DiMSum14. MAVE-NN then 619 

trains the parameters of latent phenotype models by assuming a Gaussian noise model of the form 	620 

𝑝'K%"&"C)L(𝑦/|𝑦i/, 𝑠/) =
1

�2𝜋𝑠/!
exp t−

(𝑦/ − 𝑦i/)!

2𝑠/!
u	 , (14) 621 

where 𝑦"! = 𝑔(𝑓(𝑥!; 𝜃); 𝛼) is the expected measurement for sequence 𝑥!, 𝜃 denotes G-P map 622 

parameters, and 𝛼 denotes the parameters of the GE nonlinearity. This noise model thus has 623 

the advantage of having no free parameters, but it may be problematically mis-specified if the 624 

true error distribution is heavy-tailed or skewed.  625 

MPA measurement process 626 

In MPA regression, MAVE-NN directly models the measurement process 𝑝(𝑦|𝜙). At 627 

present, MAVE-NN only supports MPA regression for discrete values of 𝑦 indexed using 628 

nonnegative integers. MAVE-NN supports two alternative forms of input for MPA regression. 629 

One is a set of sequence-measurement pairs {(𝑥/, 𝑦/)}/0-1*2, where 𝑁 is the total number of 630 

reads, {𝑥/} is a set of (typically) non-unique sequences, each 𝑦/ ∈ {0,1, … , 𝑌 − 1} is a bin 631 

number, and 𝑌 is the total number of bins. The other is a set of sequence-count-vector pairs 632 

{(𝑥M, 𝑐M)}M0-N*2, where 𝑀 is the total number of unique sequences and 𝑐M = (𝑐M-, 𝑐M2, … , 𝑐M(P*2)) 633 

is a vector that lists the number of times 𝑐MR that the sequence 𝑥M was observed in each bin 𝑦. 634 

MPA measurement processes are represented as multilayer perceptron with one hidden layer 635 

(having tanh activations) and a softmax output layer. Specifically, 636 

𝑝(𝑦|𝜙) =
𝑤R(𝜙)

∑ 𝑤R/R/ (𝜙)
	, (22) 637 

where638 

𝑤R(𝜙) = exp�𝑎R +∑ 𝑏R=>*2
=0- tanh�𝑐R=𝜙 + 𝑑R=�� (23) 639 
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and 𝐾 is the number of hidden nodes per value of 𝑦. The trainable parameters of this 640 

measurement process are 𝜂 = �𝑎R , 𝑏R= , 𝑐R= , 𝑑R=�. 641 

Loss function 642 

Let 𝜃 denote the G-P map parameters, and 𝜂 denote the parameters of the 643 

measurement process. MAVE-NN optimizes these parameters using stochastic gradient 644 

descent on a loss function given by 645 

ℒ = ℒL"F' + ℒ&'?	, (24) 646 

where ℒL"F' is the negative log likelihood of the model, given by 647 

ℒL"F'[𝜃, 𝜂] = −_ log
1*2

/0-

[𝑝(𝑦/|𝜙/; 𝜂)]	 (25) 648 

where 𝜙/ = 𝜙(𝑥/; 𝜃),	and ℒ&'? provides for regularization of the model parameters. 649 

In the context of GE regression, we can write 𝜂 = (𝛼, 𝛽) where 𝛼 represents the 650 

parameters of the GE nonlinearity 𝑔(𝜙; 𝛼), and 𝛽 denotes the parameters of the noise model 651 

𝑝(𝑦|𝑦i; 𝛽). The likelihood contribution from each observation 𝑛 then becomes 𝑝(𝑦/|𝜙/; 𝜂) =652 

𝑝(𝑦/|𝑦i/; 𝛽) where 𝑦i/ = 𝑔(𝜙/; 𝛼). In the context of MPA regression with a dataset of the form 653 

{(𝑥M, 𝑐M)}M0-N*2, the loss function simplifies to 654 

ℒL"F'[𝜃, 𝜂] = − _ _𝑐MR

P*2

R0-

N*2

M0-

log[𝑝(𝑦|𝜙M; 𝜂)] (26) 655 

where 𝜙M = 𝜙(𝑥M; 𝜃). For the regularization term, MAVE-NN uses an 𝐿! penalty of the form 656 

ℒ&'?[𝜃, 𝜂] = 𝜆S�𝜃|! + 𝜆T�𝜂|!	, (27) 657 
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where the user-adjusted parameters 𝜆S and 𝜆T respectively control the strength of regularization 658 

for the G-P map and measurement process parameters.  659 

Predictive information 660 

In what follows, we use 𝑝KUV'L(𝑦|𝜙) to denote a measurement process inferred by 661 

MAVE-NN, whereas 𝑝$&@'(𝑦|𝜙) denotes the empirical conditional distribution of 𝑦 and 𝜙 values 662 

that would be observed in the limit of infinite test data. 663 

Predictive information 𝐼%&' = 𝐼[𝑦; 𝜙], where 𝐼[⋅;⋅] represents mutual information computed 664 

on data not used for training (i.e., a held-out test set or data from a different experiment), 𝐼%&' 665 

provides a measure of how strongly a G-P map predicts experimental measurements. 666 

Importantly, this quantity does not depend on the corresponding measurement process 667 

𝑝KUV'L(𝑦|𝜙). To estimate 𝐼%&', we use k’th nearest neighbor (kNN) estimators of entropy and 668 

mutual information adapted from the NPEET Python package.47 Here, the user has the option of 669 

adjusting 𝑘, which controls a variance/bias tradeoff. When 𝑦 is discrete (MPA regression), 𝐼%&' is 670 

computed using the classic kNN entropy estimator48,49 via the decomposition 𝐼[𝑦; 𝜙] = 𝐻[𝜙] −671 

∑ 𝑝R (𝑦)𝐻R[𝜙], where 𝐻R[𝜙] denotes the entropy of 𝑝$&@'(𝜙|𝑦). When 𝑦 is continuous (GE 672 

regression), 𝐼[𝑦; 𝜙] is estimated using the kNN-based Kraskov Stögbauer Grassberger (KSG) 673 

algorithm.49 This approach optionally supports the local nonuniformity correction of Gao et al., 674 

which is important when 𝑦 and 𝜙 exhibit strong dependencies, but which also requires 675 

substantially more time to compute. 676 

Variational information 677 

We define variational information as an affine transformation of ℒL"F', 678 

𝐼()& = 𝐻[𝑦] −
log!(𝑒)
𝑁

ℒL"F'	. (28) 679 
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Here, 𝐻[𝑦] is the entropy of the data {𝑦/}, which is estimated using the 𝑘’th nearest neighbor 680 

(kNN) estimator from the NPEET package.47 Noting that this quantity can also be written as 681 

𝐼()& = 𝐻[𝑦] − mean({𝑄/}), where 𝑄/ = −log!𝑝(𝑦/|𝜙/), we estimate the associated uncertainty 682 

using 683 

𝛿𝐼()&[𝑦; 𝜙] = �𝛿𝐻[𝑦]! +
var({𝑄/})

𝑁 	. (29) 684 

The inference strategy used by MAVE-NN is based on the fact that 𝐼()& provides a tight 685 

variational lower bound on 𝐼%&'. Indeed, in the large data limit, 686 

𝐼%&' = 𝐼()& + 𝐷WX(𝑝true||𝑝model)	, (30) 687 

where 𝐷WX(⋅) ≥ 0 is the Kullback-Leibler divergence, and thus quantifies the accuracy of the 688 

inferred measurement process. From Eq. 30 one can see that, with appropriate caveats, 689 

maximizing 𝐼()& (or equivalently, ℒL"F') will also maximize 𝐼%&'.20 But unlike 𝐼%&', 𝐼()& is readily 690 

compatible with backpropagation and stochastic gradient descent. See Supplemental 691 

Information for a derivation of Eq. 30 and an expanded discussion of this key point. Note: 692 

Sharpee et al.50 cleverly showed that 𝐼%&' can, in fact, be optimized using stochastic gradient 693 

descent. Computing gradients of 𝐼%&', however, requires a time-consuming density estimation 694 

step. Optimizing 𝐼()&, on the other hand, can be done using standard per-datum 695 

backpropagation. 696 

Intrinsic information 697 

Intrinsic information, 𝐼"#$ = 𝐼[𝑥; 𝑦], is the mutual information between the sequences 𝑥 698 

and measurements 𝑦 in a dataset. This quantity is somewhat tricky to estimate due to the high-699 

dimensional nature of sequence space. We instead used three different methods to obtain the 700 

upper and lower bounds on 𝐼"#$ shown in Fig. 3d and Fig. 5a. More generally, we believe the 701 
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development of both computational and experimental methods for estimating 𝐼"#$ is be an 702 

important avenue for future research. 703 

To compute the upper bound on 𝐼"#$ for GB1 data (in Fig. 3d), we used the fact that 704 

𝐼[𝑥; 𝑦] = 𝐻[𝑦] − ⟨𝐻J[𝑦]⟩J	, (31) 705 

where 𝐻[𝑦] is the entropy of all measurements 𝑦, 𝐻J[𝑦] is the entropy of 𝑝(𝑦|𝑥) for a specific 706 

choice of sequence 𝑥, and ⟨⋅⟩J indicates averaging over all sequences 𝑥. In this dataset, the 707 

measurement values were computed using 708 

𝑦 = log! �
𝑐a + 1
𝑐b + 1

�	, (32) 709 

where 𝑐b is the input read count and 𝑐a is the selected read count. 𝐻[𝑦] was estimated using the 710 

KNN estimator.48 We estimated the uncertainty in 𝑦 by propagating errors expected due to 711 

Poisson fluctuations in read counts, which gives 712 

𝛿𝑦 = log!(𝑒)�
2

5382
+ 2

5482
	 . (33)713 

Then, assuming 𝑝(𝑦|𝑥) to be approximately Gaussian, we find the corresponding conditional 714 

entropy to be 715 

𝐻J[𝑦] =
1
2

log!(2𝜋𝑒 𝛿𝑦
!)	. (34) 716 

These 𝐻[𝑦] and 𝐻J[𝑦] values were then used in Eq. 31 to estimate 𝐼"#$. This should provide an 717 

upper bound on the true value of 𝐼"#$ because uncertainty in 𝑦 must be at least that expected 718 

under Poisson sampling of reads. We note, however, that the use of linear error propagation 719 

and the assumption that 𝑝(𝑦|𝑥) is approximately Gaussian complicate this conclusion. Also, 720 

when applied to MPSA data, this method yielded an upper bound of 0.96 bits. We believe this 721 

value is likely to be far higher than the true value of 𝐼"#$, and that this mismatch probably 722 

resulted from read counts in the MPSA data being over-dispersed. 723 
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To compute the lower bound on 𝐼"#$ for GB1 data (Fig. 3d) we used the predictive 724 

information 𝐼%&' (on test data) of a GE regression model having a blackbox G-P map. This 725 

provides a lower bound because 𝐼"#$ ≥ 𝐼%&' for any model (when evaluated on test data) due to 726 

the Data Processing Inequality and the Markov Chain nature of the dependencies 𝑦 ← 𝑥 → 𝜙 in 727 

Fig. 2e.20,31 728 

To compute a lower bound on 𝐼"#$ for MPSA data (Fig. 5c), we leveraged the availability 729 

of replicate data in Wong et al..38 Let 𝑦 and 𝑦′ represent the original and replicate 730 

measurements obtained for a sequence 𝑥. Because 𝑦 ← 𝑥 → 𝑦′ forms a Markov chain, 𝐼[𝑥; 𝑦] ≥731 

𝐼[𝑦; 𝑦′].31 We therefore used an estimate of 𝐼[𝑦; 𝑦′], computed using the KSG method,47,49 as the 732 

lower bound for 𝐼"#$. 733 

Uncertainties in kNN estimates of mutual information 734 

MAVE-NN quantifies uncertainties in 𝐻[𝑦] and 𝐼[𝑦; 𝜙] using multiple random samples of 735 

half the data. Let 𝒟2--% denote a full dataset, and let 𝒟d-%,e denote a 50% subsample (indexed 736 

by 𝑟) of this dataset. Given an estimator 𝐸(⋅) of either entropy or mutual information, as well as 737 

the number of subsamples 𝑅 to use, the uncertainty in 𝐸(𝒟2--%) is estimated as 738 

𝛿𝐸(𝒟2--%) =
1
√2

std ~�𝐸�𝒟d-%,e��e0-
f*2�	 . (35) 739 

MAVE-NN uses 𝑅 = 25 by default. We note that computing such uncertainty estimates 740 

substantially increases computation time, as 𝐸(⋅) needs to be evaluated 𝑅 + 1 times instead of 741 

just once. We also note that bootstrap resampling51,52 is often inadvisable in this context, as it 742 

systematically underestimates 𝐻[𝑦] and overestimates 𝐼[𝑦; 𝑧]. 743 

Uncertainties in G-P map parameters 744 
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Given a trained latent phenotype model, having G-P map parameters 𝜃∗ and 745 

measurement process parameters 𝜂∗, MAVE-NN can optionally assess model uncertainty using 746 

the following parametric bootstrap approach. Using the trained model with parameters (𝜃∗, 𝜂∗) 747 

as “ground truth”, MAVE-NN simulates 𝑅 (chosen by the user) different MAVE datasets 𝒟# =748 

0(𝑥!, 𝑦!
(#))1

!&'

()*
, where 𝑟 = 0,1, … , 𝑅 − 1 indexes the different simulations. Note that the 749 

sequences in these simulated datasets are the same as the original training sequence, but the 750 

measurements are different. For each simulated dataset 𝒟#, MAVE-NN then trains a new 751 

model, by default using the same hyperparameters as were used for the ground truth model. 752 

This procedure yields a set 78𝜃9(#), 𝜂(#):;
#&'
+)*

	of simulation-inferred G-P map parameters and 753 

corresponding measurement process parameters. Users can then use this sampling of G-P map 754 

parameters to estimate uncertainties, e.g., by reporting 𝛿𝜃, = std A0𝜃,
(#)1

#&'

+)*
B.  755 

An important detail when assessing parameter uncertainty is to ensure that both the 756 

gauge modes and the diffeomorphic modes of each model are fixed. This is necessary so that 757 

differences in the parameters that cannot result in changes to model predictions do not inflate 758 

the uncertainty estimates. For additive, neighbor, and pairwise G-P maps,  MAVE-NN 759 

automatically implements the procedure described in the “Gauge modes and diffeomorphic 760 

modes” section above, thereby removing these extra degrees of freedom. However, for more 761 

complex models such as those implemented by MAVE-NN’s custom G-P map functionality (e.g., 762 

representing biophysical models) different gauge freedoms and diffeomorphic modes may arise 763 

depending on the details of the model, and users must take care to determine and fix these 764 

prior to assessing parameter uncertainty. We also note that no meaningful computation of 765 
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individual parameter uncertainties is likely to be possible for highly over-parameterized models, 766 

such as the “black box” deep neural network models supported by MAVE-NN. 767 

Datasets 768 

For the GB1 DMS dataset of Olson et al.,35 measurements were computed using 769 

𝑦! = log-
(.!"#$/*)/(.%&

"#$/*)
(.!'(/*)/(.%&

'( /*)
 , 770 

where 𝑐!12 and 𝑐!345 respectively represent the number of reads from the input and output 771 

samples (i.e., pre-selection and post-selection libraries), and 𝑛 = WT represents the 55 aa 772 

wildtype sequence, corresponding to positions 2-56 of the GB1 domain. To infer the model in 773 

Fig. 3b and to compute the information metrics in Fig. 3c, only double-mutant sequences with 774 

𝑐!12 ≥ 10 were used; these represent 530,737 out of the 536,085 possible double mutants. For 775 

the models in Figs. 3d-f, 𝑦! values for the 1045 single-mutant were also used in the inference 776 

procedure.  777 

For the Aβ DMS data of Seuma et al.36 and TDP-43 DMS data of Bolognesi et al.,37 𝑦! 778 

values respectively represent nucleation scores and toxicity scores reported by the authors.  779 

For the MPSA data of Wong et al.,38 we used the data of library 1 replicate 1 obtained 780 

for the BRCA2 minigene data. Measurements were computed as 781 

𝑦! = log*' A100 ×
(.!'()/*)/(.*+,-

'() /*)
(.!$"$/*)/(.*+,-

$"$ /*)
B , 782 

where 𝑐!126 and 𝑐!535respectively represent the number of barcode reads obtained from exon 783 

inclusion isoforms and from total mRNA, and 𝑛 = CONS corresponds to the consensus 5´ss 784 
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sequence CAG/GUAAGU. Corresponding PSI values were computed as PSI! = 107!. Only 785 

sequences with 𝑐!535 ≥ 10 were used, representing 30,483 of the 32,768 possible sequences of 786 

the form NNN/GYNNNN. 787 

For the 𝑙𝑎𝑐 promoter sort-seq MPRA data of Kinney et al.,16 we used data from the “full-788 

wt” experiment (available at https://github.com/jbkinney/09_sortseq).  789 

  790 
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